Toric-code model — 2, topological order, Z, gauge theory

Dancing rules:

b (1) = 0 (1) 0 (B> B) = ., ()

e The Hamiltonian to enforce the dancing rules:

H=—UY Q-g> R, Q=[] o = J[ &
[ p

legs of | edges of p
e Ground state wave function ®(X) = const.
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Stable ground state degeneracy and topo. order

e The hamiltonian is a sum of commuting operators
[vaFp’] =0, [QIaQI’] =0, [Fpan] = 0. Fp2: Q|2:1
e Ground state ‘\Ugrnd>: Fp‘\lfgmd> = Ql‘wgrnd> — ‘wgrnd> ,

Egrnd — _2UNce|| — cheII e e
e Quasiparticle excitation energy gap . < > < O o
A =2U, A} =2g
Ground state degeneracy e~ () - o
NSO pa
O

e Identities [[ Qi =1, [[, Fp = 1.

e Number of independent quantum
numbers F, = £1, )y = £1 on torus: Nigpel = 22Nce“2’\’cell/4
Number of states on torus: Npe = 22Veell 2 Neell

0

e H is a function of Fp, (). The degeneracy of any eigenstates is 4.
e On genus g surface, ground state degeneracy D, = 48

e The above degenerate ground states form a “code”, which has a
large “code distance” of order L (the linear size of the system).
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Stable gapped ground state — gapped quantum phase

E E E E
A ‘ A
| £
7 Ng 7 g g g

- Second-order transition point = gapless state
- First-order transition point = unstable gapped state
— gapped quantum phase = stable gapped ground state
e Stable ground state degeneracy — Gapped quantum phase
However, for a long time, we thought that
e without symmetry, the stable ground state degeneracy always =1
e with symmetry, the stable ground state degeneracy # 1,

— symmetry breaking = emergence of ground state degeneracy
which is stable against any perturbation that repect the symmetry.
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Stable gapped ground state — gapped quantum phase

E E E E
A ‘ A
| £
7 Ng 7 g g g

- Second-order transition point = gapless state
- First-order transition point = unstable gapped state
— gapped quantum phase = stable gapped ground state
e Stable ground state degeneracy — Gapped quantum phase
However, for a long time, we thought that
e without symmetry, the stable ground state degeneracy always =1
e with symmetry, the stable ground state degeneracy # 1,

— symmetry breaking = emergence of ground state degeneracy
which is stable against any perturbation that repect the symmetry.

e The above topology-dependent ground state degeneracy D,,

Is stable against any perturbations:

— a new kind of order topo. order
Deg.=1 Deg:=D Deg.=D

Wen 89; Wen-Niu 90
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Double-semion theory

Dancing rules:

b (1) = 0 (1) 0, (I B) = 0., ()

e The Hamiltonian to enforce the dancing rules:

V4

H = _UZI Q| — % Zp(Fp + h.C.),
1—o0s
Z X 1 .
QI — Hlegs of 1 Fi > FP — (Hedges of p Uj )(_ Hlegs of p 1 )

e Ground state wave function ®(X) = (—)*<, where X. is the
number of loops in the string configuration X.
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More general patterns of long-range entanglement

Generslize the Z,/double-semion dancing rule:

oo () = 0 (). 0 (B B) = 200, ()

Graphic state:

e More general wave functions are defined B !
on graphs, with V. + 1 states on links y
and N, = N/ states on vertices:

More general local rule: F-move Levin-wen, 2005; Chen-Gu-wen, 2010

] N Nkj” nil i j .k
: Uk;mozﬂ
F-move: ¢ \%/ T Y Y s P Vn/
) n=0 x=1 /=1 l
The matrix F/* — (F,”k)nmgﬁ — local unitary transformation

;!55

ke
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Fifk;moéﬁ ;

Consistent conditions for . the pentagon identity

[;nxo
i j ko i j ok
0 9
N can be trans. to v 4 through two different paths:
p p
i j ko i ksl i kal
m _ mkl;nBx e _ mkl;nBx ijg;moce 9
¢ <W> o Zq,&e Fp;q5e ® (W) o Zq,é,e;s,qb,’y Fp;q56 Fp;sqﬁv ® ( - >'
p P p
i ok 1 i k1 i jnk I
m _ ijk;ma 3 9 o ijkymaB itlnpy
¢ (W) o Ztm,so F”?“W ¢ <\§i/> - Zt,n,w;s,mv Fn?tmo FP:SHD’Y ® <%/>
p )4 p
i j kﬁl
_ jk;mapB itlnex ciklitnk Y
o Zt,n,mso:s,mv;qﬁ@ F”;“?SD FP?S’W Fs;q5¢ ¢ Yi !

p

The two paths should lead to the same LU trans.:
ijk;maB =itl;npx ciklitns mkl;nBx —ijq;moe
Z Fn;tnso Fp;sm Fs;qéqﬁ - Z Fp;qée Fp;sm
tﬂ?a%ﬁl €
Such a set of non-linear algebraic equations is the famous

pentagon identity.

Thier solution Ng, F,';j,/:;(%mﬁ — Unitary fusion category (UFC)

— string-net states
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A complete characterization of 2+1D topological order

e Both £, topological order and double-semion topological order
have the same degeneracy 4% on genus g surfaces.

Do they have the same topological order and belong to the
same phase?
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A complete characterization of 2+1D topological order

e Both £, topological order and double-semion topological order
have the same degeneracy 4% on genus g surfaces.

Do they have the same topological order and belong to the
same phase?

e Non-Abelian geometric phases wiiczek zee 314 Of the degenerate
ground state by deforming the torus: (1) |V,) — |V.) = T.5|/Vp3)

1] /) 2

(2) 90° rotation S: |W,) — [W/) = S, 5|W5)
o 7.5 generate the MCG SL(2,7) of torus
o T.3,5.3,c — complete characterization
of topological order
- Dg—1 — number quasiparticle types
- Eigenvalues of T,3 — quasiparticle
fractional statistics
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Measure topo. order: Universal wavefunction overlap

o Consider the ground states |W,,) on torus T2, and
two maps, S = 90° rotation and T = Dehn twist.
The non-Abelian geometric phases 5 T via overlap

S Be—st2+0(L y _ = (Y a‘swm A A . A

-------------------

* 4——¢ [ q ¢ —a

Tape TEH = (| TV EAAA A4 4447

RO
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Measure topo. order: Universal wavefunction overlap

o Consider the ground states |W,,) on torus T2, and
two maps, S = 90° rotation and T = Dehn twist.
The non-Abelian geometric phases 5 T via overlap

Sape BEHL) —(w,|S|wy)  1AAA  FAA - L

-------------------

* 4——¢ [ q ¢ —a

Tape TEH = (| TV EAAA A4 4447

RO

e For the first topo. order:

Wy (C2H) = gstring-length

W, (R2H) = (—)Wagstrlen
\U3(>§/) — (_)Wygstr—len

Wy (02) = (=) Wat Wy gstrlen
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Measure topo. order: Universal wavefunction overlap

o Consider the ground states |W,,) on torus T2, and
two maps, S = 90° rotation and T = Dehn twist.
The non-Abelian geometric phases 5 T via overlap

Sape U — (v, |S|ws) 1A L ARG - AT

* 4——¢ [ q ¢ —a

Tage Mol — (v, |Tiw,) AT A A

RO

e For the first topo. order:
\U1(>§&) — gstring—length
Va )= (e [ ER
\U3(>§/) — (_)Wygstr—len |
\U4(>§/) — (_)Wx+WygStr—|en 204 |

e g < 0.8 small-loop phase (a) ° > (b)
. g
WV, ) are the same state - g 870802 00 oo
e g > 0.8 large-loop phase s(i“i)r(f“j =100 T=(3$3T]
: 1111 1111 0001 0010
WV, ) are four diff. states (©)
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Measure topo. order: Universal wavefunction overlap

o Consider the ground states |W,,) on torus T2, and
two maps, S = 90° rotation and T = Dehn twist.
The non-Abelian geometric phases 5 T via overlap

S Be_f5L2+O(L b S \5!"’5> A A . S

.............

Tage M) = (| T\vs)  AAA AAA  AAAT

........................

e For the first topo. order:

\Ul(}%&) _ gstring—length : S :
vl )= (e TR
\U3(>§/) _ (_)Wygstr—len S 261
v 4(>§ /) _ (_)Wx+Wy gstr—len ] ——— —
e g < 0.8 small-loop phase Cw C )
WV, ) are the same state o o §=0.802 oo oo °
e g > 0.8 large-loop phase S(HH)T(HH] s(ﬁ‘féﬂ)r(ﬁéﬁ?]
WV, ) are four diff. states : 111 : o 1 101 Y 1 GOU U 10 O o
e For the second topo. order: s=lo 3 ¢ ol 7210 & o 1
0 0
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Local and topological quasiparticle excitations

excitation
In a system: H =) . H; engergy density\ ground state

e a particle-like excitation: ¥ engergy density
energy density = (Voo Hz|Wexe)
(Weye) is the gapped ground state of H + 0 H'P(X).

e Local quasiparticle excitation: |W.,.) = O O(X)|V grnd)

e Topological quasiparticle excitations |We.) # O(X)|Vng) for any
local operators O(X)

e Topological quasiparticle types:
if (W’ O(X)|Vexe), then |V
type.

and |W.,.) belong to the same

exc > T exc >

Number of topological quasiparticle types is an important
topological invariant that characterizes the topological order.

Only topological quasiparticles can carry fractional statistics and
fractional quantum numbers.
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The string operators in the /> topologically ordered state:

the creation operator of topological quasiparticle

e [oric code model:

H—_UZ|QI_gZ F

Ql — lllegs of | O-l ’
FP - .edgesofp oy
o Topologlcal eXC|tat|ons
Q=1—-¢=-1
Fop=1— Fp = -1
e Type-l string operator W) = | [, 07
o Type-ll string operator Wi = | [ e+ 07

e Type-lll string op. W) = Hstring o Hlegs o
o [H, Welesd] = [H, Wige=] = [H, Wfie=={] = 0.
VVIC o°° ‘wgrnd> — VVIT . ‘\Ugrnd> — vaose ‘wgmd> — ‘wgmd>
o [ closed type-l string opertors. : closed type-Il string opertors.
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The string operators in the /> topologically ordered state:

the creation operator of topological quasiparticle

e [oric code model:

H—_UZ|QI_gZ F

Ql — lllegs of | O-l ’

FP - .edgesofp oy
o Topologlcal eXC|tat|ons

Q=1—-Q =-1

Fop=1— Fp = -1
o Type-l string operator W) = | [, 07  — e-type. exe=1
o Type-ll string operator Wij = | | pex 07  — m-type. mx m =1

e Type-lll string op. W, = Hstrmg XH|egS 0f — etype = e x m
° [H Wclosed] - [H \/Vlclosed] - [H Iclzllosed] — 0.

Wclosed‘wgm > _ cIosed‘\Ugm > _ Iﬂosed‘wgmd> _ ‘wgrnd>
o [ closed type-l string opertors. : closed type-Il string opertors.

e Open string operators create topological excitations.
Open string operators are hopping operators of topo. excitations
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Emergence of fractional spin/statistics

e Why electron carry spin-1/2 and Fermi statistics?
e Ends of strings (type-1) are point-like excitations,
which can carry spin-1/2 and Fermi statistics?

Fidkowski-Freedman-Nayak-Walker-Wang 06

o O, (@&) = 1 string liquid ®g, ( > < ) = Dy, ( - )
360° rotation: T% @ and C’? — @ — T: R360°0 = <(1) (1)>

T+(’? has a spin 0 mod 1. T—@ has a spin 1/2 mod 1.

o P, (?g{) = (=) ©'1°%Ps string liquid s, ( > < ) = — Dy, ( : )

360° rotation: T% @ and @ — —© — _T: Rseoe = <(1) 01)

T+ i@ has a spin —1/4 mod 1. = i@ has a spin 1/4 mod 1.
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Spin-statistics theorem

(a) (b) (d) (e)

e (a) — (b) = exchange two string-ends.

e (d) — (e) = 360° rotation of a string-end.

e Amplitude (a) = Amplitude (e)

e Exchange two string-ends plus a 360° rotation of one of the
string-end generate no phase.

— Spin-statistics theorem
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Statistics of ends of strings

e The statistics is determined by particle hopping operators Levin-wen 03:

C A e

IbdlchTha b

C
tcb a d
I bd j a
d 1b

b
d tba X ¢ 2 d
b
tbalchlpd d N N

e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.
e For type-l string: tp, = o, tcp, = 03, thg = 05
We find tpgtopths = thatchtpd
The ends of type-Il string are bosons
e For type-lll strings: t,, = of, tcp = 0307, thg = 0503
We find tpqtcptha = —tphatentpd N -
The ends of type-lll strings are fermions
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