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Universality in low dimensions: 2D
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• superfluidity
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• KT transition: unbinding of vortex-antivortex pairs
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… also for out-of-equilibrium systems?
… new universal phenomena tied to non-equilibrium?

• correlations
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

Experimental Platform: Exciton-Polariton Systems

• phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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• Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

• stochastic driven-dissipative Gross-Pitaevskii-Eq
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I Key physical features: driven-dissipative stochastic Gross-Pitaevskii Equation

I stochastic PDE with Markovian noise: hx(t, x)i = 0 and

hx(t, x)x⇤(t0 , x
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I Bose-Einstein condensation phase transition

I mean-field: neglect noise

I homogeneous condensate f(t, x) = f0

) |f0|2 =
gp � gl

k

for gp > gl

) chemical potential µ = l |f0|2

I 2nd order phase transition

• mean field

• neglect noise

• homogeneous solution �(x, t) = �0

• naively, just as Bose condensation in equilibrium!

• Q: What is “non-equilibrium” about it?

Experimental Platform: Exciton-Polariton Systems
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• rewrite driven-dissipative Gross-Pitaevski equation

“What is non-equilibrium about it?”
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• Representation of stochastic Langevin dynamics as MSRJD functional integral 
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• Equilibrium conditions signalled by presence of symmetry under:

“What is non-equilibrium about it?”: Field theory

• Implication 1 [equivalence]: (classical) fluctuation-dissipation 
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➡ equilibrium conditions as a symmetry
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➡ what are the physical consequences of the spread in the complex plane?
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

“What is non-equilibrium about it?”: Geometric interpretation
• Implication 2: geometric constraint

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven 
Open Quantum Systems, Reports on Progress in Physics (2016)
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• mapping of the driven-dissipative GPE to KPZ-type equation

• fundamental difference to conventional context: 

➡ weak non-equilibrium drive: two competing scales

• smooth non-equilibrium fluctuations   -> emergent KPZ length scale 

• non-equilibrium vortex physics            -> emergent length scale 

• result: different order in 2D and 1D
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et al., 2000; Stevenson et al., 2000), above a threshold
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tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
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theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.
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FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

KPZ variable: condensate phase, compact

➡  strong non-equilibrium drive: new first order phase transition (one dimension)



Low frequency phase dynamics

• driven-dissipative stochastic GPE

• integrate out fast amplitude fluctuations:
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laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
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• spin wave becomes non-linear 

• nonlinearity: single-parameter measure of non-equilibrium strength 
(ruled out in equilibrium by symmetry)
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2 Dimensions 

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) 
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
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• RG flow of the effective dimensionless KPZ coupling parameter

strong coupling: disordered / 
rough non-equilibrium phase

d2

weak coupling: 
equilibrium phase

• general trend: non-equilibrium effects in systems with soft mode are 

• enhanced in d = 1,2 

• softened in d = 3 (below a threshold)

� 6= 0

non-equilibrium

Im

Re

g2 =
�2�

D3

g

g(L⇤) = 1

Physical implication I: Smooth KPZ fluctuations



• RG flow of the effective dimensionless KPZ coupling parameter

strong coupling: disordered / 
rough non-equilibrium phase

d2

weak coupling: 
equilibrium phase

• 2D: implication: a length scale is generated

microscopic (healing) 
length
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• exponentially large for 

• weak nonequilibrium 

• small noise level
�
�

Physical implication I: Smooth KPZ fluctuations

L⇤ = a0e
16⇡
g2



Physical implications I: Absence of quasi-LRO

• generated length scale distinguishes two regimes:

• long-range behavior of two-point/ spatial coherence function:

r

h�⇤(r)�(0)i

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

sub-exponential non-
equilibrium disordered  

(rough) phase

L⇤

➡ algebraic order absent in any two-dimensional driven open system at the largest distances
➡ but crossover scale exponentially large for small deviations from equilibrium (cf. Marzena’s talk)

h�⇤(r)�(0)i ⇡ n0e
�h[✓(x)�✓(0)]2i leading order cumulant expansion

L⇤ = a0e
16⇡
g2

⇠ r�↵

e�r2� , � ⇡ 0.37 (d = 2)



Physical implications II: Non-equilibrium Kosterlitz-Thouless

• compact nature of phase allows for vortex defects in 2D! vortex anti-vortex

• in 2D equilibrium: perfect analogy between vortices and electric charges

• log(r) interactions,              forces  1/(✏r)

• dielectric constant            = superfluid stiffness✏�1

T<TKT$ T>TKT$
superfluid$=$dipole$gas$$
(“vortex$insulator”)$

Normal$=$plasma$
metallic$screening$

✏�1 ! 0✏�1 > 0

superfluid = dipole gas

➡ how is this scenario modified in the driven system?

normal fluid = plasma
metallic screening

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

P = ("� 1)E
ext

=

Z
d2r rP(r)



Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

• phase compactness = local discrete gauge invariance of 

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x

✓t,x 2 [0, 2⇡), nt,x 2 Z

• deterministic part: lattice regularization

unit lattice 
direction =: L[✓]t,x deterministic noise

@t✓x = �
X

a


D sin(✓

x

� ✓
x+a

) +

�

2

(cos(✓
x

� ✓
x+a

)� 1)

�
+ ⌘

x

➡ needs to be taught to the KPZ equation:



✓t,x 2 [0, 2⇡)

Duality approach

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• KPZ equation for phase variable

• temporal part: stochastic update

✓t+✏,x = ✓t,x + ✏ (L[✓]t,x + ⌘t,x) + 2⇡nt,x

✓t,x 2 [0, 2⇡)

• NB: phase can jump, continuum limit eps -> 0 ill defined, derivatives discrete

• stochastic difference equation -> discrete dynamical functional integral:

Z =
X

{ñt,x}

Z
D[✓]eiS[✓,ñ] Z =

Z
D[✓̃]D[✓]eiS[✓,✓̃]

vs. continuous variable

discrete noise -> manifest 
gauge invariance

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)]

• phase compactness = local discrete gauge invariance of 

✓t,x 7! ✓t,x + 2⇡nt,x

 t,x =
p
⇢t,xe

i✓t,x

✓t,x 2 [0, 2⇡), nt,x 2 Z

✓t,x 2 [0, 2⇡)



Duality approach

Z /
X

{nvX ,ñvX ,
JvX ,J̃vX}

Z
D[�, �̃,A, Ã]eiS[�,�̃,A,Ã,nv,ñv,Jv,J̃v ]

• dual description: 

• interpretation: study the associated Langevin equations

vortex density 
and current

smooth spin wave fluctuations 
(equivalent KPZ equation)

• discrete gauge invariant dynamical functional integral

Z =
X

{ñt,x}

Z
D[✓]eiS[✓,ñ]

S =
X

t,x

ñt,x [��t✓t,x + ✏ (L[✓]t,x + i�ñt,x)]

• introduce Fourier conjugate variables, use continuity equations to parameterise in terms of gauge fields, 
Poisson transform



Electrodynamic Duality

KPZ non-linearity and noise

r ·E = 2⇡nv

r⇥E+
1

D
B = 0

r⇥B� @E

@t
= 2⇡Jv � ẑ⇥r

✓
�

2
E2 + ⇣̄

◆

r ·B = 0

• Langevin equations = modified nonlinear noisy Maxwell equations

modified continuity eq

phase dynamics

irrotational flow

E = �r��A,

B = Dr⇥A

fixed by modified gauge invarianceẼ = �r�� @tÃ,

B̃ = r⇥ Ã

vortex density 
& current

dri
dt

= µniE(t, ri) + ⇠i
phenomenologically added 

vortex dynamics

@t ! 1/D

• formulated in electric and magnetic fields alone:

• reproducing KPZ: identify E ⌘ ẑ⇥r✓ & integrate out magnetic field, neglect vortices 

@t✓ = Dr2✓ + �(r✓)2 + ⇠

• next: integrate out gapless electric field degrees of freedom = phase fluctuations

• equilibrium            : exactly

• non-equilibrium: perturbatively in 
� = 0

�



A single vortex-antivortex pair

dr

dt
= �µrV (r) + ⇠ r

• equation of motion for a single vortex-antivortex pair

r

equilibrium: Coulomb potential (2D)

➡ noise-activated unbinding for a single pair (at exp small rate)

driven-dissipative system

V (r) ⇡ 1

"
ln(r/a)� �2

12"3D2

�
ln(r/a)3 + c ln(r/a)2

�

V (r) =
1

"
ln(r/a)

Lv = a0e
2D
�

length scale:

see also: I Aranson 
et al., PRB (1998)

two-vortex problem



Many pairs: Modified Kosterlitz-Thouless RG flow

"�

y

equilibrium
KT flow

0.0 0.1 0.2 0.3 0.4 0.5
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KT transition

vortex 
unbinding

bound
pairs
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d`
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T

dy
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2� 1

2"T
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�2
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✓
1

4
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◆�
y dT

d`
=

�2T

2"2D2

✓
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4
+ `

◆

✏ ! 1

) ⇢s ! 0

dielectric constant

superfluid stiffness



Many pairs: Modified Kosterlitz-Thouless RG flow

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

equilibrium
KT flow

modified
non-equilibrium

RG flow

KT transition
"�

y

dy

d`
changes sign at a scale

Lv

d"

d`
=

2⇡2y2

T
dT

d`
=

�2T

2"2D2

✓
1

4
+ `

◆dy

d`
=


2� 1

2"T
+

�2

4"2D2

✓
1

4
+ `

◆�
y

➡ vortex unbinding for any value of the noise strength



Summary: 2D
• two emergent length scales in complementary approaches: 

Lv

KPZ length

Lv = a0e
2D
�

vortex length

• scaling for the relevant fixed points

h�⇤(r)�(0)i ⇠ e�r2� , � = 0.4

KPZ fixed point

h�⇤(r)�(0)i ⇠ e�r

free vortex/disordered fixed point

• for incoherently pumped exciton-polariton systems, 

algebraic/equilibrium vortex/non-equilibrium

Lv ⌧ L⇤

L⇤ = a0e
16⇡
g2

E. Altman, L. Sieberer, L, Chen, SD, J. Toner, PRX (2015)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

coherently pumped: 

see Marzena’s talk!

• caveats for observability: 

• length scales exponentially large

• assumes stationary states (unknown 
non-universal vortex dynamics)



1 Dimension 

L. He, L. Sieberer, E. Altman, SD, PRB (2015) 
L. He, L. Sieberer, SD, arxiv (2016)

L⇤ Lv



KPZ exponents & new scaling regime

• direct numerical solution of driven-dissipative GPE in one dimension
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Figure 1: (Color online) Finite-size scaling collapse of w(L, t)
in the 1D KPZ universality class with α = 1/2 and z = 3/2.
Ensemble averages were performed over a number of NTraj =
1000 stochastic trajectories. Values of the other parameters
used in the simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc =
3.0.

size L according to ws(L) ∝ L2α, where the static
exponent α is usually referred to as roughness ex-
ponent in the KPZ context.

2. At small time t, w(L, t) scales with respect to time
as w(L, t) ∝ t2β, where the dynamical exponent β is
usually referred to as growth exponent in the KPZ
context. It relates to the conventional dynamical
exponent z according to β = α/z.

3. The roughness function reaches its saturation value
ws(L) at a time Ts, which thus separates the growth
period 2. from the long time regime 1. This satu-
ration time scales with system size as Ts ∼ Lz.

These scaling features are demonstrated by the finite-
size scaling collapse of w(L, t) using the 1D KPZ expo-
nents α = 1/2 and z = 3/2 shown in Fig. 1. During
the growth period the roughness increases nearly linearly
on the log-log scale, which indicates power-law growth
w(L, t) ∼ t2β . For different system sizes saturation is
reached at the same point on the rescaled time axis, con-
firming the scaling behavior Ts ∼ Lz. Finally, the sat-
uration values ws(L) of the roughness function collapse
upon rescaling w(L, t) with L2α. A detailed numerical
determination of the roughness exponent α is presented
in Sec. III A. The extraction of the value of the growth
exponent β from simulations of larger systems than those
shown in Fig. 1 is described below in Sec. III B.

Before we proceed, let us emphasize an important dif-
ference between the phase of a complex field we consider
here and the crystal height: The phase is a compact field
variable defined on a circle. Without loss of generality the
value of θ(x, t) is in fact bounded to the interval (−π,π].
Consequently, the value of w(L, t) is also bounded from
above by 4π2, which inevitably invalidates the static scal-
ing behavior ws(L) ∼ L2α if α is positive as expected from
the conventional KPZ scenario. However, this is just an
artifact originating from a specific choice of the range of θ.
Instead of choosing ψ to be defined on one piece of com-
plex plane, there is a mathematically equivalent choice
to let the value of ψ be defined on the Riemann surface
where the value of θ is in the interval (−∞,+∞). With
this choice there is no upper bound imposed on ws(L). In
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Figure 2: (Color online) Finite size scaling of ws(L). Points
marked by “×” denote the numerical value of ws(L) for system
sizes L = 28, 29, 210, 211, 212, 213. The blue line is a linear fit
to the data on the log-log scale, from which we extract the
roughness exponent α = 0.499. This is in good agreement
with the roughness exponent αKPZ of the KPZ dynamics in
1D, αKPZ = 1/2. Values of other parameters used in the
simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0.

numerical simulations, we directly simulate the dynam-
ics of the complex field itself at low noise level. This is
defined operatively by |ψ(x, t)| remaining non-vanishing
within the temporal-spatial size of our simulations, indi-
cating the absence of the phase defects. Therefore, re-
garding the field value of ψ(x, t) to be defined on the
Riemann surface, in the simulations θ(x, t) is constructed
from ψ(x, t)’s complex argument by requiring the phase
difference between neighboring space-time points to be
less than π.

A. Static roughness exponent α

We first extract α from the finite-size scaling of ws(L).
In practice, for given system size L, we monitor the value
of w(L, t) during a simulation and wait until it reaches a
stable value up to statistical fluctuations at the saturation
time Ts. After Ts, we continue simulating the dynamics
to the final time point Tf with Tf −Ts at least two times
larger than Ts. Afterwards ws(L) is extracted according

to ws(L) = (Tf − Ts)−1
´ Tf

Ts
dtw(L, t). In Fig. 2 we show

the finite size scaling of ws(L) from the direct simulations
of the SCGLE. The extracted roughness exponent is α =
0.499, which is in good agreement with the roughness
exponent αKPZ of the KPZ dynamics being αKPZ = 1/2
in 1D [21].

In 1D however, the roughness exponent αKPZ in the
KPZ dynamics is exactly the same as the one of the
purely diffusive dynamics in presence of Gaussian white
noise, the so-called Edwards-Wilkinson (EW) dynamics
[22] (whose dynamical equation corresponds to Eq. (8)
with λ = 0). This is due to an additional symmetry in
one dimension, which allows one to show that the static
correlations in stationary state are Gaussian [23]. In con-
trast, the dynamical correlation witnesses quantitatively
the difference between effective KPZ and EW dynamics.

• observable: phase correlations

2

For convenience of numerical simulations and following
discussions, we use the following rescaled form of Eq. (1),

∂

∂t
ψ =

[

r +
d

∑

i=1

Ki
∂2

∂x2
i

+ u|ψ|2
]

ψ + ζ, (3)

where

t = |r̃d|t̃, xi =

√

|r̃d|
K̃i,d

x̃i, (4)

ψ =

√

ũd

|r̃d|
ψ̃, ζ =

√

ũd

|r̃d|3
ζ̃, (5)

rc =
r̃c
|r̃d|

, Ki,c =
K̃i,c

K̃i,d

, uc =
ũc

ũd
, (6)

r = 1− irc, Ki = (1 + iKi,c), u = (−1− iuc) (7)

and the second moment of the rescaled Gaussian white

noise ζ(x, t) is σ = σ̃ũd |r̃d|
d
2
−2 ∏d

j=1

(

K̃j
d

)−1/2
. In the

following discussion we focus on the one-dimensional case,
thus the indices to specify the spatial directions are omit-
ted.

Adopting the amplitude-phase representation of the
complex bosonic field ψ(x, t) = ρ(x, t)eiθ(x,t), it was
shown [6–8] that, assuming that spatial-temporal fluc-
tuations of the amplitude field ρ(x, t) are small, the dy-
namical equation of the phase field θ(x, t) assumes in the
low-frequency and long-wavelength limit the form of the
KPZ equation, which reads

∂tθ(x, t) = D∂2xθ(x, t) +
λ

2
(∂xθ(x, t))

2 + η(x, t), (8)

where η(x, t) is an effective Gaussian white noise, with
mean ⟨η(x, t)⟩ = 0, and correlations ⟨η(x, t)η(x′, t′)⟩ =
2σKPZδ(x − x′)δ(t − t′). Here σKPZ = (ũ2

d +
ũ2
c)γ̃l/(2ũd(γ̃p − γ̃l)) is the effective noise strength,

D = K̃d(1 + K̃cũc/K̃dũd) is the diffusion constant,

and λ = 2K̃c

(

K̃dũc/K̃cũd − 1
)

is the non-linear cou-

pling strength [6]. With a simple rescaling, i.e., θ =
Θ
√

2σKPZ/D, t = τ/D, η = ξ
√
2σKPZD, the KPZ equa-

tion Eq. (8) can be recast into a form where only one di-
mensionless parameter, the non-linear coupling strength
g, enters, i.e.

∂τΘ(x, τ) = ∂2xΘ(x, τ) + g (∂xΘ(x, τ))2 + ξ(x, τ), (9)

where

g = λ

√

σKPZ

2D3
, (10)

and ⟨ξ(x, τ)ξ(x′, τ ′)⟩ = δ(x − x′)δ(τ − τ ′). Importantly,
the magnitude of g directly characterizes how far the sys-
tem is driven from thermal equilibrium. More precisely,
g = 0 is guaranteed by symmetry in a thermal equilib-
rium system which obeys global detailed balance [10, 11],
while g ̸= 0 indicates that the system is driven away from
thermal equilibrium. In the following, we investigate the
scaling properties of various correlation functions of the
phase field θ(x, t), in particular the static and dynamical
critical exponent, as well as the correlation properties of

the complex bosonic field ψ(x, t) which are of most direct
physical interest for experiments.

To put our investigation in a more general context,
here we mention a few situations where similar dynam-
ical equations appear. Without the noise term in (3),
the above equation reduces to the deterministic complex
Ginzburg-Landau equation (CGLE). One key feature of
the latter is the existence of a so-called Benjamin-Feir
unstable parameter region [12] specified by 1 + Kcuc <
0, where the dynamics described by the deterministic

CGLE develops spatiotemporal chaotic behavior (see e.g.
[13]) which has been extensively studied in the literature
[14, 15]. As we are interested in the parameter regime
defined in (2), i.e. both Kc and uc are positive, the
Benjamin-Feir unstable region is not relevant for the cur-
rent investigation. However, this can be relevant if one is
interested in turbulence of the bosonic fluid in the pres-
ence of external noise [16]. Moreover, a similar stochas-
tic dynamical equation, the so-called stochastic Gross-
Pitaevskii equation [17, 18], is used to describe, e.g. the
BEC formation dynamics of alkali atoms at finite tem-
perature. Here, however, the constraints resulting from
detailed balance in stationary state are built in. Finally,
we mention that recently in Ref. [8] a higher order spatial
derivative term was included in the effective description
of the 1D SCGLE. This study focuses on the static cor-
relation properties of the system, where a crossover in
the spatial correlation function at intermediate scale is
identified.

We finally give some general information concerning
our numerical simulations. We use the semi-implicit al-
gorithm developed in [19] to solve the stochastic partial
differential equation (3) numerically. In all the simula-
tions spatial periodic boundary conditions of the com-
plex field ψ(x, t) are assumed and the winding number of
the phase field θ(x, t) across the whole system is chosen
to be zero. We work in the low noise regime, where we
find defects of the phase field to be absent. If not speci-
fied in text, we use NTraj = 102 stochastic trajectories to
perform ensemble averages.

III. SCALING PROPERTIES OF THE PHASE
CORRELATIONS

We investigate the scaling properties of the following
correlation function of the phase field:

w(L, t) ≡

〈

1

L

ˆ

x
θ2(x, t) −

(

1

L

ˆ

x
θ(x, t)

)2
〉

, (11)

where L is the linear size of the system and “⟨ ⟩” indicates
ensemble average over stochastic trajectories. In the con-
text of the KPZ equation, w(L, t) is usually referred to
as “roughness function”. Indeed, regarding θ(x, t) as the
crystal height variable as in the conventional KPZ equa-
tion, w(L, t) measures the spatial fluctuations of that
height. Assuming complete analogy of the phase field
to the crystal height field, from the investigations in the
context of the KPZ equation (see e.g. [20]) we know that
we can extract both static and dynamical exponents from
w(L, t) via its spatial and temporal scaling properties:

1. In the long time limit, w(L, t) saturates at ws(L) ≡
w(L, t → ∞), and it scales with respect to system

Ts

➡ KPZ scaling fully confirmed in phase correlations
➡ experimentally accessible with “bad cavities” (lifetime 1ps, system size 150 mu m) 

z ⇡ 3/2
vs. eq.:

� ⇡ 1/3
� = 1/4 ↵ = 1/2

↵ ⇡ 1/2
z = 2

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

dynamic correlations needed to 
certify non-equilibrium!

static exponent

w ⇠ t2�
growth exponent

Ts ⇠ Lz
dynamic exponent

w ⇠ L2↵



KPZ exponents & new scaling regime

• direct numerical solution of driven-dissipative GPE in one dimension
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Figure 1: (Color online) Finite-size scaling collapse of w(L, t)
in the 1D KPZ universality class with α = 1/2 and z = 3/2.
Ensemble averages were performed over a number of NTraj =
1000 stochastic trajectories. Values of the other parameters
used in the simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc =
3.0.

size L according to ws(L) ∝ L2α, where the static
exponent α is usually referred to as roughness ex-
ponent in the KPZ context.

2. At small time t, w(L, t) scales with respect to time
as w(L, t) ∝ t2β, where the dynamical exponent β is
usually referred to as growth exponent in the KPZ
context. It relates to the conventional dynamical
exponent z according to β = α/z.

3. The roughness function reaches its saturation value
ws(L) at a time Ts, which thus separates the growth
period 2. from the long time regime 1. This satu-
ration time scales with system size as Ts ∼ Lz.

These scaling features are demonstrated by the finite-
size scaling collapse of w(L, t) using the 1D KPZ expo-
nents α = 1/2 and z = 3/2 shown in Fig. 1. During
the growth period the roughness increases nearly linearly
on the log-log scale, which indicates power-law growth
w(L, t) ∼ t2β . For different system sizes saturation is
reached at the same point on the rescaled time axis, con-
firming the scaling behavior Ts ∼ Lz. Finally, the sat-
uration values ws(L) of the roughness function collapse
upon rescaling w(L, t) with L2α. A detailed numerical
determination of the roughness exponent α is presented
in Sec. III A. The extraction of the value of the growth
exponent β from simulations of larger systems than those
shown in Fig. 1 is described below in Sec. III B.

Before we proceed, let us emphasize an important dif-
ference between the phase of a complex field we consider
here and the crystal height: The phase is a compact field
variable defined on a circle. Without loss of generality the
value of θ(x, t) is in fact bounded to the interval (−π,π].
Consequently, the value of w(L, t) is also bounded from
above by 4π2, which inevitably invalidates the static scal-
ing behavior ws(L) ∼ L2α if α is positive as expected from
the conventional KPZ scenario. However, this is just an
artifact originating from a specific choice of the range of θ.
Instead of choosing ψ to be defined on one piece of com-
plex plane, there is a mathematically equivalent choice
to let the value of ψ be defined on the Riemann surface
where the value of θ is in the interval (−∞,+∞). With
this choice there is no upper bound imposed on ws(L). In
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Figure 2: (Color online) Finite size scaling of ws(L). Points
marked by “×” denote the numerical value of ws(L) for system
sizes L = 28, 29, 210, 211, 212, 213. The blue line is a linear fit
to the data on the log-log scale, from which we extract the
roughness exponent α = 0.499. This is in good agreement
with the roughness exponent αKPZ of the KPZ dynamics in
1D, αKPZ = 1/2. Values of other parameters used in the
simulations are rc = −0.1, uc = 0.1, σ = 0.1, Kc = 3.0.

numerical simulations, we directly simulate the dynam-
ics of the complex field itself at low noise level. This is
defined operatively by |ψ(x, t)| remaining non-vanishing
within the temporal-spatial size of our simulations, indi-
cating the absence of the phase defects. Therefore, re-
garding the field value of ψ(x, t) to be defined on the
Riemann surface, in the simulations θ(x, t) is constructed
from ψ(x, t)’s complex argument by requiring the phase
difference between neighboring space-time points to be
less than π.

A. Static roughness exponent α

We first extract α from the finite-size scaling of ws(L).
In practice, for given system size L, we monitor the value
of w(L, t) during a simulation and wait until it reaches a
stable value up to statistical fluctuations at the saturation
time Ts. After Ts, we continue simulating the dynamics
to the final time point Tf with Tf −Ts at least two times
larger than Ts. Afterwards ws(L) is extracted according

to ws(L) = (Tf − Ts)−1
´ Tf

Ts
dtw(L, t). In Fig. 2 we show

the finite size scaling of ws(L) from the direct simulations
of the SCGLE. The extracted roughness exponent is α =
0.499, which is in good agreement with the roughness
exponent αKPZ of the KPZ dynamics being αKPZ = 1/2
in 1D [21].

In 1D however, the roughness exponent αKPZ in the
KPZ dynamics is exactly the same as the one of the
purely diffusive dynamics in presence of Gaussian white
noise, the so-called Edwards-Wilkinson (EW) dynamics
[22] (whose dynamical equation corresponds to Eq. (8)
with λ = 0). This is due to an additional symmetry in
one dimension, which allows one to show that the static
correlations in stationary state are Gaussian [23]. In con-
trast, the dynamical correlation witnesses quantitatively
the difference between effective KPZ and EW dynamics.

• observable: temporal phase correlations

z ⇡ 3/2
vs. eq.:

� ⇡ 1/3
� = 1/4 ↵ = 1/2

↵ ⇡ 1/2
z = 2

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

static exponent
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Figure 1. (Color online) (a) Schematic phase diagram of a
generic 1D driven open condensate (DOC) with noise level �
and rescaled non-equilibrium strength parameter ˜

�/

˜

�

⇤. The
color code stands for space-time vortex density Pv. A first or-
der phase transition at low noise level separates a regime dom-
inated by KPZ physics from a vortex turbulent (VT) regime.
At stronger noise, the first order transition line (double line)
terminates at a critical point (filled black circle) assuming
a second order transition behavior (cf. Figs. 3(c) and 3(d)
for quantitative results). Current exciton-polariton conden-
sate experiments are located within the white dashed arc.
At � = 0 and ˜

�/

˜

�

⇤
< 1 (white dotted line), the system is

in a vortex free state. It is unstable against the creation of
free vortices at infinitesimal noise, however with exponentially
small corrections (see (c)). (b) A typical phase configura-
tion on the space-time plane corresponding to a phase-slip
event at a time point between t = 2 and 3. A space-time
vortex core is marked with a black dot. (c) Noise level de-
pendence of the space-time vortex density Pv at small non-
equilibrium strength ˜

� <

˜

�

⇤ (vertical dashed arrow in (a)).
At low noise level, Pv / e

�A/� (A a non-universal positive
constant) is suppressed exponentially, reflected by the linear
fit for ��1

= 6, ..., 13. Values of other parameters used in sim-
ulations are Kd = rd = ud = 1, rc = uc = 0.1, and Kc = 3.
(d) Non-equilibrium strength dependence of Pv at low noise
level with � = 10

�2, demonstrating the first order transition
upon increasing the non-equilibrium strength ˜

� (horizontal
dashed arrow in (a)). Values of other parameters used in sim-
ulations are Kd = rd = ud = 1, Kc = 0.1, and rc = uc is
tuned from 1.0 to 3.0. The corresponding values of ˜� increase
with respect to uc from 1.6 to 4.5. See text for more details.

specified otherwise, we used 103 stochastic trajectories to
perform ensemble averages.

Low frequency effective description.– In the absence of
phase defects, the low frequency dynamics of the system
is effectively described by the KPZ equation [14] for the
phase of the condensate field, @
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linearity � is a direct, single-parameter measure for the
deviation from equilibrium conditions, with � = 0 in the
presence of detailed balance. In order to properly ac-
count for the compactness of the phase and to allow for a
description of phase defects, we work with a lattice reg-
ularized version of the KPZ equation (cKPZ), which can
be straightforwardly derived from a spatially discretized

SCGLE on a 1D lattice with spacing �
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reproduced upon assuming that phase fluctuations are
small, and taking the continuum limit. The crucial dif-
ference between the non-compact continuum KPZ and
the compact KPZ equation is revealed by the number
of independent scales in the problem, which originates
from the compactness of the phase. Indeed, by rescal-
ing t, ⇠ and ✓ in the continuum case, there is only one

tuning parameter given by g ⌘ �(�
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contrast, for the cKPZ equation, we can rescale t and
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but not the phase field ✓

i

due to its compactness,
resulting in two independent tuning parameters. The
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on �̃ and �̃ suggests that there must exist new physics
associated with changing each of the two parameters, be-
yond the physics of the KPZ equation where changing
the nonequilibrium strength �̃ and noise strength �̃ are
equivalent to changing the single parameter g. Indeed,
as we shall see in the following, the noise strength is as-
sociated with a new time scale in the 1D DOC giving
rise to an additional scaling regime in dynamical corre-
lation functions. Moreover, the non-equilibrium strength
�̃ can drive the system to a new non-equilibrium vortex
turbulent phase via a first order transition at low noise
level.

Space-time vortex driven crossover for �̃/�̃
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The prime observable that distinguishes a 1D DOC
from its equilibrium counterpart [20, 22] is the auto-
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event at a time point between t = 2 and 3. A space-time
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level with � = 10

�2, demonstrating the first order transition
upon increasing the non-equilibrium strength ˜
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dashed arrow in (a)). Values of other parameters used in sim-
ulations are Kd = rd = ud = 1, Kc = 0.1, and rc = uc is
tuned from 1.0 to 3.0. The corresponding values of ˜� increase
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Space-time vortices in 1D XP condensate

• Physical origin: compactness of phase field
vortex in space-time plane

topologically nontrivial phase field configurations on 
(1+1)D space-time plane

spatial phase slip

• unbound at infinitesimal noise level (weak non-equilibrium)

• interaction potential: (@
t

+D@2
x

)�1 ⇠ (Dt)�1/2e�x

2
/(4Dt)

cf. 2D static equilibrium: r�2 ⇠ log(|x|)

1. temporal scaling:

➡ “disordered” scaling

……

• explains qualitative features

Wi = ±1

• phase field jumps by          when crossing vortex core

• random uncorrelated charges

⇠ e�c|t�t0|



Origin of exponential scaling with noise level
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• Onsager-Machlup functional integral: probability distribution for solutions               of cKPZ: 
✓(x, t)

• for           : maps to static 2D active smectic A liquid crystal problem Toner and Nelson, PRB (1984)� = 0

tv / eA·��1

2. noise level dependence of crossover scale

• Arrhenius activation probability density

• vortex unbinding time scale

Pv ⇠ e

�Ev/T ⇠ (tvxv)
�1

vortex core energy

alternative at equilibrium: phase slips 
Langer, Ambegaokar, Phys. Rev. 
(1967); McCumber, Halperin, PRB 
(1970)

� 6= 0• for small            : finite upper bound H�=0[✓v]�H�[✓v] > 0

➡ exponential law not modified
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(z+1)
4z Ev/�



Summary: 1D condensates at weak non-equilibrium

⇠ e�a|t�t0|1/2

⇠ e�b|t�t0|2/3

⇠ e�c|t�t0|

diffusive

KPZ

disordered

• temporal coherence function:

• crossover scales 
(weak noise sigma) algebraic exponential

➡ KPZ scaling should be observable in exciton-polariton experiments in 1D

�

�
noise level

non-equilibrium strength 

?

see also: R. Lauter, A. Mitra, 
F. Marquardt, arxiv (2016)



Strong non-equilibrium: Compact KPZ vortex turbulence
• deterministic dynamical instability in compact KPZ: 

decreases amplifies

• Phase diagram for XP condensates 

Thermally excited vortices (TV)

KPZ (conventional) dominated 
physics Vortex turbulence (VT)

color code: vortex density on 
space-time plane 

• EOM of phase differences between n.n. sites:

amplification even by small phase fluctuations• .

• continuous creation and annihilation of vortices --- “vortex turbulence” chaotic solutions nonlinear dynamics: 
e.g. Aranson et al., RMP (2002)



first order nature of 
transition

• quantitatively: transition in weak noise regime induced by nonequilibrium strength

termination into critical endpoint

Strong non-equilibrium: Compact KPZ vortex turbulence
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Figure S3. (Color online) (a) The dependence of P

v

on nonequilibrium strength �̃ at di↵erent noise levels in the weak noise regime when �̃ is
tuned across the critical value �̃⇤ of the first order transition. The black dashed vertical line corresponds to the estimated value of �̃⇤. From down
to up (up to down), curves on the left (right) hand side of the black dashed line correspond to noise levels � = 0.01, 0.011, 0.012, 0.013, 0.014,
respectively. The filled circles are data points obtained by numerical simulations, while the pairs of filled triangles with the same color at upper
and lower positions correspond to the estimated values of the left and the right limit of P

v

at �̃⇤, i.e. P
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(�̃! �̃⇤�) and P
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(�̃! �̃⇤+), respectively.
Values of other parameters used in simulations are K
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= 0.1. �̃ is tuned by changing r
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from 1.4 to 3.0. (b) The
space-time vortex density jump �P

v

at the first order transition at di↵erent noise levels �. (c) The first order transition line (double line)
terminates at a second oder transition critical point the end of the first order transition line (black filled circle). See text for more details.
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2) fit to the data
points lying on the left and right hand side of the transition,
respectively, which are shown as solid curves in Fig. S3(a).
Then, the value of P
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(�̃ ! �̃⇤+)) is obtained
by performing extrapolation at �̃⇤ of the corresponding curve
on the left (right) hand side of the transition. The dependence
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on the noise level � are shown in Fig. S3(b), where
we notice �P
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decreases with respect to � and vanishes at
�⇤ ⇡ 0.01402 with a diverging derivative of �P
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with respect
to �. These observations indicate the first order tradition line
on the �̃�� plane terminates at higher noise level at a second
order critical point (�̃⇤,�⇤) (cf. Fig. S3(c)).
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onset of vortex turbulence

• scaling of the momentum distribution at intermediate momenta (full stochastic GPE)

scaling due to thermally activated vortices:

Compact KPZ vortex turbulence: Signatures
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of large ˜

�. To this end, we numerically calculate the vor-
tex density P

v

from the full SCGLE at fixed low noise
level with � = 10

�2, cf. Fig. 1(d). At small ˜�, P
v

is ex-
ponentially small in line with the discussion above. How-
ever, when tuning above a critical strength �

⇤ ' 3.1,
we notice a sudden increase in vortex density by around
10 orders of magnitude. This describes a sharp first or-
der transition at low noise level. We observe numerically
that vortices are continuously created and annihilated
and show a high mobility during their life time, there-
fore we label this phase as “vortex turbulence” (VT).

More quantitatively, the VT phase exhibits distinct fea-
tures in the momentum distribution n

q

⌘ h ⇤
(q) (q)i,

which is directly accessible in experiments, cf. Fig. 3. n

q

shows scaling behavior at large q, i.e., n
q

/ q

�� with �

being some positive exponent. Below the transition, the
value of � is around 2, which is a typical feature for ther-
mally excited uncorrelated vortices [18]. In contrast, for
the VT phase above the transition, � shows significant
deviation from the value for thermal vortices. For the
parameter choice in Fig. 3, � value for the observed VT
phase is around 5, but shows a weak parameter depen-
dence. As seen in the main plot of Fig. 3, the exponent �
also undergoes a first order transition, indicating a sharp
experimentally measurable feature signaling the onset of
the VT phase.

The physical origin of the VT phase and the associated
first order transition can be traced back to a dynami-
cal instability triggered by the nonequilibrium strength
above a critical value. To this end, we consider the dy-
namical equations for the phase differences between near-
est neighboring sites, �

i

⌘ ✓

i

� ✓

i+1, at zero noise level,
which assumes the form @

t

�

i

' �(2�

i

+�

i+1��

i�1)+

˜

�

⇣
(�

i�1)
2 � (�

i+1)
2
⌘
/4 when �

i

is small. The first
term on the right hand side is a restoring term which at-
tenuates the phase difference, while the second term sig-
nificantly amplifies it for ˜�� 1 even for small spatial vari-
ations. This causes the dynamical instability and gives
rise to creation of vortices without resorting to “thermal
excitations”. Taking into account the exponential sup-
pression of thermally excited vortices at low noise level,
and the fact that the vortices generation due to dynam-
ical instability hardly depends on noise level, this ratio-
nalizes the existence of a first order transition tuned by
˜

� and witnessed by the vortex density in steady state.
At stronger noise, the first order transition behavior is
smeared out by thermal vortices as indicated in Fig. 1.

This discussion of the VT transition reveals its nature
to be rooted in the physics of the cKPZ equation, and
more precisely, to its driven non-equilibrium nature. Nu-
merically solving this equation at low noise level, we ob-
tain ˜

�

⇤ ⇠ 20 for the critical non-equilibrium strength.
This can be compared to the numerical simulations of
the SCGLE at weak noise, which yields the significantly
reduced value ˜

�

⇤ ' 3.1. This can be understood by tak-
ing into account the mutual feedback of density and phase
fluctuations: phase fluctuations can cause a local density
depression via a phase-density coupling term proportional
to diffusion constant K

d

(cf. Eq. (1)), which in turn
causes strong phase fluctuations and gives rise to vortex
creation and annihilation. We remark here that dynami-
cal instabilities associated with certain special classes of
solutions of the deterministic complex Ginzburg-Landau
equation (CGLE) were identified in the context of nonlin-

Figure 3: (Color online) Scaling behavior of the momen-
tum distribution nq ⇠ q�� at different rc, revealing the
first order transition from a power law / q�2 to / q�5.
Inset: Momentum distributions from which the power law
is extracted. The upper and lower black lines correspond
to the power laws / q�5 and / q�2. From right to left,
the curves in between the two black lines correspond to
rc = uc = 3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.98, 1.92, 1.9, 1.8, 1.6, 1.5,
respectively. The other parameters are the same as in Fig. 1
(d). See text for more details.

ear dynamics [28]. Our investigation indicates that this
dynamical instability is generic and originates from the
intrinsic non-equilibrium feature of problem.

Indications on experimental observations.– Our theo-
retical investigations presented above provide two impor-
tant indications for the further experiments of 1D DDC.
First, there exists a new nonequilibrium phase, i.e. vor-
tex turbulence phase, in the far from equilibrium regime,
whose distinct features in the momentum distribution is
directly accessible in DDC systems with momentum re-
solved correlation measurements [12]. Its physical real-
ization require a large nonequilibrium strength ˜

� above
a critical value �⇤, whose magnitude can be significantly
lowered by a diffusion rate K

d

in 1D DDC, suggesting, for
instance, DDC with relative large diffusion in 1D array
of microwave resonators coupled to an array of supercon-
ducting qubits could be a good candidate [29]. Second,
our investigations firmly suggest the direct experimental
observation of KPZ physics in current available experi-
mental setups with 1D exciton-polariton condensates is
very promising. This is due to fact typical 1D exciton-
polariton condensates at weak noise are well protected
from the influences of thermal vortices by a exponentially
large time scale t

v

, and also the instability to VT phase by
a typically nearly zero diffusion rate K

d

and relative small
nonequilibrium strength ˜

� [22]. These considerations cor-
roborate previous theoretical investigations of 1D DDC
in weak noise regime employing typical relevant exper-
imental parameters in exciton-polariton systems, where
typical KPZ physics was shown to be experimentally ob-
servable [19].

Conclusions.– The non-equilibrium phase diagram of
one-dimensional driven open condensates is crucially im-
pacted by space-time vortices, as the relation to the com-
pact KPZ equation reveals: At weak non-equilibrium
strength, they govern the asymptotic behavior of the tem-
poral correlation functions, however only beyond an ex-
ponentially large crossover time scale. This protects KPZ
physics and suggests its observability in current exciton-
polariton experiments. Moreover, these defects cause the
existence of a new phase under strong non-equilibrium

nq = h ⇤(q) (q)i ⇠ q��

� ⇡ 2

� ⇡ 5

scaling due to turbulent 
vortices:

• experiments: vortex turbulence favored in systems with strong diffusion, � ⇠ Kd/Kc

coherent propagation, inverse 
effective polariton massdiffusion constant

F. Baboux et al. PRL (2016)• flat band of 1D Lieb lattice realized with micropillar cavity arrays
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Lv ⌧ L⇤ Lv � L⇤

➡ 2 dimensions: ➡ 1 dimension:

➡ two intrinsic non-equilibrium length/time scales

Lv L⇤ Lv

➡ low dimensional driven open quantum systems: 
non-equilibrium always relevant at large distances 

➡ phase dynamics: compact KPZ 
➡ compactness crucial
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• weak non-equilibrium conditions

• strong non-equilibrium conditions

➡ phase transition to vortex turbulent regime
➡ challenge: analytical understanding via duality?
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