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Motivation: Driven open many-body dynamics

• experimental many-body systems without particle number conservation

• polar molecules (Jun Ye Labs)

• open system Dicke models in cavity (Esslinger)/ circuit (Schoelkopf, 
Wallraff) QED, nanomechanical systems (Painter, Lehnert, Aspelmeyer)

• goal here: characterize the critical behavior of these driven open systems

• other platforms (light-matter): 

➡ polar molecules

➡ photon BECs

➡ trapped ions

• exciton-polariton systems in 
semiconductor quantum wells 5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

single particle pumptoday:

• driven-open Dicke models
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• experimental systems on the interface of quantum optics and many-body physics

• coupled microcavity arrays
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FIG. 1: Full counting statistics of on- and o↵-resonant Rydberg excitations. a, Schematic representation of the experimental
procedure. The cold rubidium atoms are excited to Rydberg states using two laser beams. The resulting Rydberg excitations are
detected on a channeltron after field ionization, and from the individual counts the histograms and full counting statistics (i.e.,
the moments of the counting distribution) are calculated. b-d, Resonant and o↵-resonant excitation processes for interacting
Rydberg atoms. For resonant excitation, c, the van-der-Waals interaction between the atoms shifts a second excitation out of
resonance, leading to the dipole blockade and the associated blockade sphere. O↵ resonance, interactions between pairs can
either lead to resonant pair excitation, d, or to strong suppression of excitations, b. In e, a plot of the mean number of Rydberg
excitations as a function of detuning reveals the interaction-induced resonances for positive detuning, which shows up as an
asymmetry of the lineshape. Here and throughout the paper we omit the subscript obs indicating the observed quantities (see
Methods). The excitation durations are 1µs (grey symbols, right vertical axis) and 20µs (black symbols, left vertical axis). f-h
The histograms of the counting distributions in the resonant and o↵-resonant regimes reflects the di↵erences in the excitation
process. For positive detuning �/2⇡ = +3.5MHz, h, the histogram exhibits a bimodal structure, whereas on resonance, g, it
has a single peak. For negative detuning (�/2⇡ = �3.5MHz), f, the mean number of excitations is considerably smaller than
in h. The dashed vertical lines indicate the mean number of excitations. The Rabi frequency is 2⇡ ⇥ 400 kHz, the interaction
volume 10�7 cm3 and the density 1.8⇥ 1011 cm�3.

experiment (⌦ ⇡ 2⇡ ⇥ 200 kHz, N
db

⇡ 50) we find ⌦
coll

⇡ 2⇡ ⇥ 1.4MHz and ⌦
off

⇡ 2⇡ ⇥ 10 kHz at a detuning
�/2⇡ = 2MHz, leading to an o↵-resonant excitation timescale of around 100µs (subsequent excitations mediated
by already excited atoms can occur on a shorter timescale). Finally, for a detuning with opposite sign to that of
the van-der-Waals interaction, neither single-particle nor pair excitations are resonant, leading to a strong overall
suppression of the excitation probability (Fig. 1b).

These three excitation regimes are summarized in Fig. 1e, where the mean number of Rydberg excitations is

• driven-dissipative Rydberg systems



Quantum Optics

“Thermodynamic”

Non-Equilibrium Physics with Driven Open Quantum Systems (DOQS)
• Interdisciplinary research area: physics at various length scales

Microscopic

Many-body physics Statistical mechanics 
coherent and driven-
dissipative dynamics 

on equal footing
continuum of spatial 
degrees of freedom

Long wavelength

Efficient theoretical tools ?
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Fig. 7. (Color online) Classical vs. quantum
mechanics. The classical path for given bound-
ary conditions at tini and/or tfin is shown as
thick (red) line. The thin (black) paths would
require, e.g., different initial values for ϕ, ϕ̇.
In the microscopic world, the thin (black)
paths add constructively to the path integral
if their action S[ϕ] deviates less than h̄ from
the extremal value corresponding to the classi-
cal path. Also tunneling processes as indicated
by the thick (yellow) line would add construc-
tively to the integral.

which leads to the Euler-Lagrange, i.e., the sought dynamic equation for ϕ.4 For instance, given
particular initial values for the position and velocity of the child on the slide shown in Fig. 7
at t = tini, this equation has the thick solid (red) path as solution. Different paths require in
general different initial conditions to be imposed.

On scales where quantum effects become relevant, the real world is somewhat more intricate.
Fluctuations around the classical path as depicted by the thin (black) solid lines in Fig. 7 imply
the action S[ϕ] to deviate from its classical extremal value, and, only if this deviation is larger
than h̄, the phase factor exp{iS[ϕ]/h̄} suppresses the contributions of such paths to the integral
through destructive interference. Qualitatively new effects are in order like the “quantum child”
which can tunnel through the edge of the slide as along the (yellow) path in Fig. 7.

We generalise this path-integral formulation to QFT, where the coordinates ϕ become fields
ϕ(x) defined over time and space. Moreover, we introduce external classical, i.e., non-fluctuating
sources J(x) to turn the path integral into a generating functional for correlation functions,
similarly as in the (grand) canonical partition function in equilibrium physics. This generating
functional reads

Z[J ] =

∫
Dϕ ei(S[ϕ]+

R
Jϕ) (45)

Here and in the following we shall use, if not explicitly stated otherwise, natural units, with
h̄ = 1. We use the short-hand notation

∫
Jϕ =

∫
C dd+1xJ(x)ϕ(x) =

∫ tfin
tini

dx0

∫
ddxJ(x)ϕ(x),

C = [tini, tfin]. For instance, it allows the field expectation value φ = ⟨Φ⟩ to be written as

φ(x) =
δW [J ]

δJ(x)

∣∣∣∣
J=0

= Z−1

∫
Dϕϕ(x) eiS[ϕ], (46)

where W [J ] = −i lnZ[J ] is the Schwinger functional. We introduce the quantum effective action
Γ [φ] by demanding that the full quantum dynamics of the field expectation value φ is given by

4 In deriving the Euler-Lagrange equation the variation of the coordinate ϕ is usually taken to vanish
at the boundaries of the time interval [tini, tfin]. This procedure applies to systems with differential
evolution equations of second order in time. For dynamic equations of first order in time, as the GPE,
care needs to be taken when using the path integral for initial value problems, see, e.g., Ref. [136]

Novel universal phenomena ?

Experimental platforms ?

perform the transition form micro-to 
macrophysics:

quantum field theory out of equilibrium

cold atoms, light-driven semiconductors, microcavity 
arrays, trapped ions ...

• Questions and Challenges:

gc

?



Outline

Part I: Theoretical background

• From the quantum master equation to the Keldysh functional integral

• construction
• semiclassical limit, connection to exciton-polariton systems
• “what is non-equilibrium about it?”

@t⇢ = �i[H, ⇢] + L[⇢]

Part II: Applications

• physics of and mapping to KPZ equation
• non-linear Goldstone mode vs. vortex unbinding (2D & 1D)

• Critical behavior in driven open quantum systems

• Universal long wavelength behavior in low dimension

5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

ei�[�] =

Z
D��eiSM [�+��]

• classical
• quantum

L. Sieberer, M. Buchhold, SD, 
Keldysh Field Theory for Driven Open Quantum Systems, 
arxiv (2015), to appear in Reports on Progress in Physics
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Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
are mainly interested in the out-of-equilibrium dynamics of Ĥc in the presence of losses and
external driving fields. In particular, in this work we model the resulting dissipative dynamics
for the system density operator ⇢ by a master equation (ME) of the form

⇢̇ = �i[Ĥc + Ĥ�(t), ⇢] + 0
X

`

D[ĉ`]⇢ +L⇢, (2)

where D[ĉ]⇢ ⌘ 2ĉ⇢ĉ† � ĉ†ĉ⇢ � ⇢ĉ†ĉ. In equation (2) the Hamiltonian Ĥ�(t) =P
` �`(e�i!dt ĉ†

` + ei!dt ĉ`) describes an external driving field of frequency !d which is
used to excite the system, and the second term accounts for photon losses in each cavity with
a field decay rate 0. While a finite driving field is required to counteract the losses, it will
in general also compete with Ĥc and, for strong driving fields, even dominate the system
dynamics. Therefore, in previous works it has been suggested to either study the transient
dynamics of an initially prepared photonic state [14, 16, 43] (where �` = 0 for times t > 0)
or use excitation spectroscopy [35, 44–47] in a weakly driven system (�` < 0) to probe the
single- and few-body spectrum of the Hamiltonian Ĥc.

In this work, we are interested in the opposite regime of a strongly and continuously driven
system, where the total photon number in the cavity array is large. We study the dynamics of
this system in the presence of an additional artificial thermalization mechanism, denoted by L

in equation (2). More precisely, we will show below how a non-local coupling of photons to
superconducting qubits can be engineered in an array of microwave cavities to implement a
dissipative photon scattering process of the form

L =
X

`



4
D[(ĉ†

` + ĉ†
`+1)(ĉ` � ĉ`+1)] +

 0

4
D[(ĉ†

` � ĉ†
`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/

p
2 into the symmetric (energetically lower) mode

4 Although for concreteness we assume J > 0 in this work, this is not essential for the results on condensation
presented below, since this is achieved ‘dissipatively’ through the Liouvillian (3), and therefore not determined by
the energy of the modes.

New Journal of Physics 14 (2012) 055005 (http://www.njp.org/)

� �
+⌦ �⌦
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exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

An Example: Exciton-Polariton Systems

• phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq

h⇣⇤(t,x)⇣(t0,x0)i = ��(t� t0)�(x� x

0)

microscopic derivation and linear fluctuation analysis:                  
Szymanska, Keeling, Littlewood PRL (04, 06); PRB (07)); 

Wouters, Carusotto PRL (07,10)

propagation elastic collisions
two-body losspump & loss rates

i@t� =


�r2

2m
� µ+ i(�p � �l) + (�� i) |�|2

�
�+ ⇣

k

E

excitons

photons
Imamoglu et al., PRA 1996

pump

relaxation

lower polaritons

loss



physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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• Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

• stochastic driven-dissipative Gross-Pitaevskii-Eq

 Szymanska, Keeling, Littlewood PRL (04, 06); 
PRB (07)); Wouters, Carusotto PRL (07,10)i@t� =
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Sneak preview

I Key physical features: driven-dissipative stochastic Gross-Pitaevskii Equation

I stochastic PDE with Markovian noise: hx(t, x)i = 0 and

hx(t, x)x⇤(t0 , x

0)i = gd(t � t0)d(x � x

0)

I Bose-Einstein condensation phase transition

I mean-field: neglect noise

I homogeneous condensate f(t, x) = f0

) |f0|2 =
gp � gl

k

for gp > gl

) chemical potential µ = l |f0|2

I 2nd order phase transition

• mean field

• neglect noise

• homogeneous solution �(x, t) = �0

• naively, just as Bose condensation in equilibrium!

• Q: What is “non-equilibrium” about it?

An Example: Exciton-Polariton Systems
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➡ how to detect non-equilibrium conditions?
➡ how does this model relate to the exciton-polariton systems? 
➡ how to do efficient (semi-analytical) calculations for such systems?
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Microscopic Description: Quantum Master Equation 

• generic microscopic many-body model:

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢]



Part I:
Theoretical Background
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Keldysh Functional Integral
for stationary states of 

driven open quantum systems

• Construction from quantum master equation

• Semiclassical limit

• “What is non-equilibrium about it?”
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Z
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 -- Liouvillian operator

dissipative evolution

Lindblad operators

coherent evolution

• eliminate bath in second order perturbation theory: Master equation

( )
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Quantum master equation

• Lindblad form: most general time-local meaningful (trace preserving & completely positive) time evol. of density matrix

⌘ L[⇢]

|g⟩

|e⟩

Γ

• driven nature:

coupling to radiation 
field

• Implications:
• no guarantee for detailed balance
• no obedience of the second law of thermodynamics (state purification)

Li = |gihe| = ��

• simple facts: 
• system energy not conserved:
• drive essential to access upper level 

[H,Li] 6= 0



• The many-body problem: given continuum of degrees of freedom, smallness of coupling does not guarantee 
convergence of perturbation theory

• Lindblad form: most general time-local meaningful (trace preserving & completely positive) time evol. of density matrix

 -- Liouvillian operator

dissipative evolution

Lindblad operators

coherent evolution

• eliminate bath in second order perturbation theory: Master equation

( )
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• Lindblad form: most general time-local meaningful (trace preserving & completely positive) time evol. of density matrix

⌘ L[⇢]

Many-body quantum master equation

• e.g. second order correction to local interaction:
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· �

sum over 
intermediate 

states

divergence if

� ! 0, d < 4

➡ harness many-body techniques in quantum optics context! -> Keldysh functional integral 

where: phase 
transitions, 

ordered 
phases..

�� =



Keldysh Functional Integrals: Why?
• Feynman’s formulation of quantum mechanics • Useful language for systems with many 

degrees of freedom

• general: powerful techniques

• diagrammatic perturbation theory; 

• collective variables; 

• renormalization group

• non-equilibrium Keldysh

• closer to the real-time formulations of 
quantum mechanics

• yields directly observable quantities 
(responses and correlations)

• indispensable for non-Hamiltonian 
systems:

• disorder

• dissipation

• open the powerful toolbox of quantum 
field theory for many-body non-
equilibrium situations

infinite harmonic 
baths!



1. Schroedinger equation: evolving a state vector

• The basic idea in three steps:

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

@t⇢(t) = �i[H, ⇢(t)] ) ⇢(t) = U(t, t0)⇢(t0)U
†(t, t0)

2. Heisenberg-von Neumann equation: evolving a state (density) matrix

⇢ = | ih |• identical for pure (factorizable) states

Keldysh functional integral
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3. The same is true for the Master Equation:

) ⇢(t) = eL(t�t0)⇢(t0)

~ = 1
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coherent states:

• one time step

1. Functional integral idea: 

eiH(t�t0) = lim
N!1
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Keldysh functional integral

➡ “Trotterization” of time interval and insertion of coherent states:
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1. Functional integral idea: 

eiH(t�t0) = lim
N!1

(1 + i�tH)N

�t =
t� t0
N

t0
| i(t0)

➡ operator H -> complex, time dependent functional H
➡ time evolution from overlap of neighbouring states
➡ no reference to single particle or many-body Hamiltonian, lattice or continuum!
➡ analogous for fermions (spins: more involved, but see M. Maghrebi, A. V. Gorshkov, PRB (2016)) 
➡ single set of degrees of freedom for vector evolution

Keldysh functional integral

➡ “Trotterization” of time interval and insertion of coherent states:

• many time stepsZ Y

t

d�⇤(t)d�(t)
⇡ ei

R tf
t0

dt[�i@t�
⇤(t)·�(t)�H[�⇤(t),�(t)]]

=:

Z
D(�⇤,�) functional integral measure

• Discussion



• Schroedinger equation: evolving a state vector

2. Schroedinger vs. Heisenberg-von Neumann

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

@t⇢(t) = �i[H, ⇢(t)] ) ⇢(t) = U(t, t0)⇢(t0)U
†(t, t0)

• Heisenberg-von Neumann equation: evolving a state (density) matrix

• Second case: “Trotterization” on both sides:

eiH(t�t0) = lim
N!1

(1 + i�tH)N �t =
t� t0
N

t

➡ two sets of degrees of freedom for matrix evolution

⇢(t0)
tU U †

Keldysh functional integral



• Schroedinger equation: evolving a state vector

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

• Quantum Master equation: evolving a state (density) matrix

• Identical program for Liouville generator of dynamics (left and right action on density matrix)

➡ two sets of degrees of freedom for matrix evolution

⇢(t0)

Keldysh functional integral

⇢(t) = e(t�t0)L ⇢0 = lim
N!1

(1 + �tL)N ⇢0

3. Schroedinger vs. Quantum Master

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢] ) ⇢(t) = eL(t�t0)⇢(t0)
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• Schroedinger equation: evolving a state vector

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

• Quantum Master equation: evolving a state (density) matrix

Keldysh functional integral

3. Schroedinger vs. Quantum Master

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢] ) ⇢(t) = eL(t�t0)⇢(t0)

• final step: Keldysh “partition function”

tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�
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L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

+ contour

- contour

Z = tr⇢(t) = tr⇢(t0) = 1

t0 = �1

t0 ! �1, tf ! +1

information on all stages;
stationarity reached 

(boundary conditions 
irrelevant)



• quantum master equation: 

Keldysh functional integral: Final result
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Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�
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➡ recognize Lindblad structure
➡ simple translation table (for normal ordered Liouvillian)

• operator right of density matrix -> - contour

• operator left of density matrix -> + contour

+ contour

- contour

H± = H(�±) etc.
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• quantum master equation: 

Keldysh functional integral: Probability conservation / ”Causality”
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• trace preservation:
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= 0• QME:

• Keldysh: Z = tr⇢(t) = 1

• mnemonic: taking trace = ignoring contour order:

cyclicity

�+ = �� ) SM [�+,��] = 0



tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�
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+ contour

- contour t0 = �1

Physical Observables

• correlation functions: field insertions on the contour

• compute them: introduce sources (cf. Stat Mech)

normalization

Z = Tr(1 · ⇢) = h1i

Z[0, 0] = h1i = 1

hTC [�̂†(t)�̂(t0)]i = �2Z[j+, j�]

�j+(t)�j⇤+(t
0)

���
j=0

• example
NB: Functional integrals always 
compute time-ordered correlation 
functions

�⇤
+(t) �+(t
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➡ there is a more intuitive basis to do computations
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Correlation vs. response functions

• two basic types of experiments:

e.g. photon quadrature component at vacuum 
input field
(or:               ) 

• correlation measurements: study 
without disturbing

• (linear) response measurements: probe 
system with (weak ) external fields

eg. quantum optics

e.g. coherent input field
in homodyne detection: retarded response of 
quadrature components

SM [�c,�q = 0] = 0 8�c

• directly delivered in the functional framework via basis transformation: “Keldysh rotation”

✓
�c

�q

◆
=

1p
2

✓
�+ + ��
�+ � ��

◆
“classical field”: center-of-mass coordinate
“quantum field”: relative coordinate

• classical field can acquire finite expectation value (e.g. lasing, Bose condensation)

• quantum / noise field cannot

• probability preservation: 

g(1)(⌧)

=0



Correlation vs. response functions

• Partition function in new basis

Z[j] = hei
R
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• order parameter:

h�c(t,x)i = �i
�Z[j]

�j⇤q (t,x)

���
j=0

q,c appear as conjugate pairs for the source homodyne detection: 
vacuum input

• Single particle response: how does the field 
react to external perturbations?
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relation to operator formalism 
(once and for all) t = t’

response to coherent 
field

• Single particle correlations: how are states occupied?
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⇤
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time and space translation 
invariance assumed

t = t’, x=x’

g(1)(⌧ = 0)
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• total Green’s function GA = (GR)†, (GK)† = �GK



Correlation vs. response functions

• action in this basis:

(exact for free theory only)

5.2. OPEN DICKE MODEL FOR ULTRACOLD ATOMS IN A CAVITY317

basis”),

S =
Z

X

⇣

�⇤c, �
⇤
q

⌘

 

0 PA

PR PK

!  

�c

�q

!

+ interactions. (5.1.17)

The zero in this matrix reflects the elimination of redundancy in the ± basis (where
all entries are nonzero), and is an exact property of a Keldysh theory related to
the conservation of norm [103]. For example, for a problem with coherent non-
relativistic single-particle propagation, as well as single particle loss and pumping,
the inverse retarded and advanced propagators are given by PR = PA† = i@t + � +

µ + i where  =
⇣

�l � �p

⌘

/2, while for the Keldysh component of the inverse
propagator, the sum of single-particle pumping and loss rates � = �l + �p appears,
and we have PK = i�. The latter thus specifies the noise level.

Inversion of the 2 ⇥ 2 matrix in Eq. (5.1.17) yields the single-particle Green’s
function or propagator with retarded, advanced, and Keldysh components,

G =
 

GK GR

GA 0

!

. (5.1.18)

The physical single-particle response properties are encoded in the retarded re-
sponse function, and the correlations in the Keldysh component. The fluctuation-
dissipation theorem for the single-particle Green’s function in equilibrium then
reads for bosons GK(!,q) = coth(!/2T )(GR(!,q) �GA(!,q)), without immedi-
ate generalization to non-equilibrium situations.

5.2 Open Dicke Model for Ultracold Atoms in a
Cavity

A prime example for the interplay of coherent and dissipative dynamics is pro-
vided by recent open system realizations of the Dicke model in cavity QED exper-
iments at ETH [13, 14, 108]. These systems are still simple enough from a theoret-
ical perspective to develop some basic characteristic features of driven-dissipative
many-body systems, which may reappear in other open system physical contexts
and provide a valuable resource of orientation for more complex settings.

In this spirit, in [5.2A], we investigate in the Keldysh functional integral frame-
work the nonequilibrium phase transitions for driven ensembles with N atomic
(two-level) degrees of freedom interacting with a cavity mode, and coupled to a
Markovian dissipative bath. In the thermodynamic limit and at low frequencies,
we show that the distribution function of the photonic mode is thermal, with an
e↵ective temperature set by the atom-photon interaction strength. This behavior
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• equation of motion (action principle):

• Green’s function

G�1

G�1 �G = 1�(! � !0)�(q� q)

!,q

(diagonal in frequency/
momentum space)

G =

✓
GK GR

GA 0

◆
GK = �GRPKGA

➡ redundancy of the +/- basis eliminated (zero entry)

• the matrix is the inverse single particle Green’s function:

• single particle Green’s function:



Correlation vs. response: single degree of freedom
• master equation for decaying cavity:

@t⇢ = �i[!0â
†â, ⇢] + (2â⇢â† � {â†â, ⇢})

• action:
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• decay of single-particle response:
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• observables from the Green’s functions:

• Lorentzian spectral density A(!) = ImGR(!) =
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• cavity mode occupation in 
stationary state :
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ion 2hn̂(t)i+ 1 = hâ†(t)â(t) + â(t)â†(t)i = iGK(t� t) = i

Z

!
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➡ correlation / statistical properties:   
➡ response / spectral properties: 

GK

GR
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Keldysh Action for Many-Body Model

• generic microscopic many-body model:

@t⇢ = �i[H, ⇢] +D[⇢] ⌘ L[⇢]

Many-Body Master 
Equation

Keldysh functional 
integral

1-1 
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• Gaussian sector: inverse Green’s 
function

• retarded/advanced

• Keldysh component PK = i (�l + �p)

PR(!,q) = ! � q2 � µ+ i (�l � �p) /2

Microscopic Markovian 
Dissipative Action

• now: simplifications in the semiclassical limit:

• sharp argument close to a critical point

• provides intuition for a frequency regime  ! ⌧ � = �l + �p

difference: distance from a 
phase transition

sum: noise of loss and pumping add up



Semi-classical limit and 
Langevin equations

two-body quantum 
master equation

exciton-polariton 
models



Semiclassical limit: power counting
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PK = i (�l + �p)

• retarded/advanced

• Keldysh component

! 0

⇠ q2

⇠ q0

• Gaussian sector close to a critical point:

PR(!,q) = ! � q2 � µ+ i (�l � �p) /2

[�c] =
d� 2

2
< [�q] =

d+ 2

2• Canonical field dimensions:

• action is dimensionless: phase         in the functional integral

• quadratic/Gaussian sector: scaling dimensions of inverse Green’s function known 

• intuitive: high order local couplings not relevant at large distances

eiS
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• retarded/advanced

• Keldysh component

! 0

⇠ q0

[�c] =
d� 2

2
< [�q] =

d+ 2

2• Canonical field dimensions:

➡ Local vertices with more than two quantum fields are irrelevant in the RG sense in d > 2

➡ Note preservance of probability in semiclassical limit 
➡ massive diagrammatic simplification
➡ identical to phenomenological models of exciton-polariton condensates (Wouters 

and Carusotto PRL 06; Szymanska, Keeling, Littlewood PRL 04)

two quantum fields
five classical fields

PK = i (�l + �p)

⇠ q2PR(!,q) = ! � q2 � µ+ i (�l � �p) /2

• Gaussian sector at criticality:

Semiclassical limit: power counting

SM [�c,�q = 0] = 0 8�c



Semiclassical limit: Equivalence to Langevin equation

• Keldysh integral after power counting

• with
➡ phi_q only up to 

quadratic order
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• linear in phi_q: Fourier representation of delta-functional

➡ driven-dissipative Gross-Pitaevski equation➡ noise averaging

Z =

Z
D[⇠, ⇠⇤] e�

1
2�

R
t,x ⇠⇤⇠

Z
D[�c,�

⇤
c ]�

✓
i@t�c � �Hc

��⇤
c

+ i
�Hd

��⇤
c

� ⇠

◆
� (c.c.)

➡ at each instant 
of time:



Semiclassical limit and exciton-polariton model

➡ many microscopic models collapse to an effective low energy model
➡ form dictated by microscopic symmetries
➡ longer wavelength behavior to be determined by calculation

two quantum fields
five classical fields

C
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` ! 1
k ! 0

coarse graining length coarse graining 
momentum

• example of “weak” universality

 driven-dissipative 
Gross-Pitaevski 

equation

Mesoscopic Dissipative Action

power counting

Microscopic Markovian 
Dissipative Action

Long Wavelength Effective 
Action

RG flow

two-body quantum 
master equation

exciton-polariton 
models

universality class



Discussion: Langevin equations, Master equation, Keldysh integral

scale

microscopic

mesoscopic

macroscopic

quantum 
Langevin equation

quantum 
master equation

Keldysh functional 
integral

Langevin 
equation

Fokker-Planck 
equation

MSR functional 
integral

semiclassical limit

renormalization group

long-wavelength 
effective action

quantum 
problem

stochastic Schroedinger 
Equation



“What is Non-Equilibrium About It?”

5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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Z
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• not straightforward: static observables

➡ any positive semidefinite hermitean operator can be written like this  

“What is non-equilibrium about it?”

even in stationary state!

• how to detect non-equilibrium conditions? 

⇢ = e��H/tre��H

• dynamical observables, e.g.: 

h †(t) (0)i  (t) = eiHt e�iHt

➡ thermal equilibrium if generator of dynamics coincides with statistical weight
➡ otherwise must expect non-equilibrium conditions



• absence of number conservation

➡ compatible with thermal equilibrium (Caldeira-Leggett Models)

many-body system

single-, two-, ... body loss

single particle pump5
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linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
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fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

“What is non-equilibrium about it?”

even in stationary state!

• typical differences to closed equilibrium systems:

• absence of energy conservation

➡ driven system, incompatible with thermal equilibrium 



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

• discrete: 

➡ formally: symmetry of Keldysh action under L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)

T��±(t,x) = �⇤
±(�t± i�/2,x)
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�±
�⇤
±

◆

� = 1/T

• more precisely: Given a time dependent Hamiltonian, characteristic scale of time dependence 
There exists no rotating frame in which reference to this scale is gone./ No freedom of choice of 
the zero of energy.

!0

T 2
� = 1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣
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L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

• symmetry: invariance of 

➡ formally: symmetry of Keldysh action under L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)

T��±(t,x) = �⇤
±(�t± i�/2,x)
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±
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T�Z = Z T�SM [�] := SM [T��] = SM [�], T�D(�+,��) = D(�+,��)

• implies for correlation functions 

hO[ ]i = hO[T� ]i hO[ ]i =
Z

D[ ]O[ ]eiS[ ]  ± =
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• more precisely: Given a time dependent Hamiltonian, characteristic scale of time dependence 
There exists no rotating frame in which reference to this scale is gone./ No freedom of choice of 
the zero of energy.

!0



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

• symmetry: invariance of 

➡ formally: symmetry of Keldysh action under L. Sieberer, A. Chiochetta, U. Tauber, 
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• more precisely: Given a time dependent Hamiltonian, characteristic scale of time dependence 
There exists no rotating frame in which reference to this scale is gone./ No freedom of choice of 
the zero of energy.

!0

• physical consequence: Fluctuation-dissipation relations, of any order, e.g. single particle sector:

GK(!,q) = (2nB(!/T ) + 1)[GR(!,q)�GA(!,q)]

correlations responsesBose distribution

any order <=> detailed balance
<=> global thermal equilibrium



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

• connection to operator formalism: compact functional formulation of Kubo-Martin-Schwinger boundary 
condition: for any two operators A,B,

➡ formally: symmetry of Keldysh action under L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)

T��±(t,x) = �⇤
±(�t± i�/2,x)

�± =

✓
�±
�⇤
±

◆

hA(t)B(t0)i = hB(t0 � i�)A(t)i. hOi = tr(O⇢)

A(t) = eiHtAe�iHt, ⇢ = e��H/tre��H

) A(t)⇢ = ⇢A(t� i�)

• reason:

& cyclic invariance

• more precisely: Given a time dependent Hamiltonian, characteristic scale of time dependence 
There exists no rotating frame in which reference to this scale is gone./ No freedom of choice of 
the zero of energy.

!0



“What is non-equilibrium about it?”: Absence of energy conservation

• Energy conservation: equilibrium dynamics generated by a time-independent Hamiltonian 

reproduces classical result

➡ formally: symmetry of Keldysh action under L. Sieberer, A. Chiochetta, U. Tauber, 
A. Gambassi, SD, PRB (2015)

T��±(t,x) = �⇤
±(�t± i�/2,x)

�± =

✓
�±
�⇤
±

◆

= e±i
�
2 @t�⇤

±(�t,x)

• semiclassical limit: T large =>

� = 1/T

e±i
�
2 @t ⇡ 1± i�2 @t

H. K. Janssen (1976); C. Aron 
et al, J Stat. Mech (2011)

irrelevant by power counting

• more precisely: Given a time dependent Hamiltonian, characteristic scale of time dependence 
There exists no rotating frame in which reference to this scale is gone./ No freedom of choice of 
the zero of energy.

!0

T��c(t,x) = �⇤
c(�t,x) +

i

2T
@t�

⇤
q(�t,x),

T��q(t,x) = �⇤
q(�t,x) +

i

2T
@t�

⇤
c(�t,x)



Geometric Interpretation

Im

Re

• couplings spanning the Keldysh action lie in the complex plane

coherent/ reversible 
dynamics

incoherent/ irrev. 
dynamics

example: two-body processes �

Re�

Im�

elastic two-body collisions

inelastic two-body losses

Z =

Z
D(�+,��)e

i(SH [�+,��]+SD [�+,��])@t⇢ = �i[H, ⇢] +D[⇢]

, SH

, SH , SD

, SD



equilibrium dynamics

Im

Re

non-equilibrium dynamics

Re

Im

Equilibrium vs. Non-Equilibrium Dynamics

• coherent and dissipative dynamics may 
occur simultaneously

• but they are not independent

• coherent and dissipative dynamics do occur 
simultaneously

• they result from different dynamical resources

sym
metry 

protecte
d

no sy
mmetry

➡ measuring coupling ratios gives access to non-equilibrium conditions via static observables 
➡ what are the physical consequences of the spread in the complex plane?

5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.



Part II:
Applications
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Figure 1. Emergence of universality: Top panel: The flow of the
complex renormalized two-body coupling ũ2 = �̃+ i̃ (see Sec. VI A)
is attracted to the Wilson-Fisher fixed point ũ2⇤ = i5.308 irrespective
of the initial value ũ⇤. We show numerical solutions to the flow equa-
tions for rK⇤ = 10, ru3⇤ = 1, ̃3⇤ = 0.01, and values of ũ2⇤ lying on
a rectangle with sides �̃ 2 [0, 10], ̃ = 2, 10 and �̃ = 10, ̃ 2 [2, 10].
Fine-tuning of w⇤ close to criticality results in trajectories that ap-
proach the scaling solution before eventually being driven towards
the symmetric phase. Bottom panel: Flow of ̃ for various starting
values ̃⇤ = 0.1, 1, 2, . . . , 10. The other initial values are the same
as in the top panel, apart from ru2⇤ = 10. Dots on the lines indi-
cate the extent of the critical domain, which is set by the Ginzburg
scale (126).

Halperin (HH) [19]. Again, we find the dynamic exponents
to coincide with the one of an ab initio computation for one of
HH’s models (model A) – the non-equilibrium conditions do
not modify the dynamical critical behavior either. A stronger
physical consequence of this finding is discussed in the next
subsection.

The outer shell identified in [25] is new, however. The new
exponent ⌘r making up this shell physically describes univer-
sal decoherence as explained below. Crucially, it relates to the
dynamical model A in the same pattern as model A relates
to the classical O(2) model: It adds a new shell, but does not
“feed back” or modify the ones enclosed. This outer shell also
contains a certain fine-structure as discussed below.

Asymptotic thermalization of the distribution function –
Regarding the intermediate shell of the hierarchy, we not only
find z of model A unmodified by the non-equilibrium condi-
tions, but also the emergence of an “equilibrium symmetry”,
cf. Sec. IV. The symmetry is implied by the relation ⌘Z = ⌘�,
where ⌘Z and ⌘� are the anomalous dimension of the wave-
function renormalization and the noise strength, respectively,
cf. Sec. V. In turn, the presence of the symmetry implies a
fluctuation-dissipation theorem, or, more physically speaking,
a detailed balance condition.

In order to better understand this aspect, consider an equi-
librium problem with detailed balance. All subparts of the
system are thus in equilibrium with each other. This means
that we can choose an arbitrary bipartition of the system, av-
erage over or integrate out the degrees of freedom in one of
them, and determine the temperature in the remaining part:
No matter how the partition is chosen, we would find the same
temperature. In other words, temperature is partition invari-
ant in an equilibirum system. This statement is easily trans-
lated into a renormalization group language: The natural sys-
tem partitions are the momentum shells. Partition invariance
of the temperature thus becomes a scale invariance of tem-
perature under renormalization, which successively integrates
out high momentum shells. The “equilibrium symmetry” ex-
presses precisely this physical intuition.

In a non-equilibrium problem as ours, this property and the
associated symmetry are manifestly absent in general, i.e., at
arbitrary momentum scales. However, our results imply the
emergence of this symmetry in the universal critical domain
delimited by the Ginzburg scale. In order to quantify this
observation, we compute the scale dependence of an e↵ec-
tive temperature, entering the (non-equilibrium) fluctuation-
dissipation theorem, cf. Sec. IV. Indeed, we find non-
universal scale dependent behavior at high momentum scales,
while becoming universal and scale independent within the
Ginzburg domain, cf. Fig. 2. We may thus speak of an asymp-
totic low-frequency thermalization of the critical driven open
system.

Independence of the new critical exponent and maximality
of the extension – It is important to demonstrate the indepen-
dence of the new exponent: At a second order phase transition,
many critical exponents can be defined, each characterizing a
di↵erent observable. However, only few of them are indepen-
dent, i.e., cannot be expressed in terms of a smaller set by
means of scaling relations.

In our FRG approach, the independence of the four above
described exponents is reflected in the deep infrared behav-
ior of the flow equations. More precisely, it is expressed in a
block diagonal structure of the stability matrix encoding the
universal behavior in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. VI: There are two blocks, and the lowest eigen-
value of each of them determines an independent critical ex-
ponent. In addition we have the independent anomalous di-
mension ⌘ and the dynamical exponent z. Moreover, a com-
plementary argument can be given from the opposite, ultravi-
olet limit of the problem.

To this end, recall that any independent critical exponent
must be related to a short-distance mass scale in the prob-



Application I: 
Driven Classical and Quantum Criticality
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Critical Phenomena and Universality 
(Equilibrium)
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Critical Phenomena and Universality (Equilibrium)

'
at the critical point

• Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets

⌧ = T�Tc
T ! 0

• The experimental witnesses: Critical exponents, e.g.
correlation length

⇠ ⇠ |⌧ |�⌫ ! 1

• The exponents:

⌫

⌘

“mass/gap exponent”

“anomalous dimension”

nontrivial statement: 
no more independent exponents * 

than these!
* finite T equilibrium

h�⇤(r)�(0)i ⇠ e�r/⇠

rd�2+⌘



'
• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

h�⇤(r)�(0)i

r
non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

⇠(T � Tc) ⇠(T & Tc)
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• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

r

T ! Tc

non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

h�⇤(r)�(0)i

⇠(T � Tc) ⇠(T & Tc)
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Wilson-Fisher fixed point

• The description: Renormalization group

Bose-Einstein Condensate planar magnets
other systems...

UV: microscopic physics

IR: long-wavelength 
physics

C
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e 

gr
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ni
ng

crucial difference:

interacting systems = WF fixed point

non-int. systems = Gaussian fixed point 

⌫ = 1/2, ⌘ = 0

⌫, ⌘ non-rational

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details



Universality Classes (Equilibrium)

'
• Universality classes: Memory of symmetries is kept

Bose-Einstein Condensate planar magnets
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6=
• Symmetries: U(1) ' O(2)

phase rotations in BEC

“O(2) universality class” “Ising universality class”

Z2

trapped ions liquid-gas transition 
in carbon-dioxide

Digital Innsbruck
ion-trap quantum simulator

Blatt group (Innsbruck)
!"#$%

+ + +

complementary to analog QS with ions: 
Schätz, Monroe, Bollinger, Ospelkaus ...

theory: Porras, Cirac (2004), ...
Dienstag, 11. September 2012

'
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Classical vs. Quantum Criticality

• generic quantum phase diagram

g (eg. potential vs. kinetic energy)

T

gc

Ordered,
symmetry 
breaking 

(possibly) ordered, 
no symmetry breaking

Disordered

quantum critical 
region 

• quantum critical scaling for 

T ⌧ ! ⌧ !G

non-gaussianquantum

• double fine tuning, temperature is relevant perturbation to the quantum critical point

�g ! 0 : spectrally critical

T ! 0

quantum critical

statistical fluctuations 
overwrite 
quantum fluctuations



Driven Classical and Quantum Criticality

L. Sieberer, S. Huber, E. Altman, SD, 
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U. C. Tauber, SD, PRX 4, 021010 (2014); 
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From Micro- to Macrophysics: Functional RG

@k�k =
i

2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

Wetterich, 93

closed system Keldysh: 
Gasenzer, Pawlowski,PLB 08; 

Berges, Hoffmeister, Nucl. Phys. B, 09

Many-Body Master 
Equation

Keldysh functional 
integral

1-1 
mapping

operator representation functional integral representation

@t⇢ = �i[H, ⇢] +D[⇢] ei�[�] =

Z
D��eiSM [�+��]

1-1 
mapping

Keldysh Functional 
Renormalization Group

functional differential equation rep. 

open system Keldysh review
Sieberer, Buchhold, SD, arxiv (2015)

microphysics macrophysics



A glimpse of the calculation

I Effective system dynamics: trace out baths

I 2nd quantized formalism not adequate to FRG!

I Keldysh functional integral approach

I Powerful field theory tools for
non-equilibrium systems

I FRG: introduce infrared cutoff k,
integrate out fast modes q > k

I Approach to critical point:
follow RG flow for k ! 0

I Critical exponents from
scaling behavior l ⇠ k�h

l

for k ! 0

From Micro- to Macrophysics: Functional RG

second field variation

@k�k =
i

2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

infrared regulator

full effective action

Markovian dissipative 
action

coarse graining in real space = 
integrating out high modes in 

momentum space
mode elimination induces RG flow of 

coupling of effective action

�k=⇤ = S

�k=0 = �

microphysics macrophysics

• how does it work? 
Smooth interpolation 



Classical driven criticality: Schematic RG flow

non-linear initial flow

Im

Re

K

uu3

• initial values: �k⇡⇤0 ⇡ S

• Flow in the complex plane of couplings 

Re
fixed point

Im

FP action purely 
dissipative

➡ universal decoherence (new independent critical exponent)
➡ asymptotic thermalization
➡ reveals equilibrium vs. non-equilibrium fine structure

• key results (classical): 

linearized IR flow
Re

Im

• universal domain encoding 
universality class

• scaling of running couplings

g = ak⌘a + ibk⌘b

crit. exponent



• decoherence <=> purely imaginary fixed point action

• global thermal equilibrium is ensured by symmetry: 

equilibrium dynamics

Im

ReK

uu3

Re
K

u

u3

non-equilibrium dynamics

➡ equilibrium and driven systems are in different universality classes
➡ physical reason: independence of coherent and dissipative dynamics
➡ asymptotic thermalization: all couplings aligned on Im axis

Im

initial flow 

u uIm

Re

• eigenvalue of flow speed

⌘r ⇡ �0.101⌘R ⇡ �0.143

K

u3

Re

infrared flow 
K

• lowest eigenvalue

sym
metry 

protecte
d

no sy
mmetry

Universal decoherence, fine structure, and thermalization



Non-equilibrium analogue of quantum criticality (1D)

• Lindblad Master equation with additional strong quantum diffusion (1D)

4

Figure 1. Schematics of a coupled array of photonic cavities (represented in
gray). The photons in each cavity are tunnel-coupled to neighboring sites with
amplitude J and decay with rate 0. The cavities are driven with an external
coherent field of strength |�|. This external driving compensates for losses and
ensures a finite stationary photon population.

physics scenario, the bosons here can decay, and under experimentally relevant conditions
!c � J, U, kBT (where T is the temperature and kB the Boltzmann constant), the equilibrium
state of this model is simply the vacuum state. Therefore, in photonic many-body systems we
are mainly interested in the out-of-equilibrium dynamics of Ĥc in the presence of losses and
external driving fields. In particular, in this work we model the resulting dissipative dynamics
for the system density operator ⇢ by a master equation (ME) of the form

⇢̇ = �i[Ĥc + Ĥ�(t), ⇢] + 0
X

`

D[ĉ`]⇢ +L⇢, (2)

where D[ĉ]⇢ ⌘ 2ĉ⇢ĉ† � ĉ†ĉ⇢ � ⇢ĉ†ĉ. In equation (2) the Hamiltonian Ĥ�(t) =P
` �`(e�i!dt ĉ†

` + ei!dt ĉ`) describes an external driving field of frequency !d which is
used to excite the system, and the second term accounts for photon losses in each cavity with
a field decay rate 0. While a finite driving field is required to counteract the losses, it will
in general also compete with Ĥc and, for strong driving fields, even dominate the system
dynamics. Therefore, in previous works it has been suggested to either study the transient
dynamics of an initially prepared photonic state [14, 16, 43] (where �` = 0 for times t > 0)
or use excitation spectroscopy [35, 44–47] in a weakly driven system (�` < 0) to probe the
single- and few-body spectrum of the Hamiltonian Ĥc.

In this work, we are interested in the opposite regime of a strongly and continuously driven
system, where the total photon number in the cavity array is large. We study the dynamics of
this system in the presence of an additional artificial thermalization mechanism, denoted by L

in equation (2). More precisely, we will show below how a non-local coupling of photons to
superconducting qubits can be engineered in an array of microwave cavities to implement a
dissipative photon scattering process of the form

L =
X

`



4
D[(ĉ†

` + ĉ†
`+1)(ĉ` � ĉ`+1)] +

 0

4
D[(ĉ†

` � ĉ†
`+1)(ĉ` + ĉ`+1)]. (3)

The interpretation of this term can be seen best in the case of just two cavities. Then, for
J > 0,4 the first term in equation (3) describes the scattering of photons from the asymmetric
(energetically higher) mode ĉa ⌘ (ĉ1 � ĉ2)/

p
2 into the symmetric (energetically lower) mode

4 Although for concreteness we assume J > 0 in this work, this is not essential for the results on condensation
presented below, since this is achieved ‘dissipatively’ through the Liouvillian (3), and therefore not determined by
the energy of the modes.

New Journal of Physics 14 (2012) 055005 (http://www.njp.org/)
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• possible realization: microcavity arrays
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cf. D. Marcos et al., NJP (2012)

many-body system

single-, two-, ... body loss

single particle pump



Non-equilibrium analogue of quantum criticality (1D)

• Lindblad Master equation with additional strong quantum diffusion (1D)

�d

Z

x

[ra(x) ⇢ra

†(x)� 1
2{ra

†(x)ra(x), ⇢}]

• physical interpretation: Dark state number conserving variant: SD et al., Nature Phys. (2008)

many-body system

single-, two-, ... body loss

single particle pump

Z

q
�q[aq ⇢ a

†
q � 1

2{a
†
qaq, ⇢}]

• in Fourier space

q➡  noiseless “dark” state at q=0
➡  favors accumulation of bosons at q=0 (“BEC”)
➡  competition w/ interactions yields phase transition

dark state



• key point: scaling of noise level changes the field scaling dimensions

PR(!,q) ⇠ q2

PK(!,q) ⇠ q0 PK(!,q) ⇠ q2

➡ identical scaling at a zero T quantum critical point 
➡ needs full quantum dynamical field theory!

classical quantum

PR(!,q) ⇠ q2 [�c] =
d� 2

2

[�q] =
d+ 2

2

[�c] =
d

2

[�q] =
d

2

“What is quantum about it?”
noise level

q



• new fixed point with more repulsive directions (fine tuning of loss rate)

• results for critical exponents

thermal-like 
1 repulsive direction

Gaussian
all directions repulsive

quantum-like 
2 repulsive directions

g1

g2

g3

(1) No quantum-classical correspondence

4

Crit. Exps. ⌫ ⌘KR ⌘KI ⌘ZR ⌘ZI ⌘�d ⌘�

DD Quantum 0.405 -0.025 -0.025 0.08 0.04 -0.26 ⇥
DD SC 0.72 -0.22 -0.12 0.16 0 ⇥ -0.16

TABLE I. Comparison between the critical exponents of the
quantum and semi-classical DD models. In the SC scaling
� ⇠ k0, and the Markovian noise can acquire an anomalous
dimension, ⌘� .

r ⇠ k�⌘KR
+⌘KI . It is thus fully consistent with the find-

ing of finite ratios discussed above, and in particular it
indicates absence of decoherence at long distances: This
is a hallmark of persistence of quantum mechanical facets
at criticality (see Fig. 1). Survival of quantum coher-
ence at scales shorter than ⇤�1

M

, is a common feature
between our FP and equilibrium quantum critical points
[41, 47, 48].

(iii) Absence of asymptotic thermalization– The
anomalous dimension of the di↵usive noise coupling, ⌘

�d ,
provides complementary information to the anomalous
dimensions, ⌘

KI,R , related to the spectral sector (R/A):
it is of primary importance in establishing the persistence
of the NEQ character of the system at macroscales.

A convenient diagnostic tool for thermal equilibrium in
quantum many body systems, is the presence of a sym-
metry of the Keldysh functional integral, which combines
quantum-mechanical time reversal and the Kubo-Martin-
Schwinger condition [49]. Even if such symmetry is ex-
plicitly violated at the microscopic level by driven Marko-
vian evolution, it is remarkably recovered at the SC FP
of driven-dissipative (DD) systems [16]. The FD relation
– a Ward-Takahashi identity of this symmetry – demands
that the e↵ective temperature T

C

= |Z|�, extracted from
the infrared bosonic distribution function F

C

(!, k) ⇠ TC
!

,
is scale-invariant. This expresses the principle of detailed
balance of thermal equilibrium states (invariance of tem-
perature under the system partition) in an RG language.
Such circumstance occurs at the SC FP via the emer-
gent exponent degeneracy ⌘

�

= �⌘
ZR

(cf. Tab. I) – the
system thermalizes asymptotically.

In the same spirit, if thermalization were to ensue close
to the quantum FP, scale-invariance of the low-frequency
distribution function, F

Q

(!, k) ⇠ TQ(k)
!

(1 + �̃⇤/2), must
be expected as a necessary condition. Specifically, replac-
ing the bare scaling of the frequency ! ⇠ kz in F

Q

(!, k),
insensitivity to system’s partition would manifest in the
exact scaling relation F

Q

⇠ k0. The absence of exponent
degeneracy, ⌘

�d 6= �⌘
ZR

(cf. Tab. I), signals scaling vi-
olation in the infrared behaviour of F

Q

⇠ k⌘�d
+⌘ZR , and

accordingly the absence of infrared thermalization at the
quantum FP.

This absence of infrared restoration of an equilibrium
FD relation constitutes the strongest evidence that the
quantum universality class found in this Letter cannot
be related to its SC driven Markovian counterpart in d+

FIG. 1. (Color online) Comparison between the FPs of
the NEQ quantum action and of the SC action for driven-
dissipative Markovian systems. The location of the couplings
in the complex plane is sketched. In the quantum problem the
RG flow freezes in the plane, while in the SC problem deco-
herence forces asymptotically all couplings onto the imaginary
axis.

z dimensions, or to an equilibrium FP. In other words,
there is no quantum-to-classical correspondence [47, 48]
familiar from equilibrium systems.
(iv) RG limit-cycle of Z– Finally, we consider the im-

pact of a non-vanishing imaginary part of ⌘
Z

at the
quantum FP, ⌘

ZI

= 0.04 – which is, in contrast, ex-
actly zero at the purely dissipative SC FP (cf. Tab
I). The peak of the spectral density (the imaginary
part of the retarded single particle dynamical response),

A(! = Re!(k)) = Re(Z)
|Z|2

1
Im!(k) , is sensitive to oscilla-

tions present in Z ⇠ k�⌘ZRe�i⌘ZIt, which are induced by
⌘
ZI

6= 0, where t = log(k/k
UV

) is the RG flow parameter.
Even if these limit-cycle oscillations occur with a huge pe-
riod, 2⇡

⌘ZI
, they are a remarkable signature of deviation

from equilibrium behaviour at macroscales, since they
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SC FP [16]. Remarkably, we find a twin FP of the one
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exponents, except an opposite value of ⌘

ZI

= �0.04. It
thus displays counter-phase limit-cycle oscillations of Z.
Conclusions– We have shown that both quantum me-

chanical coherence and the microscopic driven nature of
open quantum systems can persist at the largest dis-
tances close to a critical point, in striking contrast with
classical equilibrium and SC NEQ critical points. The
techniques developed here pave the way for a system-
atic classification of driven open systems where genuine
quantum e↵ects play a role. In particular, in analogy to
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additional symmetries and conservation laws (e.g. par-
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➡ mixed fixed point with finite dissipative and coherent couplings 

(2) Absence of Asymptotic Decoherence
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• coherent dynamics does not fade out:

• exponent degeneracy: ⌘A = ⌘D = �0.03 A ⇠ k⌘A , D ⇠ k⌘D

“effective mass” diffusion

quantum

Im

Re

classical

quantum T = 0



➡ microscopic and universal asymptotic violation of quantum FDR
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0
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⌘Z = 0.08, ⌘0Z = 0.03, ⌘�d = �0.26

(3) Absence of Asymptotic Thermalization
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Re

quantum
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Re

classical

• formally:

quasiparticle residue noise level

• symmetry as straightforward diagnostic tool for Schwinger-Keldysh actions

• symmetry explicitly violated microscopically by markovian quantum dynamics

• not emergent:
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• not emergent:
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(3) Absence of Asymptotic Thermalization
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• formally:

quasiparticle residue noise level

➡ limit-cycle like oscillations with (huge!) period 
(observable: spectral density)
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Observable consequences of driven criticality

• dynamical exponents: experiments probing the dynamical single-particle renormalized 
response (RF spectroscopy for ultracold atoms, homodyne detection)

• ultracold atoms: RF spectroscopy (Jin group, Nature 08)• exciton-polariton systems: homodyne detection (Deveaud-Pledran group, PRL 11)

distance from 
phase transition

peak position and widthmeasured independently

�(!,q) ⌘ GR(!,q) =
Z�1

! � !q

• static exponents: first order spatial coherence function

h�⇤(r)�(0)i ⇠ e�r/⇠

r1+⌘D
⇠ ⇠ |�|�⌫

!q ⇡ Aq2 � iDq2

complex dispersion 
at criticality

• with anomalous behavior

Z ⇠ |q|⌘Zei⌘
0
Z log |q|/⇤

A ⇠ |q|⌘A , D ⇠ |q|⌘D ⌘A = ⌘D
(absence of 

decoherence)



Recap

Many-Body Master 
Equation

Keldysh functional 
integral

1-1 
mapping

@t⇢ = �i[H, ⇢] + L[⇢] Z =
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i(SH [�+,��]+SD [�+,��])

• construction:

• “what is non-equilibrium about it?”: time independent Hamiltonian => symmetry: T��±(t,x) = �⇤
±(�t± i�/2,x)

• implication 1 (Ward identity): Fluctuation-dissipation relations, e.g. single particle sector:
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

• implication 2 (geometric constraint): 

➡ implications?



Application II:
Universal long wavelength behavior in low dimensional 

Driven Open Quantum Systems
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algebraic quasi-long range order 
(Kosterlitz-Thouless phase)
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disordered  (rough) 

phase

L⇤

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) 
G. Wachtel, L. Sieberer, SD, E. Altman, arxiv:1604.01042
L. Sieberer, G. Wachtel, E. Altman, SD, arxiv:1604.01043
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Long wavelength
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L. He, L. Sieberer, E. Altman, SD, PRB (2015) 
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physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
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c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

Program

• driven-dissipative stochastic GPE

• decompose into amplitude and phase fluctuations

• integrate out fast amplitude fluctuations:

@t✓ = Dr2✓ + �(r✓)2 + ⇠
phase diffusion phase nonlinearity Markov noise

h⇠(x, t)⇠(x0, t0)i = 2��d(x� x

0)�(t� t0)

effective noise level

Kardar, Parisi, Zhang, 
PRL (1986)form of the KPZ equation

i@t� =


�r2

2m
� µ+ i(�p � �l) + (�� i) |�|2

�
�+ ⇣

�(x, t) = (M0 + �(x, t))ei✓(x,t)

Exciton-Polaritons

u

➡ physics of the KPZ equation
➡ implications for low dimensional driven open systems



�
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• Point particles: Brownian motion

KPZ equation

• Q: analogue of Brownian motion of surfaces?

➡ Qualitatively distinct in the presence of drive (geometric effect)

Kardar, Parisi, and Zhang, PRL (1986)

• growth:

• geometry:

deposition rate

➡ Brownian motion corrected by terms ~



✓ = 0

x

h(x, t)

Properties from a phase analogy

1) comoving/rotating frame transformation = time-local gauge transformation

Consider behavior of complex field 

KPZ equation

indeed => linear equation

balance of forces

➡ absorb free     (describes average growth of interface) �

➡       has a nontrivial effect only under nonequilibrium condition!�



2) scale invariance = global gauge invariance

scaling of correlation functions, e.g.

“roughness exponent”, z dynamical exponent

: height variance grows with respect to |x|: “rough phase”

: height variance shrinks with respect to |x|: “smooth phase”

Properties from a phase analogy

➡ EoM remains gapless: “self-organized criticality” 



3) Galilean invariance

in notations of KPZ

Exact relation from symmetry!

Properties from a phase analogy

➡ A symmetry that connects the dynamical term and the nonlinear term. 

➡ The dynamical exponent is connected with the static (roughness) exponent. 



Large scale physics of KPZ equation: RG Approach 

• gradually integrate out short scale fluctuations

• RG flow equation (perturbative)

“rough phase”
strong nonequilibrium KPZ 
fixed point (not perturbatively 
accessible)

“smooth phase”
effective emergent 
equilibrium behavior/thermalization

Interpretation:

noise level

1 2 3 4



KPZ equation: A paradigm of non-equilibrium stat mech

• above and originally: stochastic roughening of surface height 

@th = Dr2h+ �(rh)2 + ⇠

h(x, t)

smoothens nonlinear growth

Kardar, Parisi, Zhang, 
PRL (1986)

noise

• but multiple physical contexts

from Takeuchi et al., 
Scientific Reports (2011)

bacterial colony growth

drive: sugar

burning paper

drive: oxygen

Wakita et al., J. Phys. Jpn. 
Soc. (1997)

Maunuksela et al., PRL 
(1997)

defect growth in liquid 
crystals

drive: electric field



�(x, t) = (M0 + �(x, t))ei✓(x,t)

Connection to exciton-polaritons

• phase amplitude decomposition

(1)

(2)

Kasprzak et al., Nature 2006
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two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
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(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
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mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
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• driven-dissipative stochastic GPE

i@t� =


�r2

2m
� µ+ i(�p � �l) + (�� i) |�|2

�
�+ ⇣

phase diffusion KPZ nonlinearity 

• (2) becomes the KPZ equation

� 6= 0

equilibrium: protected by symmetry

signals nonequilibrium

• (1) is gapped: linearization justified, adiabatic elimination fast on scale of 



L⇤
Lv

Physical implications: overview

• mapping to KPZ-type equation valid in all dimensions at low noise level / well above threshold

• fundamental difference to classical context: KPZ variable = condensate phase, compact

➡ two complementary approaches:

• neglect compactness, account for KPZ RG flow -> emergent length scale 

• neglect RG flow, account for compactness         -> emergent length scale 

Lv ⌧ L⇤ Lv � L⇤

� ! 0

➡ 2 dimensions: ➡ 1 dimension:

➡ two regimes: vortex proliferation 
overwrites KPZ scaling

➡ two non-equilibrium length scales (diverge as              ) separating up to three different scaling regimes

➡ three regimes: KPZ scaling visible, 
asymptotically cut off by (space time) 
vortex proliferation

L⇤Lv Lv



2 Dimensions

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) 
G. Wachtel, L. Sieberer, SD, E. Altman, arxiv:1604.01042
L. Sieberer, G. Wachtel, E. Altman, SD, arxiv:1604.01043
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A paradigm of equilibrium stat mech: (no) BEC in 2D
low temperature high temperature

• correlations

⇠ e�r/⇠

• superfluidity

⇢s 6= 0 ⇢s = 0

• KT transition: unbinding of vortex-antivortex pairs

… also for driven-dissipative condensates?

h�(r)�⇤(0)i ⇠ r�↵



Reminder: Algebraic correlations
low temperature high temperature

• correlations

⇠ e�r/⇠h�(r)�⇤(0)i ⇠ r�↵

• physical reason: gapless spin wave/phonon fluctuations

h�(r)�⇤(0)i ⇡ n0hei(✓(r)�✓(0))i ⇡ n0e
�h(✓(r)�✓(0))2i/2

• phase-amplitude decomposition

• phase correlator

h(✓(r)� ✓(0))2i ⇠
Z

d2q
(eiqr � 1)

q2
⇠ 2↵ log(r/a)

SSW =
K

2

Z
d

2
x(r✓)2 spin wave/ phase action



low temperature high temperature

• KT transition: unbinding of vortex-antivortex pairs

Reminder: KT transition

• Single vortex picture (KT 1973): balance of energy (deterministic) and entropy (statistic)

• Low T: vortices and antivortices bound in neutral pairs (irrelevant at long distance)
• Q: when is it favorable (free energy) minimum to have unbound vortices?

• entropy: sum all equally probable possibility of placing vortices in 2D plane at minimal distance a:  

S = �kB
X

i

pi log pi = kB log(L/a)2

• free energy F = E � TS = (K⇡ � 2kBT ) log(L/a)
2

• vortex proliferation above KT critical temperature TKT =
K⇡

2kB

• energy of single free vortex: 

v =
ez ⇥ er

r
vortex current velocity ) E = K/2

Z
d2rv2

= ⇡K log(L/a)

v



• RG flow of the effective dimensionless KPZ coupling parameter

strong coupling: disordered / 
rough non-equilibrium phase

d2

weak coupling: 
equilibrium phase

• implication: a length scale is generated

microscopic (healing) 
length

� 6= 0

non-equilibrium

Im

Re

g2 =
�2�

D3

g

g(L⇤) = 1

• exponentially large for 

• weak nonequilibrium 

• small noise level
�
�

Physical implication I: Smooth KPZ fluctuations

L⇤ = a0e
16⇡
g2



Physical implications I: Absence of quasi-LRO

• generated length scale distinguishes two regimes:

• long-range behavior of two-point/ spatial coherence function:

r

h�⇤(r)�(0)i

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

non-equilibrium 
disordered  (rough) 

phase

L⇤

➡ algebraic order absent in any two-dimensional 
driven open system at the largest distances

➡ but crossover scale exponentially large for small 
deviations from equilibrium

h�⇤(r)�(0)i ⇡ n0e
�h[✓(x)�✓(0)]2i leading order cumulant expansion

universal equilibrium regime

a0 ⌧ r ⌧ L⇤

universal non-equilibrium regime

Bogoliubov fixed point relevant KPZ fixed point relevant

r � L⇤

h[✓(r)� ✓(0)]2i ⇠ log r

➡ algebraic decay ➡ subexponential decay

h[✓(r)� ✓(0)]2i ⇠ r2↵ ↵ ⇡ 0.4 (d = 2)

L⇤ = a0e
16⇡
g2



Physical implications I: Absence of quasi-LRO

• generated length scale distinguishes two regimes:

• long-range behavior of two-point/ spatial coherence function:

r

h�⇤(r)�(0)i

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

non-equilibrium 
disordered  (rough) 

phase

L⇤

h�⇤(r)�(0)i ⇡ n0e
�h[✓(x)�✓(0)]2i leading order cumulant expansion

universal equilibrium regime

a0 ⌧ r ⌧ L⇤

universal non-equilibrium regime

Bogoliubov fixed point relevant KPZ fixed point relevant

r � L⇤

h[✓(r)� ✓(0)]2i ⇠ log r

➡ algebraic decay ➡ subexponential decay

h[✓(r)� ✓(0)]2i ⇠ r2↵ ↵ ⇡ 0.4 (d = 2)

from Roumpos et al., PNAS (2012)

➡ exponentially large crossover scale 
reconciles with experiments

L⇤ = a0e
16⇡
g2



• equilibrium: close connection between correlations and responses

• here: algebraic order decay exponent       and superfluid stiffness       related:

• superfluid response:

• additional contribution to microscopic Hamiltonian due to (artificial) gauge field:

H
ext

=

Z
dx f(t,x) · j(t,x)

ext. field induced current

EP condensates: J. Keeling, PRL (2011)

• current response     : hji(!,q)i = �ij(!,q)fj(!,q)�

• isotropy: �ij(!,q) = �l(!,q)Pij + �t(!,q)(�ij � Pij) P =
qqT

q2

projector on longitudinal 
component (|| q)

longitudinal transversal

↵�1
s = 2⇡

kBTm2 · ⇢s↵s ⇢s

= �t(!,q)�ij + (�l(!,q)� �t(!,q))Pij

• normal (non-superfluid) system: �ij ⇠ �ij

➡ superfluid response: 

for open systems: J. Keeling, PRL (2011)

⇢s
m

:= limq!0[�l(0,q)� �t(0,q)]
static observable

Physical implications II: Superfluid response



Superfluid response in the driven system

• superfluid response:

• approximation: neglect density fluctuations, but take KPZ non-linear physics into account

⇢s
m

:= limq!0[�l(0,q)� �t(0,q)]
Lukas Sieberer

• current-current correlator [schematic argument]:

�ij ⇠ h@i✓@j ✓̃i+ h@i✓@j✓✓̃i

• momentum scaling dimensions:

0

• equilibrium: 0

• non-equilibrium:

forbidden by symmetry

exact scaling relations of 
KPZ fixed point↵ ⇡ 0.4

⇥k�(d+z)+2

➡ superfluid response finite! (despite absence of algebraic order).

• genuine non-equilibrium term stabilizes the superfluid response



Superfluid response in the driven system

• superfluid response:

• approximation: neglect density fluctuations, but take KPZ non-linear physics into account

⇢s
m

:= limq!0[�l(0,q)� �t(0,q)]

equilibrium system driven system
• detailed calculation:

⇢s = ⇢0

• factorization: non-universal microscopic, universal long-distance part

➡ physical observable directly reveals universal KPZ properties!

g2⇤ =
�2
⇤�⇤
D3

⇤
effective KPZ non-linearity at 

strong coupling fixed point

Lukas Sieberer

Z =
ln 2

8⇡
g2⇤

⇢s = Z · ⇢0 +O(L�↵)



Physical implications III: Non-equilibrium Kosterlitz-Thouless

• compact nature of phase allows for vortex defects in 2D! vortex anti-vortex

• in 2D equilibrium: perfect analogy between vortices and electric charges

• log(r) interactions,              forces  1/(✏r)

• dielectric constant            = superfluid stiffness✏�1

T<TKT$ T>TKT$
superfluid$=$dipole$gas$$
(“vortex$insulator”)$

Normal$=$plasma$
metallic$screening$

✏�1 ! 0✏�1 > 0

superfluid = dipole gas

➡ how is this scenario modified in the driven system?

normal fluid = plasma
metallic screening

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable



Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

• implementing phase compactness = implementing (local discrete gauge) invariance under

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x• resulting from its origin

✓t,x 2 [0, 2⇡), nt,x 2 Z

• deterministic part: lattice regularization

unit lattice 
direction =: L[✓]t,x deterministic noise

@t✓x = �
X

a


D sin(✓

x

� ✓
x+a

) +

�

2

(cos(✓
x

� ✓
x+a

)� 1)

�
+ ⌘

x

• NB: lambda = 0: existence of potential 

HXY = K
X

hx,x0i

cos(✓
x

� ✓
x

0
)@t✓x = ��

�HXY

�✓
x

+ ⌘
x

) PGibbs / exp(�HXY /T ), T = �/�

new short distance length scale -> 
expect new emergent length scale



Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x• resulting from its origin

✓t,x 2 [0, 2⇡), nt,x 2 Z

• temporal part: stochastic update

✓t+✏,x = ✓t,x + ✏ (L[✓]t,x + ⌘t,x) + 2⇡nt,x chosen to keep ✓t,x 2 [0, 2⇡)

• NB: phase can jump: at this point, continuum limit eps -> 0 ill defined, derivatives discrete

• stochastic difference equation -> discrete dynamical functional integral:

Z =
X

{ñt,x}

Z
D[✓]eiS[✓,ñ] Z =

Z
D[✓̃]D[✓]eiS[✓,✓̃]

vs. continuous variable

discrete noise -> manifest 
gauge invariance

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)]

• implementing phase compactness = implementing (local discrete gauge) invariance under



Duality approach

• next steps: sequence of changing the variables

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)] is periodic in • the action

j± j, j̃

r(✓ ± ✏Dñ)

➡ Fourier expansion introducing or 

• parameterization in terms of new fields 

5

Eq. (25) there is an overall prefactor �, and therefore the
sum vanishes for j2

+X = j

2

�X .
As indicated above, eventually we are interested in the

continuum limit in time, ✏ ! 0. Hence, in the following
we keep only the leading terms in ✏. This allows us to
considerably simplify the factor C defined in Eq. (26).
Indeed, reexponentiating K�X and expanding the loga-
rithm to second order we find (in the following we do not
keep track of purely numerical, i.e., field-independent,
factors; they are inconsequential for our considerations
and can be absorbed in the integration measure in the
MSR functional integral Eq. (21))

C /
Y

X,�

e� lnK�X =
Y

X,�

2�e��✏�ñX� 1
2 (✏�ñX)

2
+O(✏3)

/ e�(✏�)2
P

X ñ2
X+O(✏3).

(27)

The first order term in the exponent vanishes upon taking
the product of the exponential over � (or, equivalently,
the sum over � in the exponent). As a result, C gives a
contribution to the MSR action of second order in ✏ and
can hence be ignored.

Now we examine the last term in the exponent in
Eq. (25). Expanding 1/K�X to first order in ✏ we find

i

2

X

X,�

j2�X
K�X

= i
X

X


jX · j̃X +

✏�

2
ñX

�
j2X + j̃2X

��
, (28)

where we introduce the current j = j

+

+ j� and the re-
sponse current j̃ = j

+

� j�. Below in Eq. (43) we replace
the integer-valued vector fields j and j̃ by continuous ones
by means of the Poisson summation formula. This is a
necessary prerequisite for taking the limit ✏ ! 0, for
the simple reason that a sequence of integers at times
t, t+ ✏, t+ 2✏, . . . cannot converge to a continuous func-
tion of time for ✏ ! 0. Moreover, taking a sensible ✏ ! 0
limit requires us to rescale the real-valued response cur-
rent as j̃ ! ✏̃j, as becomes clear from Eq. (30) below.
Anticipating these steps, we see that the contribution in-
volving j̃2X in Eq. (28) above can actually be considered
to be O(✏3), and we discard it already at this point.

Putting the pieces together, the partition function (21)
becomes

Z /
X

{ñX ,jX ,˜jX}

Z
D[✓]ei

P
X ✓X(�tñX+r·˜jX)

⇥ ei
P

X [✏ñX(Dr·jX+i�ñX)+jX ·(˜jX+

✏�
2 ñX jX)]. (29)

In the exponent we summed by parts twice. We note that
the exponent is linear both in ✓ and j̃. Hence, the sum
over j̃ can be carried out and gives

Q
X

P
mX

�(�r✓X +
jX �2⇡mX) with an integer-valued vector field m. Some
intuition can be gained by decomposing this vector field
into longitudinal and transverse parts. The longitudinal
part can be written as the lattice gradient of an integer
field ml, and the transverse part as the lattice curl of a

vector field mtẑ pointing along the z-direction. Absorb-
ing the longitudinal component ml into ✓ by extending
the integration in Eq. (10) over the whole real axis (in
other words, making ✓ non-compact) the argument of
the �-function suggests that (up to a prefactor) we can
interpret j as the bosonic current. The latter has both a
smooth longitudinal contribution r✓ and — in the pres-
ence of vortices — a transverse component corresponding
to non-zero values of mt.
However, instead of summing over j̃ in Eq. (29), we

take a di↵erent route and integrate out ✓. This yields a
�-function corresponding to the constraint that ñX and
j̃X should satisfy the continuity equation,

�tñX +r · j̃X = 0. (30)

(Note that as indicated above this equation implies that
the continuous fields which replace ñ and j̃ scale di↵er-
ently in the limit ✏ ! 0.) Formally, the appearance of
a continuity equation is again analogous to the duality
transformation in a quantum system at T = 0 [33, 38, 39].
However, in the latter case, the continuity equation is a
consequence of particle number conservation. In driven-
dissipative condensates, on the other hand, the number of
particles is not conserved. Nevertheless, there is a resid-
ual U(1) phase-rotation symmetry [17] which is reflected
in the appearance of a Goldstone boson in the (mean-
field) condensed phase (indeed, the KPZ equation (1) is
the massless equation of motion of the Goldstone boson
which is the phase of the condensate), and in the above
continuity equation for the response fields ñ and j̃. From
this continuity equation, the Noether charge associated
with the U(1) symmetry can be seen to be the sum over
space of ñX . However, by construction of the MSR for-
malism, the response fields have vanishing expectation
value, and therefore the Noether charge is always zero
and the continuity equation (30) is trivially satisfied on
average.
The continuity equation (30) can be interpreted as

stating that the three-component vector field (ñ, j̃) has
vanishing divergence. Hence, this vector field can be
parametrized as the curl of another vector field,

✓
ñ

j̃

◆
=

✓
�t

r
◆
⇥

✓
�̃

�Ã

◆
=

0

@
�ẑ ·

⇣
r⇥ Ã

⌘

�ẑ⇥
⇣
r�̃+�tÃ

⌘

1

A .

(31)
Here and in the following it is understood, that — de-
pending on the context — the gradient operator and vec-
tors such as Ã should be considered as having two com-
ponents or three components with the third one being
zero. The parametrization of (ñ, j̃) in terms of the po-
tentials (�̃, Ã) is not unique. In fact, the “physical” fields
(ñ, j̃) are invariant under the gauge transformation

�̃ ! �̃��t�,

Ã ! Ã+r�,
(32)

with an arbitrary integer field �. We can exploit this free-
dom by choosing a gauge that leads to a simple form of

j = �ẑ⇥ (r�+A)

due to continuity equation �tñX +r · j̃X = 0

• new dynamical integral: only discrete variables

Z /
X

{�X ,�̃X ,AX ,ÃX}

eiS[�,�̃,A,Ã]



Duality approach

• next steps: sequence of changing the variables

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)] is periodic in • the action

j± j, j̃

r(✓ ± ✏Dñ)

➡ Fourier expansion introducing or 

• parameterization in terms of new fields 

5

Eq. (25) there is an overall prefactor �, and therefore the
sum vanishes for j2

+X = j

2

�X .
As indicated above, eventually we are interested in the

continuum limit in time, ✏ ! 0. Hence, in the following
we keep only the leading terms in ✏. This allows us to
considerably simplify the factor C defined in Eq. (26).
Indeed, reexponentiating K�X and expanding the loga-
rithm to second order we find (in the following we do not
keep track of purely numerical, i.e., field-independent,
factors; they are inconsequential for our considerations
and can be absorbed in the integration measure in the
MSR functional integral Eq. (21))

C /
Y

X,�

e� lnK�X =
Y

X,�

2�e��✏�ñX� 1
2 (✏�ñX)

2
+O(✏3)

/ e�(✏�)2
P

X ñ2
X+O(✏3).

(27)

The first order term in the exponent vanishes upon taking
the product of the exponential over � (or, equivalently,
the sum over � in the exponent). As a result, C gives a
contribution to the MSR action of second order in ✏ and
can hence be ignored.

Now we examine the last term in the exponent in
Eq. (25). Expanding 1/K�X to first order in ✏ we find

i

2

X

X,�

j2�X
K�X

= i
X

X


jX · j̃X +

✏�

2
ñX

�
j2X + j̃2X

��
, (28)

where we introduce the current j = j

+

+ j� and the re-
sponse current j̃ = j

+

� j�. Below in Eq. (43) we replace
the integer-valued vector fields j and j̃ by continuous ones
by means of the Poisson summation formula. This is a
necessary prerequisite for taking the limit ✏ ! 0, for
the simple reason that a sequence of integers at times
t, t+ ✏, t+ 2✏, . . . cannot converge to a continuous func-
tion of time for ✏ ! 0. Moreover, taking a sensible ✏ ! 0
limit requires us to rescale the real-valued response cur-
rent as j̃ ! ✏̃j, as becomes clear from Eq. (30) below.
Anticipating these steps, we see that the contribution in-
volving j̃2X in Eq. (28) above can actually be considered
to be O(✏3), and we discard it already at this point.

Putting the pieces together, the partition function (21)
becomes

Z /
X

{ñX ,jX ,˜jX}

Z
D[✓]ei

P
X ✓X(�tñX+r·˜jX)

⇥ ei
P

X [✏ñX(Dr·jX+i�ñX)+jX ·(˜jX+

✏�
2 ñX jX)]. (29)

In the exponent we summed by parts twice. We note that
the exponent is linear both in ✓ and j̃. Hence, the sum
over j̃ can be carried out and gives

Q
X

P
mX

�(�r✓X +
jX �2⇡mX) with an integer-valued vector field m. Some
intuition can be gained by decomposing this vector field
into longitudinal and transverse parts. The longitudinal
part can be written as the lattice gradient of an integer
field ml, and the transverse part as the lattice curl of a

vector field mtẑ pointing along the z-direction. Absorb-
ing the longitudinal component ml into ✓ by extending
the integration in Eq. (10) over the whole real axis (in
other words, making ✓ non-compact) the argument of
the �-function suggests that (up to a prefactor) we can
interpret j as the bosonic current. The latter has both a
smooth longitudinal contribution r✓ and — in the pres-
ence of vortices — a transverse component corresponding
to non-zero values of mt.
However, instead of summing over j̃ in Eq. (29), we

take a di↵erent route and integrate out ✓. This yields a
�-function corresponding to the constraint that ñX and
j̃X should satisfy the continuity equation,

�tñX +r · j̃X = 0. (30)

(Note that as indicated above this equation implies that
the continuous fields which replace ñ and j̃ scale di↵er-
ently in the limit ✏ ! 0.) Formally, the appearance of
a continuity equation is again analogous to the duality
transformation in a quantum system at T = 0 [33, 38, 39].
However, in the latter case, the continuity equation is a
consequence of particle number conservation. In driven-
dissipative condensates, on the other hand, the number of
particles is not conserved. Nevertheless, there is a resid-
ual U(1) phase-rotation symmetry [17] which is reflected
in the appearance of a Goldstone boson in the (mean-
field) condensed phase (indeed, the KPZ equation (1) is
the massless equation of motion of the Goldstone boson
which is the phase of the condensate), and in the above
continuity equation for the response fields ñ and j̃. From
this continuity equation, the Noether charge associated
with the U(1) symmetry can be seen to be the sum over
space of ñX . However, by construction of the MSR for-
malism, the response fields have vanishing expectation
value, and therefore the Noether charge is always zero
and the continuity equation (30) is trivially satisfied on
average.
The continuity equation (30) can be interpreted as

stating that the three-component vector field (ñ, j̃) has
vanishing divergence. Hence, this vector field can be
parametrized as the curl of another vector field,

✓
ñ

j̃

◆
=

✓
�t

r
◆
⇥

✓
�̃

�Ã

◆
=

0

@
�ẑ ·

⇣
r⇥ Ã

⌘

�ẑ⇥
⇣
r�̃+�tÃ

⌘

1

A .

(31)
Here and in the following it is understood, that — de-
pending on the context — the gradient operator and vec-
tors such as Ã should be considered as having two com-
ponents or three components with the third one being
zero. The parametrization of (ñ, j̃) in terms of the po-
tentials (�̃, Ã) is not unique. In fact, the “physical” fields
(ñ, j̃) are invariant under the gauge transformation

�̃ ! �̃��t�,

Ã ! Ã+r�,
(32)

with an arbitrary integer field �. We can exploit this free-
dom by choosing a gauge that leads to a simple form of

j = �ẑ⇥ (r�+A)

due to continuity equation �tñX +r · j̃X = 0

• new dynamical integral: only discrete variables

Z /
X

{�X ,�̃X ,AX ,ÃX}

eiS[�,�̃,A,Ã]



Duality approach

• next steps: sequence of changing the variables

• only discrete variables

Z /
X

{�X ,�̃X ,AX ,ÃX}

eiS[�,�̃,A,Ã]

• turn into smooth integration and (a bit of) summation: Poisson formula 

1X

k=�1
g(k) =

1X

n=�1

Z 1

�1
d� g(�)e�i2⇡n�

Z /
X

{nvX ,ñvX ,
JvX ,J̃vX}

Z
D[�, �̃,A, Ã]eiS[�,�̃,A,Ã,nv,ñv,Jv,J̃v ]

• resulting integral:

• interpretation: study the associated Langevin equations

vortex density and current smooth spin wave fluctuations



Electrodynamic Duality

vortex density 
& current

KPZ non-linearity and noise
over-damped vortex 

dynamics (ignoring mag field)
r̈i ! ṙi

r ·E = 2⇡nv

r⇥E+
1

D
B = 0

r⇥B� @E

@t
= 2⇡Jv � ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

r ·B = 0
dri
dt

= µniE(t, ri) + ⇠i

⇢� ⇢̄ ⌘ Bẑ ẑ⇥r✓ ⌘ E

• further intuition: obtained heuristically from identification

• Langevin equations = Modified noisy Maxwell equations

• formulated in electric and magnetic fields alone:

@t ! 1/D
modified continuity eq

phase dynamics 
(compact KPZ)

irrotational flow

and adding vortex sources and currents by hand

E = �r��A,

B = Dr⇥A
fixed by gauge invariance

Ẽ = �r�� @tÃ,

B̃ = r⇥ Ã



Electrodynamic Duality

vortex density 
& current

KPZ non-linearity and noise
over-damped vortex 

dynamics (ignoring mag field)
r̈i ! ṙi

r ·E = 2⇡nv

r⇥E+
1

D
B = 0

r⇥B� @E

@t
= 2⇡Jv � ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

r ·B = 0
dri
dt

= µniE(t, ri) + ⇠i

ẑ⇥r✓ ⌘ E• recover KPZ equation via replacement  

• check: neglect vortex contributions and “integrate out” gapped magnetic field

@t ! 1/D
modified continuity eq

phase dynamics 
(compact KPZ)

irrotational flow

@E

@t
= Dr2E� ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

• next: integrate out gapless electric field degrees of freedom = phase fluctuations

• equilibrium \lambda =0: exactly

• non-equilibrium: perturbatively in \lambda



A single vortex-antivortex pair

dr

dt
= �µrV (r) + ⇠

r

• close to the transition: dilute gas of vortices

• equation of motion for a single vortex-antivortex pair

r

equilibrium: Coulomb potential (2D)

noise-activated unbinding for a single pair (at exp small rate)

driven-dissipative system

V (r) ⇡ 1

"
ln(r/a)� �2

12"3D2

�
ln(r/a)3 + c ln(r/a)2

�

V (r) =
1

"
ln(r/a)

Lv = a0e
2D
�

length scale:

see also: I Aranson 
et al., PRB (1998)
two-vortex problem



Modified Kosterlitz-Thouless RG flow

"�

y

equilibrium
KT flow
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y dT
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�2T
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◆

✏ ! 1

) ⇢s ! 0

dielectric constant

superfluid stiffness



Modified Kosterlitz-Thouless RG flow
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0.00
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0.08

0.10

equilibrium
KT flow

modified
non-equilibrium

RG flow

KT transition
"�

y

vortex unbinding for any
 value of the noise strength

dy

d`
changes sign at a scaleLv
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Implication for exciton-polaritons

• for generic parameters,                 i.e. vortex unbinding overwrites KPZ physicsLv ⌧ L⇤

⌧⇤ = D�1L2
⇤ ⇡ a2D�1e

16⇡D3

��2

⌧v =
L2
v

µy2
e�� ln(Lv/a) ⇡ a2

µy2
e

D
� (2+�) � ⌘ 1/T ⇡ D/�

⌧⇤/⌧v ⇡ y2
µ

D
exp


1

g2

✓
16⇡ � �

D

◆�

• vortices: generated at short distance, have to overcome potential barrier by noise activation

r

V (r)

• KPZ time: diffusion time to separate to KPZ length: 

• vortex time: time to climb potential wall by noise activation (Arrhenius): 

• ratio: 

➡ large exponential factor,          is the small expansion parameter
➡          relative vortex mobility should be small (but unknown)
➡ vortex fugacity                    ,         the vortex core energy small parameter

�/D

µ/D
y = e��✏c ✏c

Lv



Summary: 2D
• two emergent length scales in complementary approaches: 

Lv

KPZ length

Lv = a0e
2D
�

vortex length

• scaling for the relevant fixed points

h�⇤(r)�(0)i ⇠ e�r2� , � = 0.4

KPZ fixed point

h�⇤(r)�(0)i ⇠ e�r

free vortex/disordered fixed point

• for exciton-polariton systems, 

algebraic/equilibrium vortex/non-equilibrium

Lv ⌧ L⇤

L⇤ = a0e
16⇡
g2



1 Dimension
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KPZ exponents

• direct numerical solution of driven-dissipative GPE in one dimension
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Figure 1: (Color online) Finite-size scaling collapse of w(L, t)
in the 1D KPZ universality class with α = 1/2 and z = 3/2.
Ensemble averages were performed over a number of NTraj =
1000 stochastic trajectories. Values of the other parameters
used in the simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc =
3.0.

size L according to ws(L) ∝ L2α, where the static
exponent α is usually referred to as roughness ex-
ponent in the KPZ context.

2. At small time t, w(L, t) scales with respect to time
as w(L, t) ∝ t2β, where the dynamical exponent β is
usually referred to as growth exponent in the KPZ
context. It relates to the conventional dynamical
exponent z according to β = α/z.

3. The roughness function reaches its saturation value
ws(L) at a time Ts, which thus separates the growth
period 2. from the long time regime 1. This satu-
ration time scales with system size as Ts ∼ Lz.

These scaling features are demonstrated by the finite-
size scaling collapse of w(L, t) using the 1D KPZ expo-
nents α = 1/2 and z = 3/2 shown in Fig. 1. During
the growth period the roughness increases nearly linearly
on the log-log scale, which indicates power-law growth
w(L, t) ∼ t2β . For different system sizes saturation is
reached at the same point on the rescaled time axis, con-
firming the scaling behavior Ts ∼ Lz. Finally, the sat-
uration values ws(L) of the roughness function collapse
upon rescaling w(L, t) with L2α. A detailed numerical
determination of the roughness exponent α is presented
in Sec. III A. The extraction of the value of the growth
exponent β from simulations of larger systems than those
shown in Fig. 1 is described below in Sec. III B.

Before we proceed, let us emphasize an important dif-
ference between the phase of a complex field we consider
here and the crystal height: The phase is a compact field
variable defined on a circle. Without loss of generality the
value of θ(x, t) is in fact bounded to the interval (−π,π].
Consequently, the value of w(L, t) is also bounded from
above by 4π2, which inevitably invalidates the static scal-
ing behavior ws(L) ∼ L2α if α is positive as expected from
the conventional KPZ scenario. However, this is just an
artifact originating from a specific choice of the range of θ.
Instead of choosing ψ to be defined on one piece of com-
plex plane, there is a mathematically equivalent choice
to let the value of ψ be defined on the Riemann surface
where the value of θ is in the interval (−∞,+∞). With
this choice there is no upper bound imposed on ws(L). In

$

$

$

$

$

$

100 200 500 1000 2000 5000 1$ 104

1

2

5

10

20

L

w s
"L
#

Figure 2: (Color online) Finite size scaling of ws(L). Points
marked by “×” denote the numerical value of ws(L) for system
sizes L = 28, 29, 210, 211, 212, 213. The blue line is a linear fit
to the data on the log-log scale, from which we extract the
roughness exponent α = 0.499. This is in good agreement
with the roughness exponent αKPZ of the KPZ dynamics in
1D, αKPZ = 1/2. Values of other parameters used in the
simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0.

numerical simulations, we directly simulate the dynam-
ics of the complex field itself at low noise level. This is
defined operatively by |ψ(x, t)| remaining non-vanishing
within the temporal-spatial size of our simulations, indi-
cating the absence of the phase defects. Therefore, re-
garding the field value of ψ(x, t) to be defined on the
Riemann surface, in the simulations θ(x, t) is constructed
from ψ(x, t)’s complex argument by requiring the phase
difference between neighboring space-time points to be
less than π.

A. Static roughness exponent α

We first extract α from the finite-size scaling of ws(L).
In practice, for given system size L, we monitor the value
of w(L, t) during a simulation and wait until it reaches a
stable value up to statistical fluctuations at the saturation
time Ts. After Ts, we continue simulating the dynamics
to the final time point Tf with Tf −Ts at least two times
larger than Ts. Afterwards ws(L) is extracted according

to ws(L) = (Tf − Ts)−1
´ Tf

Ts
dtw(L, t). In Fig. 2 we show

the finite size scaling of ws(L) from the direct simulations
of the SCGLE. The extracted roughness exponent is α =
0.499, which is in good agreement with the roughness
exponent αKPZ of the KPZ dynamics being αKPZ = 1/2
in 1D [21].

In 1D however, the roughness exponent αKPZ in the
KPZ dynamics is exactly the same as the one of the
purely diffusive dynamics in presence of Gaussian white
noise, the so-called Edwards-Wilkinson (EW) dynamics
[22] (whose dynamical equation corresponds to Eq. (8)
with λ = 0). This is due to an additional symmetry in
one dimension, which allows one to show that the static
correlations in stationary state are Gaussian [23]. In con-
trast, the dynamical correlation witnesses quantitatively
the difference between effective KPZ and EW dynamics.

• observable: phase correlations

2

For convenience of numerical simulations and following
discussions, we use the following rescaled form of Eq. (1),

∂

∂t
ψ =

[

r +
d

∑

i=1

Ki
∂2

∂x2
i

+ u|ψ|2
]

ψ + ζ, (3)

where

t = |r̃d|t̃, xi =

√

|r̃d|
K̃i,d

x̃i, (4)

ψ =

√

ũd

|r̃d|
ψ̃, ζ =

√

ũd

|r̃d|3
ζ̃, (5)

rc =
r̃c
|r̃d|

, Ki,c =
K̃i,c

K̃i,d

, uc =
ũc

ũd
, (6)

r = 1− irc, Ki = (1 + iKi,c), u = (−1− iuc) (7)

and the second moment of the rescaled Gaussian white

noise ζ(x, t) is σ = σ̃ũd |r̃d|
d
2
−2 ∏d

j=1

(

K̃j
d

)−1/2
. In the

following discussion we focus on the one-dimensional case,
thus the indices to specify the spatial directions are omit-
ted.

Adopting the amplitude-phase representation of the
complex bosonic field ψ(x, t) = ρ(x, t)eiθ(x,t), it was
shown [6–8] that, assuming that spatial-temporal fluc-
tuations of the amplitude field ρ(x, t) are small, the dy-
namical equation of the phase field θ(x, t) assumes in the
low-frequency and long-wavelength limit the form of the
KPZ equation, which reads

∂tθ(x, t) = D∂2xθ(x, t) +
λ

2
(∂xθ(x, t))

2 + η(x, t), (8)

where η(x, t) is an effective Gaussian white noise, with
mean ⟨η(x, t)⟩ = 0, and correlations ⟨η(x, t)η(x′, t′)⟩ =
2σKPZδ(x − x′)δ(t − t′). Here σKPZ = (ũ2

d +
ũ2
c)γ̃l/(2ũd(γ̃p − γ̃l)) is the effective noise strength,

D = K̃d(1 + K̃cũc/K̃dũd) is the diffusion constant,

and λ = 2K̃c

(

K̃dũc/K̃cũd − 1
)

is the non-linear cou-

pling strength [6]. With a simple rescaling, i.e., θ =
Θ
√

2σKPZ/D, t = τ/D, η = ξ
√
2σKPZD, the KPZ equa-

tion Eq. (8) can be recast into a form where only one di-
mensionless parameter, the non-linear coupling strength
g, enters, i.e.

∂τΘ(x, τ) = ∂2xΘ(x, τ) + g (∂xΘ(x, τ))2 + ξ(x, τ), (9)

where

g = λ

√

σKPZ

2D3
, (10)

and ⟨ξ(x, τ)ξ(x′, τ ′)⟩ = δ(x − x′)δ(τ − τ ′). Importantly,
the magnitude of g directly characterizes how far the sys-
tem is driven from thermal equilibrium. More precisely,
g = 0 is guaranteed by symmetry in a thermal equilib-
rium system which obeys global detailed balance [10, 11],
while g ̸= 0 indicates that the system is driven away from
thermal equilibrium. In the following, we investigate the
scaling properties of various correlation functions of the
phase field θ(x, t), in particular the static and dynamical
critical exponent, as well as the correlation properties of

the complex bosonic field ψ(x, t) which are of most direct
physical interest for experiments.

To put our investigation in a more general context,
here we mention a few situations where similar dynam-
ical equations appear. Without the noise term in (3),
the above equation reduces to the deterministic complex
Ginzburg-Landau equation (CGLE). One key feature of
the latter is the existence of a so-called Benjamin-Feir
unstable parameter region [12] specified by 1 + Kcuc <
0, where the dynamics described by the deterministic

CGLE develops spatiotemporal chaotic behavior (see e.g.
[13]) which has been extensively studied in the literature
[14, 15]. As we are interested in the parameter regime
defined in (2), i.e. both Kc and uc are positive, the
Benjamin-Feir unstable region is not relevant for the cur-
rent investigation. However, this can be relevant if one is
interested in turbulence of the bosonic fluid in the pres-
ence of external noise [16]. Moreover, a similar stochas-
tic dynamical equation, the so-called stochastic Gross-
Pitaevskii equation [17, 18], is used to describe, e.g. the
BEC formation dynamics of alkali atoms at finite tem-
perature. Here, however, the constraints resulting from
detailed balance in stationary state are built in. Finally,
we mention that recently in Ref. [8] a higher order spatial
derivative term was included in the effective description
of the 1D SCGLE. This study focuses on the static cor-
relation properties of the system, where a crossover in
the spatial correlation function at intermediate scale is
identified.

We finally give some general information concerning
our numerical simulations. We use the semi-implicit al-
gorithm developed in [19] to solve the stochastic partial
differential equation (3) numerically. In all the simula-
tions spatial periodic boundary conditions of the com-
plex field ψ(x, t) are assumed and the winding number of
the phase field θ(x, t) across the whole system is chosen
to be zero. We work in the low noise regime, where we
find defects of the phase field to be absent. If not speci-
fied in text, we use NTraj = 102 stochastic trajectories to
perform ensemble averages.

III. SCALING PROPERTIES OF THE PHASE
CORRELATIONS

We investigate the scaling properties of the following
correlation function of the phase field:

w(L, t) ≡

〈

1

L

ˆ

x
θ2(x, t) −

(

1

L

ˆ

x
θ(x, t)

)2
〉

, (11)

where L is the linear size of the system and “⟨ ⟩” indicates
ensemble average over stochastic trajectories. In the con-
text of the KPZ equation, w(L, t) is usually referred to
as “roughness function”. Indeed, regarding θ(x, t) as the
crystal height variable as in the conventional KPZ equa-
tion, w(L, t) measures the spatial fluctuations of that
height. Assuming complete analogy of the phase field
to the crystal height field, from the investigations in the
context of the KPZ equation (see e.g. [20]) we know that
we can extract both static and dynamical exponents from
w(L, t) via its spatial and temporal scaling properties:

1. In the long time limit, w(L, t) saturates at ws(L) ≡
w(L, t → ∞), and it scales with respect to system

• hosts all critical exponents:

• stationary limit: static/”roughness” exponent:

• time evolution: “growth exponent”

� = ↵/z

• crossover timescale: dynamical exponent

Ts ⇠ Lz

Ts

➡ KPZ scaling fully confirmed in phase correlations

z ⇡ 3/2

w(L, t � Lz) ⇠ L2↵

w(L � t1/z, t) ⇠ t2�

vs. eq.:
� ⇡ 1/3
� = 1/4 ↵ = 1/2

↵ ⇡ 1/2
z = 2

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

dynamic correlations needed to 
certify non-equilibrium!

(exact Gaussian stationary 
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Spatial and temporal coherence function

• direct numerical solution of driven-dissipative GPE in one dimension

• observable 2: complex field first order spatial and temporal coherence functions

➡ KPZ scaling fully confirmed in coherence functions

5

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

0 50 100 15010"2

10"1

1

!x1"x2!

!C
x"
x 1
,x
2#
!

Figure 5: (Color online) Behavior of the translation invari-
ant two-point function C̄x(x1, x2, t = 2.9 × 105 > Ts) at
linear system size L = 212 on a semi-logarithmic scale.
NTraj = 800 stochastic trajectories are used to perform the
ensemble average. Values of other parameters used here are
rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. The exponential de-
cay of

∣

∣C̄x(x1, x2, t)
∣

∣ with respect to |x1 − x2| can be clearly
identified from this plot.

i.e. the equal time two-point correlation function in space
and the temporal autocorrelation function, respectively.
These are directly accessible in experiments with exciton-
polaritons: Both spatial and temporal coherence can be
probed by interference measurements, on the photolumi-
nescence emitted from different regions of the exciton-
polariton condensate [3, 5] and by combining two im-
ages of the condensate taken at different times using,
e.g., a Mach-Zehnder interferometer [25], respectively.
The visibility of interference fringes yields the correlation
functions. Assuming spatial translational invariance of
the correlation functions, we calculate the following spa-
tially averaged correlation functions, which are equivalent
to the corresponding correlation functions above but in
practice help to reduce the statistical error

C̄x(x1, x2, t) ≡
1

L

ˆ

dy⟨ψ∗(x1 + y, t)ψ(x2 + y, t)⟩,

(14)

C̄t(t1, t2) ≡
1

L

ˆ

dx⟨ψ∗(x, t1)ψ(x, t2)⟩. (15)

A. Spatial correlations

We start with the spatial correlation function
C̄x(x1, x2, t). In Fig. 5 we show the dependence of
∣

∣C̄x(x1, x2, t)
∣

∣ on the distance |x1 − x2| at time t > Ts,
from which we clearly identify exponential decay on the
semi-logarithmic scale plot. This coincides with the pre-
diction from the effective KPZ description in 1D, and
with previous numerical results [8]. However, as antic-
ipated in Sec. III, this static signature would in fact
be compatible with conventional thermal equilibrium be-
havior and does not unambiguously demonstrate KPZ
physics.

B. Temporal correlations

In contrast to the static case, the temporal correla-
tion function is expected to show distinct properties de-
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Figure 6: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at linear system size L = 212.
The y-axis is in logarithmic scale. Values of other parameters
used here are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. Different
scalings of the time difference |t1 − t2| are used for the x-
axis. For the scaling log (|t1 − t2|) (the left blue curve), a
straight line would indicate a power law decay of C̄t(t1, t2).
However, we directly see from the above plot that this is not
the case. For the scalings |t1 − t2|

1/2 (the middle red curve)
or |t1 − t2|

2/3 (the right yellow curve), a straight line would
indicate the stretched exponential decay with EW or KPZ
dynamical exponent, respectively. The fit to the stretched
exponential with the KPZ dynamical exponent (uppermost
line) is superior to others. This is further confirmed with
nonlinear regression fits of C̄t(t1, t2). See the text for more
details.

pending on whether the system is in global thermal equi-
librium or not. In Fig. 6, we plot the dependence of
∣

∣C̄t(t1, t2)
∣

∣ on |t1 − t2| in stationary state at linear sys-
tem size L = 212 against different scalings of the time
difference, from which we can see that the fit to the
stretched exponential with the KPZ dynamical exponent
is superior to others. To get quantitative predictions from
our simulations, we perform nonlinear regression fits of
the stretched exponential function of the general form
Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣. From the data shown in Fig.
6, we extract β = 0.315. Here we remark that parame-
ters of the results shown in Fig. 6 are chosen in such a
way that the crossover time tc is so small that the scaling
behavior of C̄t(t1, t2) is dictated by pure KPZ scaling.

In Fig. 7, we illustrate the universality of the KPZ scal-
ing, i.e. its insensitivity to the choice of microscopic
parameters. To this end, we plot the dependence of
− log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1 − t2| at two differ-
ent sets of microscopic parameters and system sizes, from
which we can see that on a double logarithmic scale these
two curves are nearly straight parallel lines. The slope
of the two resulting lines is determined by the dynami-
cal exponent β. The linear fits to the data points with
|t1 − t2| ∈ [102, 103] give rise to β = 0.311 and β = 0.317
for the upper and lower curve, respectively.

V. EXPERIMENTAL OBSERVABILITY IN
EXCITON-POLARITON SYSTEMS

In the preceding sections we studied the SCGLE as
an effective description of the long-wavelength dynamics
of a generic driven-dissipative condensate. The micro-
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Figure 5: (Color online) Behavior of the translation invari-
ant two-point function C̄x(x1, x2, t = 2.9 × 105 > Ts) at
linear system size L = 212 on a semi-logarithmic scale.
NTraj = 800 stochastic trajectories are used to perform the
ensemble average. Values of other parameters used here are
rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. The exponential de-
cay of
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∣ with respect to |x1 − x2| can be clearly
identified from this plot.

i.e. the equal time two-point correlation function in space
and the temporal autocorrelation function, respectively.
These are directly accessible in experiments with exciton-
polaritons: Both spatial and temporal coherence can be
probed by interference measurements, on the photolumi-
nescence emitted from different regions of the exciton-
polariton condensate [3, 5] and by combining two im-
ages of the condensate taken at different times using,
e.g., a Mach-Zehnder interferometer [25], respectively.
The visibility of interference fringes yields the correlation
functions. Assuming spatial translational invariance of
the correlation functions, we calculate the following spa-
tially averaged correlation functions, which are equivalent
to the corresponding correlation functions above but in
practice help to reduce the statistical error

C̄x(x1, x2, t) ≡
1

L

ˆ

dy⟨ψ∗(x1 + y, t)ψ(x2 + y, t)⟩,

(14)

C̄t(t1, t2) ≡
1

L

ˆ

dx⟨ψ∗(x, t1)ψ(x, t2)⟩. (15)

A. Spatial correlations

We start with the spatial correlation function
C̄x(x1, x2, t). In Fig. 5 we show the dependence of
∣

∣C̄x(x1, x2, t)
∣

∣ on the distance |x1 − x2| at time t > Ts,
from which we clearly identify exponential decay on the
semi-logarithmic scale plot. This coincides with the pre-
diction from the effective KPZ description in 1D, and
with previous numerical results [8]. However, as antic-
ipated in Sec. III, this static signature would in fact
be compatible with conventional thermal equilibrium be-
havior and does not unambiguously demonstrate KPZ
physics.

B. Temporal correlations

In contrast to the static case, the temporal correla-
tion function is expected to show distinct properties de-
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Figure 6: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at linear system size L = 212.
The y-axis is in logarithmic scale. Values of other parameters
used here are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. Different
scalings of the time difference |t1 − t2| are used for the x-
axis. For the scaling log (|t1 − t2|) (the left blue curve), a
straight line would indicate a power law decay of C̄t(t1, t2).
However, we directly see from the above plot that this is not
the case. For the scalings |t1 − t2|

1/2 (the middle red curve)
or |t1 − t2|

2/3 (the right yellow curve), a straight line would
indicate the stretched exponential decay with EW or KPZ
dynamical exponent, respectively. The fit to the stretched
exponential with the KPZ dynamical exponent (uppermost
line) is superior to others. This is further confirmed with
nonlinear regression fits of C̄t(t1, t2). See the text for more
details.

pending on whether the system is in global thermal equi-
librium or not. In Fig. 6, we plot the dependence of
∣

∣C̄t(t1, t2)
∣

∣ on |t1 − t2| in stationary state at linear sys-
tem size L = 212 against different scalings of the time
difference, from which we can see that the fit to the
stretched exponential with the KPZ dynamical exponent
is superior to others. To get quantitative predictions from
our simulations, we perform nonlinear regression fits of
the stretched exponential function of the general form
Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣. From the data shown in Fig.
6, we extract β = 0.315. Here we remark that parame-
ters of the results shown in Fig. 6 are chosen in such a
way that the crossover time tc is so small that the scaling
behavior of C̄t(t1, t2) is dictated by pure KPZ scaling.

In Fig. 7, we illustrate the universality of the KPZ scal-
ing, i.e. its insensitivity to the choice of microscopic
parameters. To this end, we plot the dependence of
− log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1 − t2| at two differ-
ent sets of microscopic parameters and system sizes, from
which we can see that on a double logarithmic scale these
two curves are nearly straight parallel lines. The slope
of the two resulting lines is determined by the dynami-
cal exponent β. The linear fits to the data points with
|t1 − t2| ∈ [102, 103] give rise to β = 0.311 and β = 0.317
for the upper and lower curve, respectively.

V. EXPERIMENTAL OBSERVABILITY IN
EXCITON-POLARITON SYSTEMS

In the preceding sections we studied the SCGLE as
an effective description of the long-wavelength dynamics
of a generic driven-dissipative condensate. The micro-
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Figure 7: (Color online) KPZ universality: The dependence
of − log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1−t2| at two sets of mi-
croscopic parameters and system sizes. The axes are in log-
arithmic scale. For the upper (blue) curve, the microscopic
parameters and system size are exactly the same as those in
Fig. 6. For the lower (red) curve, the linear system sizes is
27 and the microscopic parameters correspond to the experi-
mental parameters for a cavity with a reduced Q factor (see
text in Sec. V for more details). The linear fits to the data
points with |t1 − t2| ∈ [102, 103] give rise to β = 0.311 and
β = 0.317 for the upper and lower curve, respectively. For all
curves NTraj = 103 stochastic trajectories are used.

scopic model for the specific case of exciton-polaritons [9]
differs from the SCGLE in that the diffusion constant
is essentially absent and instead of an explicit two-body
loss term the pump itself is assumed to be non-linear and
saturates at high densities. Slightly above the condensa-
tion threshold the saturable pump term can be expanded
in the polariton field and we recover the SCGLE, which
then reads in dimensionless form

∂tψ =

[

i∂2x + (i + ud)

(

p

ud
− |ψ|2

)]

ψ + ζ. (16)

Here the effective dimensionless two-body loss coefficient
ud and the dimensionless pump strength p are given by

ud =
!γ̃lR

2γRgc
(1 + 2p), p =

1

2

(

P

Pth
− 1

)

, (17)

with P and Pth = γ̃lγR/R being pump rate of the exci-
tonic reservoir and its value at threshold, respectively; γ̃l
is the inverse lifetime of polaritons and ũc their interac-
tion strength. Here we measure time and space in units
of γ̃−1

l and
√

!/2mLPγ̃l respectively with mLP being the
effective mass of lower polaritons. Finally, the strength
of the dimensionless noise field ζ is σ = ũc

√

2mLP/!3γ̃l.
Typical values of experimental parameters in 1D exciton-
polariton systems are (see, e.g., Ref. [26]),

mLP = 4× 10−5me, gc = 5× 10−4meVµm,
γ̃l = 0.03ps−1, R = 3µm · ps−1, γR = 0.06ps−1,

(18)

where me is the mass of the electron.
The upper curve in Fig. 8 shows the temporal correla-

tion function C̄t(t1, t2) in stationary state for the values
given in Eq. (18) and at a dimensionless pump power
of p = 0.3. A nonlinear regression fit of a stretched
exponential function Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣ yields
β = 0.307 showing that for this choice of parameters sig-
natures of KPZ physics are clearly observable. However,
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Figure 8: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at two sets of different exper-
imental parameters and linear system sizes. For the upper
curve, the experimental parameter listed in Eq. (18) are used.
The dimensionless linear system size in this case is L = 29 (the
corresponding the physical system size is ∼ 3 × 103µm) and
p = 0.3. For the lower curve, the experimental parameters for
a cavity with reduced Q factor are used. The dimensionless
linear system size in this case is L = 27 (the corresponding the
physical system size is ∼ 1.5 × 102µm) and p = 0.5. See text
for more details. Blue dots are data points from simulations
and the red lines are the stretched exponential fit curves to the
data. The nonlinear regression fit of C̄t(t1, t2) to the stretched

exponential function Ae−B|t1−t2|
2β

gives rise to β = 0.307 and
β = 0.336 for the upper and lower curve, respectively. In the
results shown in these two plots, NTraj = 103 stochastic tra-
jectories are used.

the physical system size corresponding to the dimension-
less linear system size of L = 29 chosen in this simulation
is ∼ 3 × 103µm, which is considerably larger than the
typical scale ∼ 102µm of current experiments.

Taking this limitation into account, KPZ scaling is still
observable when at the same time the dimensionless effec-
tive system size can be kept large. This can be achieved
by reducing the cavity Q (and thus increasing the de-
cay rate γ̃l), which leads to a decrease of the unit of
length. (We note that this also facilitates observation of
KPZ scaling behavior in equal-time spatial correlations
in 2D [6].) The lower curve in Fig. 8 shows C̄t(t1, t2)
for γ̃l = 1ps−1 and a dimensionless linear system size of
L = 27, corresponding in physical units to ∼ 1.5×102µm.
In addition to the increase of γ̃l, for this simulation we
chose a larger value of 6 for the dimensionless prefactor in
ud in Eq. (17) instead of ∼ 1 which we obtain for the pa-
rameters given in Eq. (18). This choice magnifies the ef-
fective KPZ non-linearity and corresponds to a moderate
variation of the experimental parameters only. In fact,
the latter are often determined only indirectly via fit-
ting simulations to experimental measurements, and are
thus not known with very high precision. In this set-
ting, the exponent of β = 0.336 obtained from the lower
curve in Fig. 8 indicates that it is promising to search
for signatures of KPZ physics in the first-order tempo-
ral coherence of 1D exciton-polariton systems when the
lifetime of polaritons is rather short, so that the intrinsic
non-equilibrium nature is strongly pronounced.

� = 0.311

� = 0.317

• KPZ universality: different micr. parameters
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Figure 5: (Color online) Behavior of the translation invari-
ant two-point function C̄x(x1, x2, t = 2.9 × 105 > Ts) at
linear system size L = 212 on a semi-logarithmic scale.
NTraj = 800 stochastic trajectories are used to perform the
ensemble average. Values of other parameters used here are
rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. The exponential de-
cay of

∣

∣C̄x(x1, x2, t)
∣

∣ with respect to |x1 − x2| can be clearly
identified from this plot.

i.e. the equal time two-point correlation function in space
and the temporal autocorrelation function, respectively.
These are directly accessible in experiments with exciton-
polaritons: Both spatial and temporal coherence can be
probed by interference measurements, on the photolumi-
nescence emitted from different regions of the exciton-
polariton condensate [3, 5] and by combining two im-
ages of the condensate taken at different times using,
e.g., a Mach-Zehnder interferometer [25], respectively.
The visibility of interference fringes yields the correlation
functions. Assuming spatial translational invariance of
the correlation functions, we calculate the following spa-
tially averaged correlation functions, which are equivalent
to the corresponding correlation functions above but in
practice help to reduce the statistical error

C̄x(x1, x2, t) ≡
1

L

ˆ

dy⟨ψ∗(x1 + y, t)ψ(x2 + y, t)⟩,

(14)

C̄t(t1, t2) ≡
1

L

ˆ

dx⟨ψ∗(x, t1)ψ(x, t2)⟩. (15)

A. Spatial correlations

We start with the spatial correlation function
C̄x(x1, x2, t). In Fig. 5 we show the dependence of
∣

∣C̄x(x1, x2, t)
∣

∣ on the distance |x1 − x2| at time t > Ts,
from which we clearly identify exponential decay on the
semi-logarithmic scale plot. This coincides with the pre-
diction from the effective KPZ description in 1D, and
with previous numerical results [8]. However, as antic-
ipated in Sec. III, this static signature would in fact
be compatible with conventional thermal equilibrium be-
havior and does not unambiguously demonstrate KPZ
physics.

B. Temporal correlations

In contrast to the static case, the temporal correla-
tion function is expected to show distinct properties de-
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Figure 6: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at linear system size L = 212.
The y-axis is in logarithmic scale. Values of other parameters
used here are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0. Different
scalings of the time difference |t1 − t2| are used for the x-
axis. For the scaling log (|t1 − t2|) (the left blue curve), a
straight line would indicate a power law decay of C̄t(t1, t2).
However, we directly see from the above plot that this is not
the case. For the scalings |t1 − t2|

1/2 (the middle red curve)
or |t1 − t2|

2/3 (the right yellow curve), a straight line would
indicate the stretched exponential decay with EW or KPZ
dynamical exponent, respectively. The fit to the stretched
exponential with the KPZ dynamical exponent (uppermost
line) is superior to others. This is further confirmed with
nonlinear regression fits of C̄t(t1, t2). See the text for more
details.

pending on whether the system is in global thermal equi-
librium or not. In Fig. 6, we plot the dependence of
∣

∣C̄t(t1, t2)
∣

∣ on |t1 − t2| in stationary state at linear sys-
tem size L = 212 against different scalings of the time
difference, from which we can see that the fit to the
stretched exponential with the KPZ dynamical exponent
is superior to others. To get quantitative predictions from
our simulations, we perform nonlinear regression fits of
the stretched exponential function of the general form
Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣. From the data shown in Fig.
6, we extract β = 0.315. Here we remark that parame-
ters of the results shown in Fig. 6 are chosen in such a
way that the crossover time tc is so small that the scaling
behavior of C̄t(t1, t2) is dictated by pure KPZ scaling.

In Fig. 7, we illustrate the universality of the KPZ scal-
ing, i.e. its insensitivity to the choice of microscopic
parameters. To this end, we plot the dependence of
− log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1 − t2| at two differ-
ent sets of microscopic parameters and system sizes, from
which we can see that on a double logarithmic scale these
two curves are nearly straight parallel lines. The slope
of the two resulting lines is determined by the dynami-
cal exponent β. The linear fits to the data points with
|t1 − t2| ∈ [102, 103] give rise to β = 0.311 and β = 0.317
for the upper and lower curve, respectively.

V. EXPERIMENTAL OBSERVABILITY IN
EXCITON-POLARITON SYSTEMS

In the preceding sections we studied the SCGLE as
an effective description of the long-wavelength dynamics
of a generic driven-dissipative condensate. The micro-

↵ = 0.5

⇠ e�Ar2↵ ⇠ e�B�t2�

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

only modulus gauge invariant!



Temporal coherence: signatures in experiments
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Figure 7: (Color online) KPZ universality: The dependence
of − log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1−t2| at two sets of mi-
croscopic parameters and system sizes. The axes are in log-
arithmic scale. For the upper (blue) curve, the microscopic
parameters and system size are exactly the same as those in
Fig. 6. For the lower (red) curve, the linear system sizes is
27 and the microscopic parameters correspond to the experi-
mental parameters for a cavity with a reduced Q factor (see
text in Sec. V for more details). The linear fits to the data
points with |t1 − t2| ∈ [102, 103] give rise to β = 0.311 and
β = 0.317 for the upper and lower curve, respectively. For all
curves NTraj = 103 stochastic trajectories are used.

scopic model for the specific case of exciton-polaritons [9]
differs from the SCGLE in that the diffusion constant
is essentially absent and instead of an explicit two-body
loss term the pump itself is assumed to be non-linear and
saturates at high densities. Slightly above the condensa-
tion threshold the saturable pump term can be expanded
in the polariton field and we recover the SCGLE, which
then reads in dimensionless form

∂tψ =

[

i∂2x + (i + ud)

(

p

ud
− |ψ|2

)]

ψ + ζ. (16)

Here the effective dimensionless two-body loss coefficient
ud and the dimensionless pump strength p are given by

ud =
!γ̃lR

2γRgc
(1 + 2p), p =

1

2

(

P

Pth
− 1

)

, (17)

with P and Pth = γ̃lγR/R being pump rate of the exci-
tonic reservoir and its value at threshold, respectively; γ̃l
is the inverse lifetime of polaritons and ũc their interac-
tion strength. Here we measure time and space in units
of γ̃−1

l and
√

!/2mLPγ̃l respectively with mLP being the
effective mass of lower polaritons. Finally, the strength
of the dimensionless noise field ζ is σ = ũc

√

2mLP/!3γ̃l.
Typical values of experimental parameters in 1D exciton-
polariton systems are (see, e.g., Ref. [26]),

mLP = 4× 10−5me, gc = 5× 10−4meVµm,
γ̃l = 0.03ps−1, R = 3µm · ps−1, γR = 0.06ps−1,

(18)

where me is the mass of the electron.
The upper curve in Fig. 8 shows the temporal correla-

tion function C̄t(t1, t2) in stationary state for the values
given in Eq. (18) and at a dimensionless pump power
of p = 0.3. A nonlinear regression fit of a stretched
exponential function Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣ yields
β = 0.307 showing that for this choice of parameters sig-
natures of KPZ physics are clearly observable. However,
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Figure 8: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at two sets of different exper-
imental parameters and linear system sizes. For the upper
curve, the experimental parameter listed in Eq. (18) are used.
The dimensionless linear system size in this case is L = 29 (the
corresponding the physical system size is ∼ 3 × 103µm) and
p = 0.3. For the lower curve, the experimental parameters for
a cavity with reduced Q factor are used. The dimensionless
linear system size in this case is L = 27 (the corresponding the
physical system size is ∼ 1.5 × 102µm) and p = 0.5. See text
for more details. Blue dots are data points from simulations
and the red lines are the stretched exponential fit curves to the
data. The nonlinear regression fit of C̄t(t1, t2) to the stretched

exponential function Ae−B|t1−t2|
2β

gives rise to β = 0.307 and
β = 0.336 for the upper and lower curve, respectively. In the
results shown in these two plots, NTraj = 103 stochastic tra-
jectories are used.

the physical system size corresponding to the dimension-
less linear system size of L = 29 chosen in this simulation
is ∼ 3 × 103µm, which is considerably larger than the
typical scale ∼ 102µm of current experiments.

Taking this limitation into account, KPZ scaling is still
observable when at the same time the dimensionless effec-
tive system size can be kept large. This can be achieved
by reducing the cavity Q (and thus increasing the de-
cay rate γ̃l), which leads to a decrease of the unit of
length. (We note that this also facilitates observation of
KPZ scaling behavior in equal-time spatial correlations
in 2D [6].) The lower curve in Fig. 8 shows C̄t(t1, t2)
for γ̃l = 1ps−1 and a dimensionless linear system size of
L = 27, corresponding in physical units to ∼ 1.5×102µm.
In addition to the increase of γ̃l, for this simulation we
chose a larger value of 6 for the dimensionless prefactor in
ud in Eq. (17) instead of ∼ 1 which we obtain for the pa-
rameters given in Eq. (18). This choice magnifies the ef-
fective KPZ non-linearity and corresponds to a moderate
variation of the experimental parameters only. In fact,
the latter are often determined only indirectly via fit-
ting simulations to experimental measurements, and are
thus not known with very high precision. In this set-
ting, the exponent of β = 0.336 obtained from the lower
curve in Fig. 8 indicates that it is promising to search
for signatures of KPZ physics in the first-order tempo-
ral coherence of 1D exciton-polariton systems when the
lifetime of polaritons is rather short, so that the intrinsic
non-equilibrium nature is strongly pronounced.

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

• observability in first order temporal coherence

➡ realistic system sizes possible for reduced Q factor

� ⇡ 1/3KPZ scaling: fit with 
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Figure 7: (Color online) KPZ universality: The dependence
of − log

(
∣

∣C̄t(t1, t2)
∣

∣ /
∣

∣C̄t(t2, t2)
∣

∣

)

on |t1−t2| at two sets of mi-
croscopic parameters and system sizes. The axes are in log-
arithmic scale. For the upper (blue) curve, the microscopic
parameters and system size are exactly the same as those in
Fig. 6. For the lower (red) curve, the linear system sizes is
27 and the microscopic parameters correspond to the experi-
mental parameters for a cavity with a reduced Q factor (see
text in Sec. V for more details). The linear fits to the data
points with |t1 − t2| ∈ [102, 103] give rise to β = 0.311 and
β = 0.317 for the upper and lower curve, respectively. For all
curves NTraj = 103 stochastic trajectories are used.

scopic model for the specific case of exciton-polaritons [9]
differs from the SCGLE in that the diffusion constant
is essentially absent and instead of an explicit two-body
loss term the pump itself is assumed to be non-linear and
saturates at high densities. Slightly above the condensa-
tion threshold the saturable pump term can be expanded
in the polariton field and we recover the SCGLE, which
then reads in dimensionless form

∂tψ =

[

i∂2x + (i + ud)

(

p

ud
− |ψ|2

)]

ψ + ζ. (16)

Here the effective dimensionless two-body loss coefficient
ud and the dimensionless pump strength p are given by

ud =
!γ̃lR

2γRgc
(1 + 2p), p =

1

2

(

P

Pth
− 1

)

, (17)

with P and Pth = γ̃lγR/R being pump rate of the exci-
tonic reservoir and its value at threshold, respectively; γ̃l
is the inverse lifetime of polaritons and ũc their interac-
tion strength. Here we measure time and space in units
of γ̃−1

l and
√

!/2mLPγ̃l respectively with mLP being the
effective mass of lower polaritons. Finally, the strength
of the dimensionless noise field ζ is σ = ũc

√

2mLP/!3γ̃l.
Typical values of experimental parameters in 1D exciton-
polariton systems are (see, e.g., Ref. [26]),

mLP = 4× 10−5me, gc = 5× 10−4meVµm,
γ̃l = 0.03ps−1, R = 3µm · ps−1, γR = 0.06ps−1,

(18)

where me is the mass of the electron.
The upper curve in Fig. 8 shows the temporal correla-

tion function C̄t(t1, t2) in stationary state for the values
given in Eq. (18) and at a dimensionless pump power
of p = 0.3. A nonlinear regression fit of a stretched
exponential function Ae−B|t1−t2|

2β

to
∣

∣C̄t(t1, t2)
∣

∣ yields
β = 0.307 showing that for this choice of parameters sig-
natures of KPZ physics are clearly observable. However,

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1.0

!t1!t2!

!C
t"
t 1,
t 2#
$C

t"
t 2,
t 2#
!

Figure 8: (Color online) Behavior of the stationary two-point
correlation function C̄t(t1, t2) at two sets of different exper-
imental parameters and linear system sizes. For the upper
curve, the experimental parameter listed in Eq. (18) are used.
The dimensionless linear system size in this case is L = 29 (the
corresponding the physical system size is ∼ 3 × 103µm) and
p = 0.3. For the lower curve, the experimental parameters for
a cavity with reduced Q factor are used. The dimensionless
linear system size in this case is L = 27 (the corresponding the
physical system size is ∼ 1.5 × 102µm) and p = 0.5. See text
for more details. Blue dots are data points from simulations
and the red lines are the stretched exponential fit curves to the
data. The nonlinear regression fit of C̄t(t1, t2) to the stretched

exponential function Ae−B|t1−t2|
2β

gives rise to β = 0.307 and
β = 0.336 for the upper and lower curve, respectively. In the
results shown in these two plots, NTraj = 103 stochastic tra-
jectories are used.

the physical system size corresponding to the dimension-
less linear system size of L = 29 chosen in this simulation
is ∼ 3 × 103µm, which is considerably larger than the
typical scale ∼ 102µm of current experiments.

Taking this limitation into account, KPZ scaling is still
observable when at the same time the dimensionless effec-
tive system size can be kept large. This can be achieved
by reducing the cavity Q (and thus increasing the de-
cay rate γ̃l), which leads to a decrease of the unit of
length. (We note that this also facilitates observation of
KPZ scaling behavior in equal-time spatial correlations
in 2D [6].) The lower curve in Fig. 8 shows C̄t(t1, t2)
for γ̃l = 1ps−1 and a dimensionless linear system size of
L = 27, corresponding in physical units to ∼ 1.5×102µm.
In addition to the increase of γ̃l, for this simulation we
chose a larger value of 6 for the dimensionless prefactor in
ud in Eq. (17) instead of ∼ 1 which we obtain for the pa-
rameters given in Eq. (18). This choice magnifies the ef-
fective KPZ non-linearity and corresponds to a moderate
variation of the experimental parameters only. In fact,
the latter are often determined only indirectly via fit-
ting simulations to experimental measurements, and are
thus not known with very high precision. In this set-
ting, the exponent of β = 0.336 obtained from the lower
curve in Fig. 8 indicates that it is promising to search
for signatures of KPZ physics in the first-order tempo-
ral coherence of 1D exciton-polariton systems when the
lifetime of polaritons is rather short, so that the intrinsic
non-equilibrium nature is strongly pronounced.

L = 1.5⇥ 102µm

L = 3⇥ 103µm

parameters from Wertz et al. PRL (2012)

➡ required system size 

realistic system size

➡ required polariton lifetime
⌧ = 1ps

⌧ = 30ps



Appearance of a second scale
L. He, L. Sieberer, and SD, in preparation.

• crossover from KPZ to “thermal” scaling at asymptotic time scales

• observable: temporal phase fluctuations

• crossover from KPZ to “disordered” scaling   

KPZ

“disordered”

KZP scaling

-> second crossover scale 

“disordered” 
scaling

in weak noise regime

 guaranteed in weak noise regime!

in weak noise 
regime



Space-time vortices in 1D XP condensate

• Physical origin: compactness of phase field vortex in space-time plane

• Effects of vortices

topologically nontrivial phase field configurations 
on (1+1)D space-time plane, i.e. space-time 

vortices

• cause large phase fluctuations giving rise to “disordered” scaling

……

• uniformly distributed vortices 
along t with random charges

• phase field value jumps by 
whenever a  vortex core with 
charge       is crossed

“disordered” scaling

      : average distance 
between vortices along t charge of the vortex at 

random number 
         with equal 
probability

spatial phase slip

minimal model



Summary: 1D condensates

⇠ e�a|t�t0|1/2

⇠ e�b|t�t0|2/3

parameters from 
Wertz et al. PRL (2012)  

parameters proposed in  
He et al. PRB (2015)  

polariton life time:

polariton life time:

⇠ e�c|t�t0|

diffusive

KPZ

disordered

• temporal coherence function:

• crossover scales (weak noise)

noise level



Summary

Many-Body Master 
Equation

Keldysh functional 
integral

1-1 
mapping

microphysics macrophysics

Driven open many-body systems: challenge to theory

Opens up QFT toolbox, here:

• symmetries: eq. vs. non-eq. 

• control of IR fluctuations: driven 
phase transitions

• flexible choice of degrees of 
freedom: KPZ vs. vortices

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory 
for Driven Open Quantum Systems, arxiv (2015)

• universal macroscopic consequences of microscopic driving:

L⇤ Lv

• equilibrium fixed point 
stable 

• modified universality 
absence of equilibrium 
symmetry/ detailed 
balance

classical

• new non-equilibrium fixed 
point

• no thermalization/
decoherence

• requires full quantum 
dynamical field theory

critical behavior

quantum

long distance behavior in low 
dimensions

• mapping to (compact) KPZ

• universal crossovers due to smooth and vortex 
fluctuations

Lv ⌧ L⇤2D: 1D: Lv � L⇤
(time scales)





Reminder: Quantum Master Equation

system environment / 
bath

drive

@t⇢ = �i[H, ⇢] + 
X

i

Li⇢L
†
i � 1

2{L
†
iLi, ⇢}



continuum bath of 
harmonic oscillatorsHB =

�
d� �b†�b�

Lindblad / quantum jump 
operators
polynomial in system 
operators

Brief Reminder: Driven Open Quantum Systems

linear bath operator coupling to the system

⇠ !0

reservoir bandwidth

system environment / 
bath

drive

Hint = i

Z !0+#

!0�#
d!(!)

⇥
b†!L� b!L

†⇤



Three approximations (driven system):
(1) Born approximation: 

(2) Markov approximation:

(3) Rotating wave approximation:

|g⟩

|e⟩

Γ

detuning

system frequency

reservoir bandwidth

system environment / 
bath

drive

in this example:
system Hamiltonian

jump operator

Brief Reminder: Driven Open Quantum Systems


