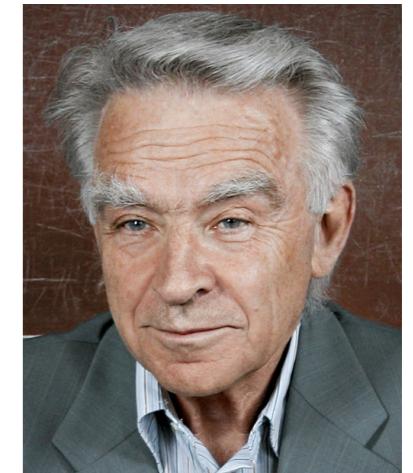


Boulder Summer School 2021
July 5-30, 2021
Boulder, USA (via zoom)

Göran Lindblad

Lindblad meets Keldysh: phase transitions, topology, and measurements



Leonid W. Keldysh

Sebastian Diehl

Institute for Theoretical Physics, University of Cologne

European Research Council
Established by the European Commission

Outline

Keldysh theory general: A. Kamenev, *Field theory of non-equilibrium systems*, Cambridge University Press

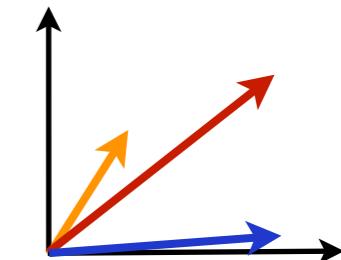
Review Lecture I: L. Sieberer, M. Buchhold, SD, *Keldysh Field Theory for Driven Open Quantum Systems*, Reports on Progress in Physics (2016)

Lecture I: Theoretical background & non-equilibrium phases

- From the quantum master equation to the Keldysh functional integral
 - construction
 - semiclassical limit, connection to exciton-polariton systems
 - “what is non-equilibrium about it?”
- Stationary states of driven open quantum systems
 - fate of BKT physics out of equilibrium
 - phase transition driven by non-equilibrium drive

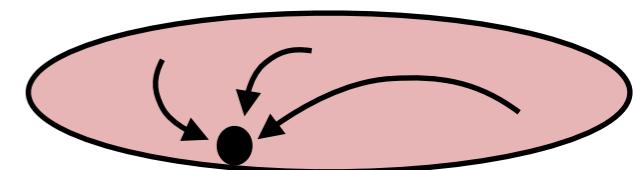
$$\partial_t \rho = -i[H, \rho] + \mathcal{L}[\rho]$$

$$e^{i\Gamma[\Phi]} = \int \mathcal{D}\delta\Phi e^{iS_M[\Phi+\delta\Phi]}$$



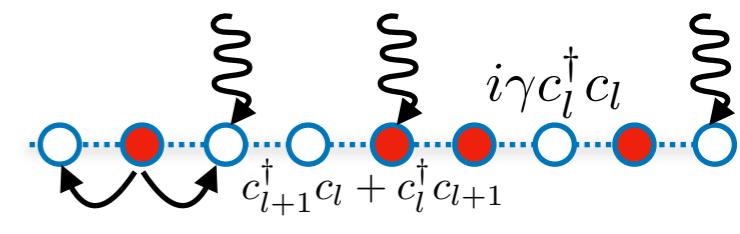
Lecture II: Symmetry and topology out of equilibrium

- Topological states induced by dissipation
- Dynamics: topological field theory out of equilibrium
- Dynamical symmetry classification in- and out-of-equilibrium

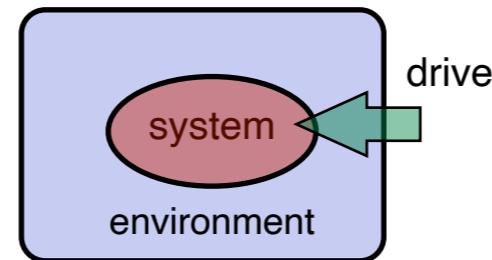


Lecture III: Lindblad-Keldysh 2.0: Measurement induced transitions

- Background: weak continuous measurements
- Measurement induced phase transitions of fermions
- Replica Keldysh field theory approach



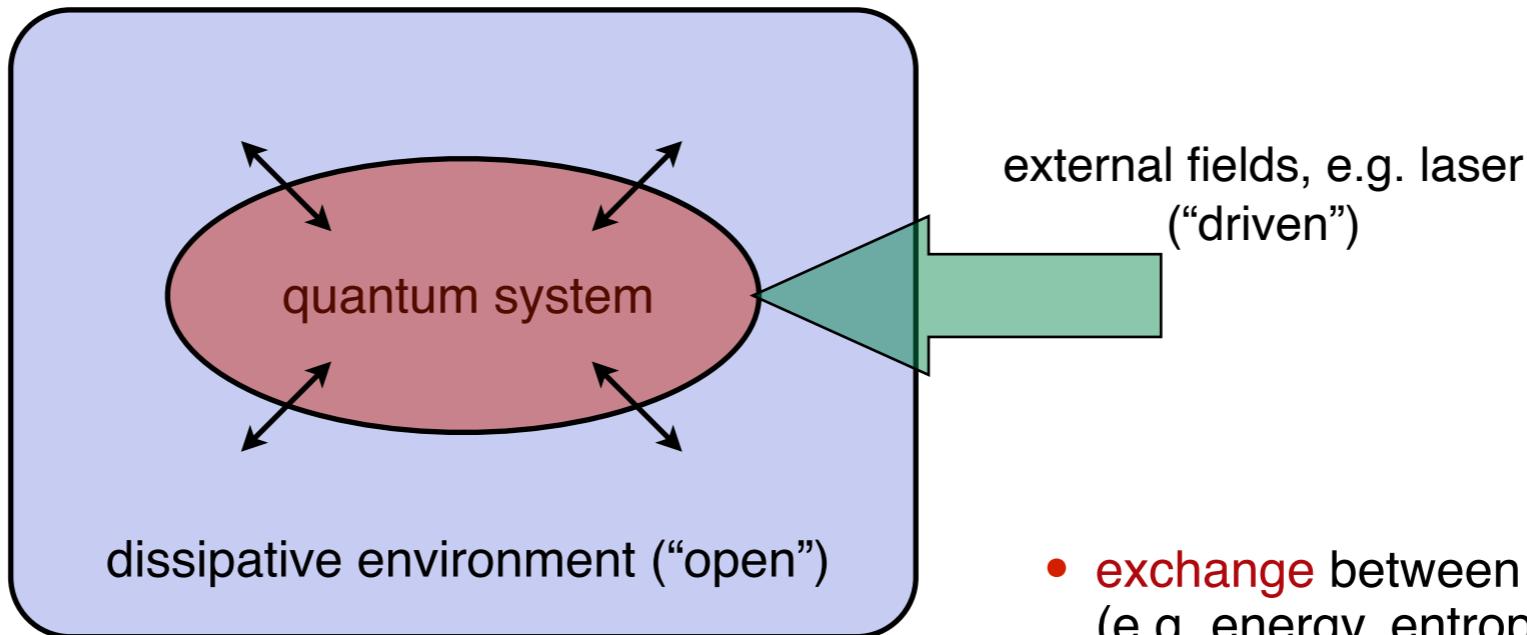
Lindblad quantum master equation: From few to many degrees of freedom



$$\partial_t \rho = -i[H, \rho] + \kappa \sum_i L_i \rho L_i^\dagger - \frac{1}{2} \{L_i^\dagger L_i, \rho\}$$

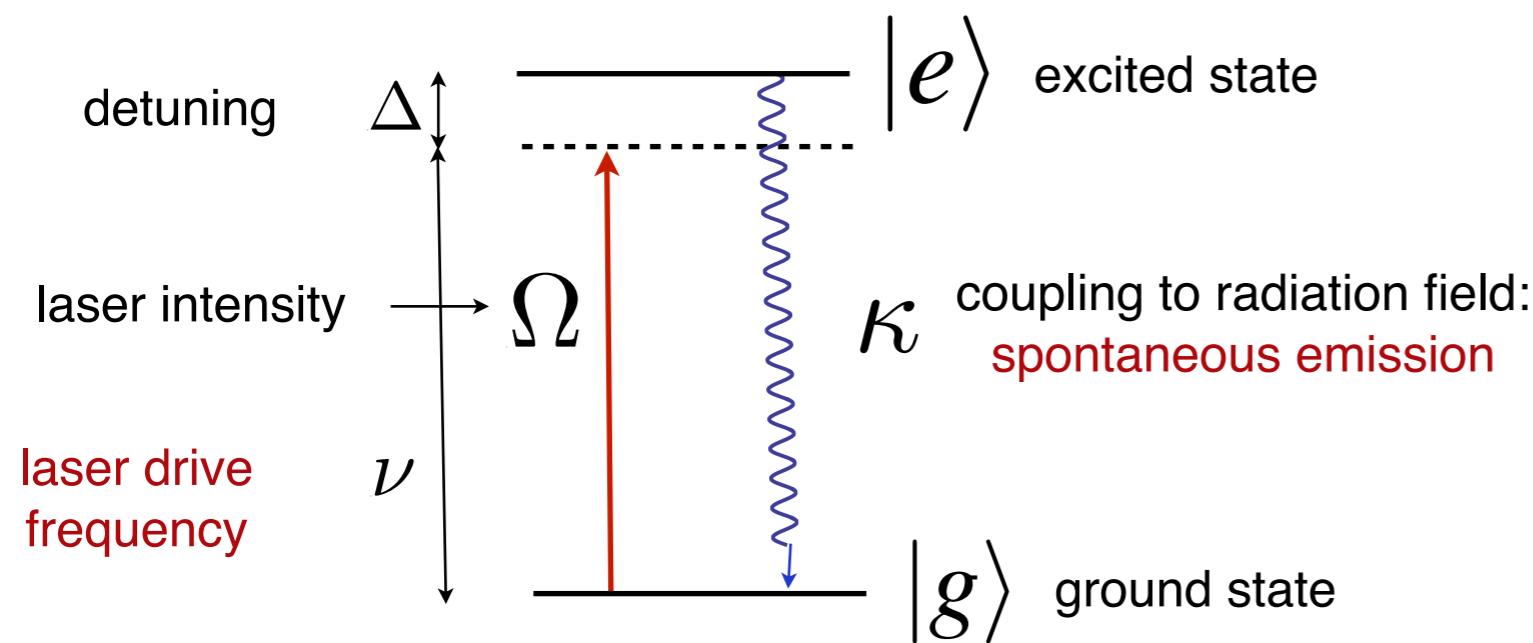
What is a driven open quantum system?

- quantum Optics:



- **exchange** between system and bath (e.g. energy, entropy, particle number)

- example: laser driven atom coupled to the radiation field (two-level system)



- simple fact: **drive essential** to access upper level

- implications:

- no guarantee for detailed balance
- no obedience of the **second law** of thermodynamics (state purification)

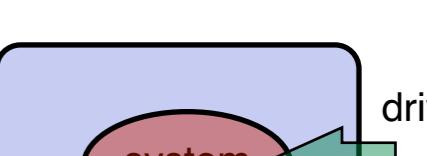
Driven open quantum systems: microscopic description

- quantum master equation

tum master equation

$$\partial_t \hat{\rho} = \underbrace{-i[\hat{H}, \hat{\rho}]}_{\text{coherent evolution}} + \sum_i \gamma_i \underbrace{[2\hat{L}_i \hat{\rho} \hat{L}_i^\dagger - \hat{L}_i^\dagger \hat{L}_i \hat{\rho} - \hat{\rho} \hat{L}_i^\dagger \hat{L}_i]}_{\text{driven-dissipative evolution}}$$

Lindblad operators



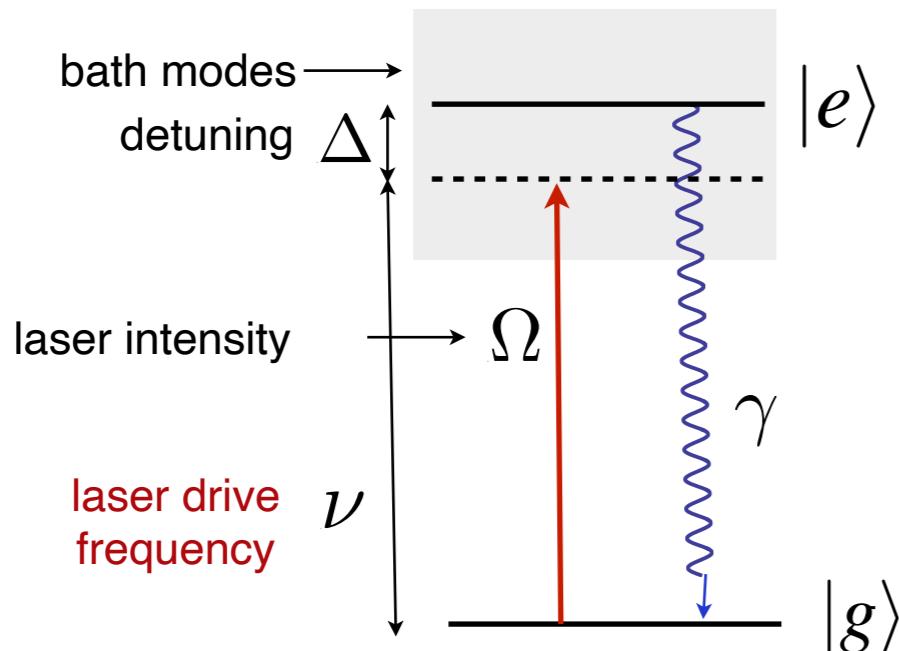
$\hat{\mathcal{L}}[\hat{\rho}]$ Lindbladian; also: Liouvillian

- derivation from system-bath setting: second order time dependent perturbation theory
 - example: two-level system add example: quantum cavity

see later, and appendix

add example: quantum cavity

- starting point: system-bath setting



$$H = (|e\rangle, |g\rangle) \begin{pmatrix} \Delta & \Omega \\ \Omega & 0 \end{pmatrix} \begin{pmatrix} \langle e | \\ \langle g | \end{pmatrix} \quad \hat{L} = |g\rangle\langle e| = \sigma^- \quad g_\mu \sim \Omega$$

$$\hat{H}_t = \hat{H} + \hat{H}_b + \hat{H}_{s-b}$$

- 3 approximations:

- **Born**: weak system-bath coupling (2nd order pert. th.)
 - **Markov**: constant (in frequency) bath spectral density
 - **rotating wave**: drive ν biggest scale

$$\hat{H}_{\text{b}} = \sum_{\mu} \epsilon_{\mu} \hat{b}_{\mu}^{\dagger} \hat{b}_{\mu}$$

$$\hat{H}_{\text{s-b}} = \sum_{\mu} g_{\mu} e^{-i\nu t} \hat{L} \hat{b}_{\mu}^{\dagger} + \text{h. c.}$$

(for single L)

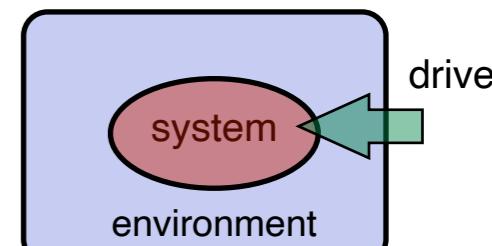
Driven open quantum systems: microscopic description

- quantum master equation

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \sum_i \gamma_i [2\hat{L}_i \hat{\rho} \hat{L}_i^\dagger - \hat{L}_i^\dagger \hat{L}_i \hat{\rho} - \hat{\rho} \hat{L}_i^\dagger \hat{L}_i]$$

coherent evolution
driven-dissipative evolution

Lindblad operators



$\equiv \hat{\mathcal{L}}[\hat{\rho}]$ Lindbladian; also: Liouvillian

- derivation from ‘symmetry’ (i.e. implementing key physical requirements) explain Kraus map, continuum limit

- Lindbladian defines a dynamical map $\hat{\rho}(t + \Delta t) = \hat{\rho}(t) + \Delta t \cdot \hat{\mathcal{L}}[\hat{\rho}]$

- with properties

- Hermiticity: $\hat{\rho}(t)^\dagger = \hat{\rho}(t) \implies \hat{\rho}^\dagger(t + \Delta t) = \hat{\rho}(t + \Delta t)$ since $\hat{\mathcal{L}}[\hat{\rho}]^\dagger = \hat{\mathcal{L}}[\hat{\rho}]$

- complete positivity: $\hat{\rho}(t) \geq 0 \implies \hat{\rho}(t + \Delta t) \geq 0$ example?

- trace preservation / probability conservation $\partial_t \text{tr} \hat{\rho}(t) = 0$ since $\text{tr} \hat{\mathcal{L}}[\hat{\rho}] = 0$

- up to a unitary transformation (above: diagonal form in index i), $\hat{\mathcal{L}}[\hat{\rho}]$ is the most general time-local generator with these properties

G. Lindblad, Commun. Math. Phys. (1976)

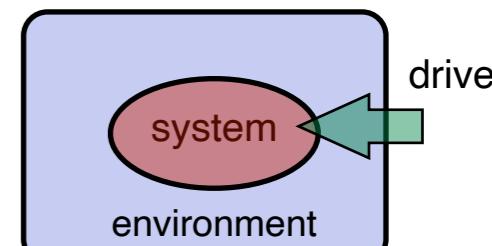
Nielsen & Chuang, Chap. 8

Driven open quantum systems: microscopic description

- quantum master equation

$$\partial_t \hat{\rho} = \underbrace{-i[\hat{H}, \hat{\rho}]}_{\text{coherent evolution}} + \sum_i \gamma_i \underbrace{[2\hat{L}_i \hat{\rho} \hat{L}_i^\dagger - \hat{L}_i^\dagger \hat{L}_i \hat{\rho} - \hat{\rho} \hat{L}_i^\dagger \hat{L}_i]}_{\text{driven-dissipative evolution}}$$

Lindblad operators



$\equiv \hat{\mathcal{L}}[\hat{\rho}]$ Lindbladian; also: Liouvillian

- interpretation:

$$\partial_t \hat{\rho} = -i(\hat{H} - \sum_i \gamma_i \hat{L}_i^\dagger \hat{L}_i) \hat{\rho} + \text{h.c.} + 2 \sum_i \gamma_i \hat{L}_i \hat{\rho} \hat{L}_i^\dagger$$

energy decay (dissipation) ensures probability conservation
(fluctuation)

“ $E - i\Gamma$ ”

$$\partial_t \text{tr} \hat{\rho}(t) = 0$$

Driven open quantum systems: microscopic description

- quantum master equation

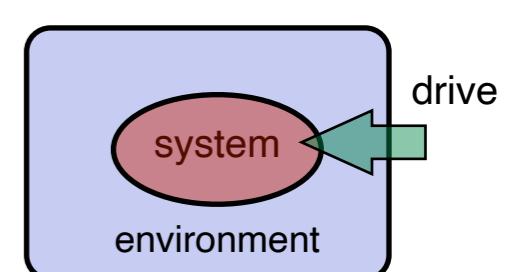
Quantum master equation Lind

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \sum_i \gamma_i [2\hat{L}_i \hat{\rho} \hat{L}_i^\dagger - \hat{L}_i^\dagger \hat{L}_i \hat{\rho} - \hat{\rho} \hat{L}_i^\dagger \hat{L}_i]$$

coherent evolution
 driven-dissipative evolution

$$\equiv \hat{\mathcal{L}}[\hat{\rho}] \quad \text{Lindbladian; also: Liouvillian}$$

explain: many body



explain: many-body, incoherent vs coherent Lindblad ops (L_1, L_2 vs. L_1+L_2); refer to literature

- So far: **few degrees of freedom** in the “system”
 - Question: What if we replace few by **many degrees of freedom**?

→ The interface of quantum optics and many-body physics

→ Quantum Optics: coherent and driven-dissipative dynamics on equal footing

→ Many-Body Physics: continuum of spatial degrees of freedom

→ Statistical Mechanics: physics at the largest distances

microphysics

macrophysics

The interface of quantum optics and many-body physics

→ Quantum Optics

→ Many-Body Physics

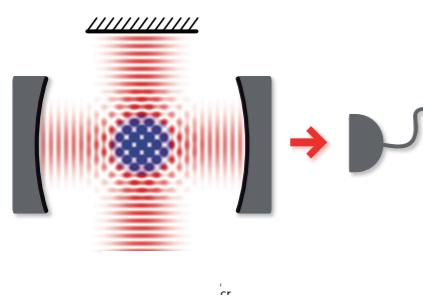
→ Statistical Mechanics

microphysics

macrophysics

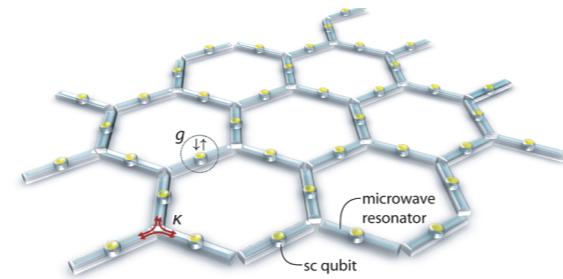
- The experimental platforms:

Atoms



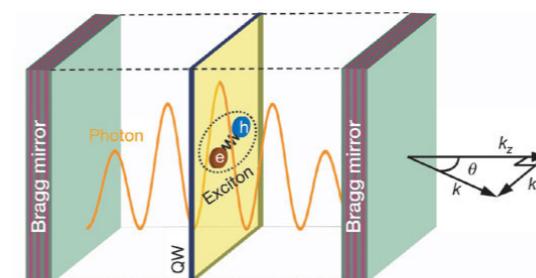
Bose-Einstein
condensate in a cavity
Baumann et al., Nature 2010

Light



Microcavity arrays
Houck, Türeci, Koch, Nat. Phys. 2012

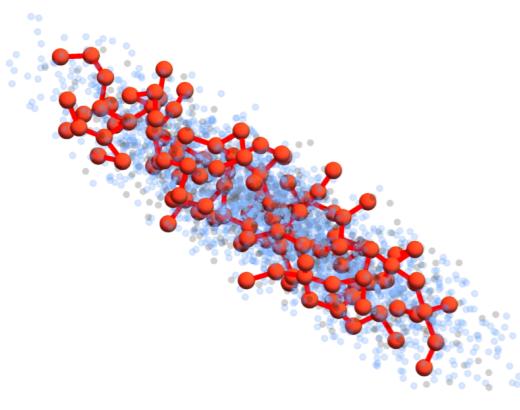
Solids



Exciton-polariton
condensates
Kasprzak et al., Nature 2006

and more:

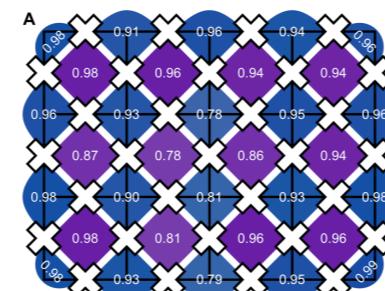
- polar molecules
- nano-mechanics
- photon BECs



driven-dissipative
Rydberg gases

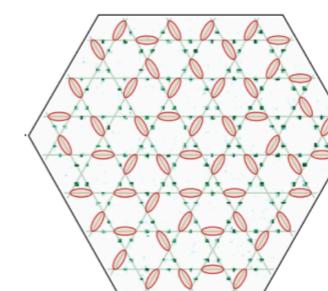
S. Helmrich, A. Arias, G. Lochhead, M. Buchhold, SD, S. Whitlock, Nature (2020); T. Wintermantel, ... SD, S. Whitlock, Nat. Comm. (2021)

Quantum devices / NISQ Platforms



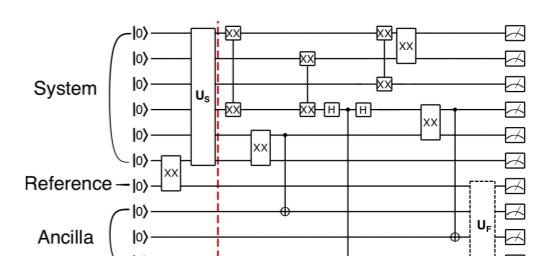
superconducting circuits

K. Satzinger et al.
arxiv (2021)



Rydberg tweezers

G. Semeghini et al. arxiv (2021)
Lectures by A. Browaeys!



trapped ions

C. Noel et al.
arxiv (2021)

The interface of quantum optics and many-body physics

→ Quantum Optics

→ Many-Body Physics

→ Statistical Mechanics

microphysics

Microscopic

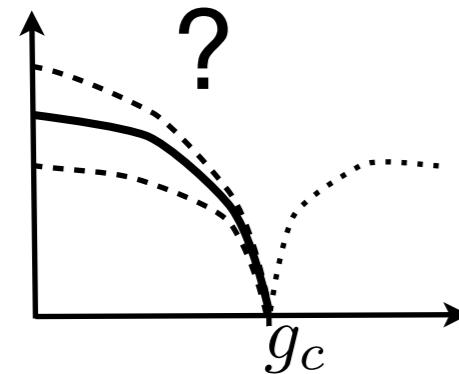
macrophysics

Long wavelength

“Thermodynamic”

- Questions and challenges to theory: physics at various length scales

Novel universal phenomena ?

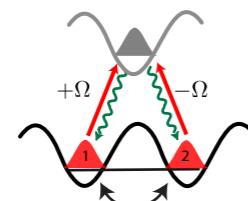


Efficient theoretical tools ?

$$Z[J] = \int \mathcal{D}\varphi e^{i(S[\varphi] + \int J\varphi)}$$

perform the transition from micro-to macrophysics:
quantum field theory out of equilibrium

Experimental platforms ?



cold atoms, light-driven semiconductors, microcavity arrays, trapped ions ...

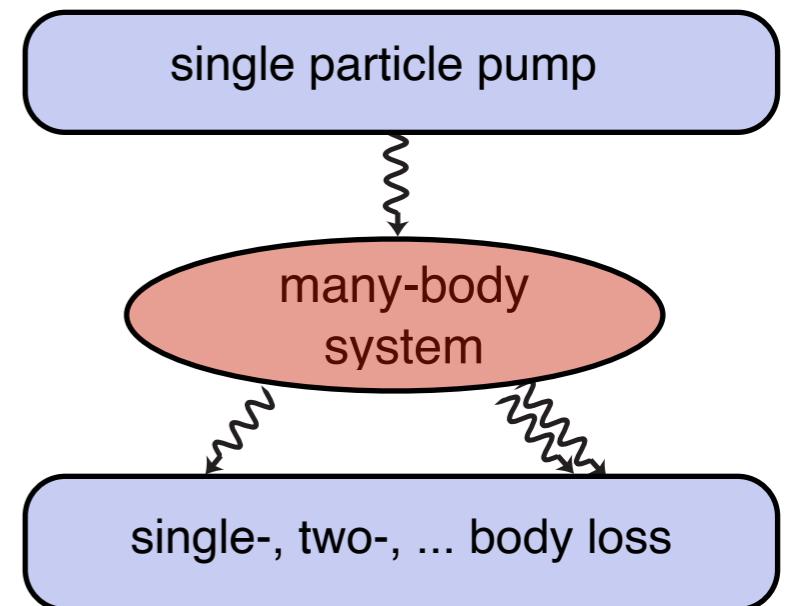
A workhorse model: Lindbladian formulation

need not be

- generic microscopic many-body model: ‘Lindblad ϕ^4 theory’

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho] \equiv \mathcal{L}[\rho]$$

$$H = \int_{\mathbf{x}} \hat{\phi}_{\mathbf{x}}^\dagger \left(\frac{\triangle}{2M} - \mu \right) \hat{\phi}_{\mathbf{x}} + \frac{\lambda}{2} (\hat{\phi}_{\mathbf{x}}^\dagger \hat{\phi}_{\mathbf{x}})^2$$

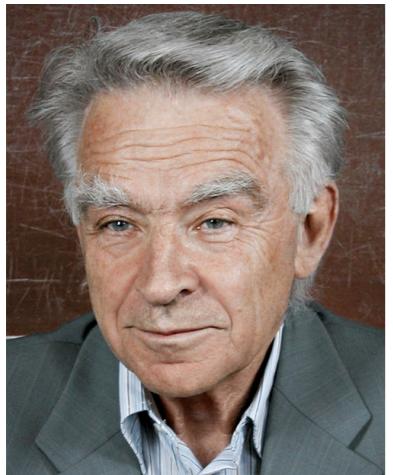


$$\kappa \int_{\mathbf{x}} [\hat{\phi}_{\mathbf{x}}^2 \rho \hat{\phi}_{\mathbf{x}}^{\dagger 2} - \frac{1}{2} \{ \hat{\phi}_{\mathbf{x}}^{\dagger 2} \hat{\phi}_{\mathbf{x}}^2, \rho \}]$$

- **plan:**

- translate to Lindblad-Keldysh functional integral

- how does this model relate e.g. to exciton-polariton systems? (semiclassical limit)
 - ‘what is non-equilibrium about it’?
 - how to extract the phase structure?



Keldysh functional integral for stationary states of driven open quantum systems

- Construction from quantum master equation
- Semiclassical limit
- “What is non-equilibrium about it?”

$$\partial_t \hat{\rho} = -i(\hat{H} - \sum_i \gamma_i \hat{L}_i^\dagger \hat{L}_i) \hat{\rho} + \text{h.c.} + 2 \sum_i \gamma_i \hat{L}_i \hat{\rho} \hat{L}_i^\dagger$$

$$Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_M[\Phi_+, \Phi_-])}$$

Keldysh functional integrals: Why?

- Feynman's formulation of quantum mechanics

REVIEWS OF

MODERN PHYSICS

VOLUME 20, NUMBER 2

APRIL, 1948

Space-Time Approach to Non-Relativistic Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however, mathematically equivalent to the familiar formulation. In quantum mechanics the probability of an event which can happen in several different ways is the absolute square of a sum of complex contributions, one from each alternative way. The probability that a particle will be found to have a path $x(t)$ lying somewhere within a region of space time is the square of a sum of contributions, one from each path in the region. The contribution from a single path is postulated to be an exponential whose (imaginary) phase is the classical action (in units of \hbar) for the path in question. The total contribution from all paths reaching x, t from the past is the wave function $\psi(x, t)$. This is shown to satisfy Schrödinger's equation. The relation to matrix and operator algebra is discussed. Applications are indicated, in particular to eliminate the coordinates of the field oscillators from the equations of quantum electrodynamics.

1. INTRODUCTION

IT is a curious historical fact that modern quantum mechanics began with two quite different mathematical formulations: the differential equation of Schrödinger, and the matrix algebra of Heisenberg. The two, apparently dissimilar approaches, were proved to be mathematically equivalent. These two points of view were destined to complement one another and to be ultimately synthesized in Dirac's transformation theory.

This paper will describe what is essentially a

classical action³ to quantum mechanics. A probability amplitude is associated with an entire motion of a particle as a function of time, rather than simply with a position of the particle at a particular time.

The formulation is mathematically equivalent to the more usual formulations. There are, therefore, no fundamentally new results. However, there is a pleasure in recognizing old things from a new point of view. Also, there are problems for which the new point of view offers a distinct advantage. For example, if two systems

- Useful language for systems with many degrees of freedom

- general: powerful techniques
- diagrammatic perturbation theory;
- collective variables;
- renormalization group

- non-equilibrium Keldysh
- closer to the real-time formulations of quantum mechanics
- yields directly observable quantities (responses and correlations)
- indispensable for many systems:
 - disorder infinite harmonic baths!
 - dissipation
- open the powerful toolbox of quantum field theory for many-body non-equilibrium situations

Keldysh functional integral

more details: L. Sieberer, M. Buchhold, SD,
Keldysh Field Theory for Driven Open Quantum Systems,
Reports on Progress in Physics (2016)

- The basic idea in three steps:

$$\hbar = 1$$

$$U(t, t_0) = e^{-iH(t-t_0)}$$

1. Schrödinger equation: evolving a state **vector**

$$i\partial_t |\psi\rangle(t) = H|\psi\rangle(t) \Rightarrow |\psi\rangle(t) = U(t, t_0)|\psi\rangle(t_0)$$

2. Heisenberg-von Neumann equation: evolving a state (density) **matrix**

$$\partial_t \rho(t) = -i[H, \rho(t)] \Rightarrow \rho(t) = U(t, t_0)\rho(t_0)U^\dagger(t, t_0)$$

- identical for pure (factorizable) states $\rho = |\psi\rangle\langle\psi|$

3. The same is true for the Master Equation:

$$\partial_t \rho = -i[H, \rho] + \kappa \sum_i L_i \rho L_i^\dagger - \frac{1}{2} \{L_i^\dagger L_i, \rho\} \equiv \mathcal{L}[\rho]$$

$$\Rightarrow \rho(t) = e^{\mathcal{L}(t-t_0)}\rho(t_0)$$

Keldysh functional integral (bosons)

fermions: see appendix!

1. Functional integral idea:

Was ist Pfadintegral? Herleitung mit Background coherent states;
Bosons/fermions on equal footing OR in appendix

→ “Trotterization” of time interval and insertion of coherent states: $e^{iH(t-t_0)} = \lim_{N \rightarrow \infty} (1 + i\delta_t H)^N$

- one time step

$$e^{-\phi_n^* \phi_n} \langle \phi_{n+1} | e^{-i\delta_t H[a^\dagger, a]} | \phi_n \rangle$$

$$\approx e^{-\phi_n^* \phi_n} \langle \phi_{n+1} | 1 - i\delta_t H[a^\dagger, a] | \phi_n \rangle$$

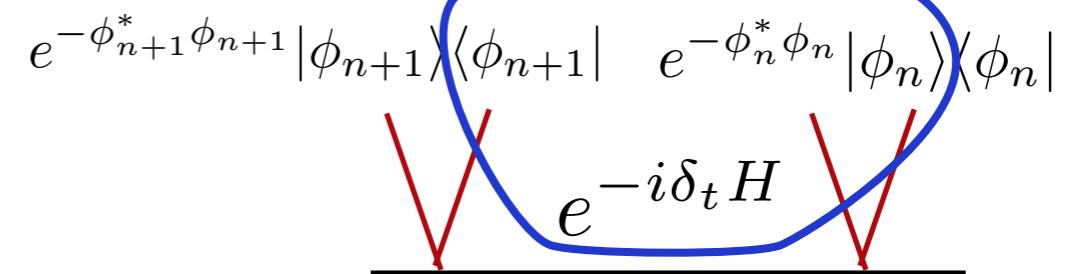
H normally

$$= e^{-\phi_n^* \phi_n} e^{+\phi_{n+1}^* \phi_n} (1 - i\delta_t H[\phi_{n+1}^*, \phi_n])$$

$$\approx e^{i\delta_t [-i \frac{(\phi_{n+1}^* - \phi_n^*)}{\delta_t} \phi_n - H[\phi_{n+1}^*, \phi_n]]}$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \text{continuum limit}$$

$$dt \quad -i\partial_t \phi^*(t) \cdot \phi(t) \quad H[\phi^*(t), \phi(t)]$$



coherent states (bosons):

$$a|\phi\rangle = \phi|\phi\rangle$$

$$\langle \phi' | \phi \rangle = e^{\phi'^* \phi}$$

$$1 = \int \frac{d\phi^* d\phi}{\pi} e^{-\phi^* \phi} |\phi\rangle \langle \phi|$$

Keldysh functional integral

1. Functional integral idea:

→ “Trotterization” of time interval and insertion of coherent states: $e^{iH(t-t_0)} = \lim_{N \rightarrow \infty} (1 + i\delta_t H)^N$

- many time steps

$$\int \underbrace{\prod_t \frac{d\phi^*(t)d\phi(t)}{\pi}}_{=: \int \mathcal{D}(\phi^*, \phi)} e^{i \int_{t_0}^{t_f} dt [-i\partial_t \phi^*(t) \cdot \phi(t) - H[\phi^*(t), \phi(t)]]}$$

functional integral measure

- Discussion

- operator $H \rightarrow$ complex, time dependent functional H
- time evolution from overlap of neighbouring states
- no reference to single particle or many-body Hamiltonian, lattice or continuum!
- single set of degrees of freedom for **vector** evolution

Keldysh functional integral

2. Schrödinger vs. Heisenberg-von Neumann

$$U(t, t_0) = e^{-iH(t-t_0)}$$

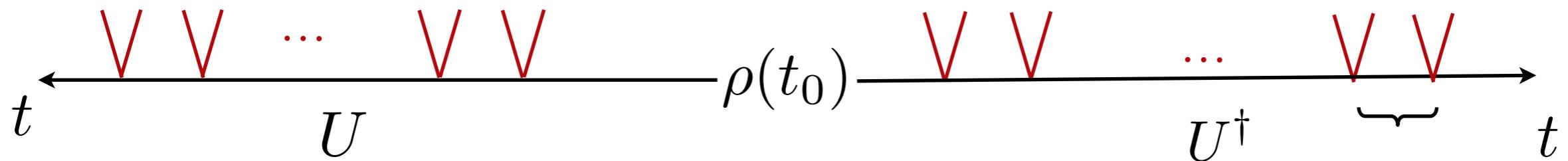
- Schrödinger equation: evolving a state **vector**

$$i\partial_t |\psi\rangle(t) = H|\psi\rangle(t) \Rightarrow |\psi\rangle(t) = U(t, t_0)|\psi\rangle(t_0)$$

- Heisenberg-von Neumann equation: evolving a state (density) **matrix**

$$\partial_t \rho(t) = -i[H, \rho(t)] \Rightarrow \rho(t) = U(t, t_0)\rho(t_0)U^\dagger(t, t_0)$$

- Second case: “Trotterization” on both sides:



$$e^{iH(t-t_0)} = \lim_{N \rightarrow \infty} (1 + i\delta_t H)^N \quad \delta_t = \frac{t - t_0}{N}$$

→ **two** sets of degrees of freedom for **matrix** evolution

Keldysh functional integral

3. Schrödinger vs. Quantum Master

$$U(t, t_0) = e^{-iH(t-t_0)}$$

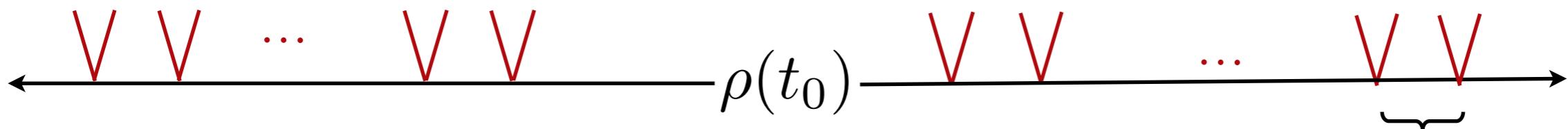
- Schrödinger equation: evolving a state **vector**

$$i\partial_t |\psi\rangle(t) = H|\psi\rangle(t) \Rightarrow |\psi\rangle(t) = U(t, t_0)|\psi\rangle(t_0)$$

- Quantum Master equation: evolving a state (density) **matrix**

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho] \equiv \mathcal{L}[\rho] \Rightarrow \rho(t) = e^{\mathcal{L}(t-t_0)} \rho(t_0)$$

- Identical program for Liouville generator of dynamics (left and right action on density matrix)



$$\rho(t) = e^{(t-t_0)\mathcal{L}} \rho_0 = \lim_{N \rightarrow \infty} (1 + \delta_t \mathcal{L})^N \rho_0 \quad \delta_t = \frac{t - t_0}{N}$$

→ two sets of degrees of freedom for **matrix** evolution

Keldysh functional integral

3. Schrödinger vs. Quantum Master

$$U(t, t_0) = e^{-iH(t-t_0)}$$

- Schrödinger equation: evolving a state **vector**

$$i\partial_t |\psi\rangle(t) = H|\psi\rangle(t) \Rightarrow |\psi\rangle(t) = U(t, t_0)|\psi\rangle(t_0)$$

- Quantum Master equation: evolving a state (density) **matrix**

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho] \equiv \mathcal{L}[\rho] \Rightarrow \rho(t) = e^{\mathcal{L}(t-t_0)}\rho(t_0)$$

- final step: Keldysh “partition function”

$$Z = \text{tr} \rho(t) = \text{tr} \rho(t_0) = 1$$

Keldysh functional integral: Final result

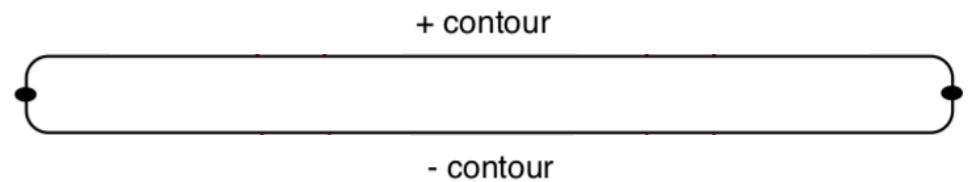
- quantum master equation:
$$\begin{aligned}\partial_t \rho &= -i[H, \rho] + \mathcal{D}[\rho] \\ &= -i(H\rho - \rho H) + \kappa \sum_i (L_i \rho L_i^\dagger - \frac{1}{2} L_i^\dagger L_i \rho - \frac{1}{2} \rho L_i^\dagger L_i)\end{aligned}$$
- equivalent Keldysh functional integral:
$$Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_M[\Phi_+, \Phi_-])} \quad \Phi_\pm = \begin{pmatrix} \phi_\pm \\ \phi_\pm^* \end{pmatrix}$$
$$S_M[\Phi_+, \Phi_-] = \int dt (\phi_+^* i \partial_t \phi_+ - \phi_-^* i \partial_t \phi_- - i \mathcal{L}[\Phi_+, \Phi_-])$$

$$\mathcal{L}[\Phi_+, \Phi_-] = -i(H_+ - H_-) - \kappa \sum_i \left(L_{i,+} L_{i,-}^\dagger - \frac{1}{2} L_{i,+}^\dagger L_{i,+} - \frac{1}{2} L_{i,-}^\dagger L_{i,-} \right)$$

$$H_\pm = H(\Phi_\pm) \text{ etc.}$$

- recognize Lindblad structure
- simple translation table (for contour normal ordered Lindbladian)

- operator right of density matrix \rightarrow - contour
- operator left of density matrix \rightarrow + contour



Keldysh functional integral: Probability conservation / "causality"

- quantum master equation:
$$\begin{aligned}\partial_t \rho &= -i[H, \rho] + \mathcal{D}[\rho] \\ &= -i(H\rho - \rho H) + \kappa \sum_i (L_i \rho L_i^\dagger - \frac{1}{2} L_i^\dagger L_i \rho - \frac{1}{2} \rho L_i^\dagger L_i)\end{aligned}$$
 - equivalent Keldysh functional integral:
$$Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_M[\Phi_+, \Phi_-])} \quad \Phi_\pm = \begin{pmatrix} \phi_\pm \\ \phi_\pm^* \end{pmatrix}$$
- $$S_M[\Phi_+, \Phi_-] = \int dt (\phi_+^* i \partial_t \phi_+ - \phi_-^* i \partial_t \phi_- - i \mathcal{L}[\Phi_+, \Phi_-])$$

$$\mathcal{L}[\Phi_+, \Phi_-] = -i(H_+ - H_-) - \kappa \sum_i \left(L_{i,+} L_{i,-}^\dagger - \frac{1}{2} L_{i,+}^\dagger L_{i,+} - \frac{1}{2} L_{i,-}^\dagger L_{i,-} \right)$$

$$H_\pm = H(\Phi_\pm) \text{ etc.}$$

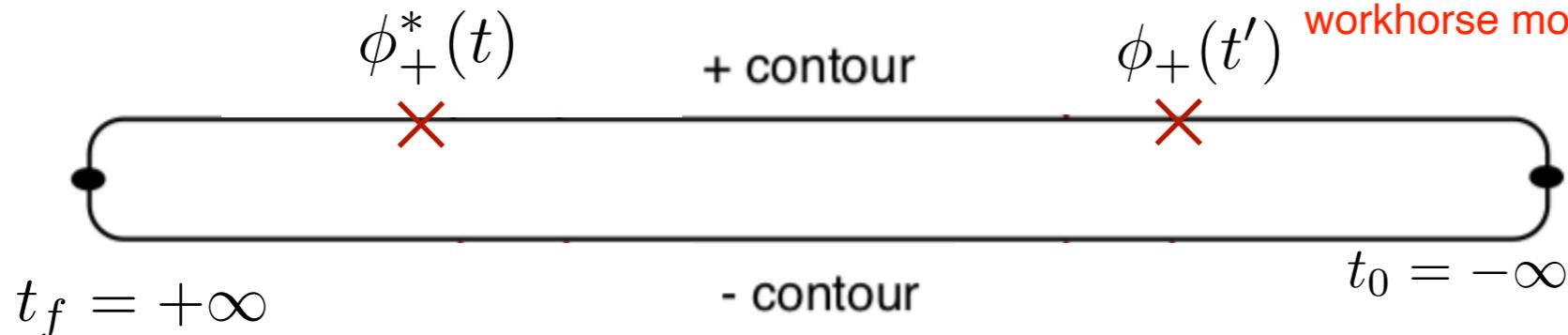
- trace / probability preservation:
- QME:
$$\partial_t \text{tr} \rho = \text{tr} \left(-i(H\rho - \rho H) + \kappa \sum_i (L_i \rho L_i^\dagger - \frac{1}{2} L_i^\dagger L_i \rho - \frac{1}{2} \rho L_i^\dagger L_i) \right) = 0$$
- Keldysh:
$$Z = \text{tr} \rho(t) = 1 \quad \text{cyclicity}$$
- mnemonic: taking trace = ignoring contour order: $\Phi_+ = \Phi_- \Rightarrow S_M[\Phi_+, \Phi_-] = 0$

- with emphasis on approximations
- postpone discussion eq vs. neq

Physical observables

- correlation functions: field insertions on the contour

- workhorse model, 0+1 dim.;
- define/derive model, give physical context,
- solve in both operator and Keldysh; use as opportunity to introduce
- evaluation: role chemical potential; laser threshold; condensation, symmetry breaking; mention will be



- compute them:

- introduce sources (cf. Stat Mech)

$$Z[j_+, j_-] = \langle e^{i \int (j_+ \phi_+^* - j_- \phi_-^* + c.c.)} \rangle$$

$$Z = \text{Tr}(1 \cdot \rho) = \langle 1 \rangle$$

$$Z[0, 0] = \langle 1 \rangle = 1$$

- take variational derivative; example above:

normalization

$$\langle \phi_+^*(t) \phi_-(t') \rangle = \frac{\delta^2 Z}{\delta j_+(t) \delta j_+^*(t')}$$

- interpretation?
- there is a more intuitive basis to do computations

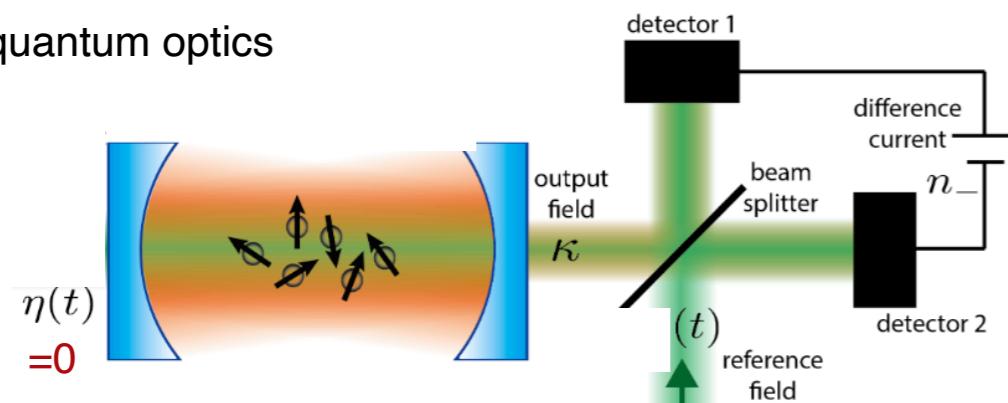
Correlation vs. response functions: Physics

- two basic types of experiments:
 - **correlation measurements**: study without disturbing

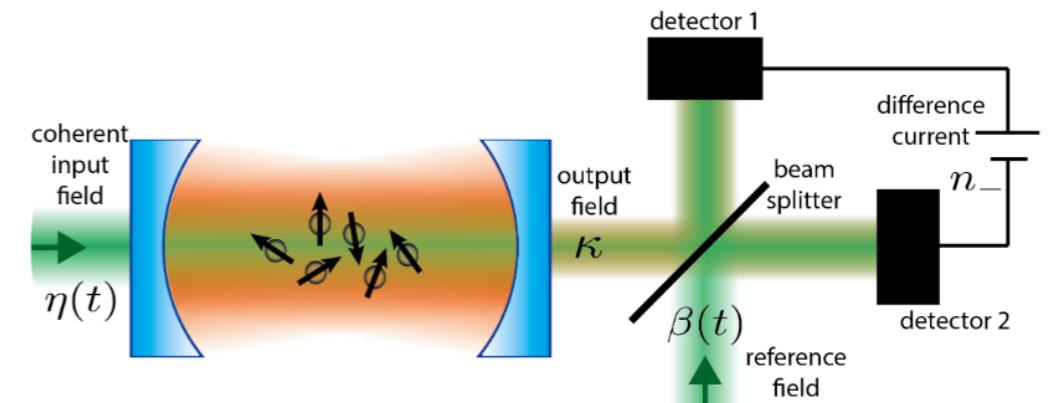
more details: L. Sieberer, M. Buchhold, SD, Reports on Progress in Physics (2016)

- **(linear) response measurements**: probe system with (weak) external fields

e.g. quantum optics



e.g. photon quadrature component at vacuum input field
(or: $g^{(1)}(\tau)$)



e.g. coherent input field
in homodyne detection: retarded response of quadrature components

- directly delivered in the functional framework via basis transformation: **Keldysh rotation**

$$\begin{pmatrix} \phi_c \\ \phi_q \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_+ + \phi_- \\ \phi_+ - \phi_- \end{pmatrix}$$

“classical field”: center-of-mass coordinate

“quantum field”: relative coordinate

- classical field can acquire finite expectation value (e.g. lasing, Bose condensation)
- quantum / noise field cannot
- probability preservation:

$$S_M[\Phi_c, \Phi_q = 0] = 0 \quad \forall \Phi_c$$

Correlation vs. response functions: Calculation

- partition function in new basis

more details: L. Sieberer, M. Buchhold, SD,
Reports on Progress in Physics (2016)

$$Z[j] = \langle e^{i \int (j_+ \phi_+^* - j_- \phi_-^* + c.c.)} \rangle = \langle e^{i \int (j_c \phi_q^* + j_q \phi_c^* + c.c.)} \rangle$$

- order parameter / occupation field:

$$\langle \phi_c(t, \mathbf{x}) \rangle = -i \frac{\delta Z[j]}{\delta j_q^*(t, \mathbf{x})} \Big|_{j=0}$$

q,c appear as conjugate pairs for the source

homodyne detection:
vacuum input

- single particle response: how does the field react to external perturbations?

$$G^R(t - t', \mathbf{x} - \mathbf{x}') = i \frac{\delta^2 Z}{\delta j_q^*(t, \mathbf{x}) \delta j_c(t', \mathbf{x}')} \Big|_{j=0}$$

relation to operator formalism
(once and for all)

response to coherent
field

$t = t'$

- single particle correlations: how are states occupied?

$$G^K(t - t', \mathbf{x} - \mathbf{x}') = i \frac{\delta^2 Z}{\delta j_q^*(t, \mathbf{x}) \delta j_q(t', \mathbf{x}')} \Big|_{j=0}$$

time and space translation
invariance assumed

- total Green's function

$$G = \begin{pmatrix} G^K & G^R \\ G^A & 0 \end{pmatrix}$$

$$G^A = (G^R)^\dagger, \quad (G^K)^\dagger = -G^K$$

Hermitian conjugates anti-Hermitian

$t = t', \mathbf{x} = \mathbf{x}'$

Correlation vs. response: relation to Keldysh action

- by example: master equation for decaying cavity

more details: L. Sieberer, M. Buchhold, SD, Reports on Progress in Physics (2016)

$$\partial_t \rho = -i[\omega_0 \hat{a}^\dagger \hat{a}, \rho] + \kappa(2\hat{a}\rho\hat{a}^\dagger - \{\hat{a}^\dagger \hat{a}, \rho\})$$

- action:

$$\begin{aligned} S &= \int dt (a_{cl}^*, a_q^*) \begin{pmatrix} 0 & i\partial_t - \omega_0 - i\kappa \\ i\partial_t - \omega_0 + i\kappa & 2i\kappa \end{pmatrix} \begin{pmatrix} a_{cl} \\ a_q \end{pmatrix} && \text{time domain} \\ &\equiv P^A(\omega) \\ &= \int \frac{d\omega}{2\pi} (a_{cl}^*, a_q^*) \underbrace{\begin{pmatrix} 0 & \omega - \omega_0 - i\kappa \\ \omega - \omega_0 + i\kappa & 2i\kappa \end{pmatrix}}_{\equiv P^R(\omega)} \underbrace{\begin{pmatrix} a_{cl} \\ a_q \end{pmatrix}}_{\equiv P^K} && \text{frequency domain} \\ &\equiv P^R(\omega) && a_\nu(\omega) \end{aligned}$$

- partition function: completion of the square

$$Z[j_c, j_q] = \langle e^{i \int \frac{d\omega}{2\pi} (j_c^* a_q + j_q^* a_c + \text{h.c.})} \rangle = e^{i \int \frac{d\omega}{2\pi} (j_q^* j_c) G(\omega) \begin{pmatrix} j_q \\ j_c \end{pmatrix}}$$

- single particle Green's function

$$\begin{pmatrix} \langle \phi_c(\omega) \phi_c^*(\omega') \rangle & \langle \phi_c(\omega) \phi_q^*(\omega') \rangle \\ \langle \phi_q(\omega) \phi_c^*(\omega') \rangle & \langle \phi_q(\omega) \phi_q^*(\omega') \rangle \end{pmatrix} = - \left(\begin{pmatrix} \frac{\delta^2 Z}{\delta j_q^*(\omega) \delta j_q(\omega')} & \frac{\delta^2 Z}{\delta j_q^*(\omega) \delta j_c(\omega')} \\ \frac{\delta^2 Z}{\delta j_c^*(\omega) \delta j_q(\omega')} & \frac{\delta^2 Z}{\delta j_c^*(\omega) \delta j_c(\omega')} \end{pmatrix} \right) \Big|_{j=0} = iG(\omega) \delta(\omega - \omega')$$

- summary in matrix components (valid beyond example):

$$G^{-1} = \begin{pmatrix} 0 & P^A \\ P^R & P^K \end{pmatrix} \Rightarrow G = \begin{pmatrix} G^K & G^R \\ G^A & 0 \end{pmatrix} \quad G^{R/A} = [P^{R/A}]^{-1} \quad G^K = -G^R P^K G^A$$

Correlation vs. response: relation to Keldysh action

- by example: master equation for decaying cavity

more details: L. Sieberer, M. Buchhold, SD, Reports on Progress in Physics (2016)

$$\partial_t \rho = -i[\omega_0 \hat{a}^\dagger \hat{a}, \rho] + \kappa(2\hat{a}\rho\hat{a}^\dagger - \{\hat{a}^\dagger \hat{a}, \rho\})$$

- action:

$$S = \int dt (a_{cl}^*, a_q^*) \begin{pmatrix} 0 & i\partial_t - \omega_0 - i\kappa \\ i\partial_t - \omega_0 + i\kappa & 2i\kappa \end{pmatrix} \begin{pmatrix} a_{cl} \\ a_q \end{pmatrix} \quad \begin{matrix} \text{time domain} \\ a_\nu(t) \end{matrix}$$

$$= \int \frac{d\omega}{2\pi} (a_{cl}^*, a_q^*) \begin{pmatrix} 0 & \omega - \omega_0 - i\kappa \\ \omega - \omega_0 + i\kappa & 2i\kappa \end{pmatrix} \begin{pmatrix} a_{cl} \\ a_q \end{pmatrix} \quad \begin{matrix} \text{frequency domain} \\ a_\nu(\omega) \end{matrix}$$

- observables from the Green's functions:

response

- decay of **single-particle response**:

$$G^R(t - t') = \int_\omega e^{i\omega(t-t')} G^R(\omega) = \theta(t - t') e^{i\omega(t-t')} e^{-\kappa(t-t')}$$

- Lorentzian spectral density:

$$A(\omega) = \text{Im}G^R(\omega) = \frac{2\kappa}{(\omega - \omega_0)^2 + \kappa^2}$$

correlation

- cavity mode **occupation** in stationary state

$$\langle \hat{n}(t \rightarrow \infty) \rangle = 0$$

$$2\langle \hat{n}(t) \rangle + 1 = \langle \hat{a}^\dagger(t) \hat{a}(t) + \hat{a}(t) \hat{a}^\dagger(t) \rangle = iG^K(t-t) = i \int_\omega e^{i\omega(t-t)} G^K(\omega) = 1 \quad (t \rightarrow \infty)$$

- | | |
|---|-------|
| → correlation / statistical properties: | G^K |
| → response / spectral properties: | G^R |

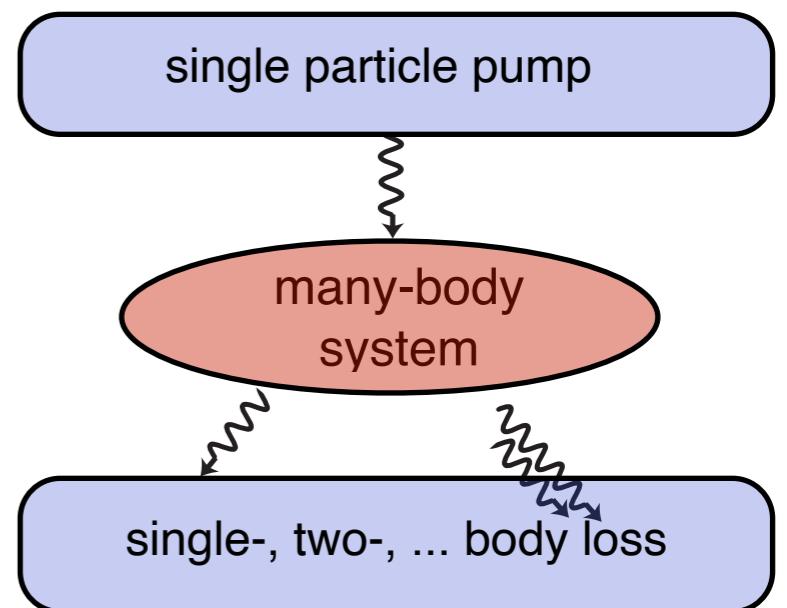
Back to many-body model: Workhorse Lindbladian

- generic microscopic many-body model:

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho] \equiv \mathcal{L}[\rho]$$

$$H = \int_{\mathbf{x}} \hat{\phi}_{\mathbf{x}}^\dagger \left(\frac{\Delta}{2M} - \mu \right) \hat{\phi}_{\mathbf{x}} + \frac{\lambda}{2} (\hat{\phi}_{\mathbf{x}}^\dagger \hat{\phi}_{\mathbf{x}})^2$$

kinetic energy two-particle interaction

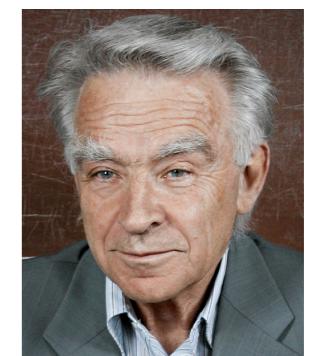


$$\kappa \int_{\mathbf{x}} [\hat{\phi}_{\mathbf{x}}^2 \rho \hat{\phi}_{\mathbf{x}}^{\dagger 2} - \frac{1}{2} \{ \hat{\phi}_{\mathbf{x}}^{\dagger 2} \hat{\phi}_{\mathbf{x}}^2, \rho \}]$$

Many-Body Master Equation

1-1 mapping

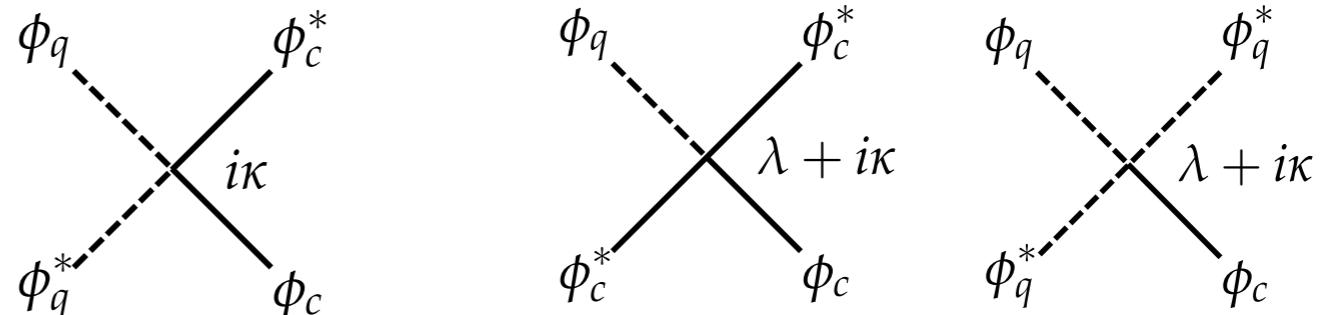
Keldysh functional integral



Many-body model: Workhorse Lindblad-Keldysh action

$$\mathcal{S} = \int_{t,\mathbf{x}} \left\{ (\phi_c^*, \phi_q^*) \begin{pmatrix} 0 & P^A \\ P^R & P^K \end{pmatrix} \begin{pmatrix} \phi_c \\ \phi_q \end{pmatrix} + 2i\kappa \phi_c^* \phi_c \phi_q^* \phi_q - \frac{1}{2} [(\lambda + i\kappa) (\phi_c^{*2} \phi_c \phi_q + \phi_q^{*2} \phi_c \phi_q) + c.c.] \right\}$$

- Gaussian sector: inverse Green's function



- retarded/advanced $P^R(\omega, \mathbf{q}) = \omega - \mathbf{q}^2 - \mu + i(\gamma_l - \gamma_p)/2$
- Keldysh component $P^K = i(\gamma_l + \gamma_p)$
- now: simplifications in the semiclassical limit:
 - sharp argument close to a critical point
 - provides intuition for a frequency regime $\omega \ll \gamma = \gamma_l + \gamma_p$

difference: distance from a phase transition
sum: noise of loss and pumping add up

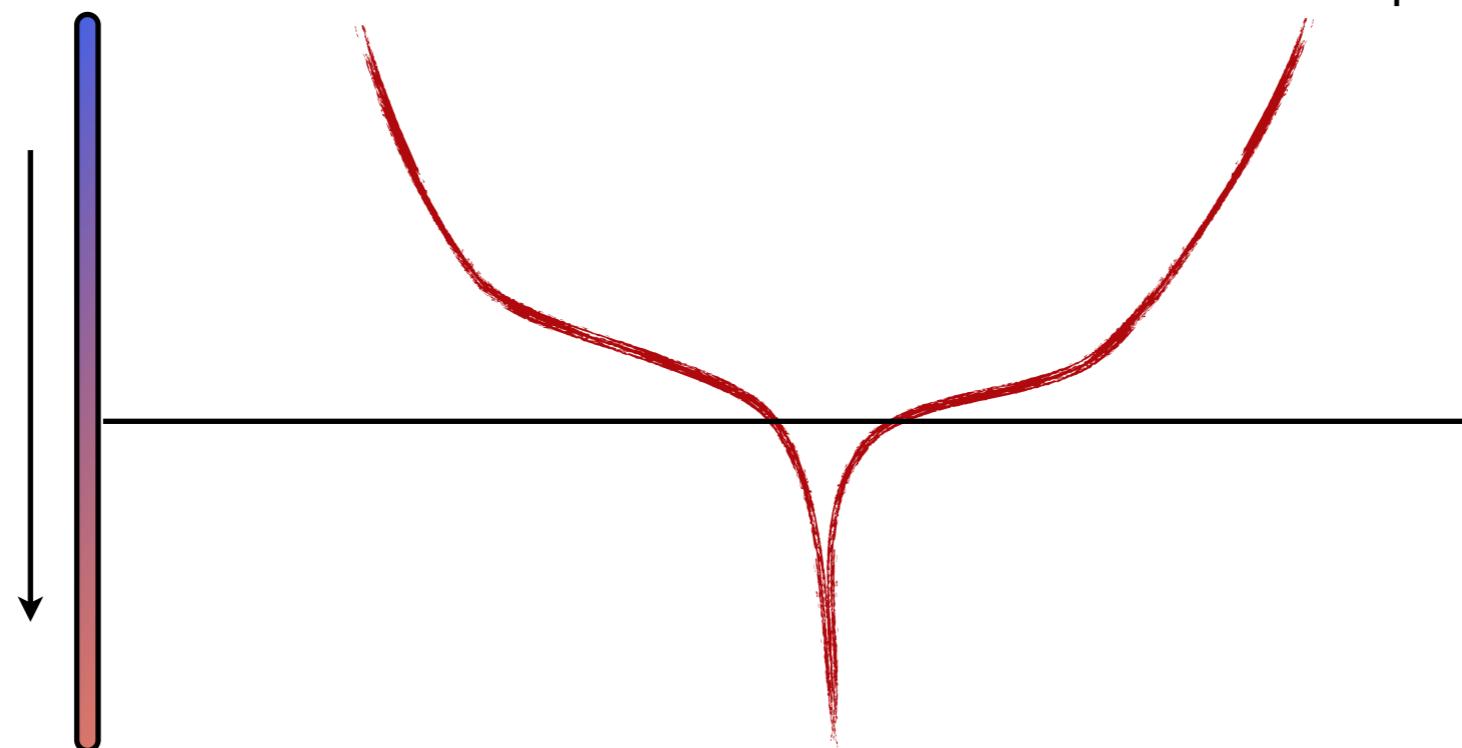
new logic:

- workhorse model
- push near critical point, power counting
 - MSR -> Langevin
- discussion: EFT concept in driven open system: mapping QME for bosons and XP models to Langevin
 - overview Schaubild

Semi-classical limit and Langevin equations

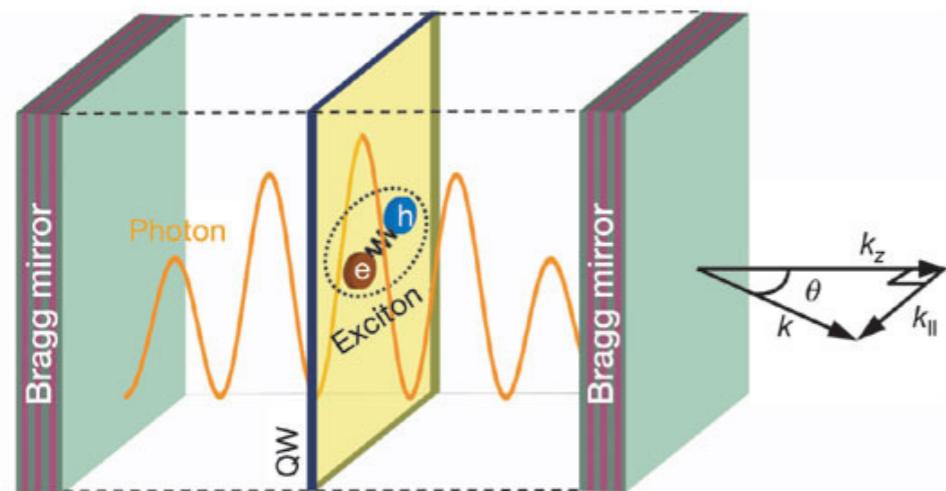
exciton-polariton models

two-body quantum master equation

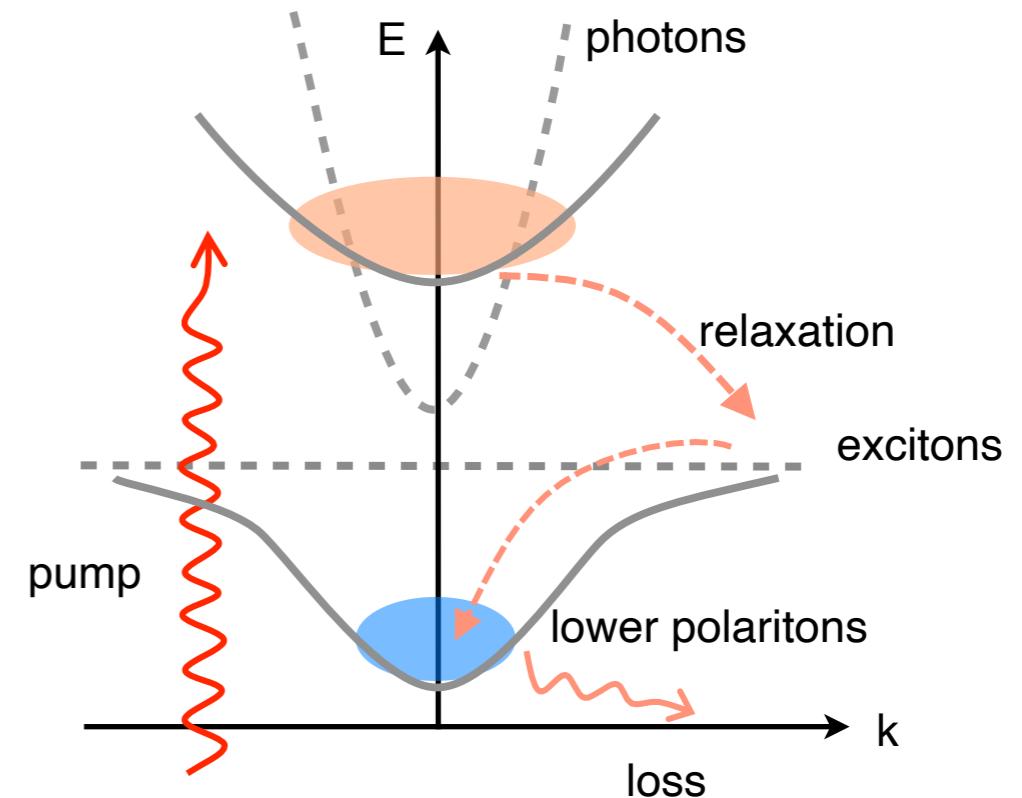


Intermezzo: Exciton-polariton systems

Kasprzak et al., Nature 2006



Imamoglu et al., PRA 1996



- phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq

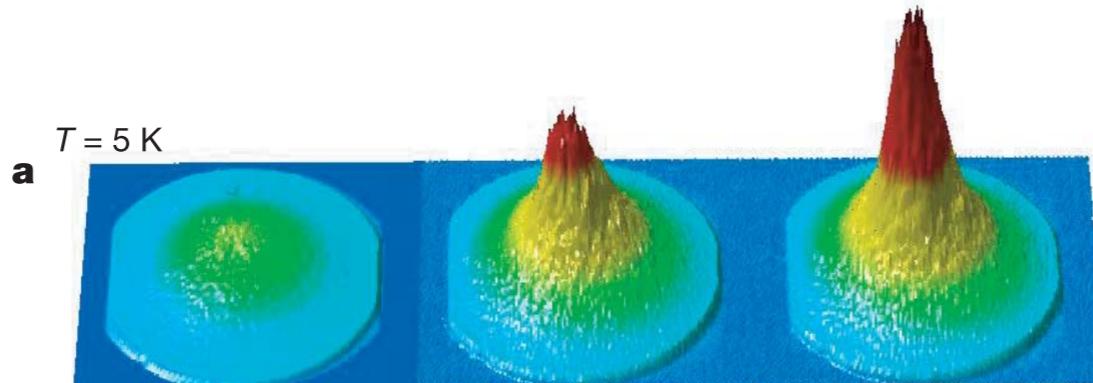
$$i\partial_t \phi = \left[-\frac{\nabla^2}{2m} - \mu + i(\gamma_p - \gamma_l) + (\lambda - i\kappa) |\phi|^2 \right] \phi + \zeta$$

$$\langle \zeta^*(t, \mathbf{x}) \zeta(t', \mathbf{x}') \rangle = \gamma \delta(t - t') \delta(\mathbf{x} - \mathbf{x}')$$

Szymanska, Keeling, Littlewood PRL (04, 06); PRB (07);
Wouters, Carusotto PRL (07,10)

Intermezzo: Exciton-polariton systems

- Bose condensation seen despite non-equilibrium conditions

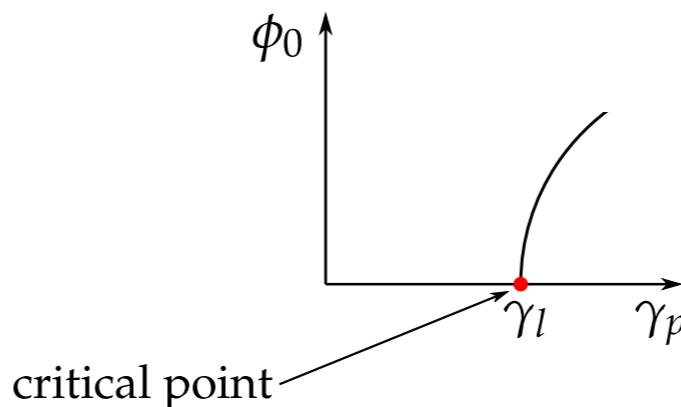


Kasprzak et al., Nature 2006

- stochastic driven-dissipative Gross-Pitaevskii-Eq

$$\cancel{i\partial_t \phi} = \left[-\cancel{\frac{\nabla^2}{2m}} - \mu + i(\gamma_p - \gamma_l) + (\lambda - i\kappa) |\phi|^2 \right] \phi + \cancel{\zeta}$$

Szymanska, Keeling, Littlewood PRL (04, 06);
PRB (07); Wouters, Carusotto PRL (07,10)

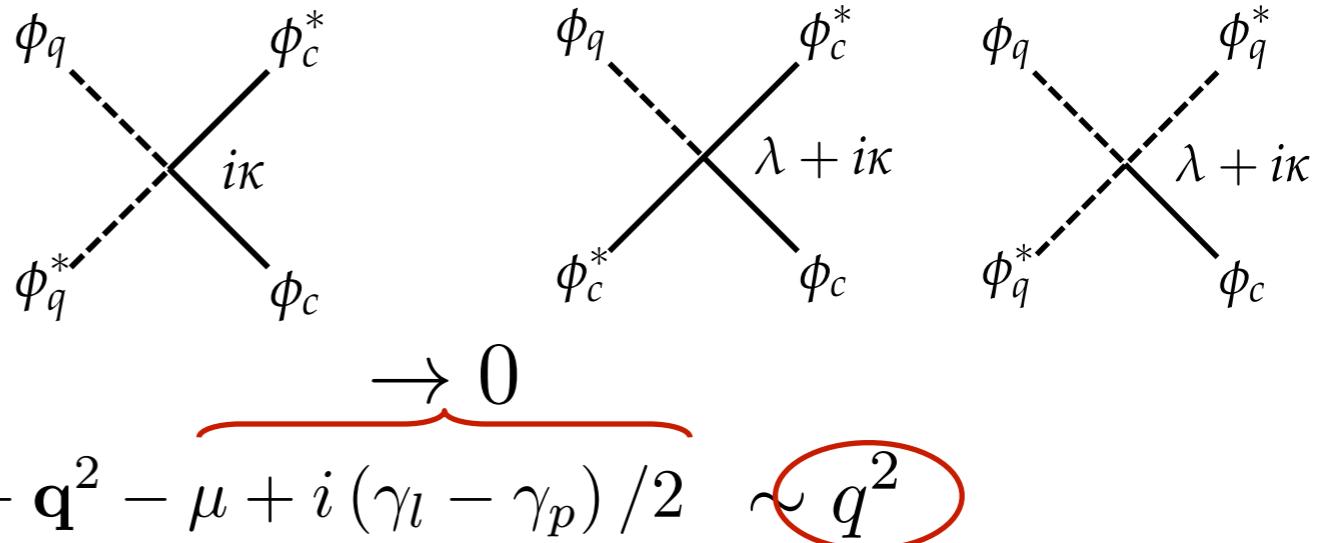


- mean field
 - neglect noise
 - homogeneous solution $\phi(\mathbf{x}, t) = \phi_0$
- naively, just as Bose condensation in equilibrium!
- Q1: How does this model relate to the Lindbladian and Lindblad-Keldysh field theory?
- Q2: What is “non-equilibrium” about it?

Semiclassical limit of Lindblad-Keldysh action: power counting

$$\mathcal{S} = \int_{t,\mathbf{x}} \left\{ (\phi_c^*, \phi_q^*) \begin{pmatrix} 0 & P^A \\ P^R & P^K \end{pmatrix} \begin{pmatrix} \phi_c \\ \phi_q \end{pmatrix} + 2i\kappa \phi_c^* \phi_c \phi_q^* \phi_q - \frac{1}{2} [(\lambda + i\kappa) (\phi_c^{*2} \phi_c \phi_q + \phi_q^{*2} \phi_c \phi_q) + c.c.] \right\}$$

- Gaussian sector **close to a critical point**:



- retarded/advanced $P^R(\omega, \mathbf{q}) = \omega - \mathbf{q}^2 - \mu + i(\gamma_l - \gamma_p)/2 \sim q^2$

- Keldysh component $P^K = i(\gamma_l + \gamma_p) \sim q^0$

- canonical field dimensions*:
$$[\phi_c] = \frac{d-2}{2} < [\phi_q] = \frac{d+2}{2}$$

- action is dimensionless: phase e^{iS} in the functional integral
- quadratic/Gaussian sector: scaling dimensions of inverse Green's function known
- intuitive: high order local couplings not relevant at large distances

* for fields in real space. Confirm this: take the critical Gaussian action in real space/time; count

$$\partial_x \sim k, \partial_t \sim k^2, d^d x \sim k^{-d}, dt \sim k^{-2}, \text{ why? } \phi_{c/q}(x) \sim k^{[\phi_{c/q}(x)]}$$

What do we get for fields in momentum space? $\phi_{c/q}(\omega, \mathbf{q}) = \int d^d x dt e^{-i(\omega t - \mathbf{q}\mathbf{x})} \phi_{c/q}(t, \mathbf{x})$

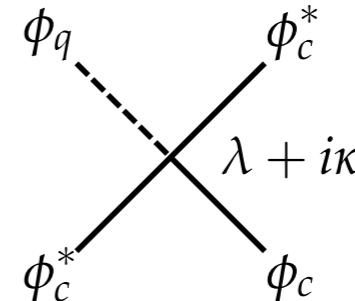
What are the canonical dimensions of the quartic vertices?

exercise

Semiclassical limit of Lindblad-Keldysh action: power counting

$$\mathcal{S} = \int_{t,\mathbf{x}} \left\{ (\phi_c^*, \phi_q^*) \begin{pmatrix} 0 & P^A \\ P^R & P^K \end{pmatrix} \begin{pmatrix} \phi_c \\ \phi_q \end{pmatrix} + 2i\kappa \cancel{\phi_c^* \phi_c \phi_q^* \phi_q} - \frac{1}{2} [(\lambda + i\kappa) (\phi_c^{*2} \phi_c \phi_q + \cancel{\phi_q^{*2} \phi_c \phi_q}) + c.c.] \right\}$$

- Gaussian sector **at criticality**:



- retarded/advanced $P^R(\omega, \mathbf{q}) = \omega - \mathbf{q}^2 - \underbrace{\mu + i(\gamma_l - \gamma_p)/2}_{\rightarrow 0} \sim q^2$

- Keldysh component $P^K = i(\gamma_l + \gamma_p) \sim q^0$

- canonical field dimensions: $[\phi_c] = \frac{d-2}{2} < [\phi_q] = \frac{d+2}{2}$

- local vertices with more than two quantum fields are irrelevant in the RG sense in $d > 2$

- note preservation of probability in semiclassical limit $S_M[\Phi_c, \Phi_q = 0] = 0 \quad \forall \Phi_c$
- massive diagrammatic simplification
- to be seen now: result identical to phenomenological models of exciton-polariton condensates (Wouters and Carusotto PRL 06; Szymanska, Keeling, Littlewood PRL 04)

Semiclassical limit: MSR action & Langevin equation

Martin, Siggia, Rose, PRA (1973); Janssen, Z. Phys. B (1976); DeDominicis, J. Phys. (1976)

- Keldysh integral after power counting
- with Martin-Siggia-Rose (MSR) action

$$S = \int_{t,\mathbf{x}} \left\{ \phi_q^* \frac{\delta \bar{S}[\phi_c]}{\delta \phi_c^*} + c.c. + i2\gamma \phi_q^* \phi_q \right\} \quad \rightarrow \text{phi_q only up to quadratic order}$$

$$\bar{S} = \int_{t,\mathbf{x}} \{ \phi_c^* i \partial_t \phi_c - \mathcal{H}_c + i \mathcal{H}_d \} \quad \mathcal{H}_\alpha = r_\alpha |\phi_c|^2 + K_\alpha |\nabla \phi_c|^2 + \lambda_\alpha |\phi_c^* \phi_c|^4, \quad \alpha = c, d$$

- Hubbard-Stratonovich decoupling

$$Z = \int \mathcal{D}[\xi, \xi^*] e^{-\frac{1}{2\gamma} \int_{t,\mathbf{x}} \xi^* \xi} \int \mathcal{D}[\phi_c, \phi_c^*, \phi_q, \phi_q^*] e^{i \left[\phi_q^* \left(i \partial_t \phi_c - \frac{\delta \mathcal{H}_c}{\delta \phi_c^*} + i \frac{\delta \mathcal{H}_d}{\delta \phi_c^*} - \xi \right) + c.c. \right]}$$

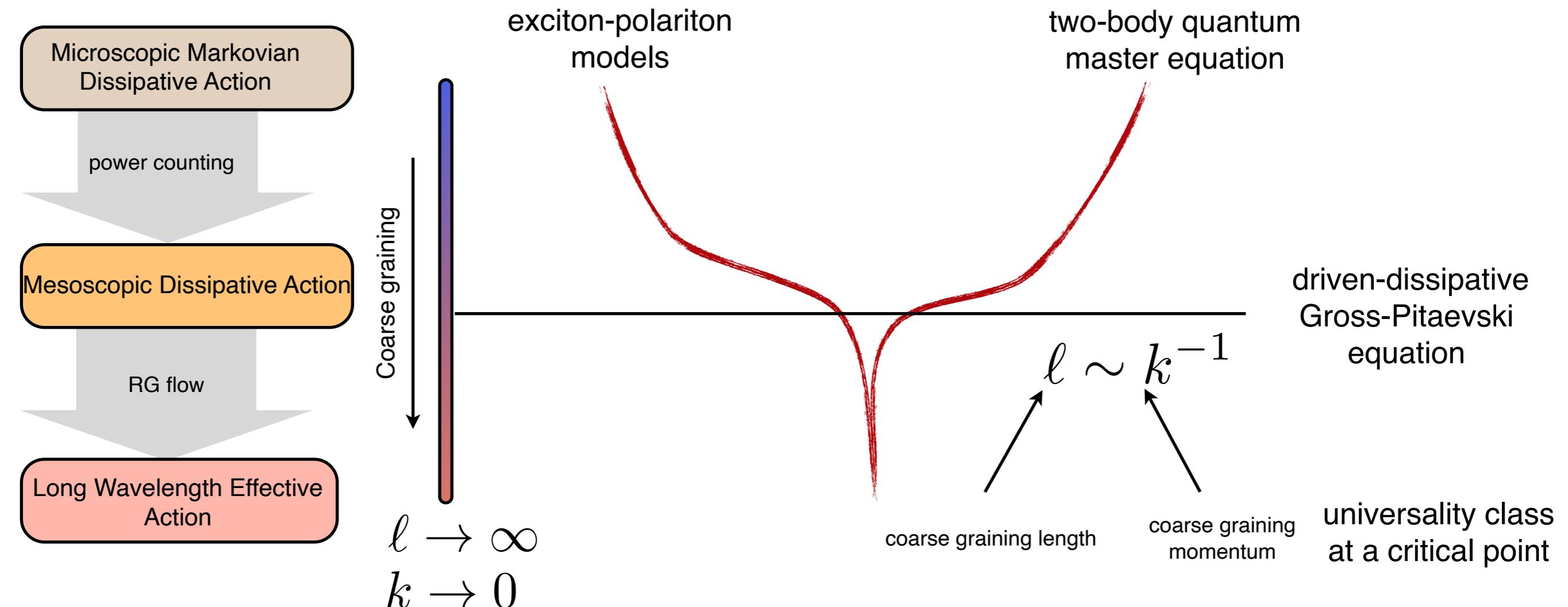
- linear in phi_q: Fourier representation of delta-functional

$$Z = \int \mathcal{D}[\xi, \xi^*] e^{-\frac{1}{2\gamma} \int_{t,\mathbf{x}} \xi^* \xi} \int \mathcal{D}[\phi_c, \phi_c^*] \delta \left(i \partial_t \phi_c - \frac{\delta \mathcal{H}_c}{\delta \phi_c^*} + i \frac{\delta \mathcal{H}_d}{\delta \phi_c^*} - \xi \right) \delta(c.c.)$$

→ noise averaging → at each instant → driven-dissipative Gross-Pitaevski equation of time:

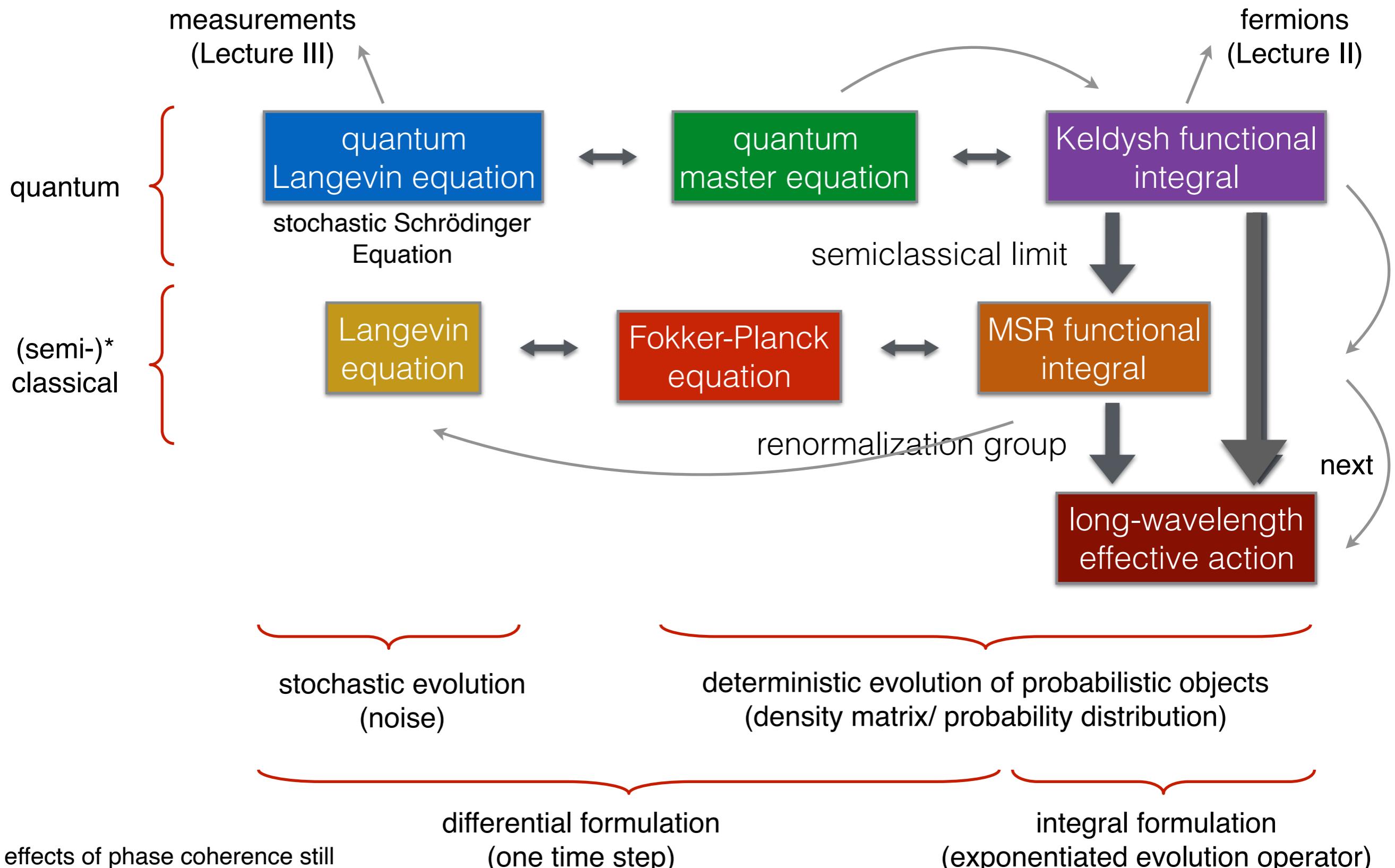
Semiclassical limit and exciton-polariton model

- example of “weak” universality

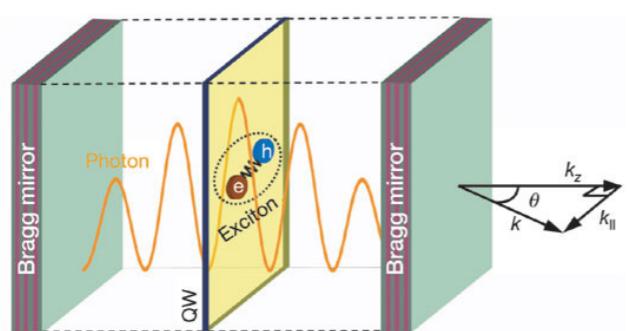


- many microscopic models collapse to an effective low energy model
- form dictated by microscopic symmetries
- longer wavelength behavior to be determined by calculation

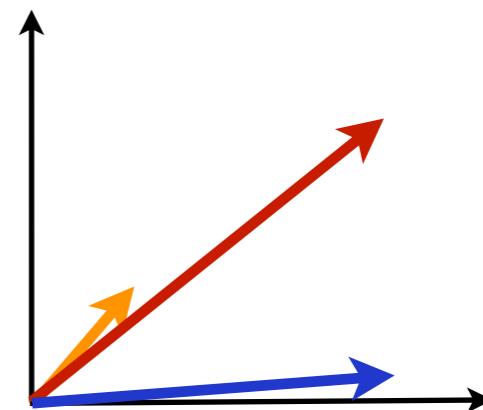
Overview: Langevin equations, master equation, Keldysh integral



“What is non-equilibrium about it?”



$$Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_M[\Phi_+, \Phi_-])}$$



“What is non-equilibrium about it?”

- different notions of ‘non-equilibrium’

Time evolution

- time translation invariance broken (e.g. thermalization, Floquet.. -> [Lectures by D. Huse, N. Cooper, T. Esslinger!](#))

Stationary states (considered here) notion of NESS

- flux equilibria
 - **not** in static observables:

$$\rho = e^{-\beta H} / \text{tr} e^{-\beta H}$$

- any positive semidefinite Hermitian operator can be written like this
 - dynamical observables, e.g.:

$$\langle \psi^\dagger(t) \psi(0) \rangle \quad \psi(t) = e^{iHt} \psi e^{-iHt}$$

- non-equilibrium conditions are encoded in the **generator of dynamics**
 - thermal equilibrium realized if generator of dynamics coincides with statistical weight
 - otherwise must expect non-equilibrium conditions (Lindbladian)

“What is non-equilibrium about it?”

more details: see appendix!

- non-equilibrium stationary states:

- **open system**: is it the coupling to a bath —> irreversibility?
→ no, can be compatible with thermal equilibrium (Caldeira-Leggett Models)
- **driven & open system**: it is in the way how we couple to a bath:

$$\hat{H}_t = \hat{H} + \hat{H}_{\text{int}} + \hat{H}_b$$

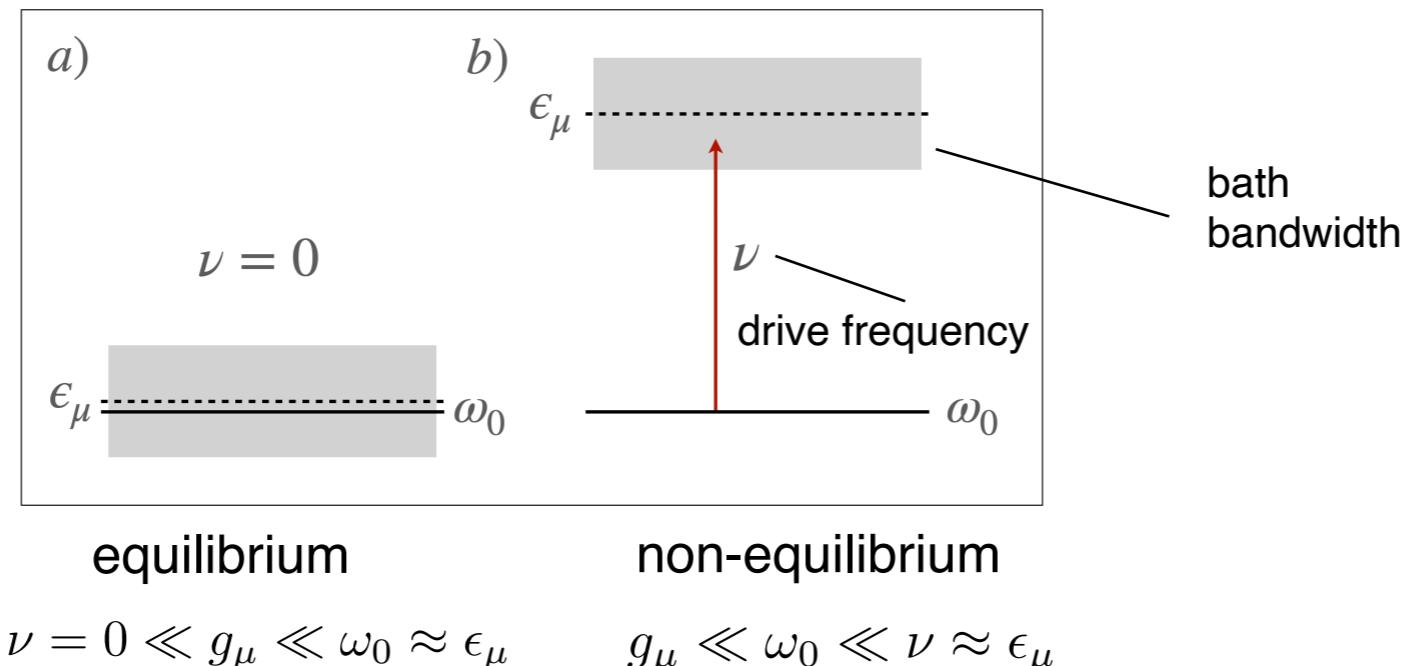
system

$$\hat{H}_b = \sum_{\mu} \epsilon_{\mu} b_{\mu}^{\dagger} b_{\mu}$$

bath

$$\hat{H}_{\text{int}} = \sum_{\mu} g_{\mu} e^{-i\nu t} L b_{\mu}^{\dagger} + \text{h. c.}$$

system-bath



- the state of the bath is **fixed**, distribution function $n_{B/F}^b(\omega)$
- singles out a frame of reference —> drive scale cannot be removed
→ **driven open nature incompatible with thermal equilibrium**

“What is non-equilibrium about it?”

- more formally: quantum master equation

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho]$$

$\overbrace{\qquad\qquad\qquad} \Rightarrow S_H \qquad \overbrace{\qquad\qquad\qquad} \Rightarrow S_{\mathcal{D}}$

- equivalent Keldysh functional integral: $Z = \int \mathcal{D}\phi_{\pm} e^{i(S_H[\phi_{\pm}] + S_{\mathcal{D}}[\phi_{\pm}])}$

- equilibrium dynamics microscopically generated by a **time-independent (undriven) Hamiltonian** alone

$$S_{\mathcal{D}} = 0$$

- **symmetry** of Keldysh action under discrete transformation

L. Sieberer, A. Chiocchetta, U. Täuber, A. Gambassi, *SD* PRB (2015); F. Haehl, R. Loganayagam, M. Rangamani, *JHEP* (2016); M. Crossley, P. Glorioso, H. Liu, *JHEP* (2016)

-derive KMS
operatorial
- make relation to our
symmetry

$$\mathcal{T}_{\beta} : \phi_{\pm}(t, \mathbf{x}) \rightarrow \phi_{\pm}(-t + i\beta/2, \mathbf{x}), \quad i \rightarrow -i$$

$$\mathcal{T}_{\beta}^2 = 1 \quad \beta = 1/T$$

- associated “Ward identities” are equilibrium quantum **fluctuation-dissipation relations** of arbitrary order

e.g. single-particle
sector

$$G^K(\omega, \mathbf{q}) = (2n_B(\omega/T) + 1)[G^R(\omega, \mathbf{q}) - G^A(\omega, \mathbf{q})]$$

any order \Leftrightarrow detailed balance
 \Leftrightarrow global thermal equilibrium

correlations

Bose distribution

responses

- the Lindbladian ($S_{\mathcal{D}}$) violates this symmetry and therefore detailed balance **explicitly**
- intuition: underlying is a (rapidly) driven system with no energy conservation

Equilibrium symmetry: some details

L. Sieberer, A Chiocchetta, U. Täuber, A. Gambassi, SD PRB (2015)

- Undriven system: equilibrium dynamics generated by a **time-independent Hamiltonian**
- **symmetry** of Schwinger-Keldysh action under discrete transformation

$$\mathcal{T}_\beta : \phi_\pm(t, \mathbf{x}) \rightarrow \phi_\pm(-t + i\beta/2, \mathbf{x}), \quad i \rightarrow -i \quad \mathcal{T}_\beta^2 = 1 \quad \beta = 1/T$$

- symmetry: invariance of $Z = \int \mathcal{D}\phi_\pm e^{i(S_H[\phi_\pm] + S_D[\phi_\pm])}$
- implies for correlation functions

$$\langle \mathcal{O}[\phi_\pm] \rangle = \langle \mathcal{T}_\beta(\mathcal{O}[\phi_\pm]) \rangle \quad \langle \mathcal{O}[\phi_\pm] \rangle = \int \mathcal{D}\phi_\pm \mathcal{O}[\phi_\pm] e^{iS[\phi_\pm]}$$

- physical consequence: **Fluctuation-dissipation relations**, of any order, e.g. single particle sector:

$$G^K(\omega, \mathbf{q}) = (2n_B(\omega/T) + 1)[G^R(\omega, \mathbf{q}) - G^A(\omega, \mathbf{q})]$$

any order \Leftrightarrow detailed balance
 \Leftrightarrow global thermal equilibrium

correlations Bose distribution responses

- connection to operator formalism: compact functional formulation of **Kubo-Martin-Schwinger boundary condition**: for any two operators A,B,

$$\langle A(t)B(t') \rangle = \langle B(t' - i\beta)A(t) \rangle. \quad \langle \mathcal{O} \rangle = \text{tr}(\mathcal{O}\rho)$$

- reason: $A(t) = e^{iHt} A e^{-iHt}, \rho = e^{-\beta H} / \text{tr} e^{-\beta H}$
 $\Rightarrow A(t)\rho = \rho A(t - i\beta)$

& cyclic invariance

Equilibrium symmetry: Semiclassical limit

- Undriven system: equilibrium dynamics generated by a **time-independent Hamiltonian**
- **symmetry** of **Schwinger-Keldysh** action under discrete transformation

$$\mathcal{T}_\beta : \quad \phi_\pm(t, \mathbf{x}) \rightarrow \phi_\pm(-t + i\beta/2, \mathbf{x}), \quad i \rightarrow -i \quad \mathcal{T}_\beta^2 = 1 \quad \beta = 1/T$$

$$= e^{\pm i \frac{\beta}{2} \partial_t} \phi_\pm(-t, \mathbf{x})$$

- semiclassical limit: T large => $e^{\pm i \frac{\beta}{2} \partial_t} \approx 1 \pm i \frac{\beta}{2} \partial_t$
- action on the fields:

irrelevant by power counting

$$\mathcal{T}_\beta \phi_c(t, \mathbf{x}) = \phi_c^*(-t, \mathbf{x}) + \frac{i}{2T} \partial_t \cancel{\phi_q^*(-t, \mathbf{x})}, \quad \text{reproduces classical result}$$
$$\mathcal{T}_\beta \phi_q(t, \mathbf{x}) = \phi_q^*(-t, \mathbf{x}) + \frac{i}{2T} \partial_t \phi_c^*(-t, \mathbf{x})$$

H. K. Janssen (1976); C. Aron
et al, J Stat. Mech (2011)

- obtain **geometric interpretation** of the equilibrium symmetry

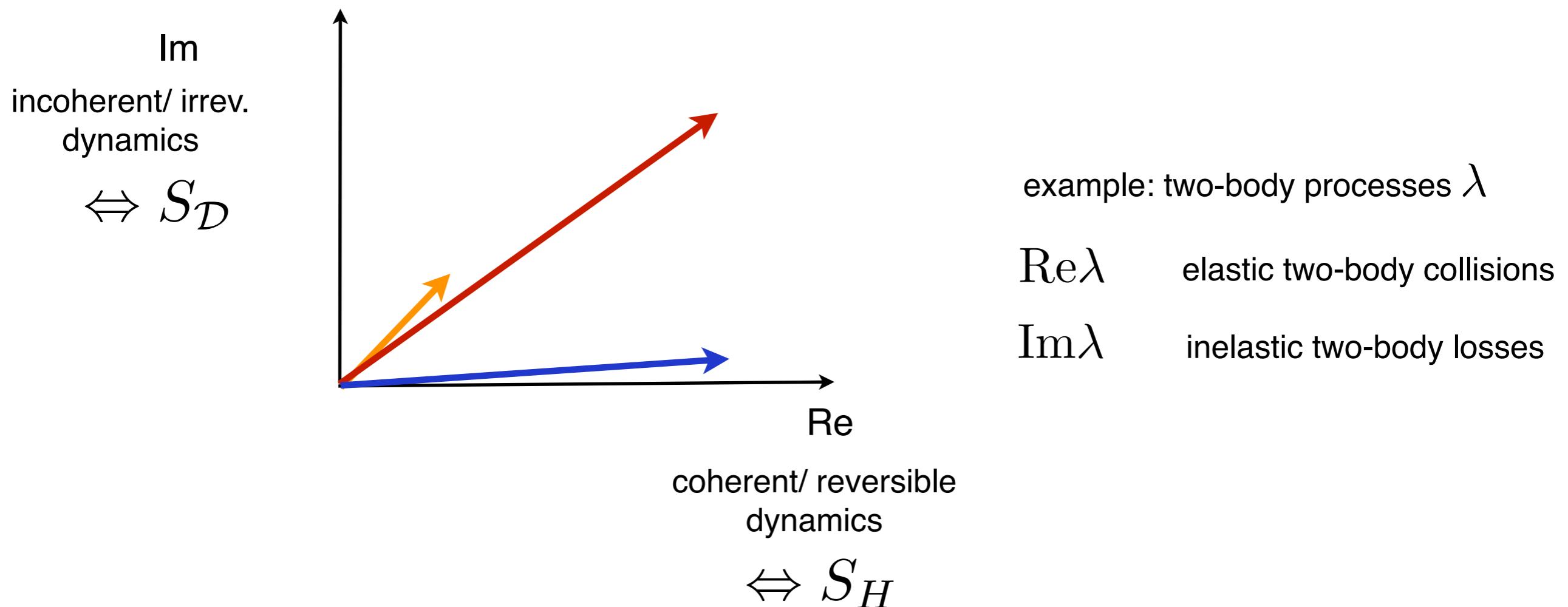
Geometric interpretation: equilibrium vs. non-equilibrium dynamics

- couplings spanning the Keldysh action lie in the **complex plane**

$$\underbrace{\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho]}_{\Leftrightarrow S_H} \quad \leftrightarrow \quad Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_H[\Phi_+, \Phi_-] + S_{\mathcal{D}}[\Phi_+, \Phi_-])}$$

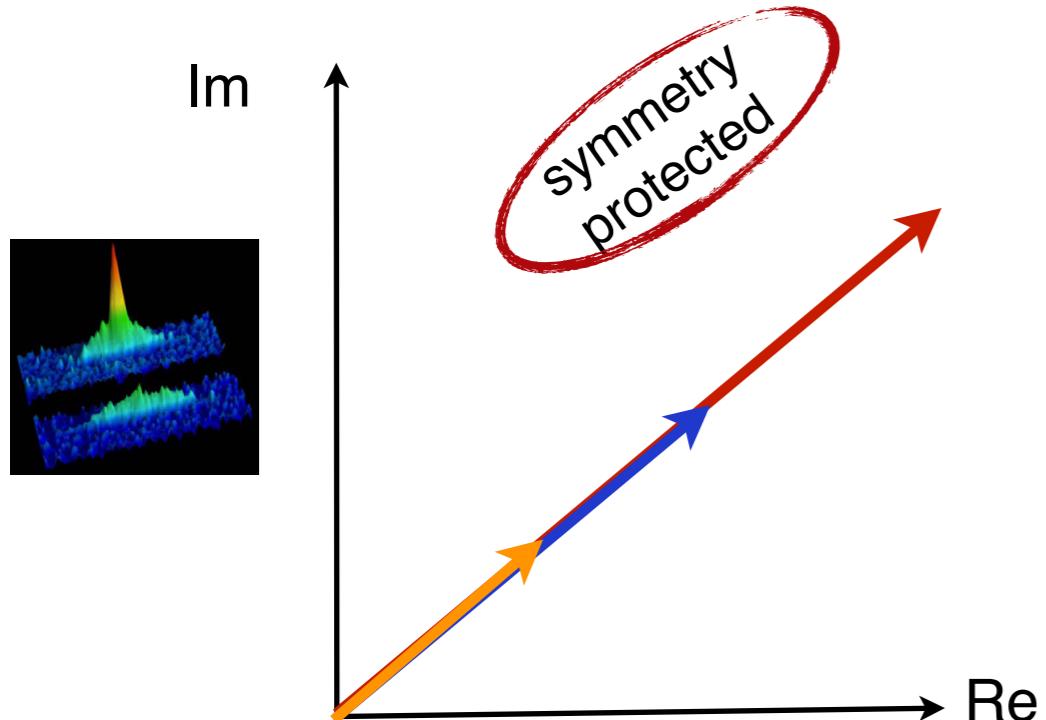
$$\Leftrightarrow S_{\mathcal{D}}$$

& semiclassical limit: higher terms in ϕ_q irrelevant

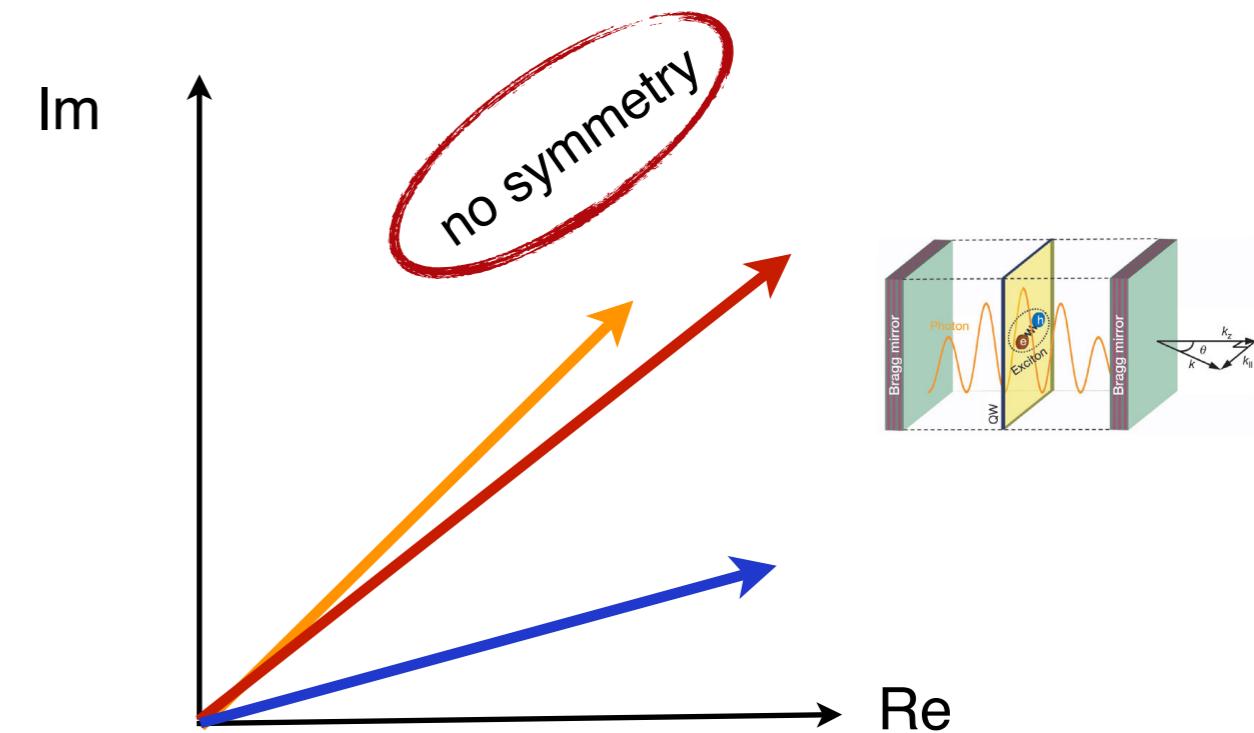


Geometric interpretation: equilibrium vs. non-equilibrium dynamics

equilibrium dynamics



non-equilibrium dynamics



- coherent and dissipative dynamics may occur simultaneously
- but they are not independent

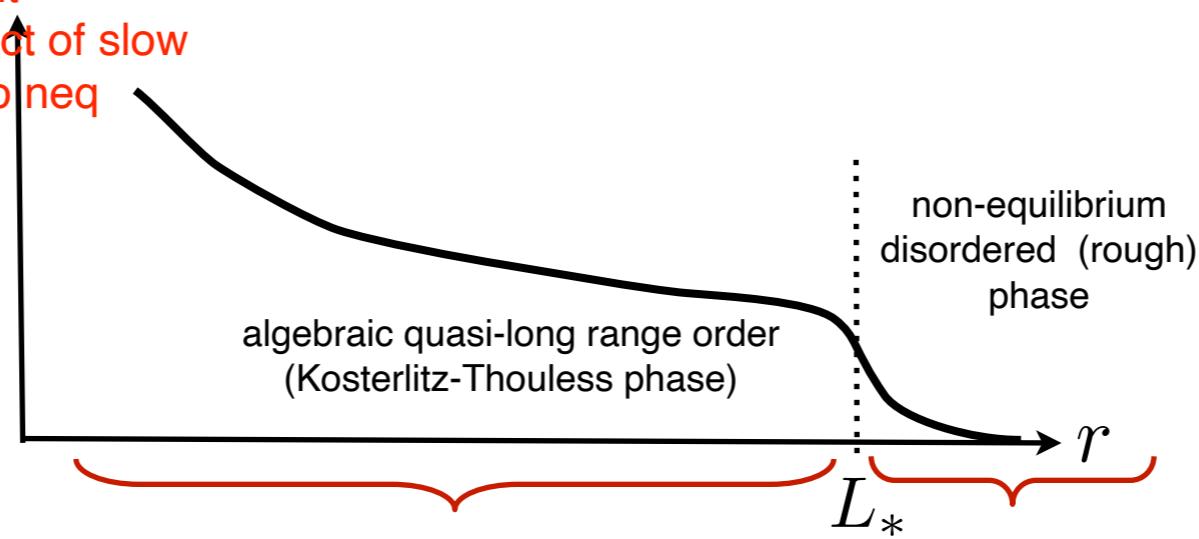
- coherent and dissipative dynamics do occur simultaneously
- they result from different dynamical resources

➡ what are the physical consequences of the spread in the complex plane?

- critical behavior
- non-equilibrium RG for workhorse model:
- conceptual points: no energy scales, but length scales
- location of poles in complex plane; Gaussian theory
- 1-loop RG slow/fast modes
- physics: emergent equilibrium at one-loop
 - more sophisticated: remnants of non-equilibrium, new exponent
- on the way: shell structure, impact of slow modes, additional shell due to neq

- so far: near equilibrium, emergent equilibrium
- here: opposite phenomenon, emergent non-equilibrium for small perturbation from eq.
- go via script for NeqFT lecture; derive KPZ from Langevin; it can't be different based on symmetries for smooth part
- vortices (along review)

Application: Fate of BKT physics in driven open quantum systems



E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)

G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

L. He, L. Sieberer, E. Altman, SD, PRB (2015)

L. He, L. Sieberer, SD, PRL (2017)

Microscopic
Quantum Optics

“Thermodynamic”
Many-body physics

Long wavelength
Statistical mechanics

Phase transitions in two dimensions

- continuous symmetry U(1): no spontaneous symmetry breaking, but a phase transition

- correlations

$$\langle \phi^*(\mathbf{x})\phi(0) \rangle \sim r^{-\frac{1}{2\pi K}} \sim e^{-r/\xi}$$

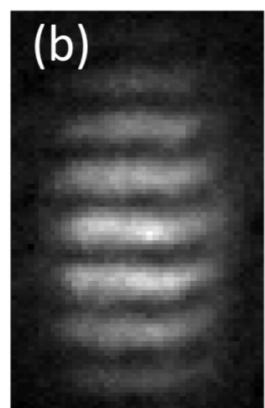
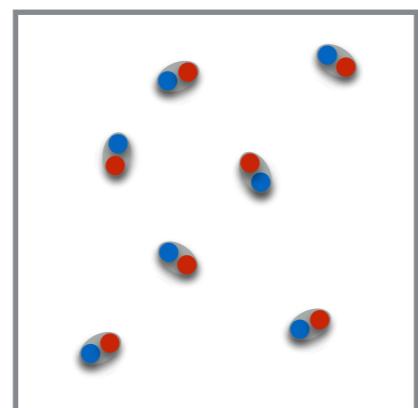
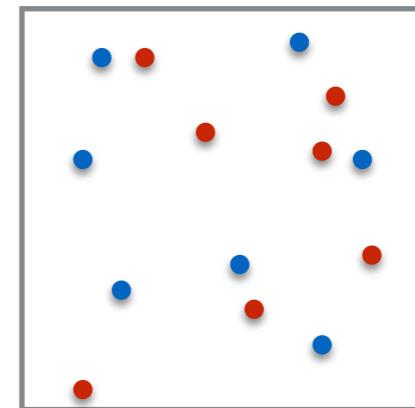
- responses: superfluidity

$$\rho_s \neq 0$$

$$\rho_s = 0$$

- BKT transition: unbinding of vortex-antivortex pairs

[J. M. Kosterlitz, D. J. Thouless J. Phys. C \(1973\)](#)



matter wave interferometry:
[Z. Hadzibabic et al. Nature \(2006\)](#)

... fate in driven open condensates?

Short reminder: Algebraic correlations

- correlations

$$\langle \phi^*(\mathbf{x})\phi(0) \rangle \sim r^{-\frac{1}{2\pi K}} \sim e^{-r/\xi}$$

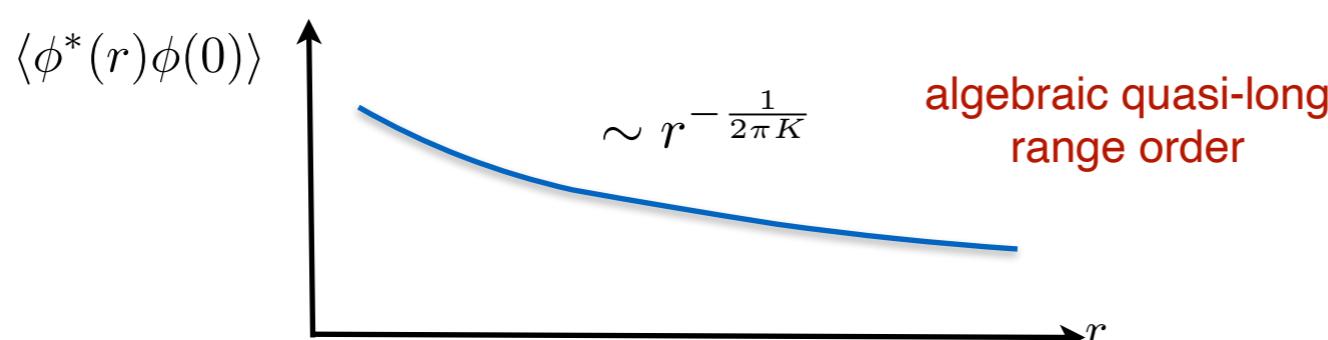
- physical reason: **gapless spin wave fluctuations**

- spin wave action $S = \frac{K}{2} \int d^2x (\nabla\theta)^2 = \frac{K}{2} \int \frac{d^2q}{(2\pi)^2} q^2 \theta(-\mathbf{q})\theta(\mathbf{q})$

- phase-amplitude decomposition $\phi(\mathbf{x}) = \rho(\mathbf{x})^{1/2} e^{i\theta(\mathbf{x})} \approx \sqrt{n_0} e^{i\theta(\mathbf{x})}$

$$\langle \phi^*(\mathbf{x})\phi(0) \rangle \approx n_0 \langle e^{i(\theta(\mathbf{x})-\theta(0))} \rangle = n_0 e^{-\frac{1}{2} \langle (\theta(\mathbf{x})-\theta(0))^2 \rangle}$$

- phase correlator $\frac{1}{2} \langle (\theta(\mathbf{x}) - \theta(0))^2 \rangle = \int_{1/a} \frac{d^2q}{(2\pi)^2} \frac{(e^{iqr} - 1)}{Kq^2} = \frac{1}{2\pi K} \log(r/a)$



Driven open dynamics in low dimension

- semiclassical limit: driven-dissipative stochastic Gross-Pitaevski equation

$$i\partial_t\phi = \left[-\frac{\nabla^2}{2m} - \mu + i(\gamma_p - \gamma_l) + (g - i\kappa) |\phi|^2 \right] \phi + \zeta$$

$$\phi = \rho e^{i\theta}$$

- effective low frequency dynamics

see also: G. Grinstein et al., PRL (1993)

$$\partial_t \theta = D \nabla^2 \theta + \lambda (\nabla \theta)^2 + \xi$$

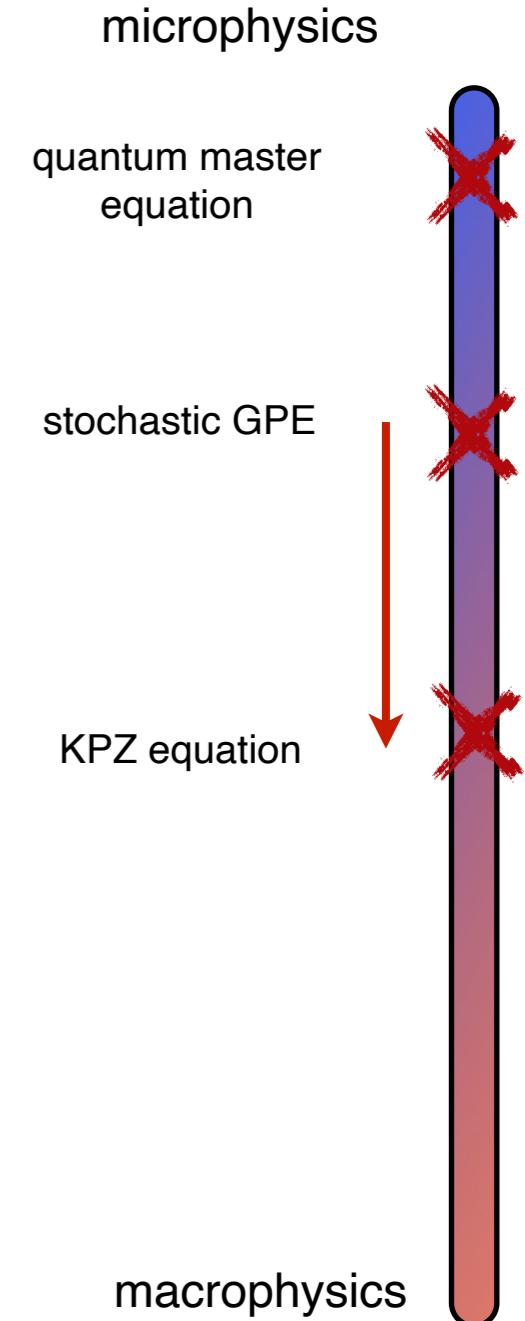
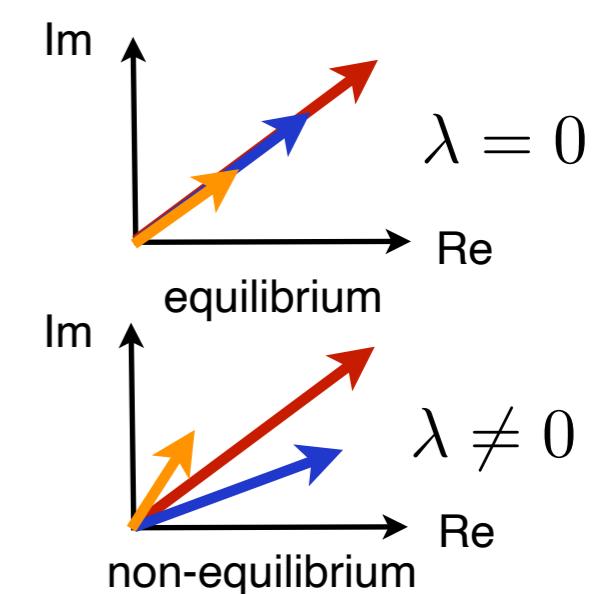
phase diffusion phase nonlinearity

form of the KPZ equation

Markov noise

Kardar, Parisi, Zhang, PRL (1986)

- meaning: non-linear spin wave mode
- nonlinearity: **single-parameter measure of non-equilibrium strength** (ruled out in equilibrium by symmetry)



KPZ equation: A paradigm of non-equilibrium stat mech

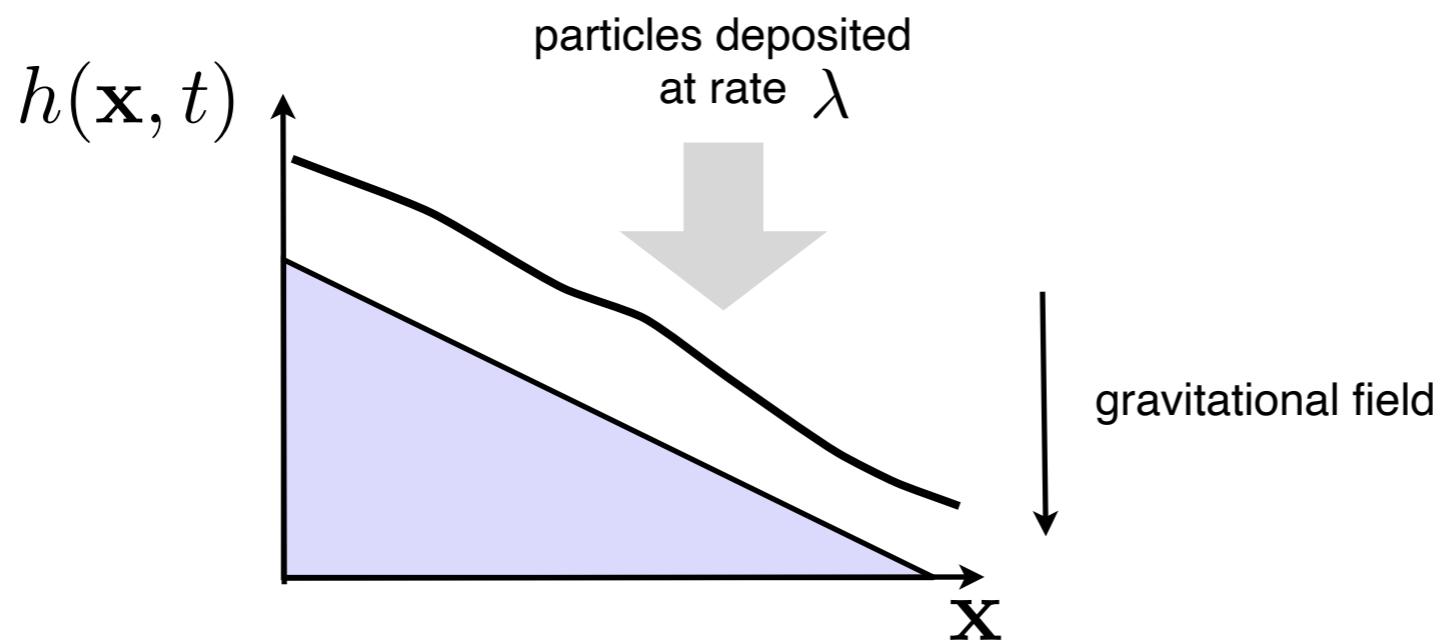
- originally: describes stochastic roughening of surface height $h(\mathbf{x}, t)$

$$\partial_t h = D \nabla^2 h + \lambda (\nabla h)^2 + \xi$$

smoothes nonlinear growth noise

Kardar, Parisi, Zhang, PRL (1986)
Review: Krug, Adv. Phys. (1997)

- simplest physical scenario



KPZ equation: A paradigm of non-equilibrium stat mech

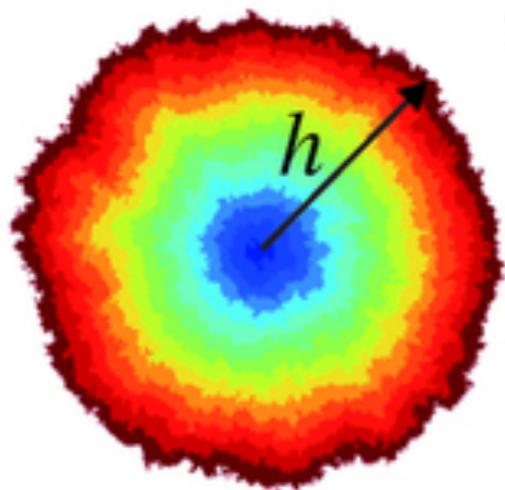
- originally: describes stochastic roughening of surface height $h(\mathbf{x}, t)$

$$\partial_t h = D \nabla^2 h + \lambda (\nabla h)^2 + \xi$$

smoothes nonlinear growth noise

Kardar, Parisi, Zhang, PRL (1986)
Review: Krug, Adv. Phys. (1997)

- multiple physical contexts



defect growth in liquid crystals

drive: electric field

from Takeuchi et al.,
Scientific Reports (2011)

bacterial colony growth

drive: sugar

Wakita et al., J. Phys. Jpn. Soc. (1997)

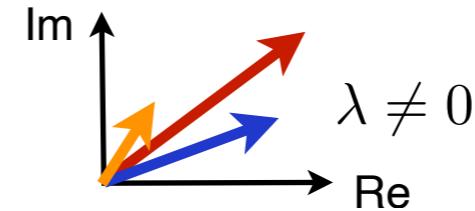
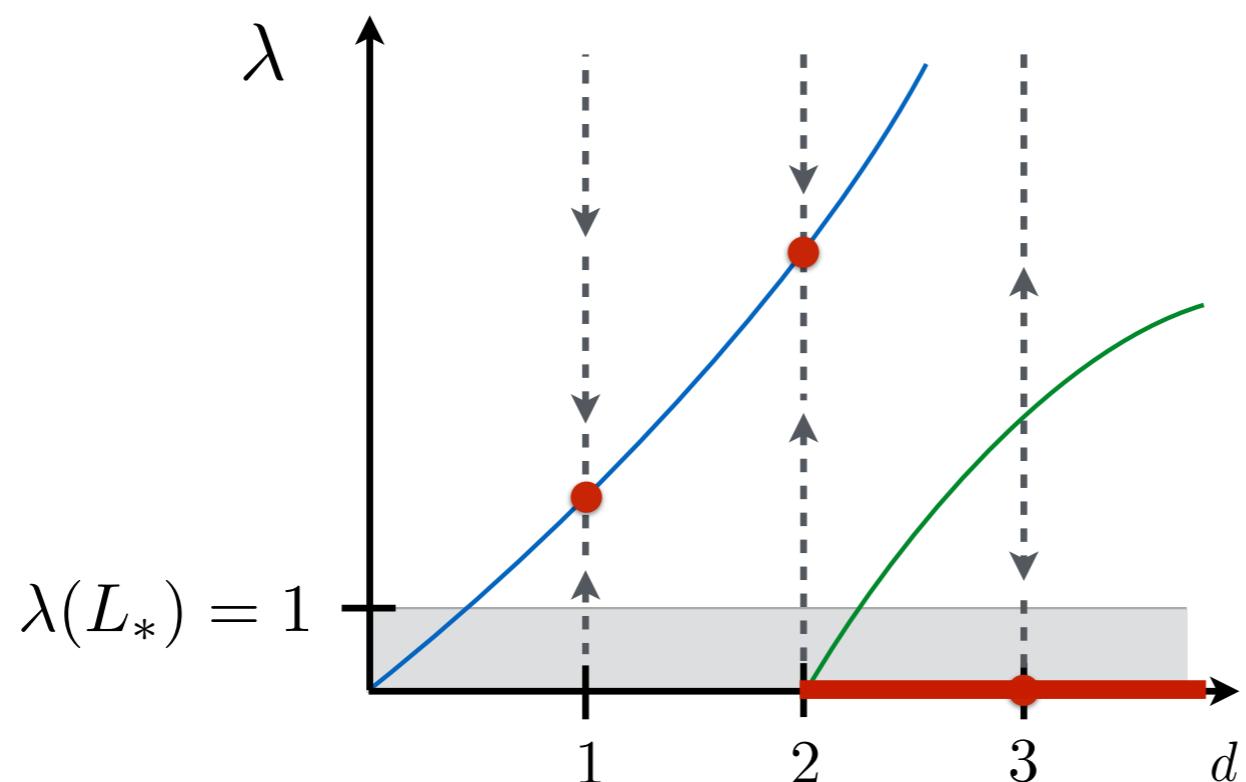
burning paper

drive: oxygen

Maunuksela et al., PRL (1997)

Physical implication I: Smooth KPZ fluctuations

- How important are non-equilibrium conditions at large distance?
- behavior of non-equilibrium strength under coarse graining (RG flow)



- 2D: implication: a length scale is generated

$$L_* = a_0 e^{\frac{16\pi D^3}{\lambda^2 \Delta}}$$

microscopic (healing) length

quantum master equation

stochastic GPE

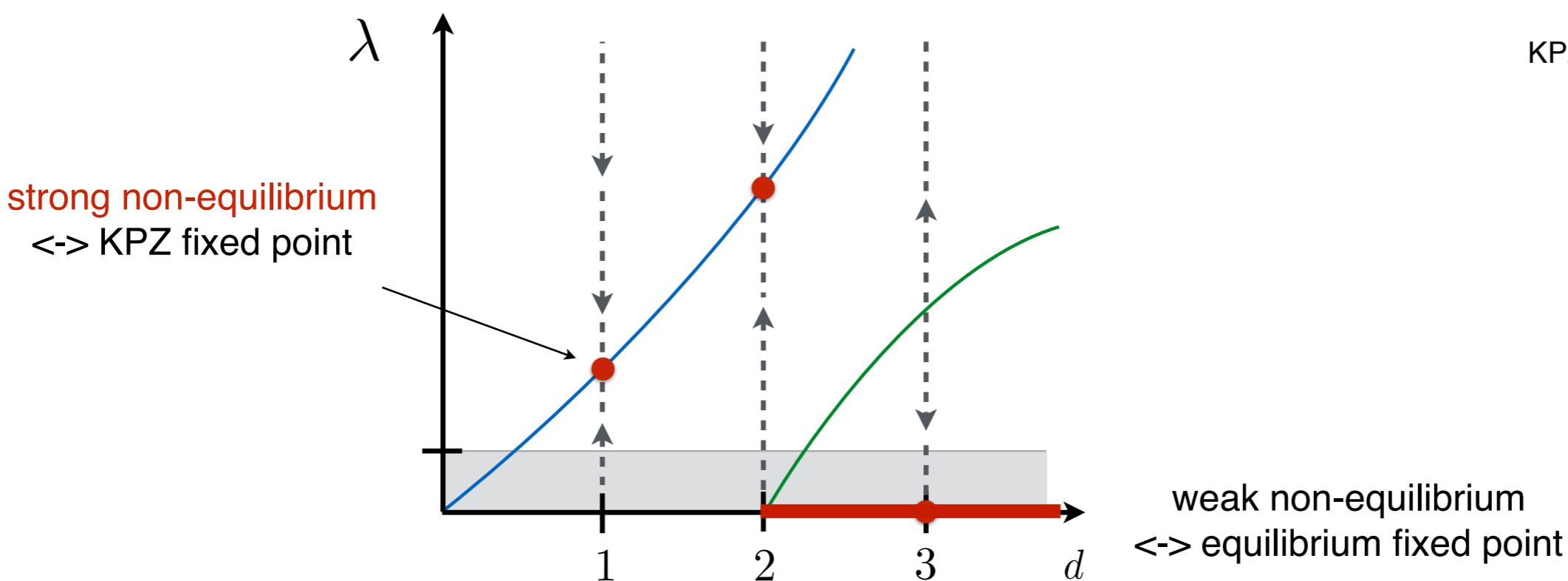
KPZ equation

RG flow

macrophysics

Physical implication I: Smooth KPZ fluctuations

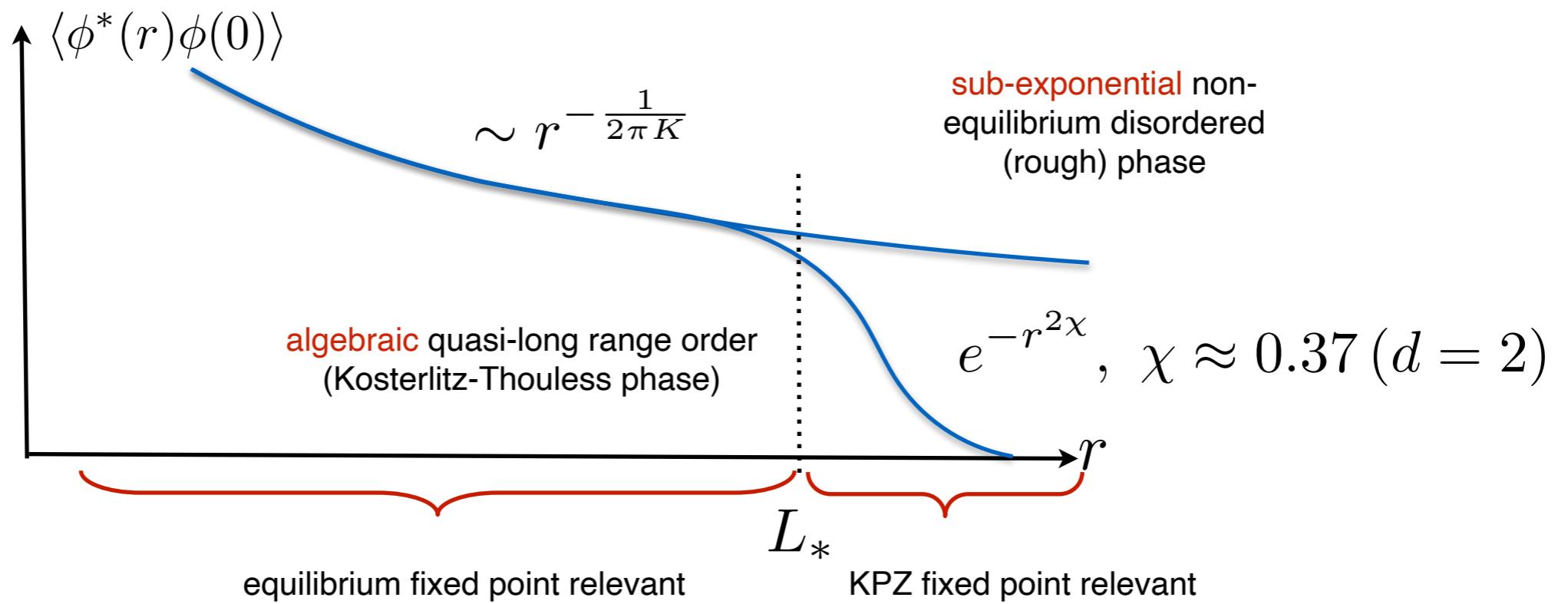
- How important are non-equilibrium conditions at large distance?
- behavior of non-equilibrium strength under coarse graining (RG flow)



- general trend: non-equilibrium effects in systems with soft mode are
 - enhanced in $d = 1, 2$
 - softened in $d = 3$ (below a threshold)

Physical implications I: Absence of algebraic order

- generated length scale distinguishes two regimes: $L_* = a_0 e^{\frac{16\pi D^3}{\lambda^2 \Delta}}$



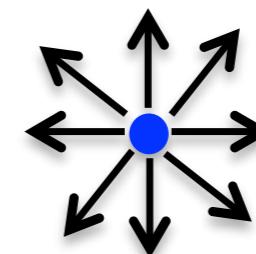
- algebraic order **absent** in any two-dimensional driven open system at the largest distances
- but crossover scale **exponentially large** for small deviations from equilibrium
- observation in 1D systems (temporal correlations) [Bloch group, Paris, private communication](#)

Physical implications II: Non-equilibrium Kosterlitz-Thouless

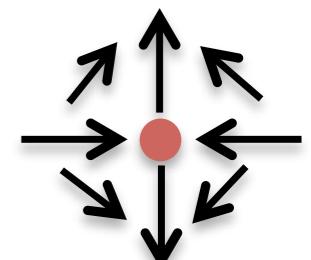
- KPZ equation for phase variable

$$\partial_t \theta = D \nabla^2 \theta + \lambda (\nabla \theta)^2 + \xi$$

- compact nature of phase allows for vortex defects in 2D!
- key ingredient of Kosterlitz-Thouless transition



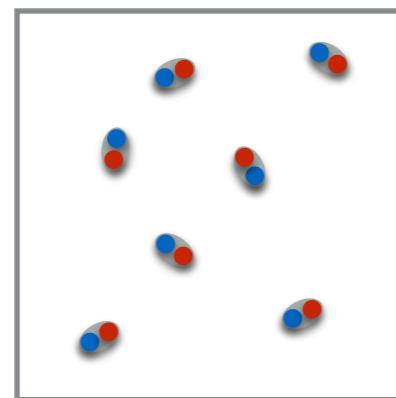
vortex



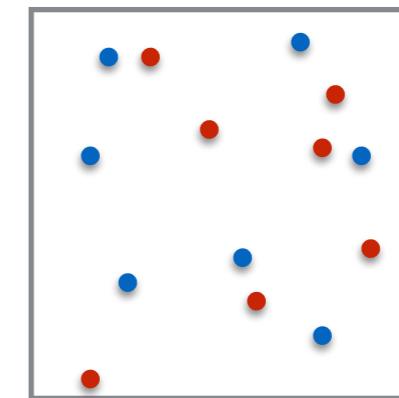
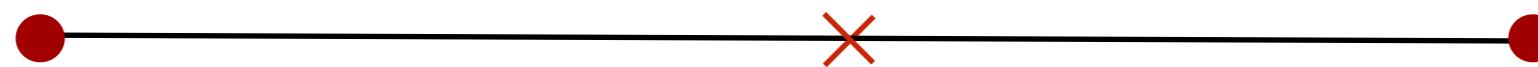
anti-vortex

$$F = E - TS$$

low T:
(binding) energy dominates



high T:
entropy dominates



- so far, compactness of phase variable ignored
- how is this scenario modified in the driven system?

Mini-review: BKT transition

- BKT transition: unbinding of vortex-antivortex pairs
[J. M. Kosterlitz, D. J. Thouless J. Phys. C \(1973\)](#)

- Single vortex picture: balance of energy (deterministic) and entropy (statistic)
 - Low T: vortices and antivortices bound in neutral pairs (irrelevant at long distance)
 - Q: when is it favorable (free energy) minimum to have **unbound** vortices?

- energy of single free vortex:

$$\text{vortex configuration: mapping } (r, \varphi) \rightarrow \theta(r, \varphi) = \varphi \implies \nabla \theta = \frac{1}{r} \hat{e}_\phi \partial_\varphi \theta(r, \varphi) = \frac{1}{r} \hat{e}_\phi$$

$$\implies E = \frac{K}{2} \int d^2x (\nabla \theta)^2 = \pi K \int_a^L dr r \frac{1}{r^2} = \pi K \log(L/a)$$

- entropy: sum all equally probable possibility of placing vortices in 2D plane at minimal distance a:

$$S = -k_B \sum_i p_i \log p_i = k_B \log(L/a)^2$$

- but out of equilibrium: no free energy at hand!
- field theory approach (analogous Kosterlitz' real space RG for vortices)

- free energy $F = E - TS = (\pi K - 2k_B T) \log(L/a)$
- vortex proliferation above KT critical temperature $T_{KT} = \frac{\pi K}{2k_B}$

[J. M. Kosterlitz, J. Phys. C \(1974\)](#)

Field theoretical duality approach: Phase compactness

G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

- wait a second – we ignored a fundamental symmetry of polaritons so far

$$\phi(t, \mathbf{x}) = \rho(t, \mathbf{x}) e^{i\theta(t, \mathbf{x})}$$

- phase compactness = local discrete gauge invariance under

$$\theta_{t, \mathbf{x}} \mapsto \theta_{t, \mathbf{x}} + 2\pi n_{t, \mathbf{x}}$$

- how to teach to the KPZ equation? lattice regularization and discrete stochastic update

$$\theta_{t+\epsilon, \mathbf{x}} = \theta_{t, \mathbf{x}} + \epsilon (\mathcal{L}[\theta]_{t, \mathbf{x}} + \eta_{t, \mathbf{x}}) + 2\pi n_{t, \mathbf{x}}$$

lattice regularized deterministic term

$$Z = \sum_{\{\tilde{n}_{t, \mathbf{x}}\}} \int \mathcal{D}[\theta] e^{iS[\theta, \tilde{n}]}$$

stochastic **difference**
equation

discrete noise **MSR**
functional integral

non-equilibrium lattice
gauge theory (manifestly
gauge invariant)

Duality approach: Emergent electrodynamics

- discrete **gauge invariant** dynamical functional integral

$$S = \sum_{t,\mathbf{x}} \tilde{n}_{t,\mathbf{x}} [-\Delta_t \theta_{t,\mathbf{x}} + \epsilon (\mathcal{L}[\theta]_{t,\mathbf{x}} + i\Delta \tilde{n}_{t,\mathbf{x}})]$$

$$Z = \sum_{\{\tilde{n}_{t,\mathbf{x}}\}} \int \mathcal{D}[\theta] e^{iS[\theta, \tilde{n}]}$$

- dual description in terms of **gauge theory: noisy electrodynamics** in the presence of charges/currents (vortices)

$$Z \propto \sum_{\{n_{vX}, \tilde{n}_{vX}, \mathbf{J}_{vX}, \tilde{\mathbf{J}}_{vX}\}} \int \mathcal{D}[\phi, \tilde{\phi}, \mathbf{A}, \tilde{\mathbf{A}}] e^{iS[\phi, \tilde{\phi}, \mathbf{A}, \tilde{\mathbf{A}}, n_v, \tilde{n}_v, \mathbf{J}_v, \tilde{\mathbf{J}}_v]}$$

vortex density
and current

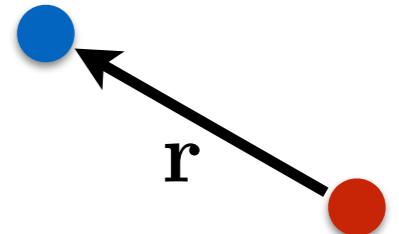
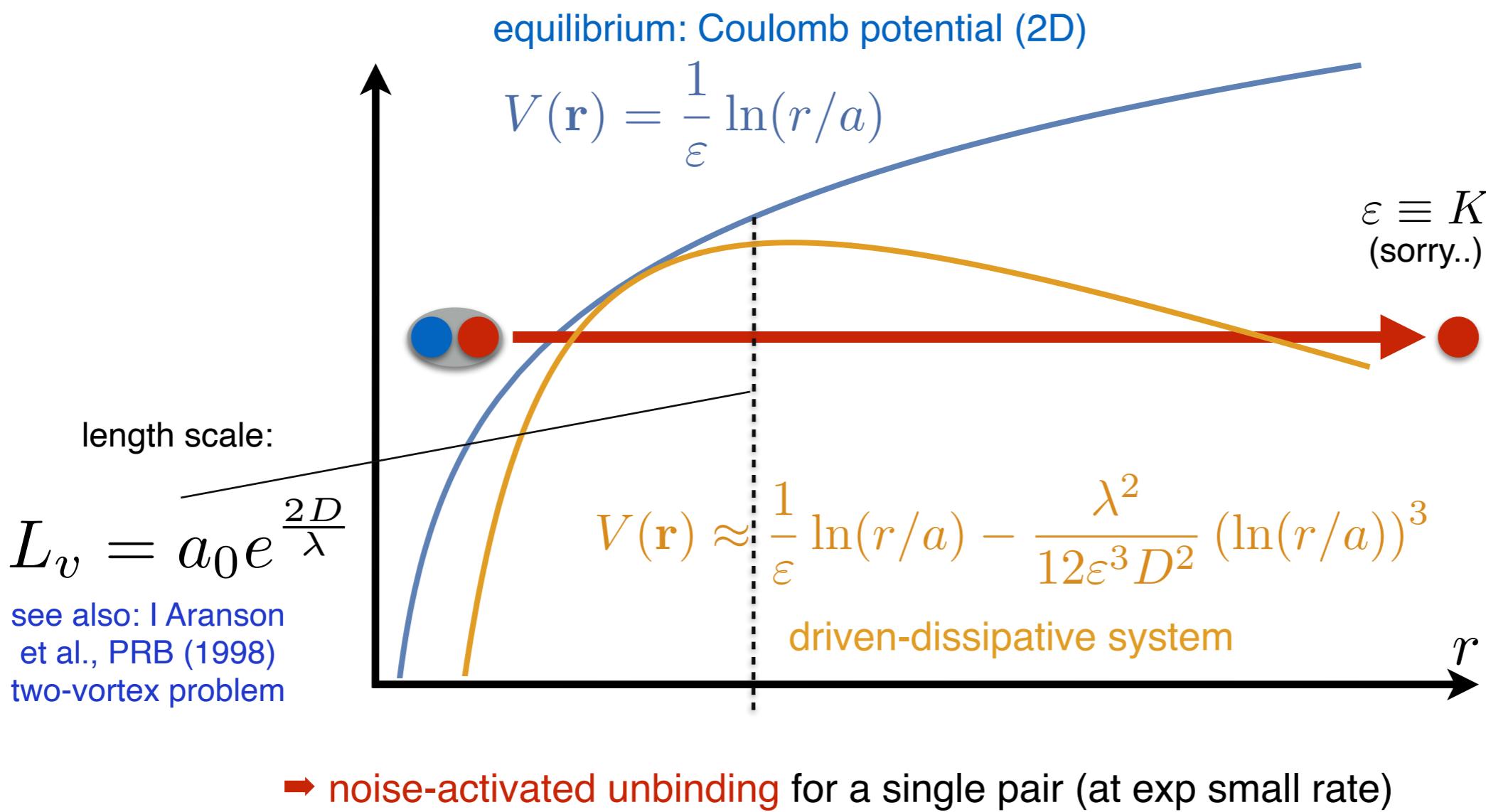
smooth spin wave fluctuations
(equivalent KPZ equation)

- key impact of non-equilibrium conditions: **non-linear electrodynamics**
- integrate out (perturbatively) smooth fluctuations to get effective theory for vortex interactions

Effective theory for a single vortex-antivortex pair

- equation of motion for a single vortex-antivortex pair

$$\frac{d\mathbf{r}}{dt} = -\mu \nabla V(r) + \xi$$



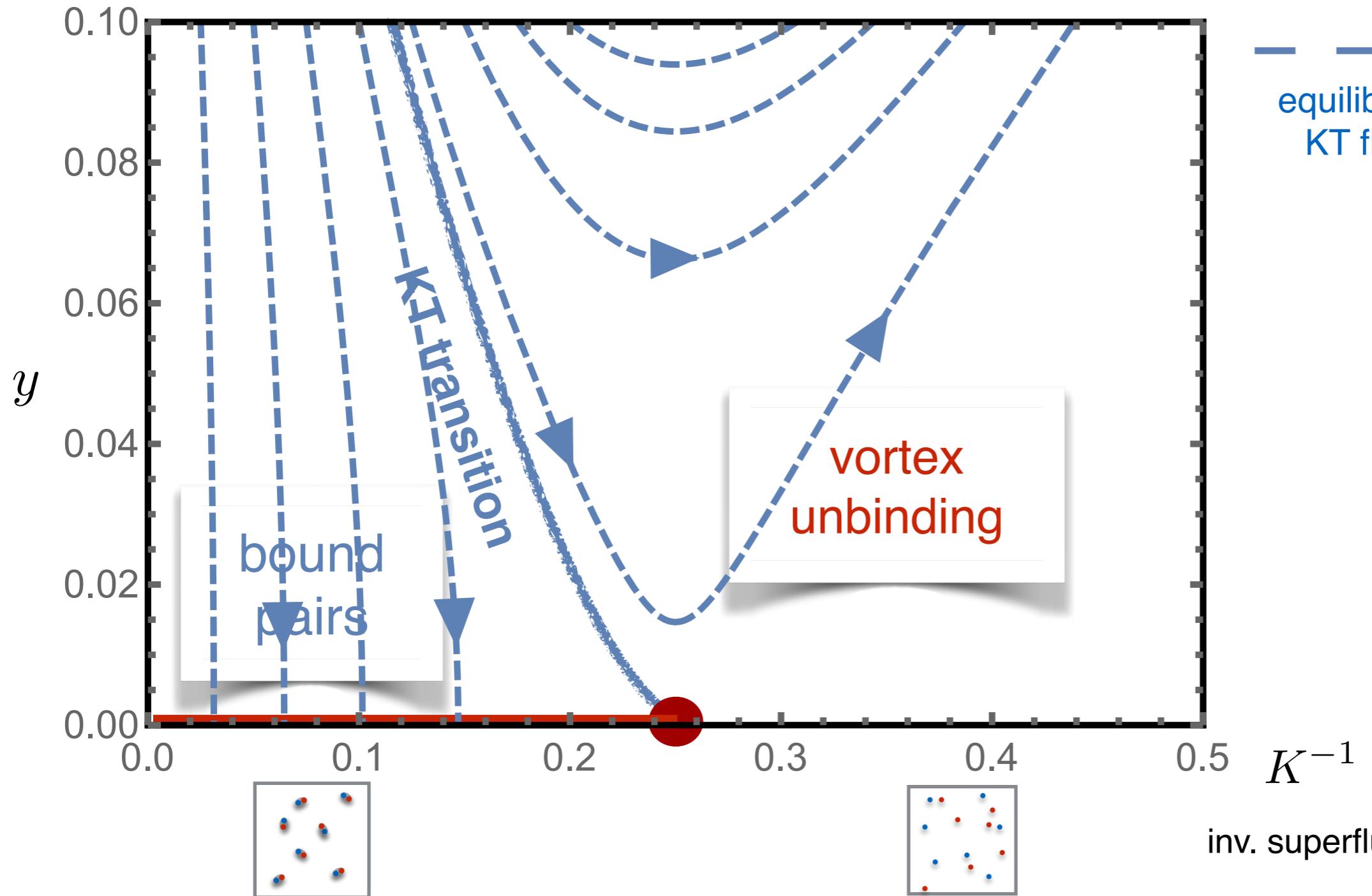
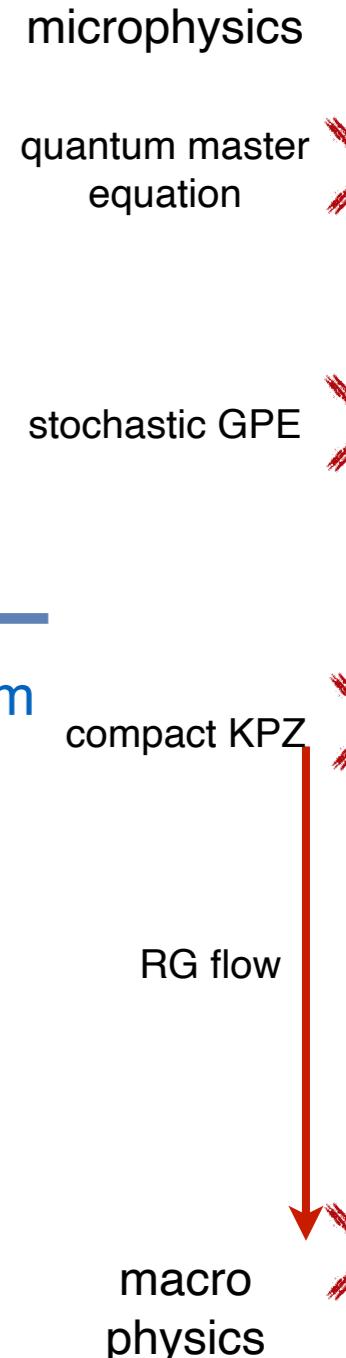
Many pairs: Corrections to Kosterlitz-Thouless flow

$$\frac{dK}{d\ell} = \frac{2\pi^2 y^2}{T}$$

$$\frac{dy}{d\ell} = \left[2 - \frac{1}{2KT} + \frac{\lambda^2}{4K^2 D^2} \left(\frac{1}{4} + \ell \right) \right] y$$

$$\frac{dT}{d\ell} = \frac{\lambda^2 T}{2K^2 D^2} \left(\frac{1}{4} + \ell \right)$$

- parameter y : \sim probability to create single vortex at distance ℓ (flow parameter)

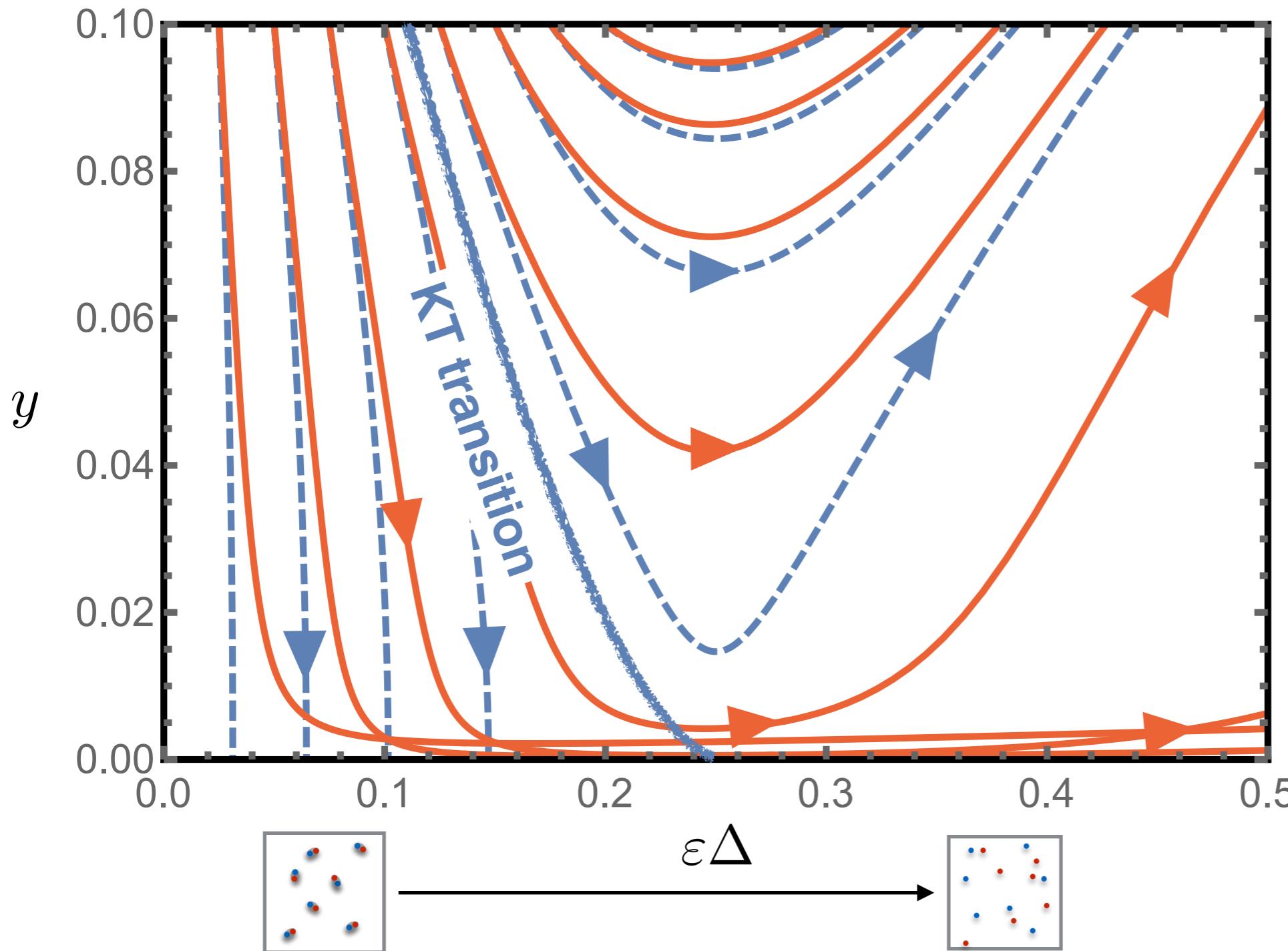
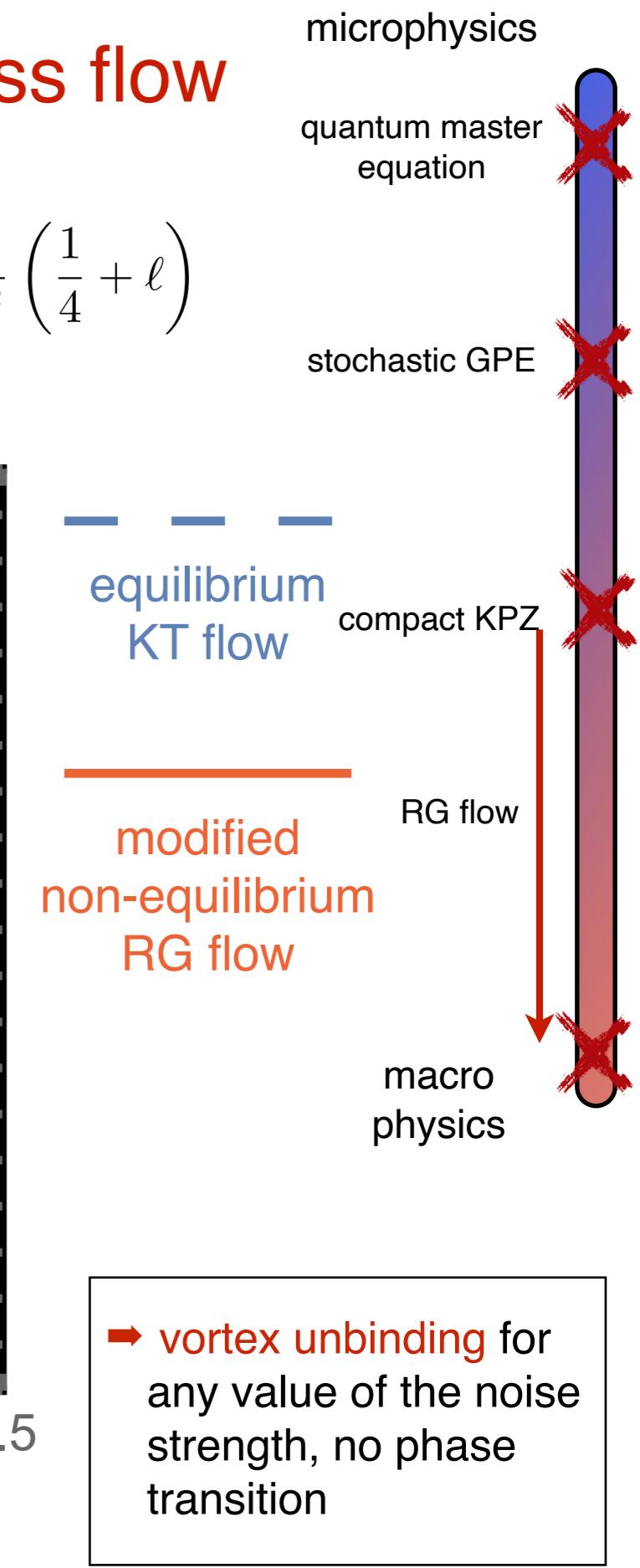


Many pairs: Corrections to Kosterlitz-Thouless flow

$$\frac{dK}{d\ell} = \frac{2\pi^2 y^2}{T}$$

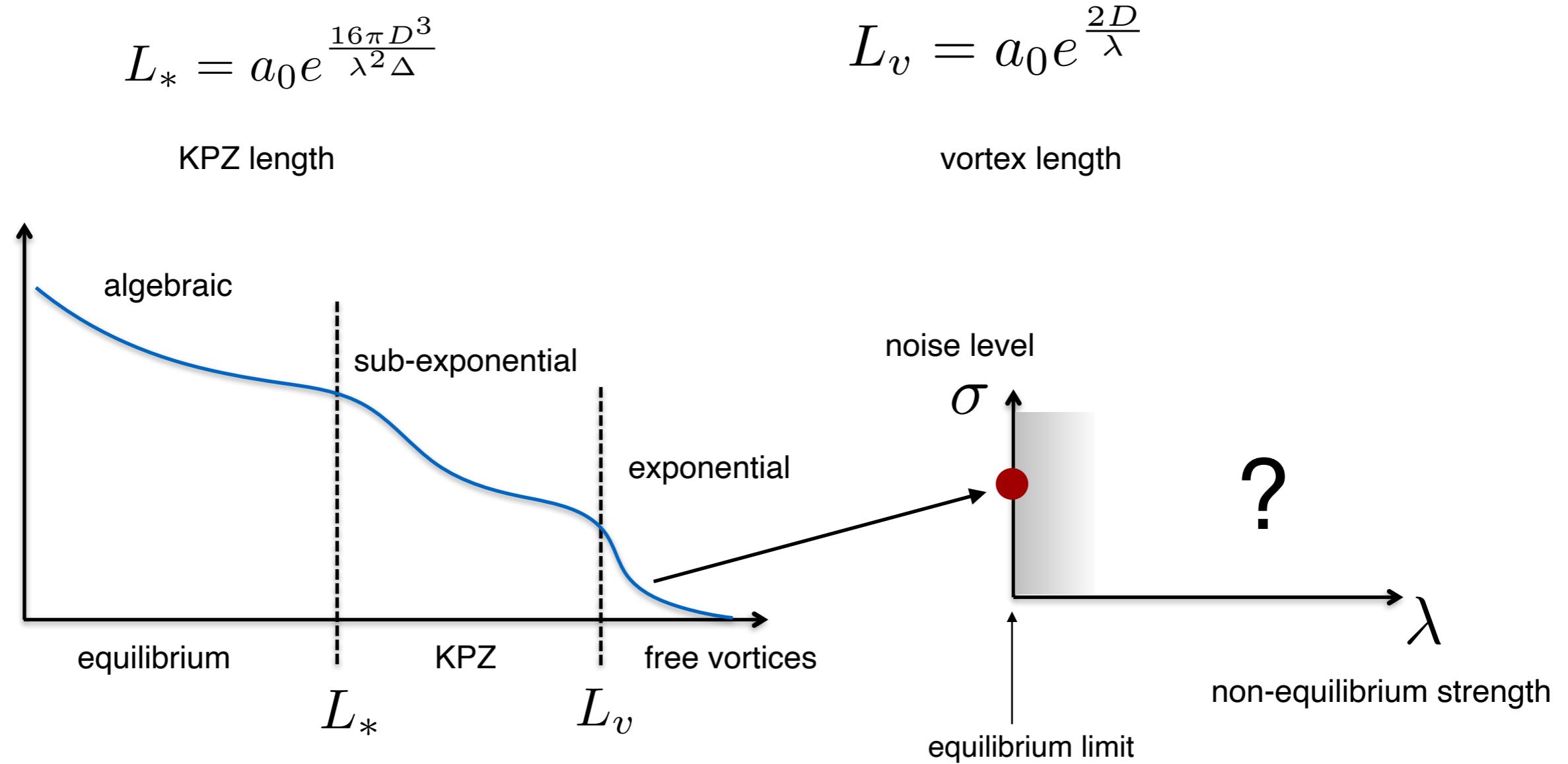
$$\frac{dy}{d\ell} = \left[2 - \frac{1}{2KT} + \frac{\lambda^2}{4K^2 D^2} \left(\frac{1}{4} + \ell \right) \right] y$$

$$\frac{dT}{d\ell} = \frac{\lambda^2 T}{2K^2 D^2} \left(\frac{1}{4} + \ell \right)$$



Competing length scales and suppression of KT

- two emergent length scales in complementary approaches:



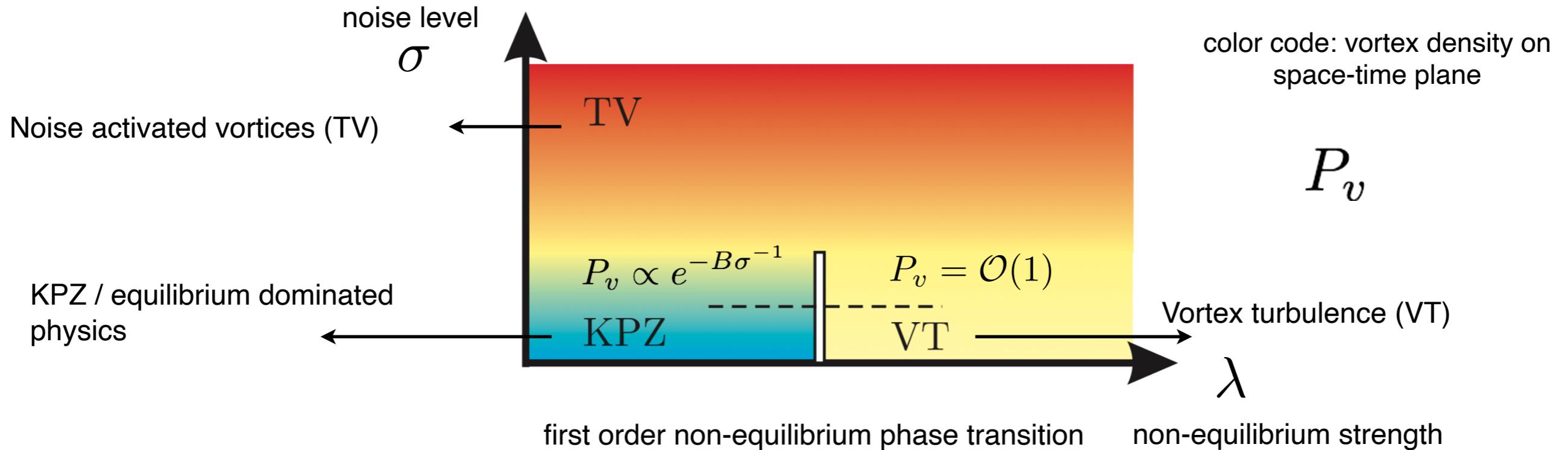
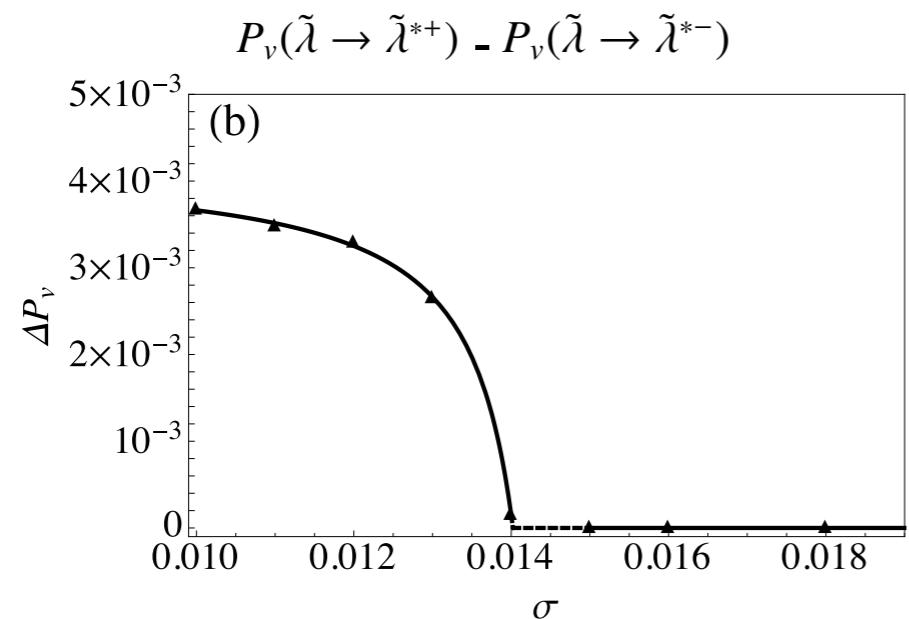
- full numerical confirmation of two-scale scenario in 1D (defects: vortices in (1+1)D space-time)
[L. He, L. Sieberer, SD PRL \(2017\)](#)
- 2D simulations demanding

Kosterlitz-Thouless physics fragile to non-equilibrium perturbation

Strong non-equilibrium: Compact KPZ vortex turbulence

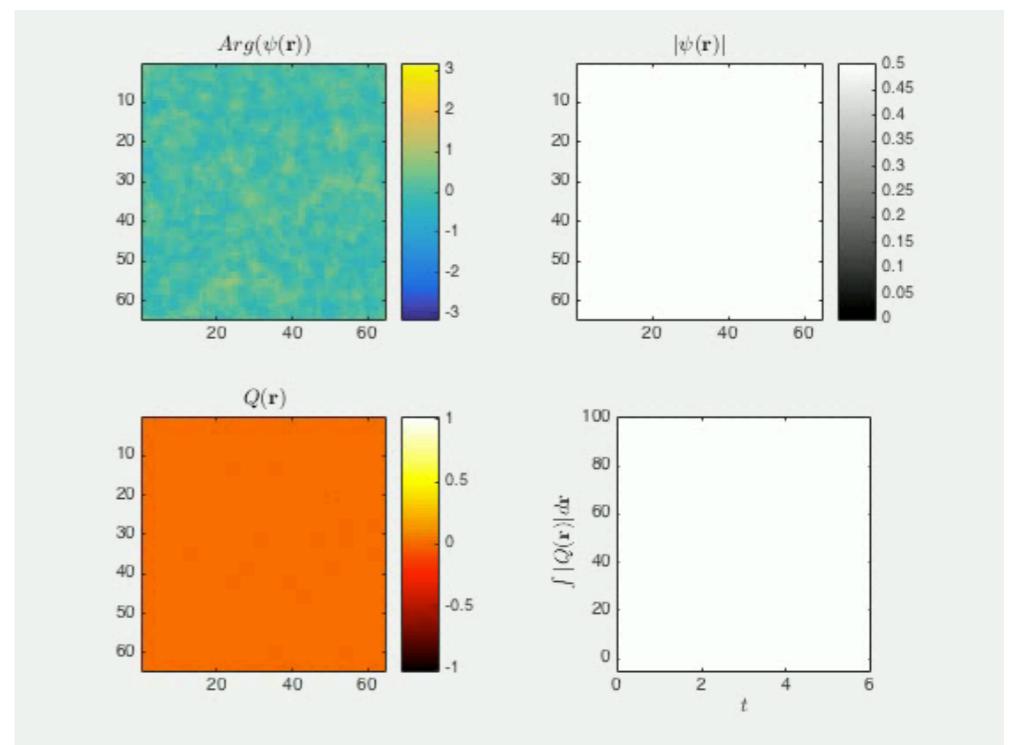
- In search of the phase diagram for XP condensates: 1+1 dimensions

L. He, L. Sieberer, SD PRL (2017)



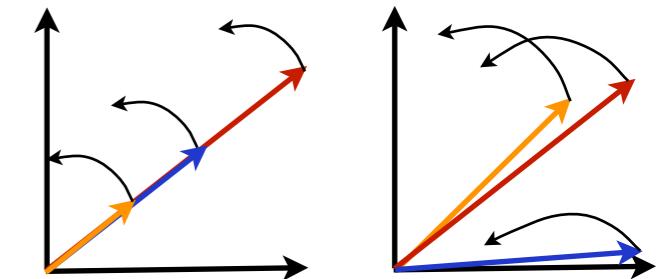
→ deterministic limit: how does the system generate its own noise?

→ KPZ physics announced in 1D XP condensates Bloch group, Paris

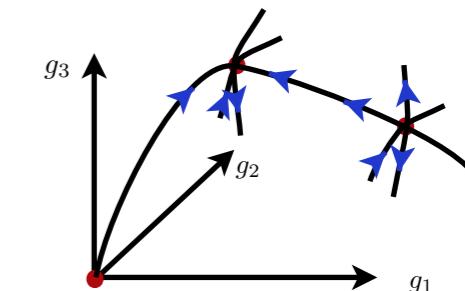


Further instances: Universality in driven open quantum systems

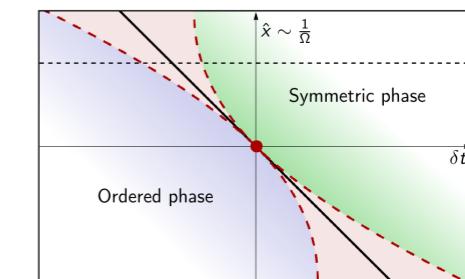
- criticality in non-equilibrium ϕ^4 model Sieberer et al., PRL (2013)
- dynamical fine-structure distinguishing eq. from non-eq.



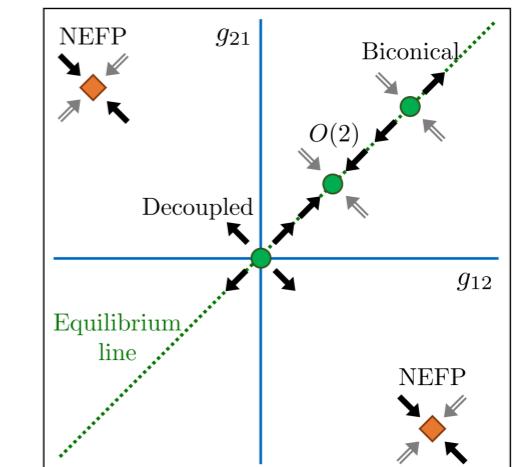
- Markovian quantum criticality Marino, SD, PRL (2016)
- new fixed point in dark state models with quantum scaling



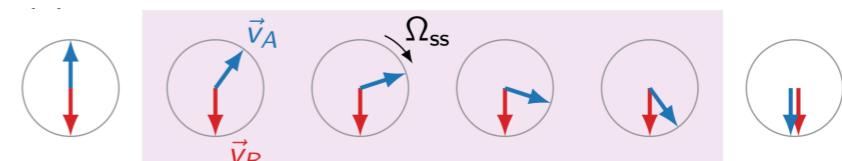
- phase transitions in open Floquet systems Mathey, SD, PRL (2019)
- absence of criticality (dual to Kibble-Zurek mechanism)



- coupled Ising models Young et al., PRX (2020)
- new fixed point for strong non-equilibrium drive

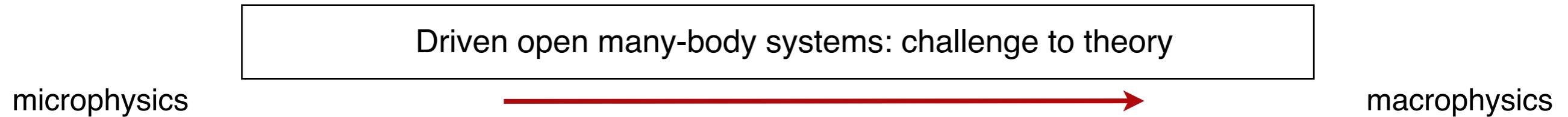


- phase transitions with exceptional points Fruchart et al., Nature (2021)
- universality yet to be discovered!

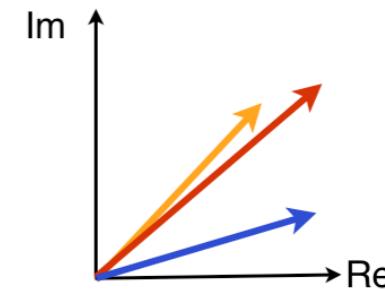
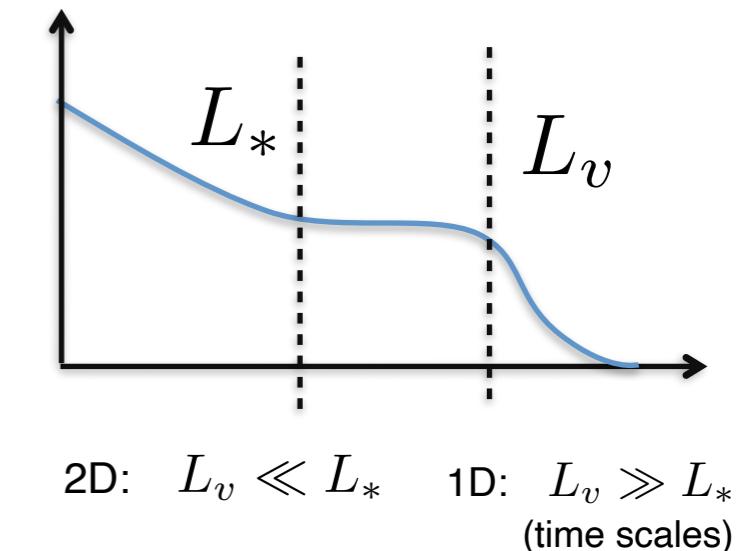


Summary lecture I

Review: L. Sieberer, M. Buchhold, SD, *Keldysh Field Theory for Driven Open Quantum Systems*, Reports on Progress in Physics (2016)



- mapping opens up QFT toolbox, today:
 - symmetries: eq. vs. non-eq.
 - control of IR fluctuations: understanding low dimensional gapless phases out of equilibrium
 - flexible choice of degrees of freedom: KPZ vs. vortices
 - mapping opens up QFT toolbox, next lectures:
 - symmetries: ‘weak’ and ‘strong’
 - responses out of equilibrium: topological gauge theory
 - replica field theory for measurements in many-body systems



Appendix: Fermionic Lindblad-Keldysh functional integral

$$Z = \int \mathcal{D}(\Phi_+, \Phi_-) e^{i(S_M[\Phi_+, \Phi_-])}$$

Fermionic Lindblad-Keldysh functional integral

- We start from the Lindblad equation

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \sum_{\alpha} \gamma_{\alpha} [2\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha} \hat{\rho} - \hat{\rho} \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}] \quad (1)$$

$\hat{H}, \hat{L}_{\alpha}$ are functions of fermionic creation and annihilation operators.

- Let us define monomial of creation and anihilation operators as parity **even (odd)**, if they feature an even (odd) number of creation and annihilation operators. A Hamiltonian is always a sum of even operators (fermion superselection rule). However, the Lindblad operators can be either sums of even or sums of odd operators. In the second case, parity is exchanged with the bath, which is integrated out (the underlying system+bath Hamiltonian must be even). An important example of odd Lindblad operators are those linear in creation and annihilation operators, leading to Gaussian Lindblad dynamics.
- We focus on a single time step, denoting the density matrix after the n -th step by $\hat{\rho}_n = \hat{\rho}(t_n)$ ($t_n = t_i + n\delta_t$):

$$\hat{\rho}_{2,n+1} = (\mathbb{1} + \delta_t \mathcal{L}) [\hat{\rho}_n] + O(\delta_t^2). \quad (2)$$

- We represent the density matrix in the basis of fermionic coherent states. They are defined as eigenstates of the annihilation operator $\hat{a}_i |\psi\rangle = \psi_i |\psi\rangle$, but the eigenvalues ψ_i are not complex number but Grassmann 'numbers', which anticommute with each other (see textbooks, e.g. Altland/Simons). At the time t_n , $\hat{\rho}_n$ can be written as

$$\hat{\rho}_n = \int d\psi_{+,n}^{\dagger} d\psi_{+,n} d\psi_{-,n}^{\dagger} d\psi_{-,n} e^{-\psi_{+,n}^{\dagger} \psi_{+,n} - \psi_{-,n}^{\dagger} \psi_{-,n}} \langle \psi_{+,n} | \rho_n | -\psi_{-,n} \rangle |\psi_{+,n}\rangle \langle -\psi_{-,n}|. \quad (3)$$

- The sign in the coherent states on the $-$ contour is motivated by the goal to construct a Keldysh partition function in terms of a functional integral. To represent this trace, one notes for any operator \hat{O} acting in a fermionic Fock space spanned by states $|n\rangle$ the need to commute left and right fermion coherent states in the last step, according to

$$\text{Tr } \hat{O} = \sum_n \langle n | \hat{O} | n \rangle = \sum_n \int d\psi^{\dagger} d\psi e^{-\psi^{\dagger} \psi} |\psi\rangle \langle \psi| \langle n | \hat{O} | n \rangle = \int d\psi^{\dagger} d\psi e^{-\psi^{\dagger} \psi} \langle \psi | \hat{O} | -\psi \rangle. \quad (4)$$

Fermionic Lindblad-Keldysh functional integral

- Next, the matrix element $\langle \psi_{+,n+1} | \hat{\rho}_{2,n+1} | \psi_{-,n+1} \rangle$, which appears in the coherent state representation of $\hat{\rho}_{2,n+1}$, is expressed in terms of the corresponding matrix element t_n . This requires evaluating

$$\begin{aligned}
& \langle \psi_{+,n+1} | \hat{\mathcal{L}}(|\psi_{+,n}\rangle \langle -\psi_{-,n}|) | -\psi_{-,n+1} \rangle \\
&= -i \left(\langle \psi_{+,n+1} | \hat{H} | \psi_{+,n} \rangle \langle -\psi_{-,n} | -\psi_{-,n+1} \rangle - \langle \psi_{+,n+1} | \psi_{+,n} \rangle \langle -\psi_{-,n} | \hat{H} | -\psi_{-,n+1} \rangle \right) \\
&+ \sum_{\alpha} \gamma_{\alpha} \left[2 \langle \psi_{+,n+1} | \hat{L}_{\alpha} | \psi_{+,n} \rangle \langle -\psi_{-,n} | \hat{L}_{\alpha}^{\dagger} | -\psi_{-,n+1} \rangle \right. \\
&\quad \left. - \left(\langle \psi_{+,n+1} | \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha} | \psi_{+,n} \rangle \langle -\psi_{-,n} | -\psi_{-,n+1} \rangle + \langle \psi_{+,n+1} | \psi_{+,n} \rangle \langle -\psi_{-,n} | \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha} | -\psi_{-,n+1} \rangle \right) \right]. \tag{5}
\end{aligned}$$

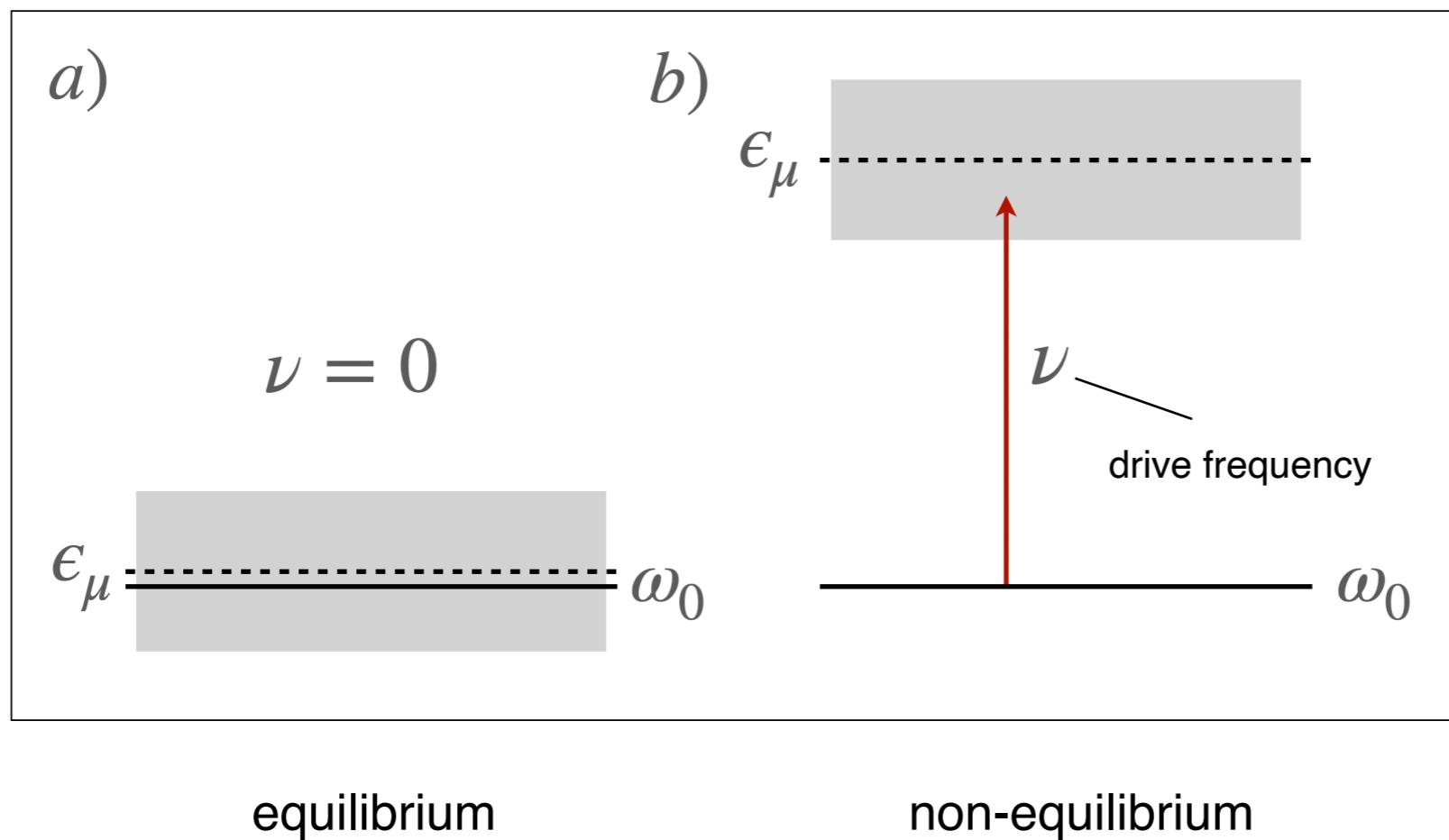
- Discarding subtleties of operator ordering, taking the continuum limit $N \rightarrow \infty, \delta t \rightarrow 0, t_f - t_i = \text{const.}$, and subsequently $t_f - t_i \rightarrow \infty$, by re-exponentiation, this leads to the Keldysh action

$$Z = \int D[\psi_{\pm}^{\dagger}, \psi_{\pm}] e^{iS[\psi_{\pm}]}, \tag{6}$$

$$S[\psi_{\pm}] = \int_{t, \mathbf{x}} \left[\psi_{+}^{\dagger} i \partial_t \psi_{+} - \psi_{-}^{\dagger} i \partial_t \psi_{-} - i \gamma (2 L_{-,\alpha}^{\dagger} L_{+,\alpha} - L_{+,\alpha}^{\dagger} L_{+,\alpha} - L_{-,\alpha}^{\dagger} L_{-,\alpha}) \right]. \tag{7}$$

- Note the order $2L_{-,\alpha}^{\dagger} L_{+,\alpha}$ for the contour coupling ‘jump’ term in the Lindblad Keldysh action, reversed compared to the Lindblad equation (1). This is chosen such that the formula is valid both for parity even and odd Lindblad operators. In the odd case, writing the action in the original ordering of the Lindblad equation, there is a prefactor (-1) in front of the jump term due the minus sign in the coherent states on the $-$ contour. This is compensated by exchanging the order to the form above. As a mnemonic, this way probability conservation is ensured.

Appendix: Equilibrium vs. non-equilibrium dynamics



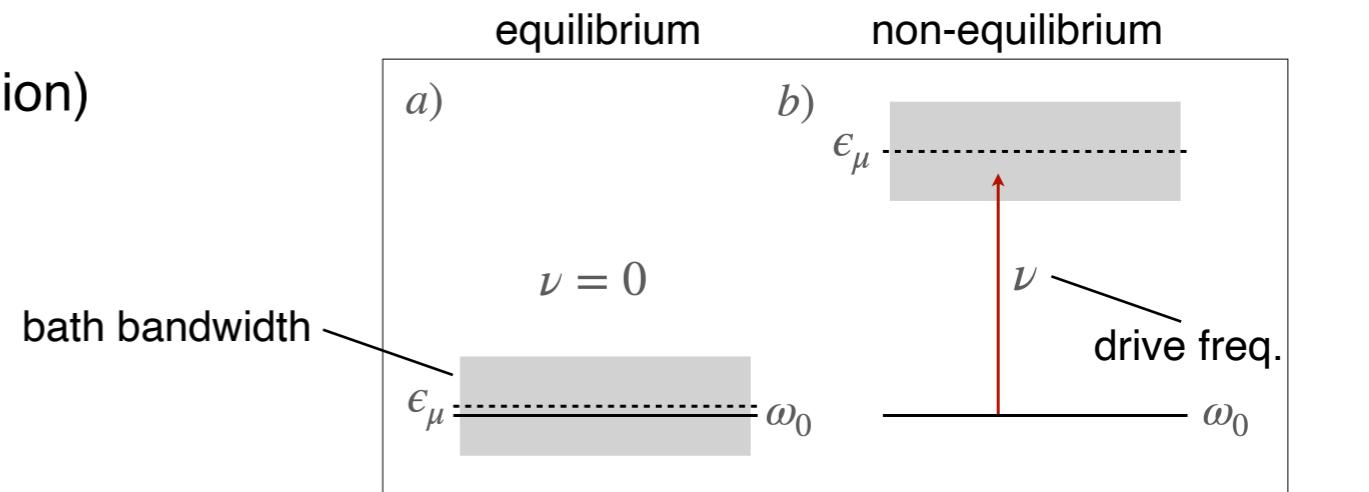
Equilibrium vs. non-equilibrium dynamics

- Single oscillator mode coupled to a bath (e.g. fermion)

$$\hat{H}_t = \hat{H}_0 + \hat{H}_{\text{int}} + \hat{H}_b$$

$$\hat{H}_0 = \omega_0 a^\dagger a \quad \text{system} \quad \hat{H}_b = \sum_{\mu} \epsilon_{\mu} b_{\mu}^\dagger b_{\mu} \quad \text{bath}$$

$$\hat{H}_{\text{int}} = \sum_{\mu} g_{\mu} e^{-i\nu t} a^\dagger b_{\mu} + \text{h. c.} \quad \text{system-bath}$$



$$\nu = 0 \ll g_{\mu} \ll \omega_0 \approx \epsilon_{\mu} \quad g_{\mu} \ll \omega_0 \ll \nu \approx \epsilon_{\mu}$$

- ω_0, ϵ_{μ} are the system and bath frequencies. The bath consists of discrete modes μ and we will take the continuum limit below. It is coupled to the system with real valued strength g_{μ} .
- ν is the driving frequency, which we will compare to the other energy scales below. For the simple drive considered here, we can choose a rotating frame where the system-bath Hamiltonian becomes time independent, and the system frequency is replaced $\omega_0 \rightarrow \delta = \omega_0 - \nu$, with detuning δ .
- However, once the state of the bath is fixed by a choice of bath correlation functions, the drive scale ν cannot be eliminated from the problem (cf. the last line in Eq. (4) below). The generator of time evolution H_t and the state of the (sub-)system then form an inseparable entity and must not be considered in autonomy.
- To directly compare equilibrium and Lindblad limits, we work in the Keldysh functional integral. The action $S_t = S_0 + S_{\text{int}} + S_b$ corresponding to (1) is defined with

$$S_0 = \int dt a^\dagger(t)(i\partial_t - \omega_0)\tau_z a(t), \quad S_{\text{int}} = \int dt \sum_{\mu} g_{\mu} (e^{-i\nu t} a^\dagger(t) \tau_z b_{\mu}(t) + \text{h. c.}), \quad S_b = \int dt \sum_{\mu} b_{\mu}^\dagger(t) G_{\mu}^{-1}(t, t') b_{\mu}(t'). \quad (2)$$

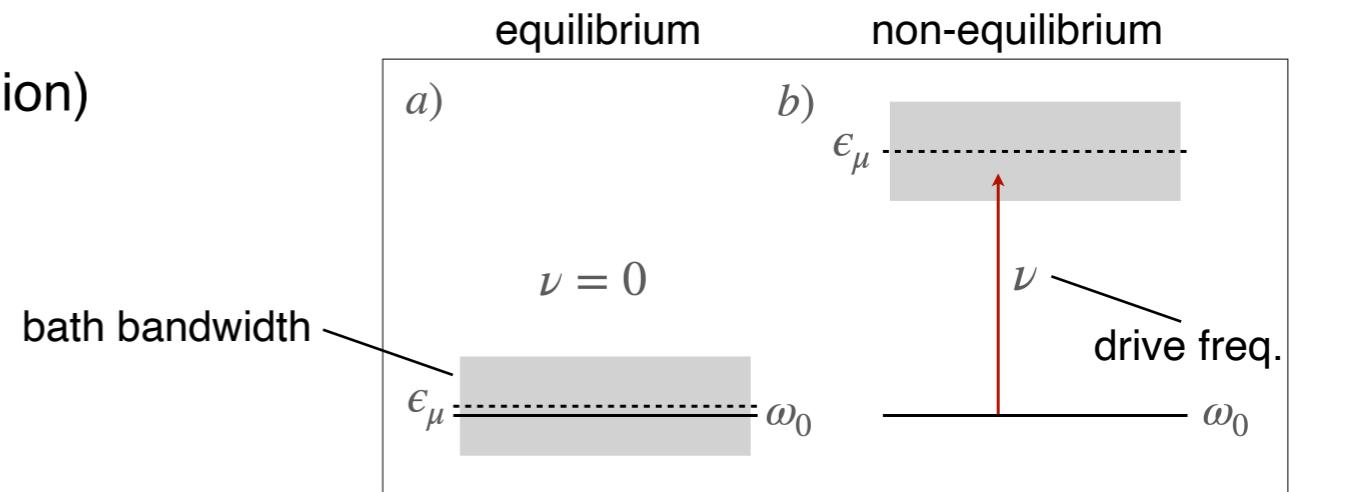
Equilibrium vs. non-equilibrium dynamics

- Single oscillator mode coupled to a bath (e.g. fermion)

$$\hat{H}_t = \hat{H}_0 + \hat{H}_{\text{int}} + \hat{H}_b$$

$$\hat{H}_0 = \omega_0 a^\dagger a \quad \text{system} \quad \hat{H}_b = \sum_{\mu} \epsilon_{\mu} b_{\mu}^\dagger b_{\mu} \quad \text{bath}$$

$$\hat{H}_{\text{int}} = \sum_{\mu} g_{\mu} e^{-i\nu t} a^\dagger b_{\mu} + \text{h. c.} \quad \text{system-bath}$$



$$\nu = 0 \ll g_{\mu} \ll \omega_0 \approx \epsilon_{\mu} \quad g_{\mu} \ll \omega_0 \ll \nu \approx \epsilon_{\mu}$$

- Each bath mode is here assumed to be in a state of thermodynamic equilibrium, described by the Fermi distribution function $n_F(\epsilon) = 1/(e^{-\beta\epsilon} + 1)$ for a mode at energy ϵ and temperature $T = 1/\beta$. The Green's function of the bath obtains by inversion of the G_{μ}^{-1} operator for all μ , which reads

$$G_{\mu}(t - t') = -ie^{-i\epsilon_{\mu}(t-t')} \begin{pmatrix} (1 - n_F(\epsilon_{\mu}))\theta(t - t') - n_F(\epsilon_{\mu})\theta(t' - t) & -n_F(\epsilon_{\mu}) \\ (1 - n_F(\epsilon_{\mu})) & (1 - n_F(\epsilon_{\mu}))\theta(t' - t) - n_F(\epsilon_{\mu})\theta(t - t') \end{pmatrix}. \quad (3)$$

- Integrating out the bath, we obtain

$$\begin{aligned} \Delta S &= \int dt dt' a^\dagger(t) e^{-i\nu(t-t')} B(t - t') a(t') = \int dt d\tau a^\dagger(t) e^{-i\nu\tau} B(\tau) a(t - \tau), \quad B(\tau) = -\sum_{\mu} g_{\mu}^2 \tau_z G_{\mu}(\tau) \tau_z, \\ &= \int \frac{d\omega}{2\pi} a^\dagger(\omega + \nu) B(\omega) a(\omega + \nu) = \int \frac{d\omega}{2\pi} a^\dagger(\omega) B(\omega - \nu) a(\omega), \quad B(\omega) = \int d\tau e^{i\omega\tau} B(\tau). \end{aligned} \quad (4)$$

Limit of thermodynamic equilibrium

- Single oscillator mode coupled to a bath (e.g. fermion)

$$\hat{H}_t = \hat{H}_0 + \hat{H}_{\text{int}} + \hat{H}_b$$

- This is a system, where there is no drive,

$$\nu = 0 \ll g_\mu \ll \omega_0 \approx \epsilon_\mu. \quad (5)$$

- We then find

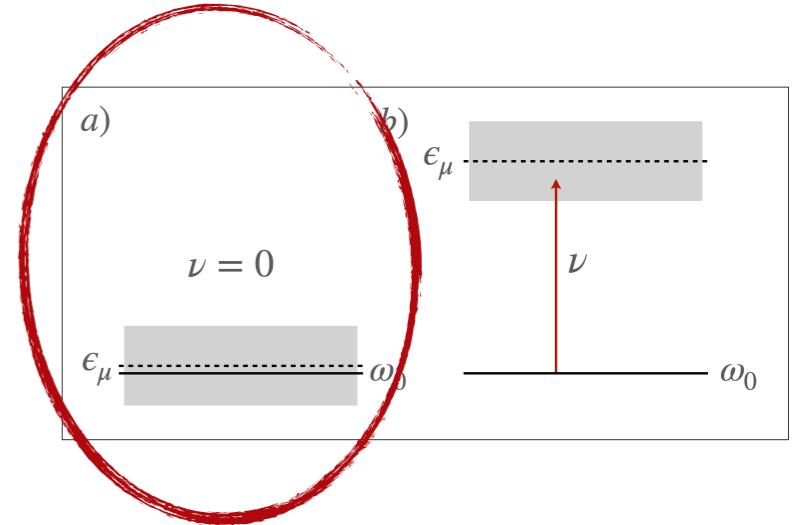
$$B(\omega) = iJ(\omega)\omega \begin{pmatrix} 1 - 2n_F(\omega) & 2n_F(\omega) \\ -2(1 - n_F(\omega)) & 1 - 2n_F(\omega) \end{pmatrix} - \Delta(\omega)\tau_z, \quad J(\omega) = \pi \sum_\mu \frac{g_\mu^2}{\epsilon_\mu} \delta(\epsilon_\mu - \omega), \quad \Delta(\omega) = \sum_\mu g_\mu^2 \frac{\mathcal{P}}{\epsilon_\mu - \omega}, \quad (6)$$

where we have introduced the bath spectral density $J(\omega)$ to parameterize the imaginary part. For many real baths, this function is constant to good approximation (ohmic bath). The bandwidth of the bath enters implicitly by the extent of the μ summation. There is also a frequency dependent Lamb shift $\Delta(\omega)$, which is a Hamiltonian term renormalizing the bare frequency ω_0 .

- The system action then reads (neglecting the Lamb shift)

$$\begin{aligned} S_{\text{eq}} = & \int dt [a_+^\dagger (i\partial_t - \omega_0) a_+ - a_-^\dagger (i\partial_t - \omega_0) a_-] \\ & - i \int \frac{d\omega}{2\pi} J(\omega) \omega \{ (1 - n_F(\omega)) [2a_-^\dagger a_+ - a_+^\dagger a_+ - a_-^\dagger a_-] + n_F(\omega) [2a_- a_+^\dagger - a_+ a_+^\dagger - a_- a_-^\dagger] \}. \end{aligned} \quad (7)$$

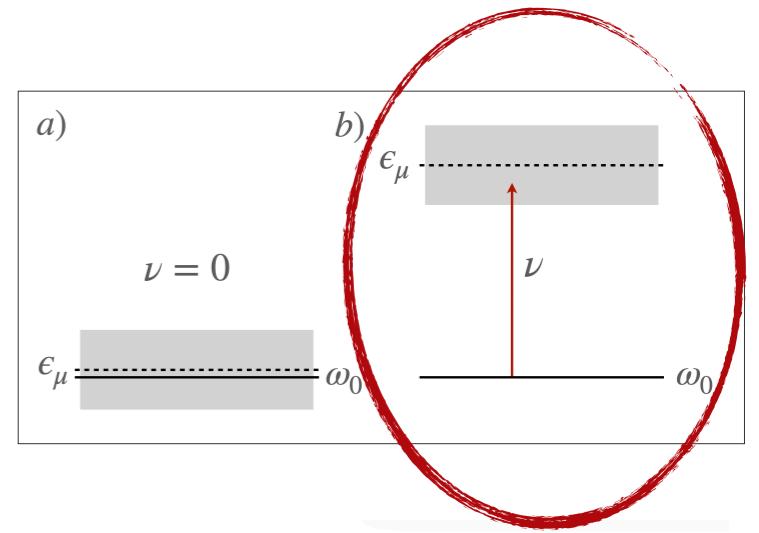
- This action obeys the thermal symmetry \mathcal{T}_β introduced in the main part.



Non-equilibrium (Lindblad) limit

- Single oscillator mode coupled to a bath (e.g. fermion)

$$\hat{H}_t = \hat{H}_0 + \hat{H}_{\text{int}} + \hat{H}_b$$



- Now we consider a driven system, where the drive is the largest scale:

$$g_\mu \ll \omega_0 \ll \nu \approx \epsilon_\mu. \quad (8)$$

- Again we work at weak coupling. The driving frequency is on the order of that of the bath oscillators, i.e. the bath has a sizeable density of states at the driving frequency, such that emission of excitations generated by the drive (carrying energy $\sim \nu$) into it can take place. However, the system itself evolves on much slower time scales ($\sim \omega_0$).
- This justifies the *Markov approximation*, where $a(t - \tau) \approx a(t)$ in the last expression in (4) – strictly speaking, we are working in the limit $\nu^{-1} = 0$. We then obtain

$$\Delta S \approx \int dt a^\dagger(t) \left[\int d\tau B(\tau) e^{i\nu\tau} \right] a(t) = \int dt a^\dagger(t) B(\nu) a(t), \quad (9)$$

where, with the usual conventions for a decay rate κ and a Lamb shift Δ ,

$$B(\nu) = i\kappa \begin{pmatrix} 1 - 2\bar{n} & 2\bar{n} \\ -2(1 - \bar{n}) & 1 - 2\bar{n} \end{pmatrix} - \Delta\tau_z, \quad \kappa = \pi \sum_\mu g_\mu^2 \delta(\epsilon_\mu - \nu), \quad \Delta = \Delta(\nu), \quad \bar{n} = n_F(\nu), \quad (10)$$

- The Lindblad action is local in the time domain and reads, again dropping the Lamb shift

$$S_{\text{neq}} = \int dt [a_+^\dagger (i\partial_t - \omega_0) a_+ - a_-^\dagger (i\partial_t - \omega_0) a_- - i\kappa \{ (1 - \bar{n}) [2a_-^\dagger a_+ - a_+^\dagger a_+] - \bar{n} [2a_- a_+^\dagger - a_+ a_-^\dagger] \}]$$

- This action does not obey the thermal symmetry \mathcal{T}_β .

Boulder Summer School 2021
July 5-30, 2021
Boulder, USA (via zoom)

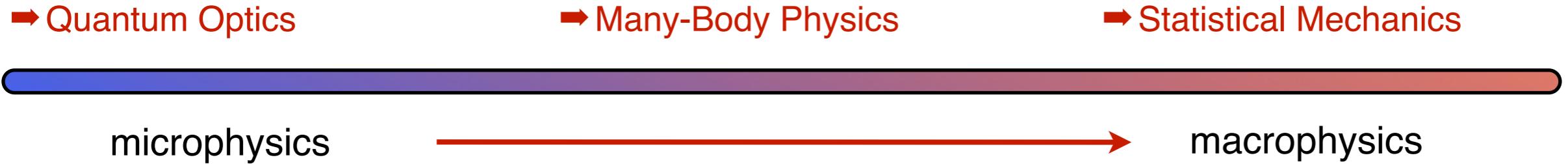
Lecture II: Symmetry and topology in driven open quantum systems

Sebastian Diehl

Institute for Theoretical Physics, University of Cologne

European Research Council
Established by the European Commission

Outline

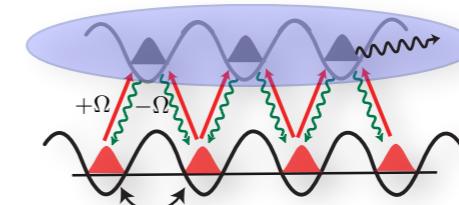


States

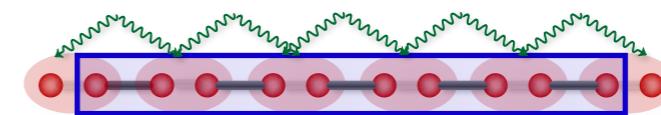
- order by dissipation: quantum mechanical?

- order by dissipation: topological ?

- phase coherence and entanglement for bosons and spins



- fermionic dissipative ‘superconductors’

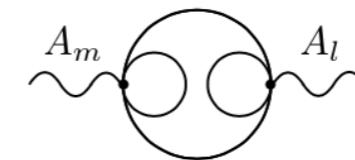


Dynamics

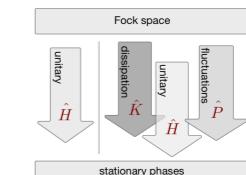
- Topology: Quantized, reversible response on top of a dissipative bulk?

- Symmetry: Classification principles out-of-equilibrium?

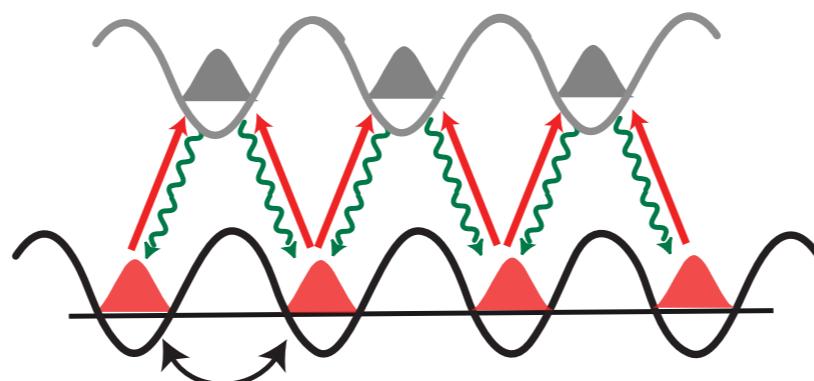
- topological field theory for driven open quantum systems



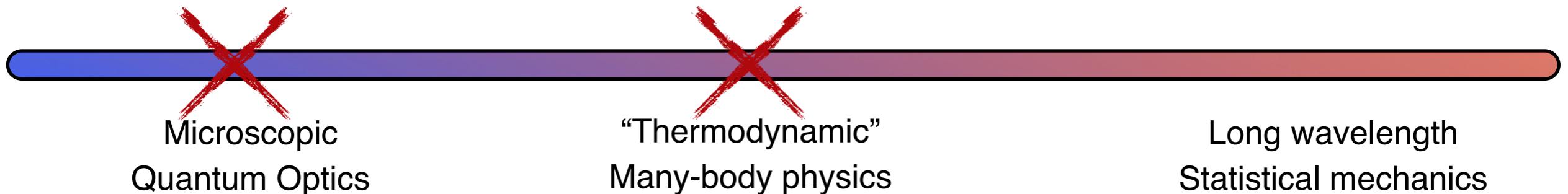
- Fock space bottom-up approach to non-hermitian system classification



Order by dissipation



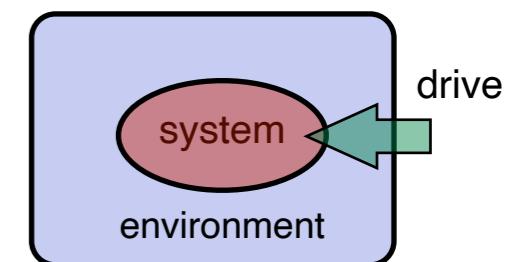
SD, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nat. Phys. (2008);
B. Kraus, H.P. Büchler, SD, A. Micheli, A. Kantian, P. Zoller, PRA (2008);
F. Verstraete, M. Wolf, J. I. Cirac, Nature Physics 5, 633 (2009).



Dark states in Lindblad equations

- quantum master equation

$$\partial_t \rho = -i[H, \rho] + \kappa \sum_i (L_i \rho L_i^\dagger - \frac{1}{2} \{L_i^\dagger L_i, \rho\})$$



- Key concept: **Dark states**

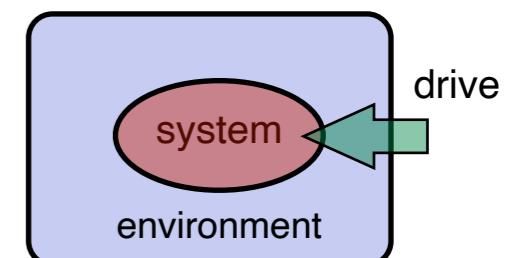
$$L_i |D\rangle = 0 \quad \forall i$$

→ time evolution stops when $\rho = |D\rangle\langle D|^*$

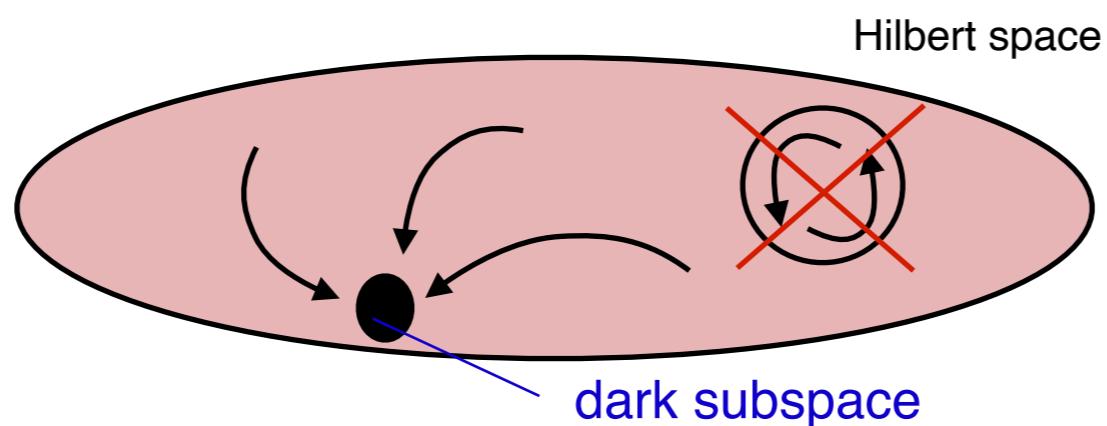
* for e.g. $H|D\rangle = E|D\rangle$

Dark states in Lindblad equations

- quantum master equation



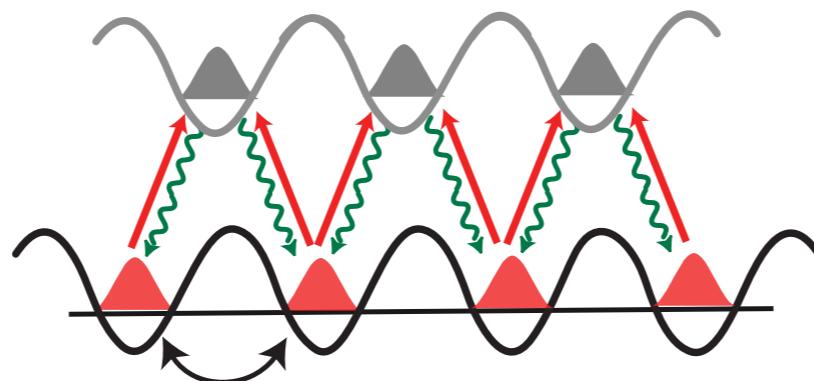
- Interesting situation: **unique** dark state solution



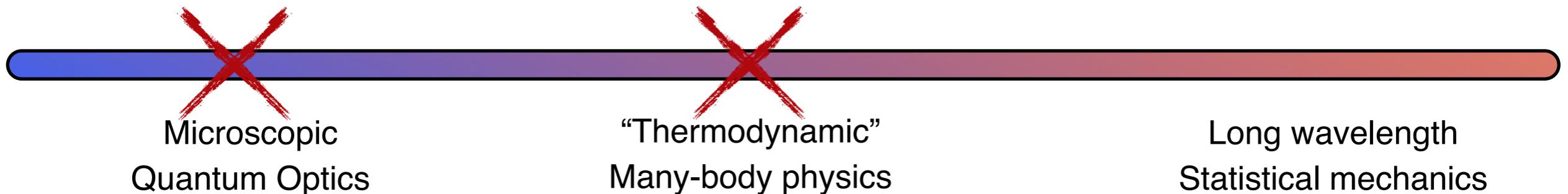
- you can enter, but never leave *
 - directed motion in Hilbert space $\rho \xrightarrow{t \rightarrow \infty} |D\rangle\langle D|$
 - dissipation removes entropy, increases purity

* for e.g. $H|D\rangle = E|D\rangle$

Order by dissipation: Bosons

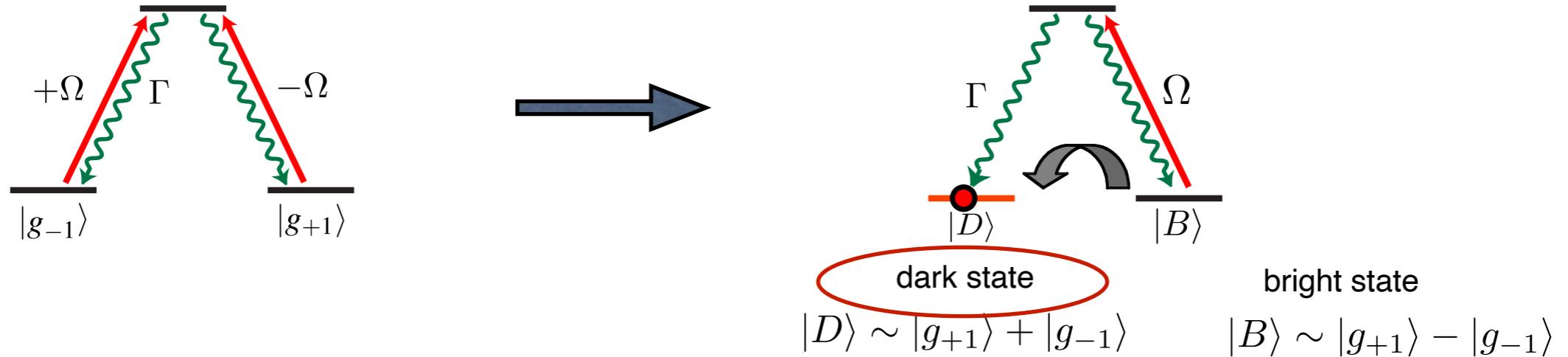


SD, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nat. Phys. (2008);
B. Kraus, H.P. Büchler, SD, A. Micheli, A. Kantian, P. Zoller, PRA (2008);
F. Verstraete, M. Wolf, J. I. Cirac, Nature Physics 5, 633 (2009).



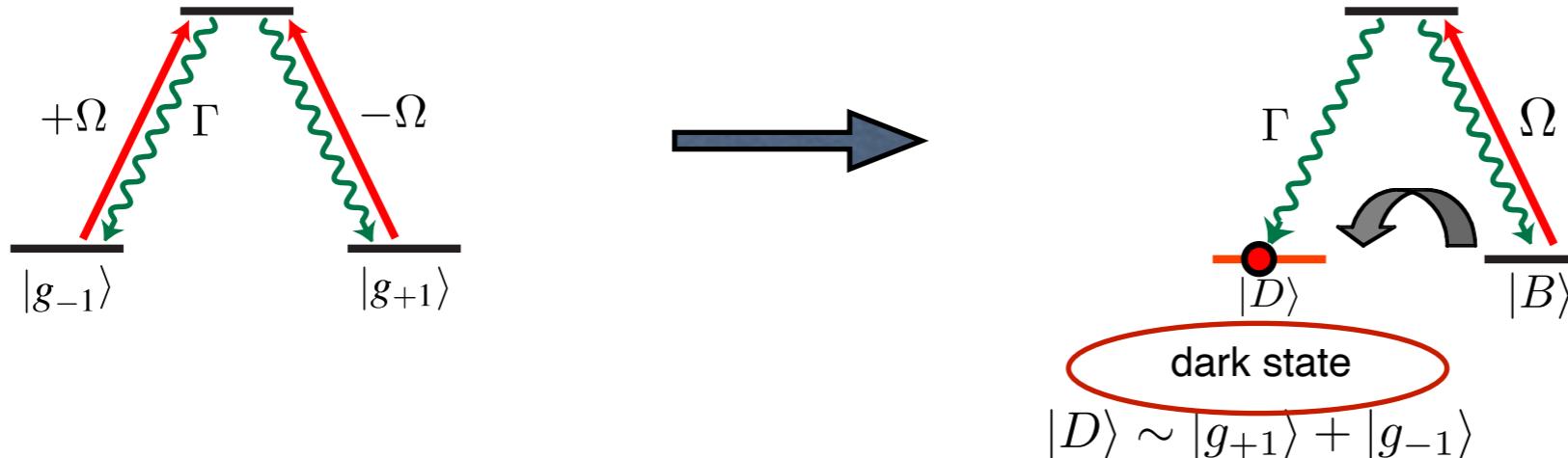
Dark states: From quantum optics to many particles

- optical pumping: three internal (electronic) levels [Aspect et al., PRL \(1998\); Kasevich, Chu, PRL \(1992\)](#)

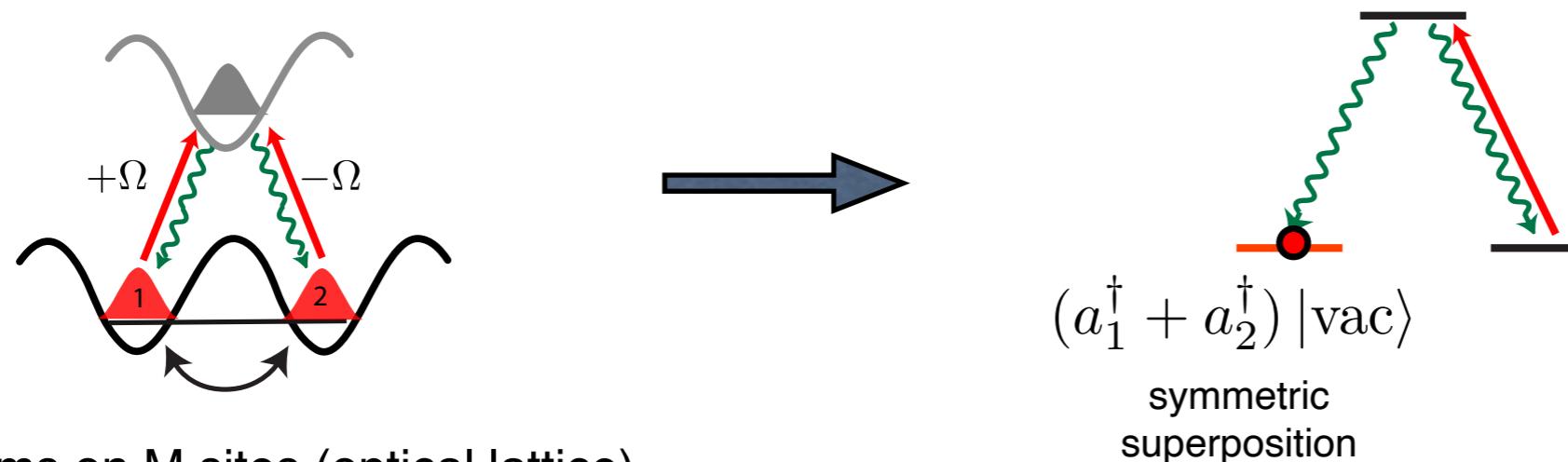


Dark states: From quantum optics to many particles

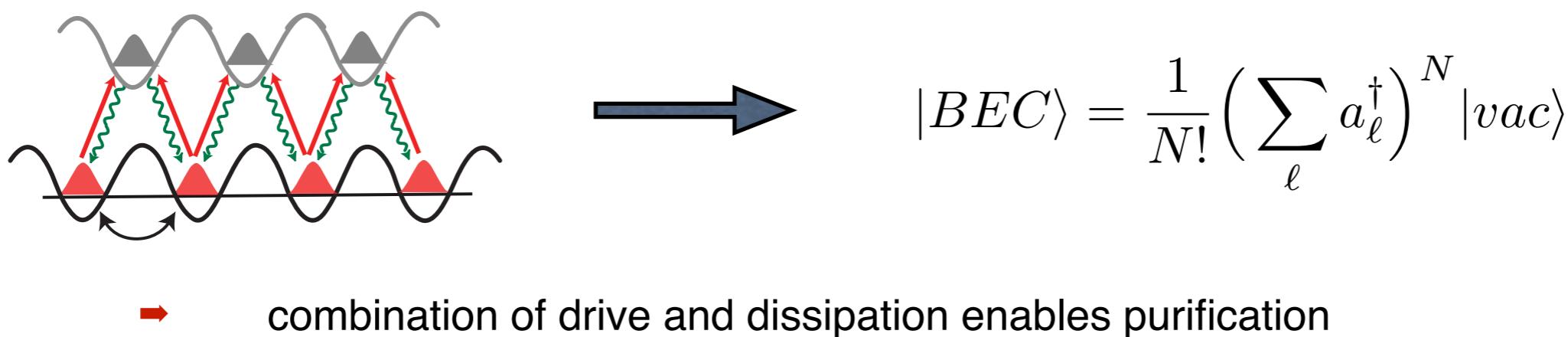
- optical pumping: three internal (electronic) levels Aspect et al., PRL (1998); Kasevich, Chu, PRL (1992)



- 1 atom on 2 sites: external (spatial) degrees of freedom (atoms on optical lattice)



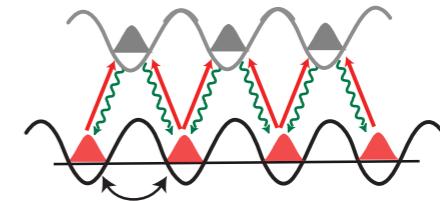
- N atoms on M sites (optical lattice)



Dissipative many-body state preparation

- Lindblad operators for BEC dark state:

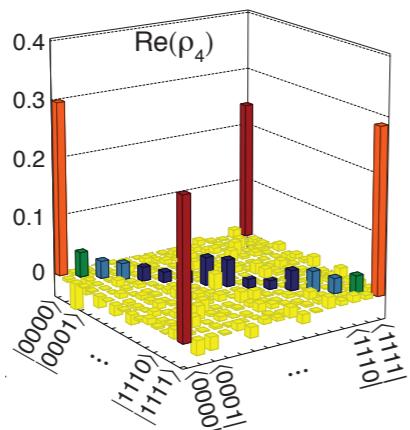
$$L_i = (a_i^\dagger + a_{i+1}^\dagger)(a_i - a_{i+1}) \quad L_i |\text{BEC}\rangle = 0 \quad \forall i$$



- Long range phase coherence/ boson condensation builds up from quasilocal dissipative operations
- uniqueness of stationary solution can be shown
 - Ordered phase reached from arbitrary initial state

$$\implies \rho(t) \rightarrow |\text{BEC}\rangle\langle\text{BEC}| \text{ for } t \rightarrow \infty$$

- experimental realizations: entanglement generation



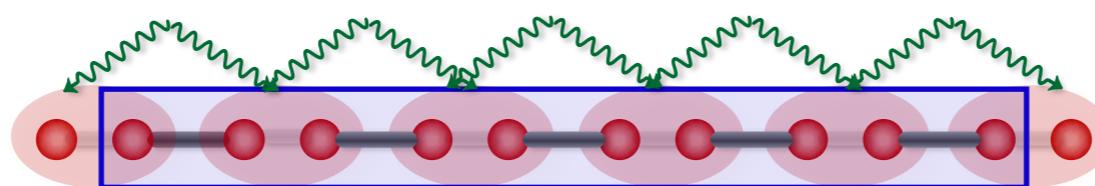
$$\rho = |D\rangle\langle D|$$

$$|D\rangle = \frac{1}{2}(|0000\rangle + |1111\rangle)$$

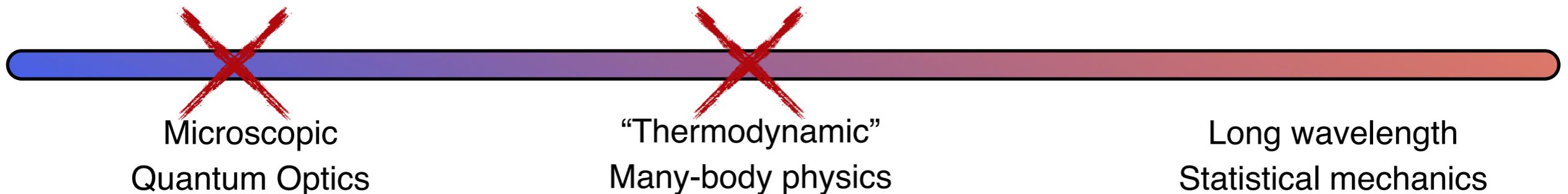
GHZ state of
four ions

Universal open-system quantum simulator,
Schindler et al., Nature (2011) (Blatt group)

Topological order by dissipation: dissipative Kitaev chain



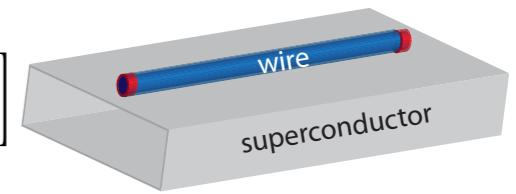
SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. (2011)
Review: C.-E. Bardyn, C. Kraus, E. Rico, M. Baranov, A. Imamoglu, SD, NJP (2013)



Kitaev's quantum wire (Hamiltonian scenario)

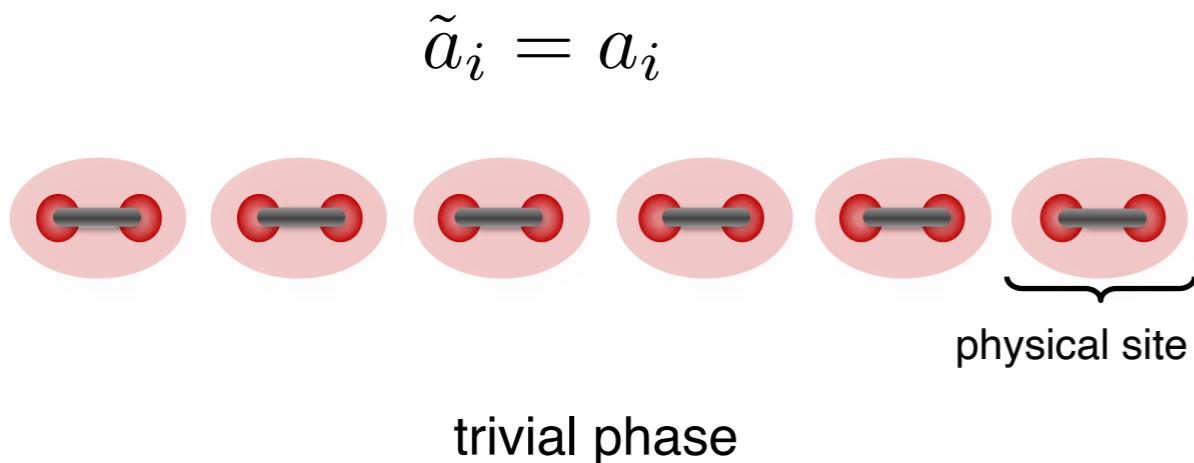
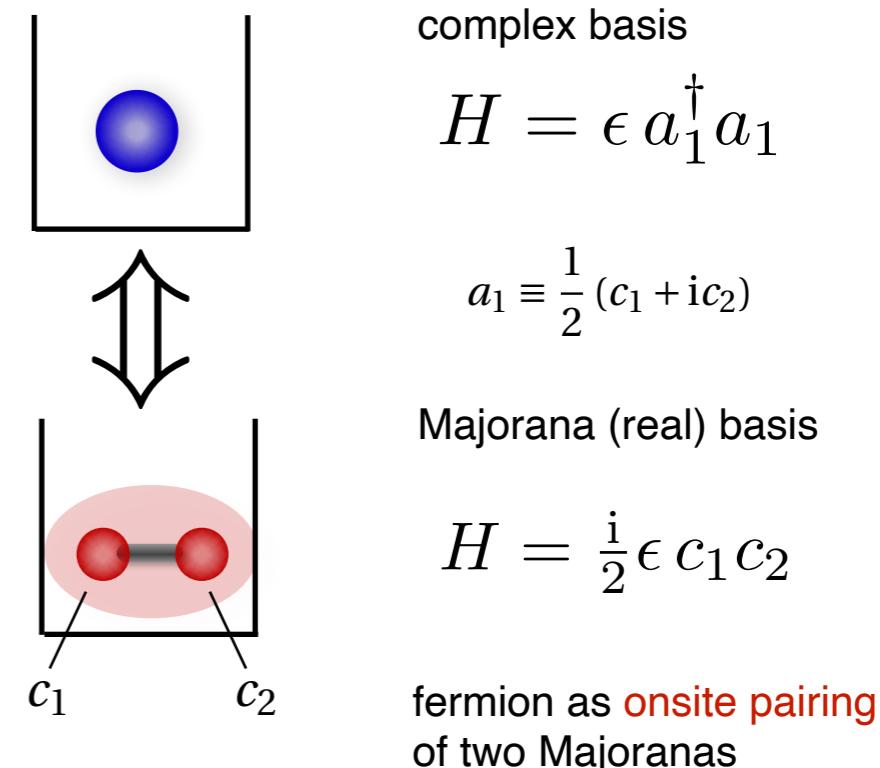
Kitaev, Physics Uspekhi (2001)

- spinless superconducting fermions on a lattice $H = \sum_i \left[-J a_i^\dagger a_{i+1} + \Delta a_i a_{i+1} + \text{h.c.} - \mu \left(a_i^\dagger a_i - \frac{1}{2} \right) \right]$



- Hamiltonian in Bogoliubov basis $H = \sum \epsilon_i \tilde{a}_i^\dagger \tilde{a}_i$ $\tilde{a}_i |G\rangle = 0 \forall i$

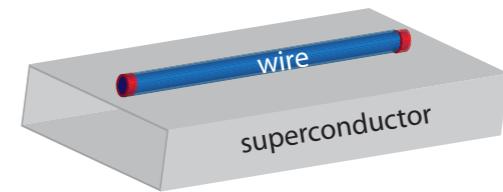
- two inequivalent representatives



Kitaev's quantum wire (Hamiltonian scenario)

Kitaev, Physics Uspekhi (2001)

- spinless superconducting fermions on a lattice



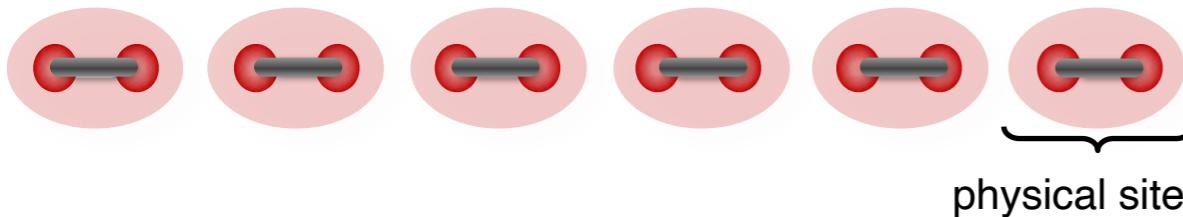
- Hamiltonian in Bogoliubov basis

$$H = \sum \epsilon_i \tilde{a}_i^\dagger \tilde{a}_i$$

$$\tilde{a}_i |G\rangle = 0 \forall i$$

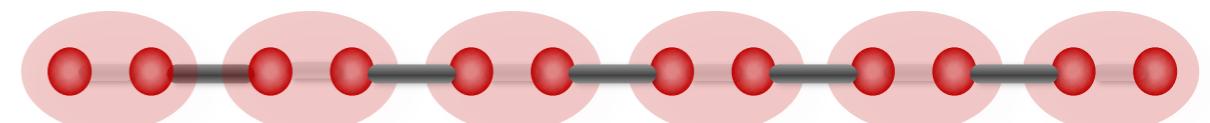
- two inequivalent representatives

$$\tilde{a}_i = a_i$$



trivial phase

$$\tilde{a}_i = \frac{1}{2}(a_{i+1} + a_{i+1}^\dagger - a_i + a_i^\dagger)$$



nontrivial phase

bulk

- BCS p-wave superfluid in ground state
- gapped spectrum

edge

- unpaired zero energy Majorana edge modes, or
- non-local Bogoliubov fermion

Dissipative Majorana quantum wire

- reconsider simplest Lindblad operators and dark state condition:

$$L_i = (a_i^\dagger + a_{i+1}^\dagger)(a_i - a_{i+1}) \equiv C_i^\dagger A_i \quad L_i |D\rangle = 0 \quad \forall i$$

- main insight:

- a_i^\dagger boson creation => $|D\rangle = |\text{BEC}, N\rangle$ fixed number BEC dark state
 - a_i^\dagger fermion creation => $|D\rangle = |\text{BCS}, N\rangle$ fixed number BCS pair dark state

- this example: $|\text{BCS}, N\rangle = |\text{Kitaev}, N\rangle$

- connection to Kitaev model: emergent eigenoperators in thermodynamic limit

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. (2011)

$$L_i = \underbrace{(a_i^\dagger + a_{i+1}^\dagger)}_{\text{fixed number}} \underbrace{(a_i - a_{i+1})}_{\text{long times}} \xrightarrow{\hat{\wedge} \text{“low energies”}} \ell_i = \underbrace{(a_i^\dagger + a_{i+1}^\dagger)}_{\text{fixed number}} + \underbrace{a_i - a_{i+1}}_{\text{fixed phase}}$$

$|D\rangle = |\text{Kitaev}, \theta\rangle$

standard Kitaev p-wave superfluid state

Kitaev's Majorana operators

Mechanism: Fixed number vs. fixed phase Lindblad operators

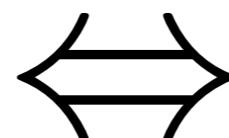
- spinless fermions for simplicity

SD, W. Yi. A. Daley, P. Zoller, PRL (2010)

- fixed number Lindblad operators

- fixed phase Lindblad operators

$$L_i = C_i^\dagger A_i$$



$$\ell_i = C_i^\dagger + r e^{i\theta} A_i$$

- resulting dark state

- resulting dark state (with $\Delta N \sim 1/\sqrt{N}$)

$$|BCS, N\rangle = G^{\dagger N} |\text{vac}\rangle$$

$$|BCS, \theta\rangle = \exp(r e^{i\theta} G^\dagger) |\text{vac}\rangle$$

-
- requirements

translation invariant creation and annihilation part

antisymmetry

$$C_i^\dagger = \sum_j v_{i-j} a_j^\dagger$$

$$C_k^\dagger = v_k a_k^\dagger$$

$$\varphi_k = \frac{v_k}{u_k} = -\varphi_{-k}$$

$$A_i = \sum_j u_{i-j} a_j$$

$$A_k = u_k a_k$$

$$G^\dagger = \sum_k \varphi_k c_{-k}^\dagger c_k^\dagger$$

Spontaneous symmetry breaking and dissipative gap

- use equivalence of fixed number and fixed phase states in thermodynamic limit
- use exact knowledge of stationary state: linearized long time evolution

$$\mathcal{L}[\rho] = \kappa \sum_i [\ell_i \rho \ell_i^\dagger - \frac{1}{2} \{ \ell_i^\dagger \ell_i, \rho \}] = \sum_{\mathbf{q}} \kappa_{\mathbf{q}} [\ell_{\mathbf{q}} \rho \ell_{\mathbf{q}}^\dagger - \frac{1}{2} \{ \ell_{\mathbf{q}}^\dagger \ell_{\mathbf{q}}, \rho \}]$$

- properties

- relation to microscopic operators

$$L_i = C_i^\dagger A_i \xrightarrow[t \rightarrow \infty]{\text{"low energy limit"}}$$

fixed by average particle number

$$\ell_i = C_i^\dagger + r e^{i\theta} A_i$$

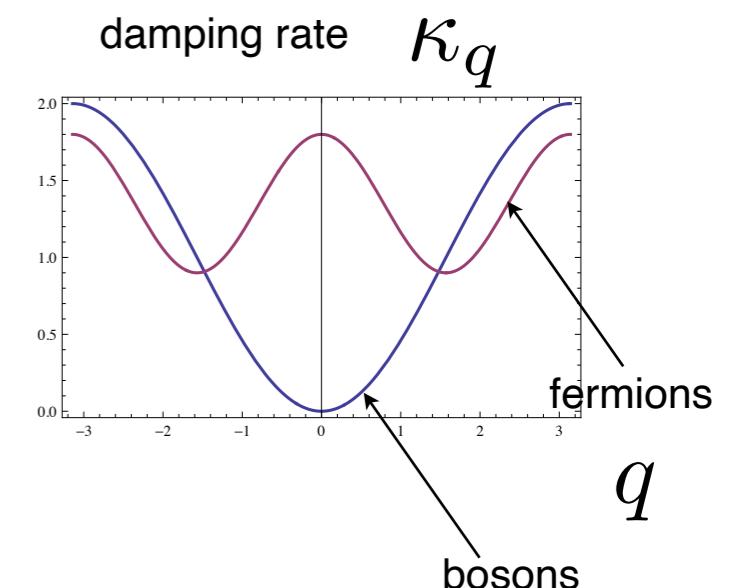
fixed spontaneously

- effective fermionic quasiparticle operators

$$\ell_{\mathbf{q}} |BCS, \theta\rangle = 0 \quad ; \text{ fulfill Dirac algebra} \rightarrow \text{uniqueness}$$

- **dissipative gap** in the damping rate

$$\kappa_{\mathbf{q}} = \kappa_0 \int_{BZ} \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{|u_{\mathbf{k}} v_{\mathbf{k}}|^2}{|u_{\mathbf{k}}|^2 + |\alpha v_{\mathbf{k}}|^2} (|u_{\mathbf{q}}^2| + |v_{\mathbf{q}}^2|) \geq \kappa_0 n$$



- scale generated in long time evolution (single particle sector)
- robustness of prepared state against perturbations

Properties: Topological states induced by dissipation

✓ generic features of topological states

→ **insensitivity** of edge modes against microscopic details in the bulk:

→ disorder

→ non-pure bulk states

$$\{j_i, j_j\} \neq 0$$

• reason:

$$\frac{d}{dt} \rho = -i[A, \rho] + \sum_{a,b} |a\rangle \dot{\rho}_{ab} \langle b|,$$

adiabatic
connection

$$A = i\dot{U}^\dagger U$$

universal

$$\dot{\rho}_{ab} \equiv \langle a(t) | \partial_t \rho | b(t) \rangle$$

phys. evolution

✓ braiding of dissipative

Majoranas by adiabatically changing \mathcal{L}

cf. work by Avron, Fraas, Graf, J. Stat. Phys. (2012);
Avron, Fraas, Graf, Kenneth, New J. Phys. (2010)

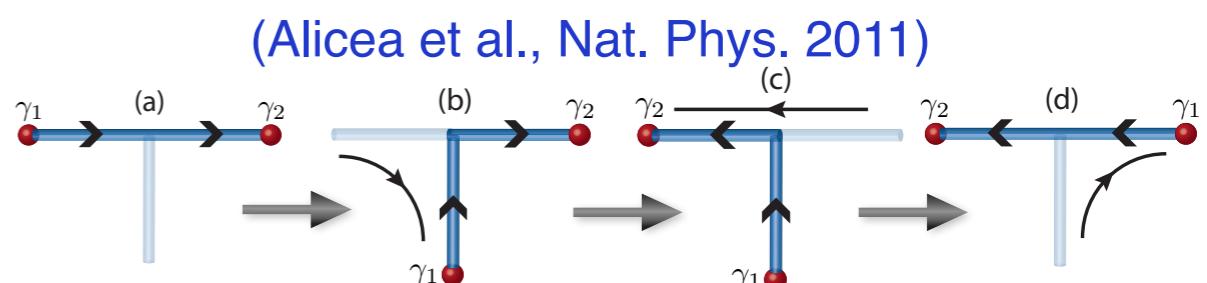
• implication:

→ **dissipative braiding** in networks

→ **non-abelian statistics**

✓ topological origin

→ **topological invariant** of the bulk (for mixed, dissipative systems)

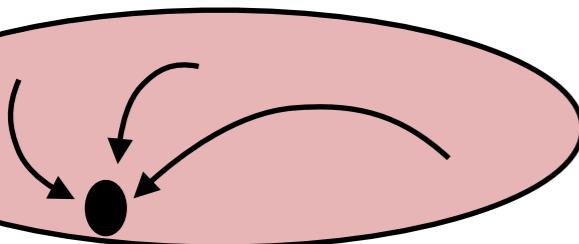


Topological field theory far from equilibrium

F. Tonielli, J. Budich, A. Altland, SD
PRL (2020)

microphysics

macrophysics



$$\frac{\theta}{4\pi} \int A_+ dA_+ - A_- dA_-$$

Motivation: Quantum states vs. quantum dynamics

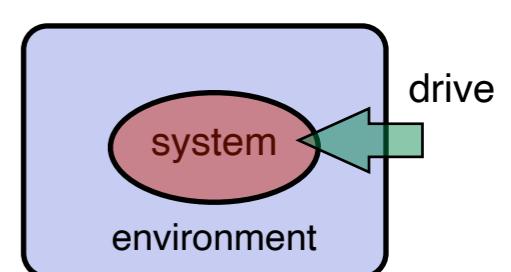
- quite general quantum evolution:

general quantum evolution:

Lindblad

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \kappa \sum_{\alpha} (\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \frac{1}{2} \{ \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}, \hat{\rho} \})$$

} coherent evolution
 } driven-dissipative evolution
 ↑



- simple example: damped harmonic oscillator (quantum cavity)

$$\begin{array}{ccc}
H = \omega_0 a^\dagger a & & L = a \\
\downarrow \kappa = 0 & & \downarrow \omega_0 = 0 \\
\text{evolution} & \partial_t \rho = -i[H, \rho] & \partial_t \rho = \kappa(a \rho a^\dagger - \frac{1}{2}\{a^\dagger a, \rho\})
\end{array}$$

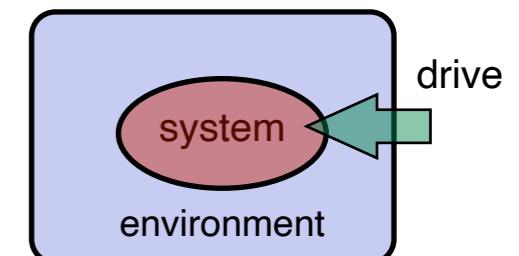
<p style="color: red;">stationary state</p> $\rho_{\text{eq}} = e^{-\beta H}$	\longleftrightarrow	<p style="color: red;">ρ_{neq}</p> <p style="color: red;">dark state</p> $\rho_{\text{neq}} = 0\rangle\langle 0 $ $L_i D\rangle = 0 \forall i$
$\lim_{\beta \rightarrow \infty} e^{-\beta H} = 0\rangle\langle 0 $	$\xleftarrow{\text{coincide!}}$	<p style="color: red;">ground state</p>

dynamic
response

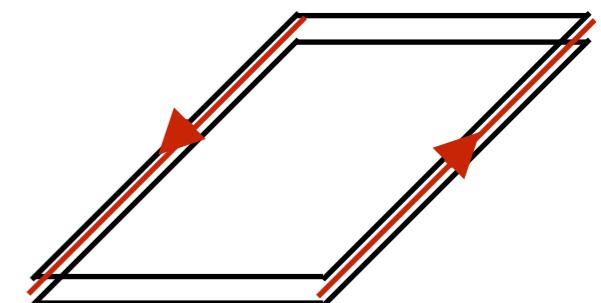
Motivation: Quantum states vs. quantum dynamics

- quite general quantum evolution: eliminate environment

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \kappa \sum_{\alpha} (\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \frac{1}{2} \{ \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}, \hat{\rho} \})$$



- enter topology:
 - topology is encoded in the **state** (wave function)
 - observables are oftentimes **dynamical** responses (to gauge fields)
 - example: Chern insulator (e.g. quantum Hall)



Questions:

Is there a topological response in irreversible out of equilibrium dynamics?

Are there chiral edge modes (reversible) on top of a dissipative bulk (irreversible)?

cf., for single particle problems: Albert, Bradlyn, Fraas, Jiang, PRX (2016)
 following Avron, Fraas, Graf, J. Stat. Phys. (2012); Avron, Fraas, Graf, Kenneth, New J. Phys. (2010)

Different dynamics: overview

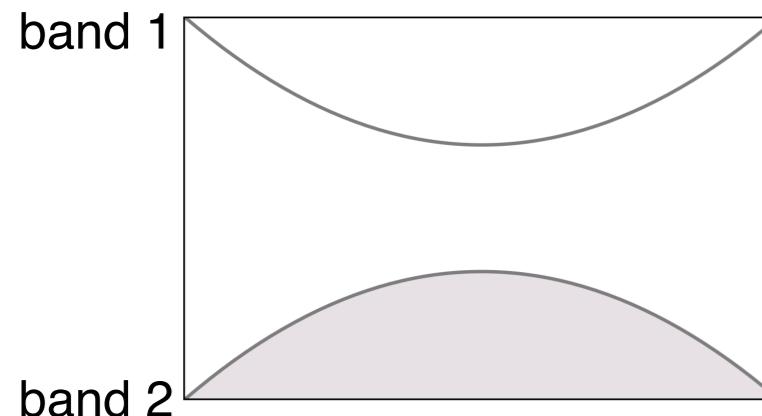
Hamiltonian scenario

State

- unique ground state

$$H|D\rangle = 0$$

Ex.: Chern insulator



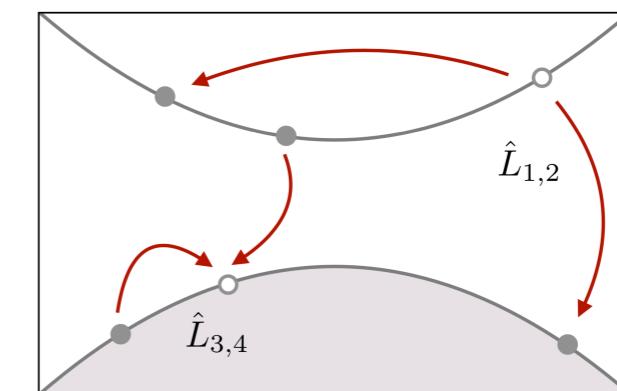
↔ coincide!

Lindblad scenario

- unique dark state

$$L_\alpha|D\rangle = 0 \quad \forall \alpha$$

Ex.: **dissipative** Chern insulator



Dynamics

- (micro) reversible / unitary
- thermal equilibrium (detailed balance)

↔ very different!

- irreversible / dissipative
- far from equilibrium: detailed balance violated [see Lecture I](#)

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}]$$

$$\partial_t \hat{\rho} = \kappa \sum_{\alpha} (\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \frac{1}{2} \{ \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}, \hat{\rho} \})$$

Sieberer, Chiocchetta, Taeuber, Gambassi, SD, PRB (2015)

Model: Driven open Chern insulator

- starting point: class A insulator, no discrete symmetry to protect topological state

$$\hat{H} = \int_{\mathbf{q}} \hat{\psi}_{\mathbf{q}}^\dagger (\mathbf{d}_{\mathbf{q}} \cdot \boldsymbol{\sigma}) \hat{\psi}_{\mathbf{q}} = \int_{\mathbf{q}} \underbrace{\hat{\psi}_{\mathbf{q}}^\dagger V_{\mathbf{q}}^{-1}}_{\hat{\psi}_{\mathbf{q}}^\dagger} \sigma_z \underbrace{V_{\mathbf{q}} \hat{\psi}_{\mathbf{q}}}_{\hat{\psi}_{\mathbf{q}}} \equiv \int_{\mathbf{q}} \hat{l}_{\mathbf{q}}^\dagger \sigma_z \hat{l}_{\mathbf{q}}$$

$$\hat{\psi}_{\mathbf{q}} \equiv (\hat{\psi}_{1,\mathbf{q}}, \hat{\psi}_{2,\mathbf{q}})^T$$

$$\hat{l}_{\mathbf{q}} \equiv (\hat{l}_{1,\mathbf{q}}, \hat{l}_{2,\mathbf{q}})^T$$

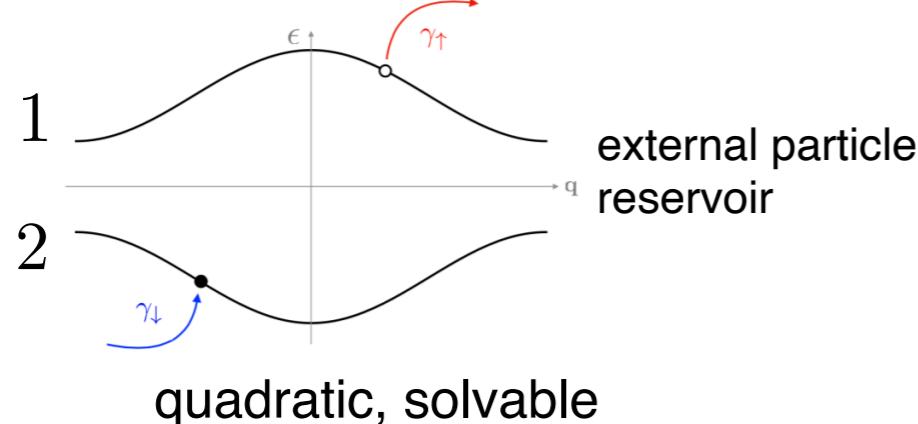
$$\mathbf{d}_{\mathbf{q}} \equiv (2mq_1, 2mq_2, -m^2 + \mathbf{q}^2)^T$$

- ground state condition

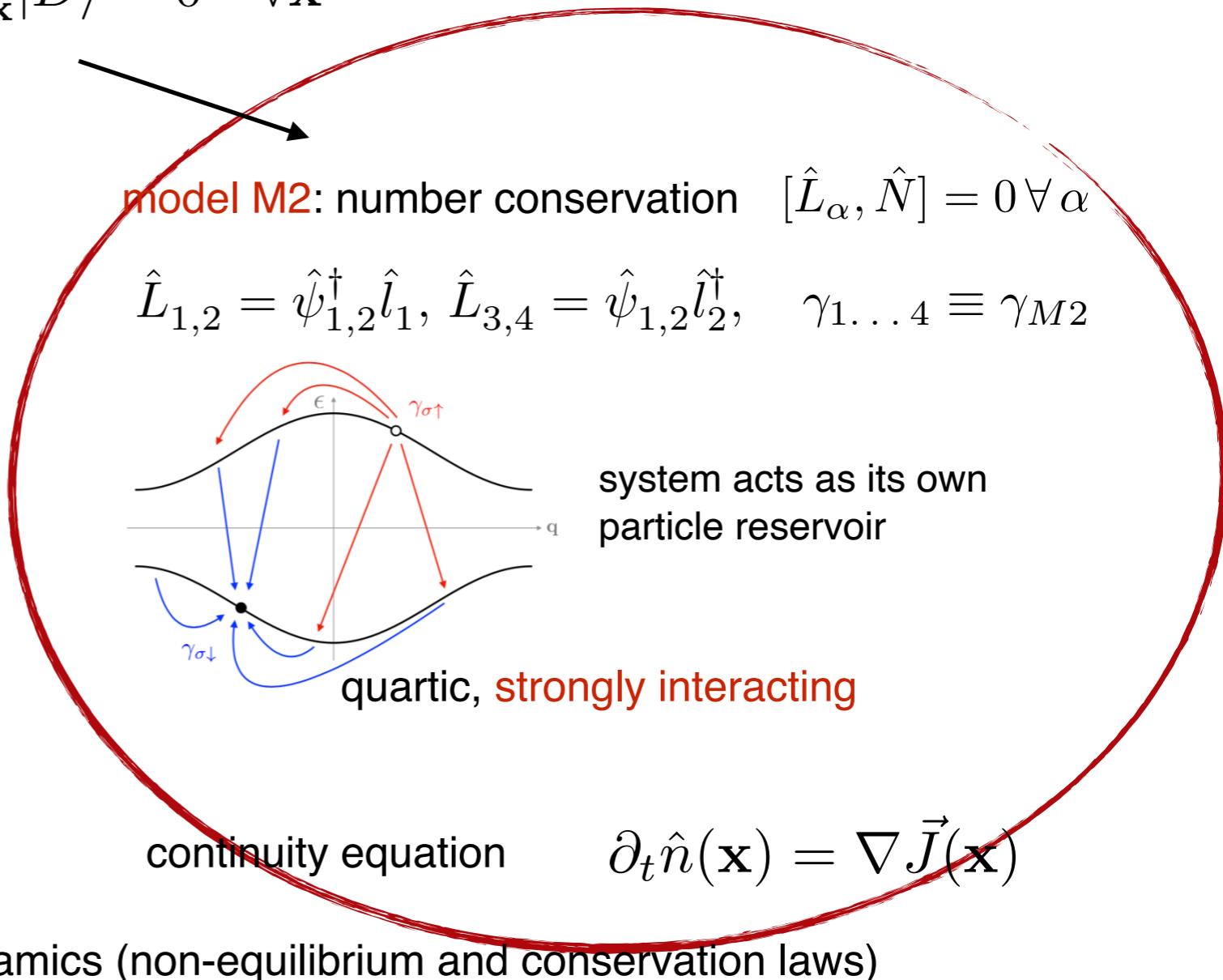
$$\hat{l}_{1,\mathbf{x}}|D\rangle = \hat{l}_{2,\mathbf{x}}^\dagger|D\rangle = 0 \quad \forall \mathbf{x}$$

model M1: no number conservation

$$\hat{L}_\alpha = \hat{l}_{1,\mathbf{x}}, \hat{l}_{2,\mathbf{x}}^\dagger, \quad \gamma_1 = \gamma_2 \equiv \gamma_{M1}$$

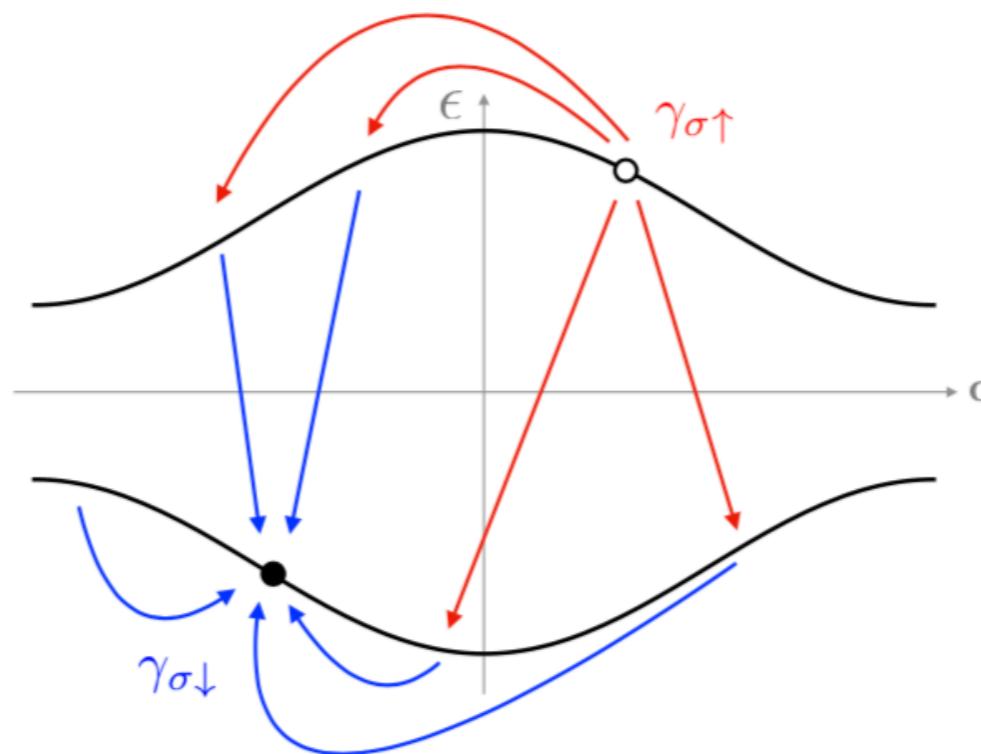


gapped 'continuity' equation $\partial_t \hat{n}(\mathbf{x}) = \nabla \vec{J}(\mathbf{x}) + \mathcal{O}(\delta)$



Program: Extracting the topological field theory

- map into Keldysh functional integral (better for concrete calculations)
- intermezzo: weak and strong symmetries in the Keldysh formalism
- minimal coupling to $U(1)$ gauge field
- compute the effective gauge field action, encoding the long wavelength response



Intermezzo: Symmetries in the Keldysh formalism

- closed time path (fermions, bosons) for recap & fermions: see appendix Lecture I

$$Z = \text{tr} \hat{\rho}(t) = \rho(t_f) \bullet \text{---} \begin{matrix} \text{V V} \\ \text{+ contour} \end{matrix} \text{---} \bullet \rho(t_0) = \int \mathcal{D}\psi_{\pm} e^{iS[\psi_{\pm}]} \quad \text{---} \begin{matrix} \text{V V} \\ \text{- contour} \end{matrix} \text{---}$$

$t_f = +\infty \quad \wedge \wedge \quad -\text{contour} \quad \wedge \wedge \quad t_0 = -\infty$

- Lindblad-Keldysh action $H_{\pm} = H[\psi_{\pm}], L_{\pm} = L[\psi_{\pm}]$

$$S[\psi_{\pm}] = \int_{t, \mathbf{x}} \left[\psi_+^\dagger i \partial_t \psi_+ - H_+ - (+ \rightarrow -) - i \sum_{\alpha} \gamma_{\alpha} \left(2L_{\alpha, -}^\dagger L_{\alpha, +} - L_{\alpha, +}^\dagger L_{\alpha, +} - L_{\alpha, -}^\dagger L_{\alpha, -} \right) \right]$$

left action right action

- basis separating responses and correlations: $\psi_c = \frac{1}{\sqrt{2}}(\psi_+ + \psi_-)$, $\psi_q = \frac{1}{\sqrt{2}}(\psi_+ - \psi_-)$
`classical field' `quantum field'
- symmetries have contour structure, e.g. global U(1):

$$\psi_{\pm}(t, \mathbf{x}) \rightarrow e^{i\chi_{\pm}} \psi_{\pm}(t, \mathbf{x})$$

- symmetry generators $\chi_+, \chi_- \leftrightarrow \chi_c = \chi_+ + \chi_-, \chi_q = (\chi_+ - \chi_-)/2$

$$U_+(1) \quad U_-(1)$$

$$U_c(1)$$

$$U_q(1)$$

Intermezzo: Classification of symmetries

- overview: strong and weak symmetries
- focus: continuous global symmetry $U(1)$

Buca, Prosen, NJP (2013)
Lieu et al., PRL (2020)

- **strong symmetries**: independent transformations on both contours

$$U_c(1) \times U_q(1)$$

→ conservation laws, gapless **hydrodynamic modes** (Noether theorem)

- **weak symmetries**: both contours ‘in phase’, $U_q(1)$ explicitly broken, $\chi_q = 0$

$$U_c(1)$$

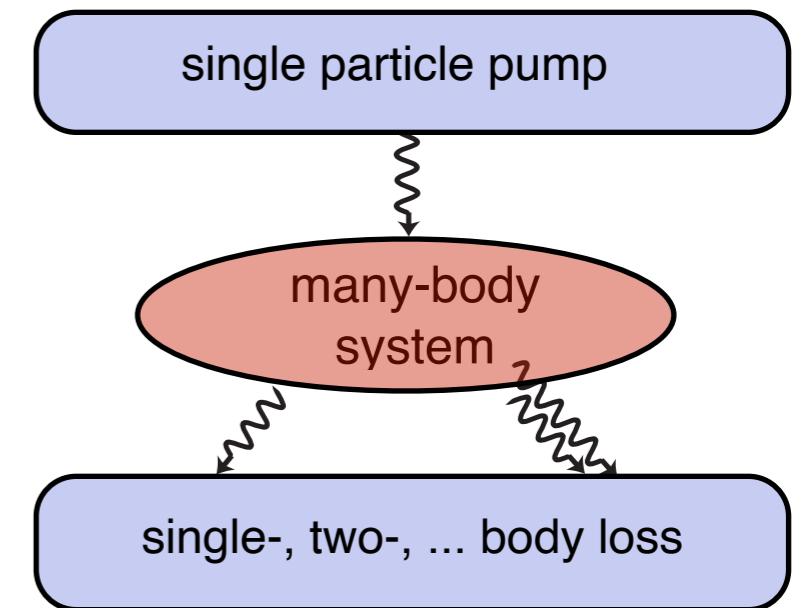
→ spontaneous breaking of ‘classical’ symmetry: gapless **Goldstone modes** (Goldstone theorem)

Intermezzo: Classical/weak symmetry

- recall generic Lindblad model

$$\partial_t \rho = -i[H, \rho] + \mathcal{D}[\rho] \equiv \mathcal{L}[\rho]$$

$$H = \int_{\mathbf{x}} \hat{\phi}_{\mathbf{x}}^\dagger \left(\frac{\triangle}{2M} - \mu \right) \hat{\phi}_{\mathbf{x}} + \frac{\lambda}{2} (\hat{\phi}_{\mathbf{x}}^\dagger \hat{\phi}_{\mathbf{x}})^2$$



$$\mathcal{D}[\rho] = \gamma_p \int_{\mathbf{x}} [\hat{\phi}_{\mathbf{x}}^\dagger \rho \hat{\phi}_{\mathbf{x}} - \frac{1}{2} \{ \hat{\phi}_{\mathbf{x}} \hat{\phi}_{\mathbf{x}}^\dagger, \rho \}]. \quad \text{single particle pump} \quad + \quad \gamma_l \int_{\mathbf{x}} [\hat{\phi}_{\mathbf{x}} \rho \hat{\phi}_{\mathbf{x}}^\dagger - \frac{1}{2} \{ \hat{\phi}_{\mathbf{x}}^\dagger \hat{\phi}_{\mathbf{x}}, \rho \}] \quad \text{single particle loss}$$

$$\kappa \int_{\mathbf{x}} [\hat{\phi}_{\mathbf{x}}^2 \rho \hat{\phi}_{\mathbf{x}}^\dagger 2 - \frac{1}{2} \{ \hat{\phi}_{\mathbf{x}}^\dagger 2 \hat{\phi}_{\mathbf{x}}^2, \rho \}]$$

- symmetries:

- $U_c(1)$ invariance: both contours transform ‘in phase’

$$\hat{\phi} \rightarrow e^{i\chi} \hat{\phi}$$

- but no $U_q(1)$ invariance
 - interesting physics is associated to the spontaneous breaking of $U_c(1)$

Intermezzo: Classical/weak symmetry, semiclassical limit

see also Lecture I: semiclassical similar $\hbar \rightarrow 0$

here: semiclassical as $N \rightarrow \infty$

- extracting the physics: associated Keldysh action

$$\mathcal{S} = \int_{t,\mathbf{x}} \left\{ (\phi_c^*, \phi_q^*) \begin{pmatrix} 0 & P^A \\ P^R & P^K \end{pmatrix} \begin{pmatrix} \phi_c \\ \phi_q \end{pmatrix} + 2i\cancel{\kappa} \cancel{\phi_c^*} \cancel{\phi_c} \cancel{\phi_q^*} \cancel{\phi_q} - \frac{1}{2} [(\lambda + i\kappa) (\phi_c^{*2} \phi_c \phi_q + \cancel{\phi_q^{*2} \phi_c \phi_q}) + c.c.] \right\}$$

$$P^R = i\partial_t + \nabla^2 + \mu + i\frac{1}{2}(\gamma_l - \gamma_p) \quad P^A = (P^R)^\dagger \quad P^K = i(\gamma_l + \gamma_p)$$

- assume a condensation is taking place:

- classical / occupation field: **macroscopic occupation** $N \rightarrow \infty$ (more precisely: only $q=0$ mode scales)

$$\phi_c(q) \sim N^{1/2} \implies \phi_c(x) \sim \frac{N^{1/2}}{V^{1/2}} \sim N^0 \quad \phi_c(x) = V^{-1/2} \sum_q e^{-iqx} \phi_c(q)$$

- quantum field:

$$\phi_q(q) \sim N^0 \implies \phi_q(x) \sim \frac{1}{V^{1/2}} \sim N^{-1/2}$$

- expand action up to second order in $\phi_q(q)$
- semiclassical (large occupation N) limit governed by **Martin-Siggia-Rose (MSR) action**

$$S = \int_{t,\mathbf{x}} \left\{ \phi_q^* \frac{\delta \bar{S}[\phi_c]}{\delta \phi_c^*} + c.c. + P^K \phi_q^* \phi_q \right\}$$

Martin, Siggia, Rose, PRA (1973); Janssen, Z. Phys. B (1976); DeDominicis, J. Phys. (1976)

$$\bar{S} = \int_{t,\mathbf{x}} \{ \phi_c^* i\partial_t \phi_c - \mathcal{H}_c + i\mathcal{H}_d \}$$

$$\mathcal{H}_\alpha = r_\alpha |\phi_c|^2 + K_\alpha |\nabla \phi_c|^2 + \lambda_\alpha |\phi_c^* \phi_c|^4, \quad \alpha = c, d$$

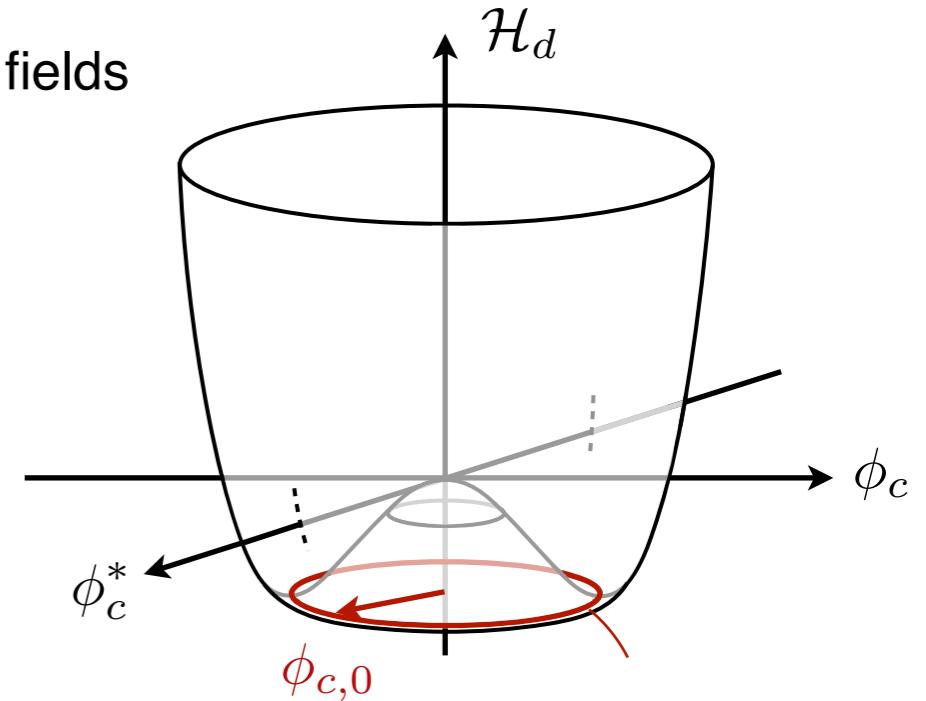
→ analyze like ordinary condensation problem (ϕ^4 potential)

Intermezzo: Classical/weak symmetry, spontaneous breaking

- equation of motion:

$$i\partial_t\phi_c = \frac{\delta\mathcal{H}_c}{\delta\phi_c^*} - i\frac{\delta\mathcal{H}_d}{\delta\phi_c^*} + P^K\phi_q \quad \mathcal{H}_\alpha = \int d^d x [r_\alpha |\phi_c|^2 + K_\alpha |\nabla\phi_c|^2 + g_\alpha |\phi_c|^4]$$

- $U_c(1)$ invariance: $\phi_c \rightarrow e^{i\chi_c} \phi_c, \quad \phi_q \rightarrow e^{i\chi_c} \phi_q$
- stat. state on mean field level: neglect quantum field, homogeneous fields
- stat. state determined by \mathcal{H}_d alone (r_c adjusts in rotating frame)
- condensation for $r_d = \gamma_l - \gamma_p < 0$
- visually clear:
 - Sombrero potential with degenerate manifold of minima
 - system chooses one of the minima spontaneously
 - motion along this manifold costs no action
- more generally valid: **Keldysh Goldstone theorem**



If a global continuous weak symmetry is broken, there is an exact zero mode.

- holds including fluctuations and beyond semiclassical limit

more details: Sieberer, Buchhold, SD, ROPP (2016)

Intermezzo: Conservation laws and quantum/strong symmetry

- example: **model M2**, with number conservation $[\hat{L}_\alpha, \hat{N}] = 0 \forall \alpha$

$$\hat{L}_{1,2} = \hat{\psi}_{1,2}^\dagger \hat{l}_1, \hat{L}_{3,4} = \hat{\psi}_{1,2} \hat{l}_2^\dagger, \quad \gamma_{1\dots 4} \equiv \gamma_{M2}$$

- intuition: no number exchange with the bath
- on Keldysh contour:

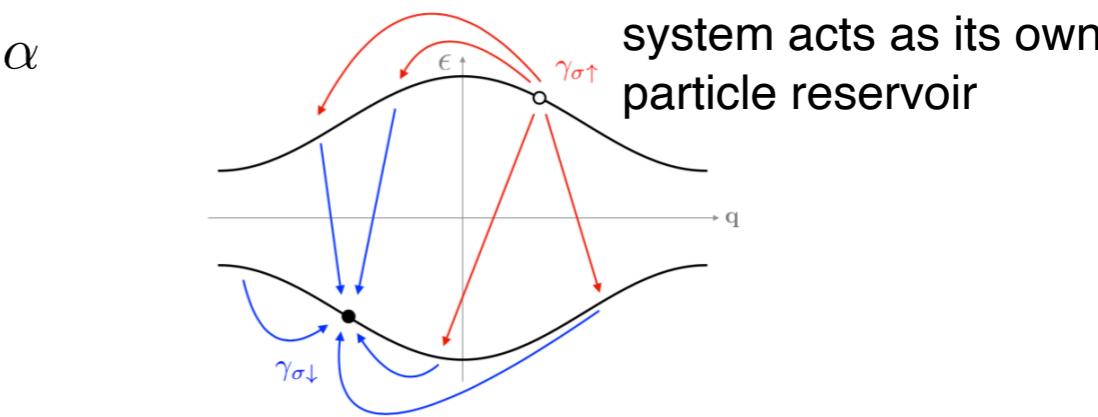
$$\hat{L}_{1,2} \rightarrow (L_{1,2})_\pm \quad \rightarrow \text{independent phase rotations, symmetry} \quad U_+(1) \times U_-(1) = U_c(1) \times U_q(1)$$

- Keldysh Noether construction: more details: Sieberer, Buchhold, SD, ROPP (2016)

- promote $\theta_{c,q} \rightarrow \theta_{c,q}(t, \vec{x})$
- change of action: $S \rightarrow S + \int dt d^2x [\partial_\mu \theta_c J_q^\mu + \partial_\mu \theta_q J_c^\mu]$
- vanishing variation: $\frac{\delta S}{\delta \theta_{q,c}} \stackrel{!}{=} 0 \implies \partial_\mu J_{c,q}^\mu = 0 \quad \text{or} \quad \partial_t J_{c,q}^0 = -\nabla \vec{J}_{c,q}$

where universally for time-local non-relativistic dynamics

and $\vec{J}_{c,q}$ is model specific



$$J_c^0 = \psi_c^* \psi_c + \psi_q^* \psi_q = \psi_+^* \psi_+ + \psi_-^* \psi_-$$

$$J_q^0 = \psi_c^* \psi_q + \psi_q^* \psi_c = \psi_+^* \psi_+ - \psi_-^* \psi_-$$

- Noether charges:

$$U_c(1) : \quad N_q = \int d^2x \langle J_q^0 \rangle = 0$$

$$U_q(1) : \quad N_c = \int d^2x \langle J_c^0 \rangle = N$$

- formalising the obvious: particle number conserved in M2
- useful to build minimal coupling prescription

Spontaneous breaking of quantum/strong symmetry: M2 \rightarrow M1

- strongly interacting problem, but dark state exactly known: Self-consistent Born approximation (analogous to mean field theory for dissipative superconductor)

$$(L_\alpha^\dagger L_\alpha)_{\text{mf}} = \begin{array}{c} l_1^\dagger \quad l_1 \\ \leftarrow \bullet \leftarrow \end{array}$$

with

$$\bullet = \begin{array}{c} \circlearrowleft \\ \bullet \end{array}$$

$$\begin{aligned} L_{\alpha,1}^\dagger L_{\alpha,1} &= l_1^\dagger \psi_\alpha \psi_\alpha^\dagger l_1 \\ &\rightarrow l_1^\dagger \langle \psi_\alpha \psi_\alpha^\dagger \rangle l_1 = n l_1^\dagger l_1 \end{aligned}$$

- effective action in single particle sector: M2 reduces to M1 under replacements

$$L_{1,2} \rightarrow l_1, \quad L_{3,4} \rightarrow l_2^\dagger \quad \gamma \rightarrow n\gamma \equiv \bar{\gamma}$$

- single particle Green's function $G_{\omega,\mathbf{q}}^K = -2i\bar{\gamma} \frac{\mathbf{d}_\mathbf{q} \cdot \boldsymbol{\sigma}}{\omega^2 + \gamma_\mathbf{q}^2}, \quad G_{\omega,\mathbf{q}}^R = \frac{1}{\omega + i\gamma_\mathbf{q}}$ $\gamma_\mathbf{q} = \bar{\gamma}|\mathbf{d}_\mathbf{q}|$

- emergent dissipative single-particle spectral gap $\gamma_{\mathbf{q}=0} = \bar{\gamma}m^2$
 - spectral Green's function topologically trivial, topology encoded in the Keldysh 'noise' component (would go unseen in non-Hermitian topology) [Kawabata et al. PRX \(2018\); Zhou, Lee PRB \(2018\)](#)
 - non-Hermitian single-particle Green's function, **coincides** with the one for model M1: particle number conservation masked / **quantum symmetry spontaneously broken**
- Quantization of the response? How does the system remember its number conserving origin?

Many-body gap: Dissipative insulator

- single particle gap emerges in mean field theory
- does not rule out slow diffusive modes (e.g. from particle number conservation)
- study robustness against most plausible local two-body excitation for half-filled system: particle-hole
 - local particle-hole excitation on top of dark state in momentum space

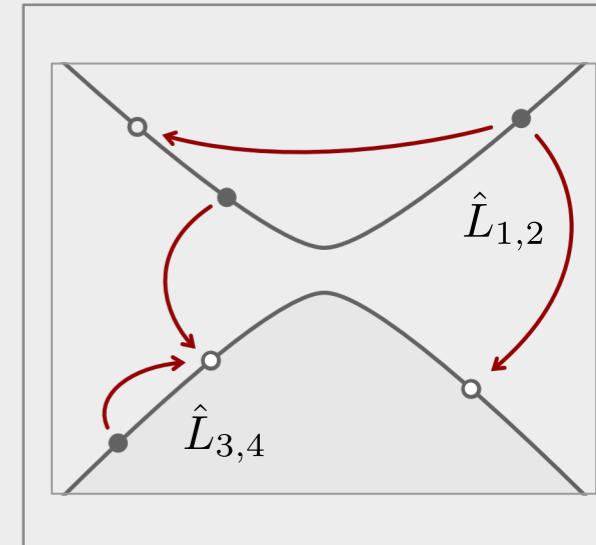
$$|\mathbf{k}\rangle = n^{-1/2} \int_{\mathbf{q}} \hat{c}_{1,\mathbf{q}-\mathbf{k}}^\dagger \hat{c}_{2,\mathbf{q}} |D\rangle$$

- density matrix with up to one particle, one hole excitation

$$\hat{\rho} = \rho_0 |D\rangle\langle D| + \rho_{\mathbf{k}} |\mathbf{k}\rangle\langle \mathbf{k}|$$

- closed set of evolution equations with leading behaviour

$$\partial_t \rho_0 = 2\bar{\gamma}m^2 \rho_{\mathbf{k}}, \quad \partial_t \rho_{\mathbf{k}} = -2\bar{\gamma}m^2 \rho_{\mathbf{k}}$$



- particle-hole excitation damps exponentially fast with twice the gap of a single particle
- strong analogy to a Hamiltonian insulator despite different dynamics (e.g. no energy conservation)

Microscopic gauge-matter action: minimal coupling and response

- resolution: the full functional integral knows about number conservation, lost only by approximation
 - **first** couple to the gauge field, **then** do the approximations
-

- gauge theory: global $U_c(1) \times U_q(1) \rightarrow$ local $U_c(1) \times U_q(1)$: works only for M2

- then, covariant derivative

$$\partial_\mu \psi_\pm \rightarrow (\partial_\mu - i A_\pm^\mu) \psi_\pm$$

- Lindblad operators carry gauge field

$$L_\alpha = \psi_\alpha^\dagger \underset{l_1}{\text{---}} + \text{---} \underset{l_\mathbf{q}}{\text{---}}$$

$$L_1 \rightarrow L_1 + \psi_1^\dagger (\partial_{q_i} V V^{-1} l)_1 A_i \approx L_1 - i \psi_1^\dagger (a_i l)_1 A_i$$

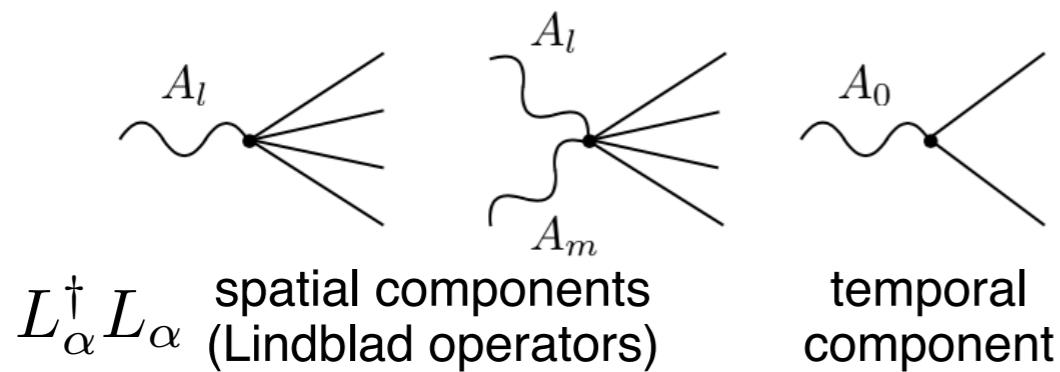
$$U_\mathbf{q} = d_\mathbf{q}^{\frac{1}{2}} V_\mathbf{q}$$

inessential
diagonal matrix

Berry connection

$$a_i = i \partial_{q_i} U U^{-1}$$

- gauge-matter (current) coupling in quartic. $L_\alpha^\dagger L_\alpha$:



Microscopic gauge-matter action: minimal coupling and response

- resolution: the full functional integral knows about number conservation, lost only by approximation
→ **first** couple to the gauge field, **then** do the approximations
-

- gauge theory: global $U_c(1) \times U_q(1) \rightarrow$ local $U_c(1) \times U_q(1)$: works only for M2

- then, covariant derivative

$$\partial_\mu \psi_\pm \rightarrow (\partial_\mu - i A_\pm^\mu) \psi_\pm$$

- Lindblad operators carry gauge field

$$L_\alpha = \psi_\alpha^\dagger \underset{l_1}{\text{---}} + \text{---} \underset{\text{---}}{\text{---}}$$

$$l_\mathbf{q} = V_\mathbf{q} \psi_\mathbf{q}$$

$$L_1 \rightarrow L_1 + \psi_1^\dagger (\partial_{q_i} V V^{-1} l)_1 A_i \approx L_1 - i \psi_1^\dagger (a_i l)_1 A_i$$

$$U_\mathbf{q} = d_\mathbf{q}^{\frac{1}{2}} V_\mathbf{q}$$

inessential
diagonal matrix

Berry connection

$$a_i = i \partial_{q_i} U U^{-1}$$

- gauge-matter (current) coupling in mean field decoupling:

$$(L_\alpha^\dagger L_\alpha)_{\text{mf}} = \text{---} \underset{l_1^\dagger}{\text{---}} \underset{l_1}{\text{---}} + \text{---} \underset{\text{---}}{\text{---}} \underset{\text{---}}{\text{---}} + \text{---} \underset{\text{---}}{\text{---}} \underset{\text{---}}{\text{---}}$$

$$\bullet = \text{---}$$

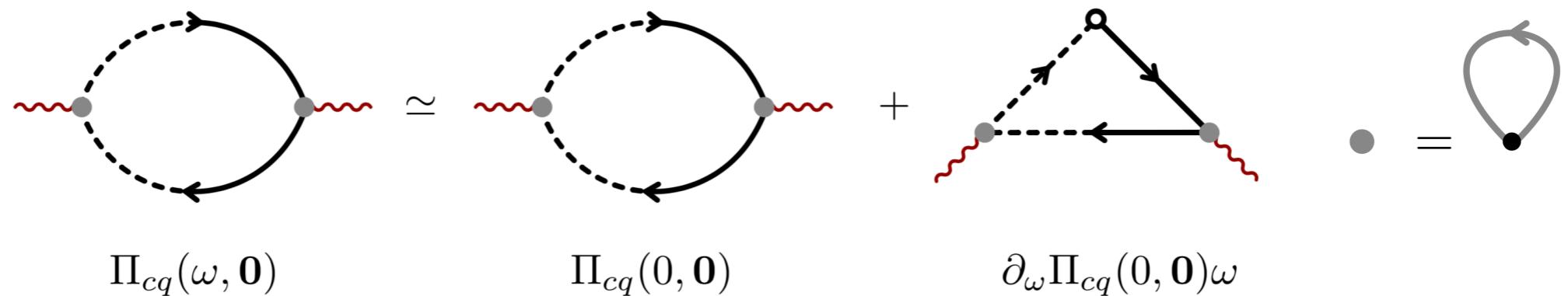
Microscopic gauge-matter action: minimal coupling and response

- Response: cumulant expansion to second order (= one-loop approximation)

$$Z[A] = e^{i(\langle X^{(2)} \rangle + \frac{i}{2} \langle X^{(1)} X^{(1)} \rangle_{c.})} = e^{i \int_{\omega, \mathbf{q}} A_{I,i} \Pi_{ij}^{IJ} A_{J,j}} \quad A_0 = 0$$

$$\Pi_{ij} = \begin{pmatrix} 0 & \Pi_{ij}^{cq} \\ \Pi_{ij}^{qc} & \Pi_{ij}^{qq} \end{pmatrix}$$

- diagrammatically



- leading frequency term

$$\omega \partial_{\omega} \Pi_{ij}^{cq}(0, 0) = \frac{i\omega}{2} \epsilon_{ij} \int_{\mathbf{p}} \text{Tr}[\sigma^z F] = -i\omega \frac{\theta}{2\pi} \epsilon_{ij} \quad \theta = -1$$

with Berry curvature $F = \partial_{q_1} a_2 - \partial_{q_2} a_1$

for above two-band model

- quantised response of the purely dissipative quantum system (within effective one-loop theory)
- gauge invariance demonstrated to first order in derivative expansion

Intermediate summary: symmetries and responses



- Effective single particle Green's function for number conserving M2 indistinguishable from number-violating M1

$$G_{\omega, \mathbf{q}}^K = -2i\bar{\gamma} \frac{\mathbf{d}_\mathbf{q} \cdot \boldsymbol{\sigma}}{\omega^2 + \gamma_\mathbf{q}^2}, \quad G_{\omega, \mathbf{q}}^R = \frac{1}{\omega + i\gamma_\mathbf{q}}$$

- topology in driven open fermion system is ‘in the noise’ (!)
- interpretation: **spontaneous symmetry breaking** of $U_q(1)$
- see also: Hohenberg-Halperin dynamical models for classical critical dynamics

P. Hohenberg, B. Halperin,
RMP (1977)

- Hydrodynamics remembered for suitable approximation scheme

$$\partial_t n(\mathbf{x}) = \vec{\nabla} \vec{J}(\mathbf{x})$$

- current operator well defined as the definition of charge in system vs. bath is unambiguous
- see also: Hohenberg-Halperin dynamical models for classical critical dynamics with conserved charges

- Electromagnetic response: all possible contributions in 1-loop approximation

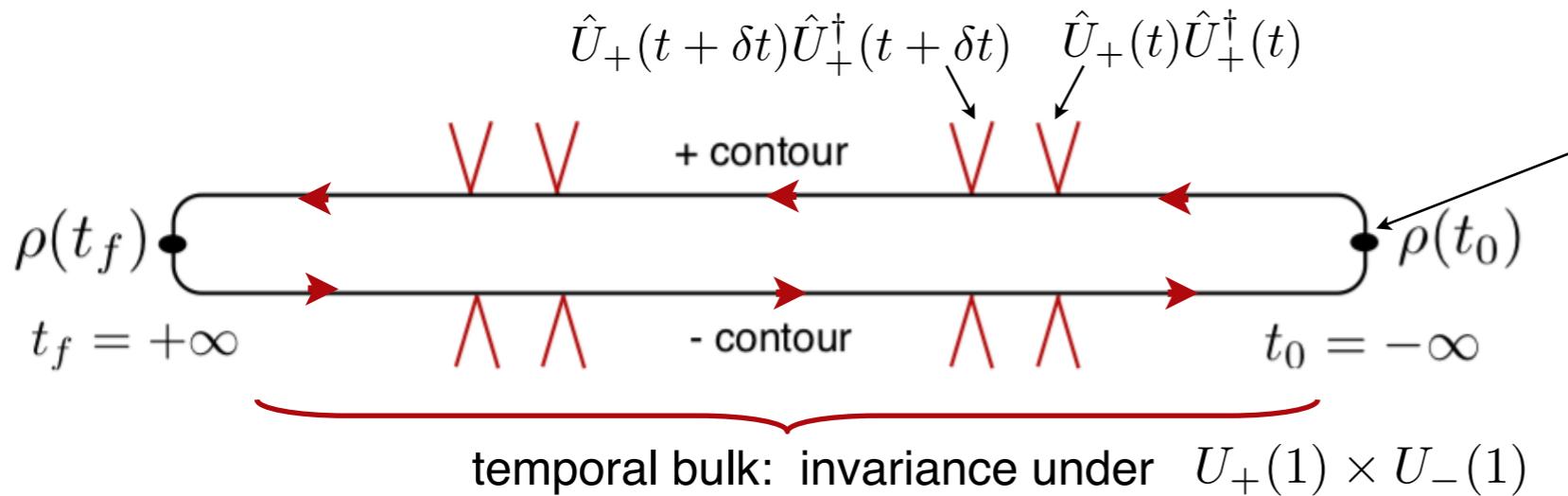
$$S[A_c, A_q] = \int \left[\frac{\theta}{4\pi} \epsilon^{\mu\nu\rho} (A_{\mu,c} \partial_\nu A_{\rho,q} - A_{\mu,q} \partial_\nu A_{\rho,c}) + \lambda_1 B_c B_q + i\lambda_2 B_q^2 \right] \quad B_I = \epsilon_{ij} \partial_i A_{j,I}$$

- $\theta = -1$ quantised
- subleading Maxwell-like terms

Macroscopic gauge action: Keldysh topological field theory

- what are the key ingredients for the results?
- particle number **quantization**: large gauge invariance
 - spatially homogeneous gauge transformation on the Keldysh contour

gauge field: $A_{\pm}^0(t) \rightarrow A_{\pm}^0(t) + \partial_t \chi_{\pm}(t)$ & matter: $\hat{U}_{\pm}(t) = e^{i\chi_{\pm}(t)\hat{N}}$



temporal boundary condition:
 $\hat{U}_+^\dagger(t_0)\hat{\rho}(t_0)\hat{U}_-^\dagger(t_0) \stackrel{!}{=} \hat{\rho}(t_0)$

$\hat{\rho}(t_0)$ number eigenstate

$\Rightarrow e^{-i(\chi_+(t_0) - \chi_-(t_0))N} \stackrel{!}{=} 1$

number quantized: $N \in \mathbb{N}_0$

- large gauge invariance: $\boxed{\chi_+(t_0) = \chi_-(t_0) + 2\pi n, \quad n \in \mathbb{Z}}$ phase accumulated along closed time path
- implication for effective theory: $e^{iS[A]} \rightarrow e^{iS[A] + 2\pi in} = e^{iS[A]} \Rightarrow$ constraint on action coefficient
- remark: more physical interpretation than at thermal equilibrium (periodicity due to Matsubara torus)

Macroscopic gauge action: Keldysh topological field theory (bulk)

- most general form of the Keldysh Chern-Simons action for pure states

$$S_{\text{CS}}[A] = \int dt d^2x M_{IJ} \epsilon_{\mu\nu\rho} A_I^\mu \partial_\nu A_J^\rho$$

- symmetries: probability conservation

$$S[A_c, 0] = 0 \quad \begin{array}{c} \searrow \\ \end{array} \quad S^*[A_c, A_q] = -S[A_c, -A_q]$$

$$M_{IJ} = \begin{pmatrix} 0 & \frac{\theta}{4\pi} \\ \frac{\theta}{4\pi} & 0 \end{pmatrix} \quad \begin{array}{c} \nearrow \\ \end{array} \quad \begin{array}{c} \text{real: hermiticity of time} \\ \text{dependent density matrix} \end{array}$$

$$\text{quantized: large gauge invariance}$$

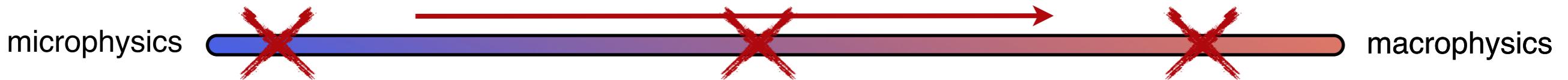
$$\begin{array}{c} \text{imaginary: hermiticity} \\ \text{real: large gauge invariance} \end{array} \quad \} \Rightarrow \text{must vanish}$$

- standard Chern-Simons action emerges:

$$S_{\text{CS}}[A] = \frac{\theta}{4\pi} \int A_+ dA_+ - A_- dA_-$$

→ contour decoupled Hamiltonian structure on top of purely dissipative bulk

Bulk-boundary correspondence



Chan, Hughes, Ryu, Fradkin, PRB (2013)

- adjustment of functional bosonization approach to Keldysh: lack of **local** $U_c(1) \times U_q(1)$ gauge invariance on boundary gives rise to new boundary degree of freedom
- add all possible leading terms allowed by **global** $U_c(1) \times U_q(1)$ invariance

$$S|_{y=0} = \int_{t,x} \left[-\theta \{ \partial_t \varphi_q \partial_x \varphi_c + v \partial_x \varphi_q \partial_x \varphi_c + (c \leftrightarrow q) \} + D \{ \partial_x \varphi_q \partial_x^2 \varphi_c - (c \leftrightarrow q) \} + i\eta (\partial_x \varphi_q)^2 \right]$$

chiral propagation

diffusion

conserved noise

- all terms consistent with particle number conservation are **subleading**: sharply defined chiral modes

$$\omega = vq + iDq^2$$

- qualitatively unmodified for mixed states
- potentially interesting non-linear fluctuating hydrodynamics different from equilibrium

Chen-Lin, Delcatraz, Harnoll, PRL (2019)

- unseen if misled by 'hidden' $U_q(1)$ symmetry of effective single-particle action
→ implications for non-Hermitian bulk-boundary correspondence?

Kawabata, Shiozaki, Ueda, Sato, PRX (2018); Zhou, Lee PRB (2018)

Summary: Symmetry analysis

Key ingredients:

- global $U_c(1) \times U_q(1)$ invariance (number **conservation**)
- large gauge invariance (number **quantization**)
- pure states (but see outlook)

Implications:

- standard Chern-Simons action emerges (dissipative corrections subleading in derivative expansion)

$$S_{\text{CS}}[A] = \frac{\theta}{4\pi} \int A_+ dA_+ - A_- dA_-$$

- contour decoupled Hamiltonian structure on top of purely dissipative bulk
- bulk-boundary correspondence: sharp chiral edge models with subleading width

$$\omega = vq + iDq^2 \quad v \text{ determined by Lindblad parameters}$$

Outlook: Topological field theory for mixed states

- basic riddle/paradox:

- observables tend not to be topologically quantized for mixed states (eq/neq)

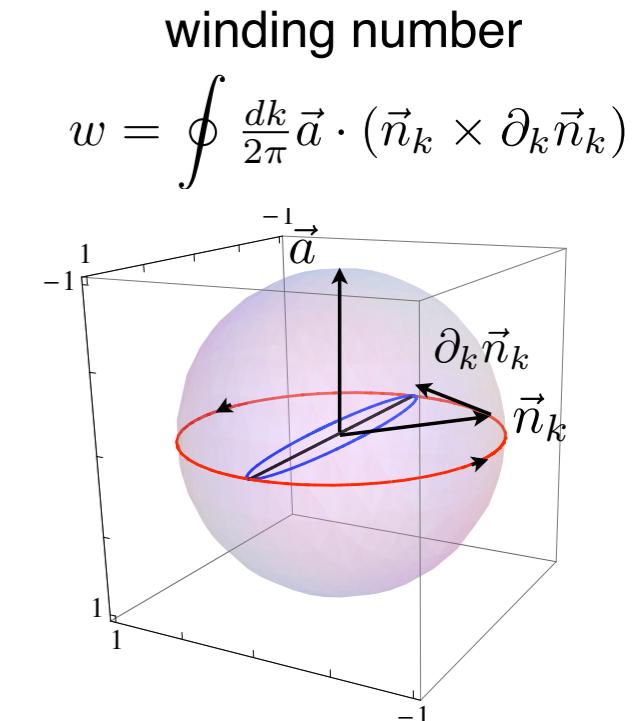
- topology of density matrices well defined

e.g. Viyuela, Rivas, Martin-Delgado, PRL (2014); Huang, Arovas, PRL 2014); Budich, SD, PRB (2015)

- resolution (for Dirac stationary theory in arbitrary dimension)

Z. Huang, X. Sun, SD, in preparation

- Effective real time gauge response action is topological but non-perturbative in the temporal gauge field, with structure (e.g. odd spacetime dim.)



pure states: $|\vec{n}_k| = 1$

$$S = c \int d^{2n}x \mathcal{P}[a_0^q, \beta|m|] C_{2n}[A_i^c]$$

Chern class density

$$C_{2n}[A_i^c] = \frac{1}{(2\pi)^n n!} \epsilon^{0\mu_1\mu_2\dots} \partial_{\mu_1} A_{\mu_2}^c \dots \partial_{\mu_{2n-1}} A_{\mu_{2n}}^x$$

Chern number (quantized)

- topological properties related to
 - $U_q(1)$ large gauge invariance i.e. **number quantization**
 - global $U_q(1)$ invariance, i.e. **number conservation**

$$a_0^q = \int dt A_0^q \quad \mathcal{P}[a_0^q + 2\pi n, \beta|m|] = \mathcal{P}[a_0^q, \beta|m|] + 2\pi$$

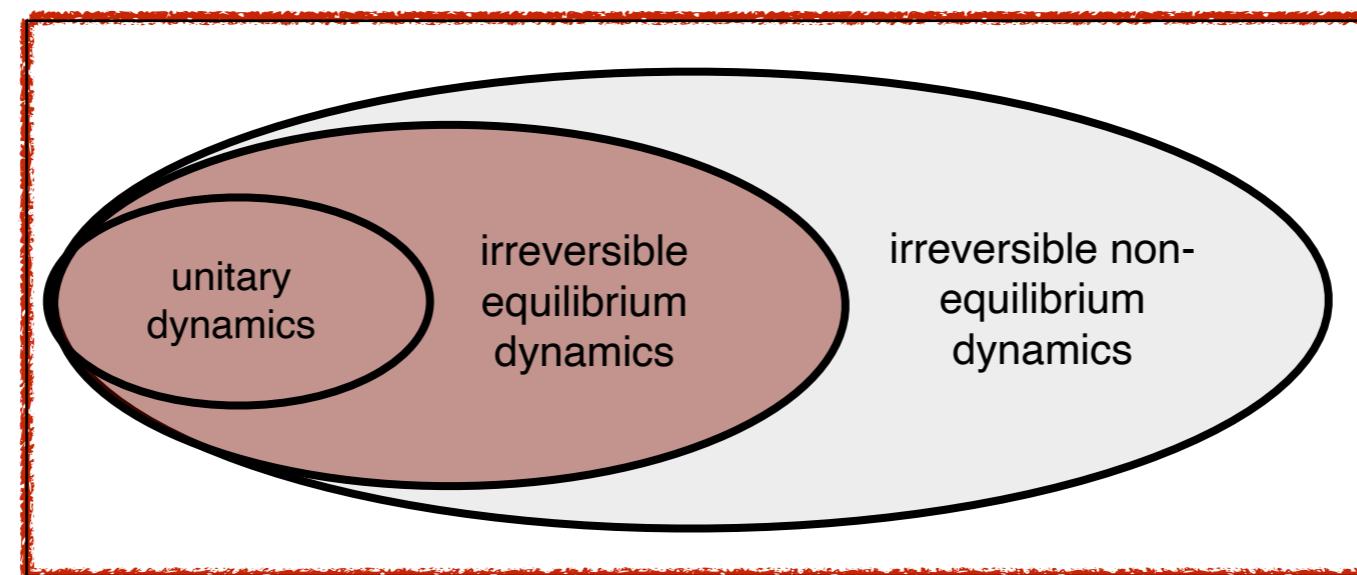
under large $U_q(1)$

$$\lim_{\beta \rightarrow \infty} \mathcal{P}[a_0^q + 2\pi n, \beta|m|] = a_0^q$$

- linear** response observables **non-quantized**
- non-linear** response observables can be **quantized**

generalizes ‘ensemble geometric phase’
Bardyn, Wauer, Altland, Fleischauer, SD PRX (2017)

Symmetry classes of open Fermionic quantum matter



A. Altland, M. Fleischhauer, SD, PRX (2021)

Motivation: Classification of open quantum systems

- physical setting: free systems (matrix representation)

closed system

- classified object: Hermitian matrices

$$H \quad H^\dagger = H$$

- symmetry operations:

- time reversal
- charge conjugation
- chiral symmetry

T
C
S

- result: **10 classes**

Altland, Zirnbauer PRB (1996)

- applications: classification of fermion topological states
(topological insulators, superconductors)

Kitaev AIP (2009); Ryu, Furusaki, Schnyder, Ludwig NJP (2010)

- open issues:

- physical interpretation of non-Hermitian matrix?
- particle statistics?
- causality?
- generalization to interacting systems?

→ goal: first principles classification of general generators of fermion quantum dynamics

open system

- classified object: non-Hermitian matrices

$$K = H - iD \quad H^\dagger = H, \quad D^\dagger = D$$

- symmetry operations:

- time reversal
- charge conjugation
- chiral Symmetry

T
C
S

$\xrightarrow{\text{Hermitian adjoint}}$
 η

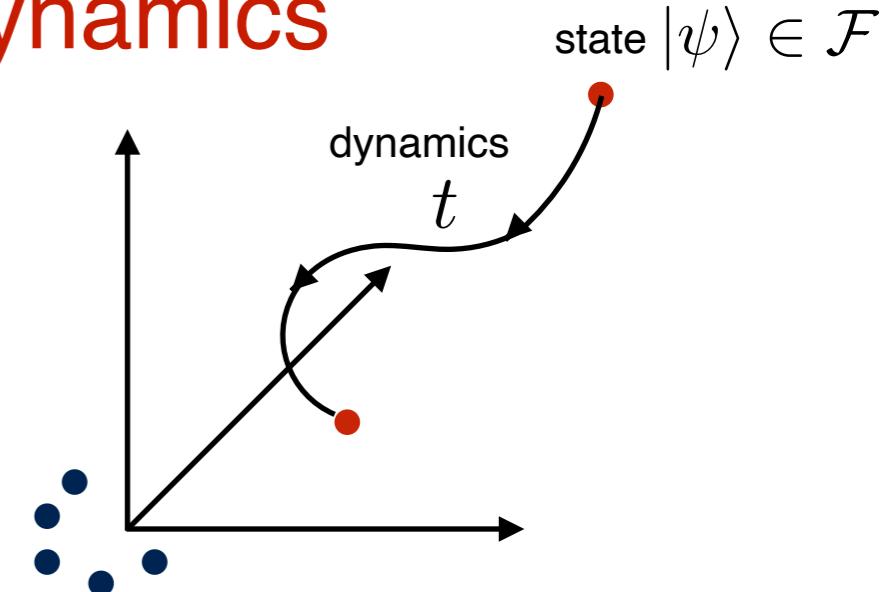
T^\dagger
 C^\dagger
 S^\dagger

Classifying general fermionic quantum dynamics

- starting point: symmetry operations in fermionic Fock space (**state**)

$$\{a_i, a_i^\dagger\}$$

- time reversal $T : Ta_i T^{-1} \equiv u_{Tij} a_j, \quad Ti T^{-1} = -i,$
- charge conjugation $C : Ca_i C^{-1} \equiv u_{Cij} a_j^\dagger, \quad Ci C^{-1} = +i,$
- chiral symmetry $S : Sa_i S^{-1} \equiv u_{Sij} a_j^\dagger, \quad Si S^{-1} = -i.$



- physical principle: invariance of the equation of motion (**dynamics**)

equilibrium unitary

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}]$$

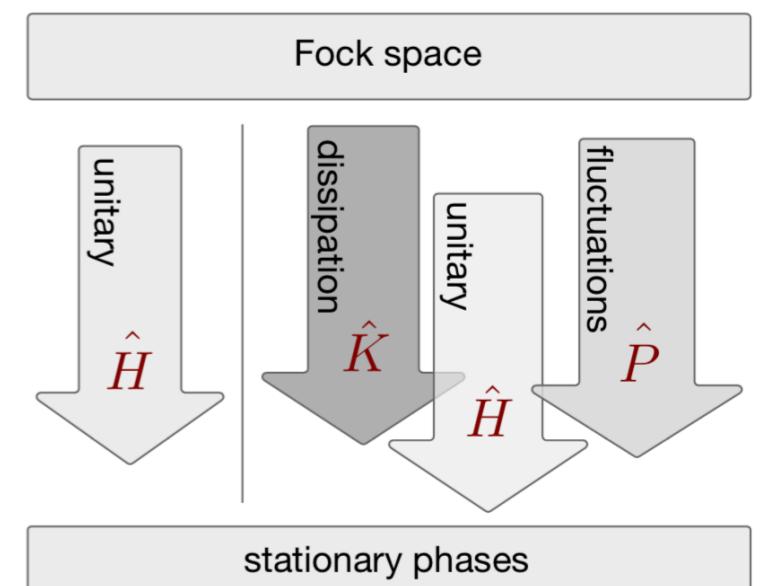
- reproduces ground state classification
- extends to irreversible eq. dyn.

→ object of classification: generator of dynamics (including interacting)

- classification of the state (incl. stationary) follows

non-equilibrium irreversible

$$\partial_t \hat{\rho} = -i[\hat{H}, \hat{\rho}] + \kappa \sum_{\alpha} (\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^\dagger - \frac{1}{2} \{ \hat{L}_{\alpha}^\dagger \hat{L}_{\alpha}, \hat{\rho} \})$$



Classifying general fermionic quantum dynamics

- results: [A. Altland, M. Fleischhauer, SD, PRX \(2021\)](#)

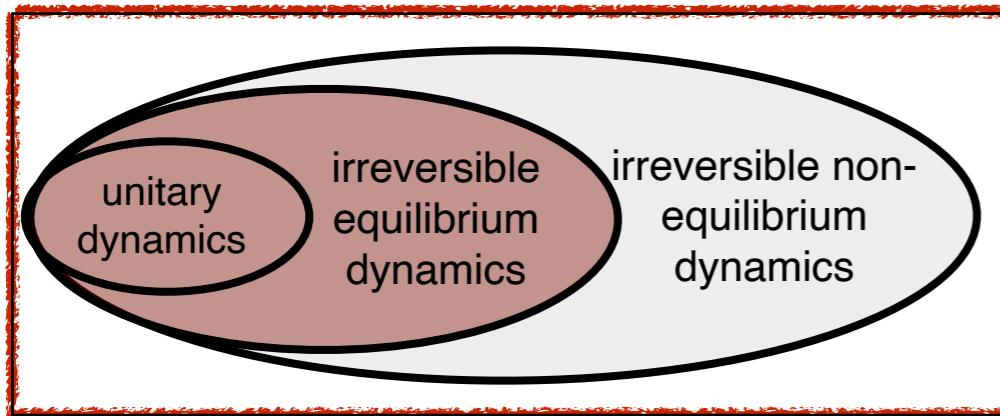
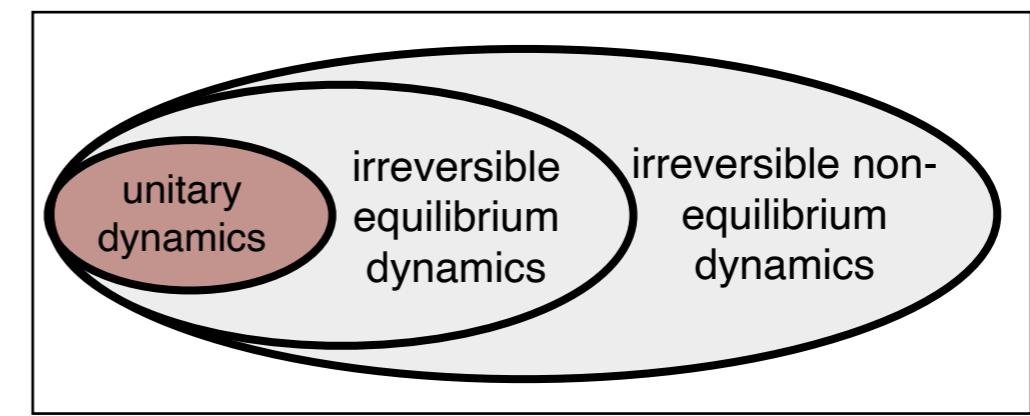
- states: 10 classes, irrespective to the dynamics stabilizing it

- dynamics: fundamental distinction of eq. and non-eq. dynamics

→ $17 = 3 + (7 + 7)$ dynamical symmetry classes

→ the ‘watershed’ is equilibrium vs. non-equilibrium, not reversible vs. irreversible

transformations		non-equilibrium			equilibrium		steady state
X	O_X	H	D	P	H	Θ/Γ	
T	$U_T \bar{O} U_T^\dagger$	–	+	–	+	+	
C	$-U_C^T O^T \bar{U}_C$	+	–	+	+	+	
S	$-U_S^T O^\dagger \bar{U}_S$	–	–	–	+	+	



- implications (for out of equilibrium dynamics):

- different representation / transformation rules of antiunitary symmetries: crucial for practical applications

- non-Hermitian matrix classification not robust in presence of interactions

Origin of dynamical fine structure

- time reversal in quantum mechanics is a combined transformation

- static: action in Fock space

$$T : \quad T a_i T^{-1} \equiv u_{Tij} a_j, \quad T i T^{-1} = -i,$$

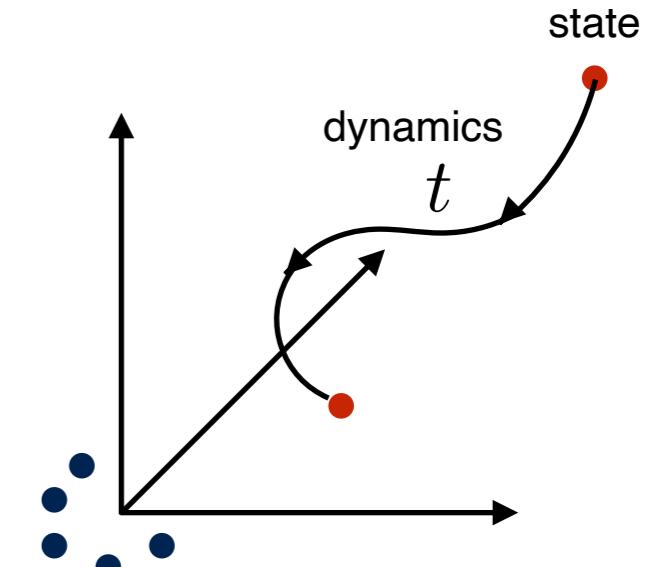
- dynamical: action in the time domain

$$t \rightarrow -t \quad \text{in} \quad i\partial_t |\psi\rangle = \hat{H} |\psi\rangle$$

- full quantum mechanical time reversal:

$$T \circ E \quad Ef(t) = f(-t)$$

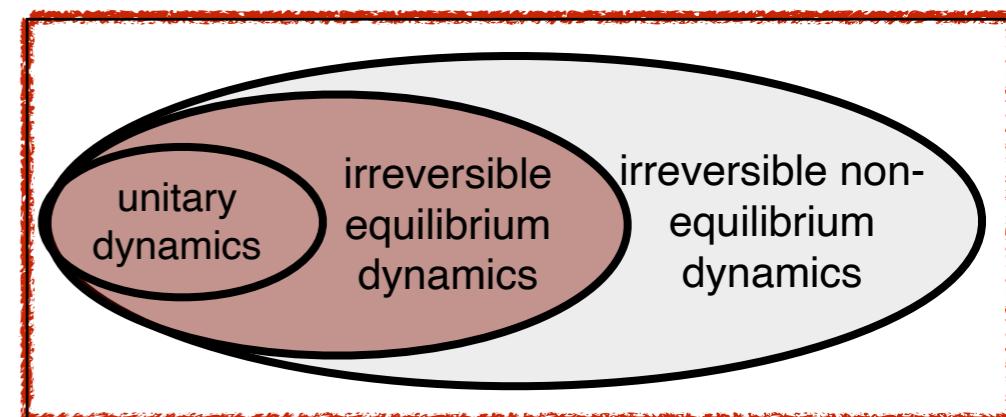
- ‘play movie backwards’
- does not make sense in general irreversible dynamics
- but can be extended to irreversible equilibrium dynamics



- thermal time reversal (Keldysh formulation): [see lecture I](#)

$$T \circ E_\beta \quad Ef(t) = f(-t + i\beta)$$

inverse temperature



related to Kubo-Martin-Schwinger
boundary conditions / FDT

- transformation laws of quantum mechanics smoothly extend to irreversible eq. dynamics
- out of equilibrium, $t \rightarrow +t$ and full time reversal gets represented differently (different trafo laws)

Implications for Gaussian dynamics

- classification encompasses interacting systems, but now make contact to matrix classifications

- Lindblad generator
$$\partial_t \hat{\rho} = -i [\hat{H}, \hat{\rho}] + \sum_{\alpha} (2\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \{\hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}, \hat{\rho}\})$$

- H quadratic, Lindblad operators linear: 3 structure matrices

$$\hat{H} = \frac{1}{2} \hat{A}^{\dagger} H \hat{A} \quad \sum_{\alpha} \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha} = \frac{1}{2} \hat{A}^{\dagger} (D - iP) \hat{A} \quad \hat{A}_a = \begin{pmatrix} \hat{a}_a \\ \hat{a}_a^{\dagger} \end{pmatrix} \quad \text{Nambu vector}$$

- with constraints:

- Fermi statistics:

$$H = -\sigma_x H^T \sigma_x, \quad D = \sigma_x D^T \sigma_x, \quad P = -\sigma_x P^T \sigma_x$$

acts in Nambu
space

exercise: verify
these relations!

- Hermiticity of Lindblad map:

$$H^{\dagger} = H, \quad D^{\dagger} = D, \quad P^{\dagger} = -P$$

- complete positivity of Lindblad map:

$$D \geq 0$$

Implications for Gaussian dynamics

- classification encompasses interacting systems, but now make contact to matrix classifications

- Lindblad generator $\partial_t \hat{\rho} = -i [\hat{H}, \hat{\rho}] + \sum_{\alpha} (2\hat{L}_{\alpha} \hat{\rho} \hat{L}_{\alpha}^{\dagger} - \{\hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha}, \hat{\rho}\})$

- H quadratic, Lindblad operators linear: 3 structure matrices

$$\hat{H} = \frac{1}{2} \hat{A}^{\dagger} H \hat{A} \quad \sum_{\alpha} \hat{L}_{\alpha}^{\dagger} \hat{L}_{\alpha} = \frac{1}{2} \hat{A}^{\dagger} (D - iP) \hat{A} \quad \hat{A}_a = \begin{pmatrix} \hat{a}_a \\ \hat{a}_a^{\dagger} \end{pmatrix} \quad \text{Nambu vector}$$

- Keldysh functional integral $Z = \int \mathcal{D}(\bar{\psi}, \psi) e^{iS}$

$$S = \frac{1}{2} \int \frac{d\omega}{2\pi} (\psi_{\omega}^c)^{\dagger}, (\psi_{\omega}^q)^{\dagger}) \begin{pmatrix} 0 & \omega - K_{\omega}^{\dagger} \\ \omega - K_{\omega} & 2P_{\omega} \end{pmatrix} \begin{pmatrix} \psi_{\omega}^c \\ \psi_{\omega}^q \end{pmatrix} \quad \begin{matrix} \text{noise / fluctuation} \\ \text{dissipation} \end{matrix}$$

$$K_{\omega} = H - iD_{\omega}$$

- Lindblad case $D_{\omega} = D, \quad P_{\omega} = P$ Markovian
- equilibrium case $P_{\omega} = i \tanh \left(\frac{\beta \omega}{2} \right) D_{\omega}$ non-Markovian, fixed by fluctuation-dissipation relation

- steady state encoded in covariance matrix

$$\Gamma_{ab} = \text{tr}(\hat{\rho} [\hat{A}_a, \hat{A}_b^{\dagger}]) = -2i \int \frac{d\omega}{2\pi} \frac{1}{\omega - K_{\omega}} P_{\omega} \frac{1}{\omega - K_{\omega}^{\dagger}}$$

equal time Keldysh Green's function

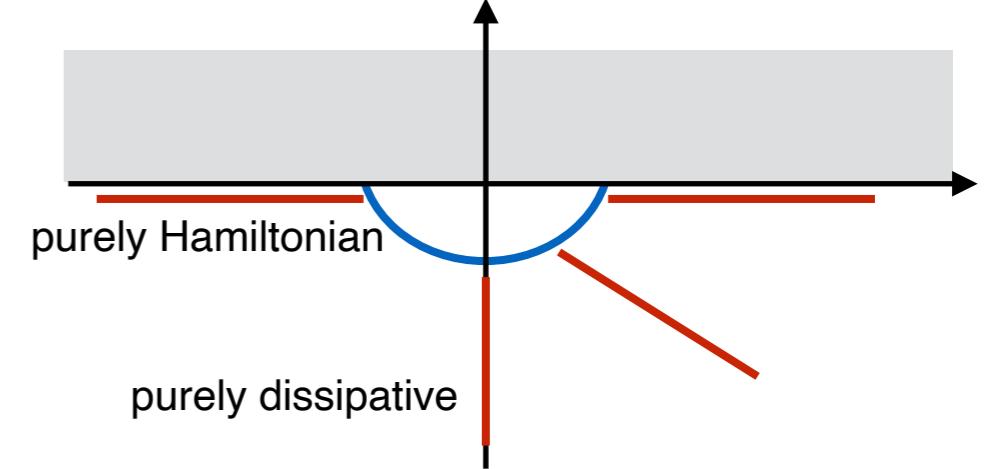
Gaussian dynamics: two gaps

- classification requires robustness, encoded in action

$$S = \frac{1}{2} \int \frac{d\omega}{2\pi} (\psi_\omega^c)^\dagger, (\psi_\omega^q)^\dagger \begin{pmatrix} 0 & \omega - K_\omega^\dagger \\ \omega - K_\omega & 2P_\omega \end{pmatrix} \begin{pmatrix} \psi_\omega^c \\ \psi_\omega^q \end{pmatrix} \quad K_\omega = H - iD_\omega$$

inv. ret. Green's function

poles of retarded Green's function



for parameterization

$$\hat{\rho} = \frac{1}{\mathcal{N}} e^{-\frac{1}{2} \hat{A}^\dagger \Theta \hat{A}} \quad \mathcal{N} = \text{tr}(e^{-\frac{1}{2} \hat{A}^\dagger \Theta \hat{A}})$$

$$\begin{aligned} \Gamma_{ab} &= \text{tr}(\hat{\rho}[\hat{A}_a, \hat{A}_b^\dagger]) = -2i \int \frac{d\omega}{2\pi} \left(\frac{1}{\omega - K_\omega} P_\omega \frac{1}{\omega - K_\omega^\dagger} \right)_{ab} \\ &= \text{tr}(\hat{\rho}[\delta_{ab} - \hat{A}_b^\dagger \hat{A}_a]) = (\tanh \frac{\Theta}{2})_{ab} \end{aligned}$$

tanh structure seen in eigenbasis

- example: equilibrium case $\Theta = \beta H$

- purity gap closing for zero modes of H (i.e. spectral gap closing)
- or infinite temperature $\beta = 0$

- criterion in the presence of a spectral gap: no zero modes of fluctuation matrix P_ω

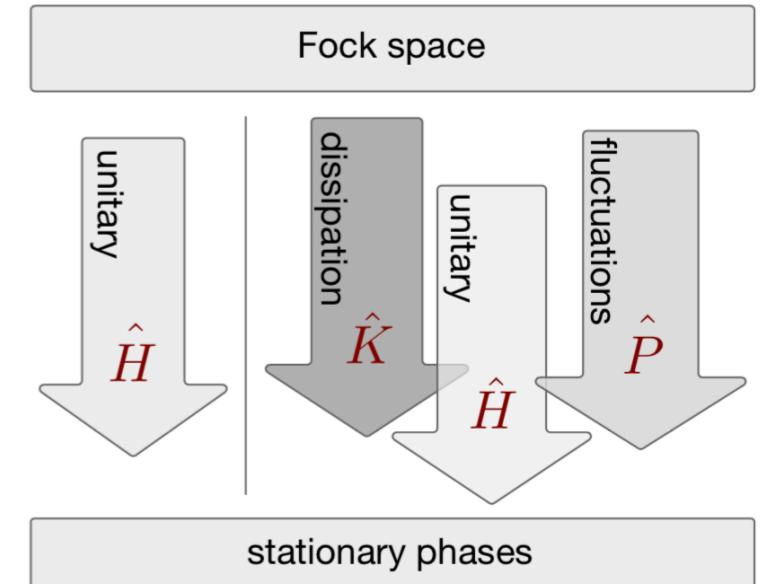
→ purity gap = 'fluctuation gap'

Different representation of anti-unitary symmetries

- table of transformation rules for Gaussian dynamics characterized by generators H, P, D

transformations		non-equilibrium			equilibrium	steady state
X	O_X	H	D	P	H	Θ/Γ
T	$U_T \bar{O} U_T^\dagger$	-	+	-	+	+
C	$-U_C^T O^T \bar{U}_C$	+	-	+	+	+
S	$-U_S^T O^\dagger \bar{U}_S$	-	-	-	+	+

Class	T	C	S	1	2	3	4
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	+	\mathbb{Z}	0	\mathbb{Z}	0
AI	+	0	0	0	0	0	\mathbb{Z}
BDI	+	+	+	\mathbb{Z}	0	0	0
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}	0	0
DIII	-	+	+	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
AII	-	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
CII	-	-	+	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
C	0	-	0	0	\mathbb{Z}	0	\mathbb{Z}_2
CI	+	-	+	0	0	\mathbb{Z}	0



- anti-unitary transformation with $i \rightarrow -i$ (T,S) rules **different** from Altland-Zirnbauer classification for dynamics out of equilibrium: $17 = 3 + 7 + 7$ dynamical classes
 - in 3 classes, no anti-unitary symmetry present
 - in 7 classes (6 with T, 1 with S), anti-unitary transformations laws of equilibrium $t \rightarrow -t + i\beta$ present
 - in 7 classes (6 with T, 1 with S), anti-unitary transformations laws of non-equilibrium $t \rightarrow +t$ present
- both equilibrium and non-equilibrium collapse onto Altland-Zirnbauer classification in stationary state
- study concrete example

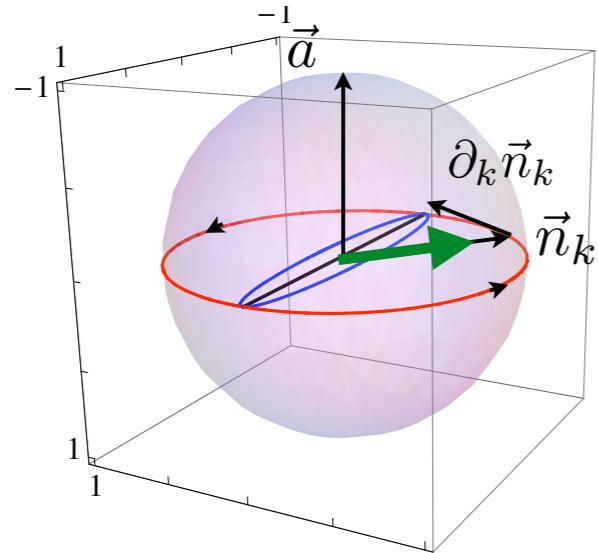
Different representation of anti-unitary symmetries (qualit.)

- example: chiral 2-band insulator in 1D (SSH)
- covariance matrix for stationary steady state (trans. inv.)

$$\Gamma_k = \vec{n}_k \cdot \vec{\Sigma} \quad |\vec{n}_k| \leq 1$$

- impose chiral symmetry with $U_S = \Sigma_z$: $U_S \Gamma U_S^\dagger = -\Gamma$

→ characterized by **winding number** $w = \oint \frac{dk}{2\pi} \vec{a} \cdot (\vec{n}_k \times \partial_k \vec{n}_k)$

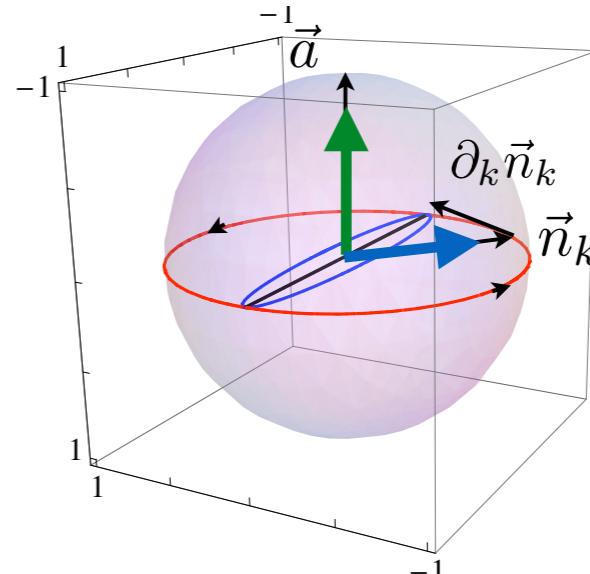


equilibrium

$$\vec{n}_k = \frac{\vec{h}_k}{|\vec{h}_k|} \tanh \frac{\beta |\vec{h}_k|}{2}$$

$$U_S H U_S^\dagger = \textcircled{-} H \quad \text{↔ in x-y-plane}$$

transformations		non-equilibrium			equilibrium		steady state
X	O_X	H	D	P	H	Θ/Γ	
T	$U_T \bar{O} U_T^\dagger$	-	+	-	+	+	
C	$-U_C^T O^T \bar{U}_C$	+	-	+	+	+	
S	$-U_S^T O^\dagger \bar{U}_S$	-	-	-	+	+	



non-equilibrium

$$\vec{n}_k = \vec{\gamma}_k - \frac{1}{\kappa^2 + |\vec{h}_k|^2} \left(\kappa + \vec{h}_k \times \right) (\vec{\gamma}_k \times \vec{h}_k) \quad \text{next pg. for details}$$

$$U_S H U_S^\dagger = \textcircled{+} H \quad \text{↔ in z-direction}$$

→ to stabilize a chiral state, H must not be chiral in the usual sense out of equilibrium

Different representation of antiunitary symmetries (formulas)

- example: chiral 2-band dissipative insulator in 1D
- covariance matrix for stationary steady state (trans. inv.)

$$\Gamma_k = \vec{n}_k \cdot \vec{\Sigma} \quad |\vec{n}_k| \leq 1$$

- Lindbladian: cools into SSH model ground state (rate κ)

$$\hat{L}_{1,i} = \frac{1}{\sqrt{2}}(a_{1,i+1} + a_{2,i}), \quad \hat{L}_{2,i} = \frac{1}{\sqrt{2}}(-a_{1,i+1} + a_{2,i})$$

- symmetry class BDI with $U_T = 1, U_S = U_C = \Sigma_z$

$$\vec{n}_k = \vec{\gamma}_k = (\cos k, \sin k, 0)^T$$

- add Hamiltonian $H_k = \vec{h}_k \cdot \vec{\Sigma}$

$$\vec{n}_k = \vec{\gamma}_k - \frac{1}{\kappa^2 + |\vec{h}_k|^2} \left(\kappa + \vec{h}_k \times \right) (\vec{\gamma}_k \times \vec{h}_k)$$

→ chirally symmetric stationary state for $U_S H U_S^\dagger = \textcircled{+} H$ in z-direction

- compare to equilibrium

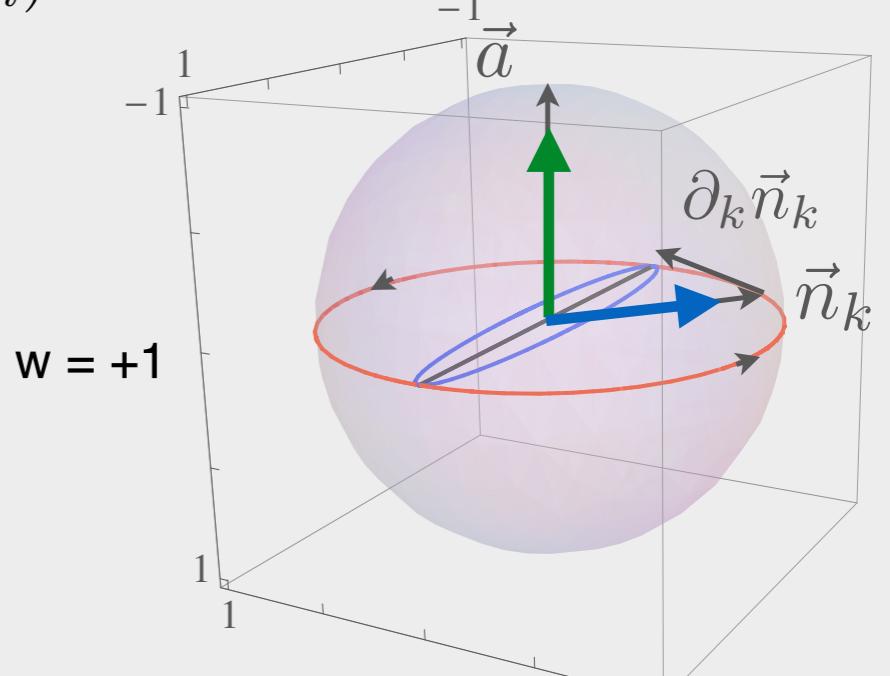
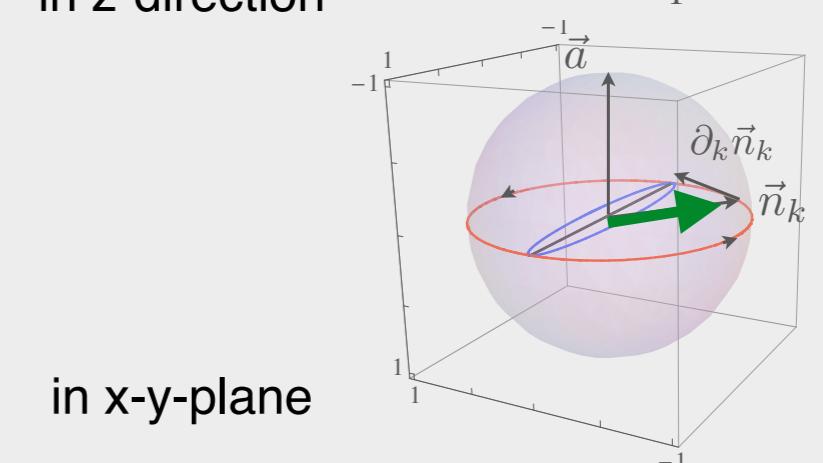
$$\vec{n}_k = \frac{\vec{h}_k}{|\vec{h}_k|} \tanh \frac{\beta |\vec{h}_k|}{2}$$

→ chirally symmetric stationary state for $U_S H U_S^\dagger = \textcircled{-} H$ in x-y-plane

transformations		non-equilibrium			equilibrium		steady state
X	O_X	H	D	P	H	Θ/Γ	
T	$U_T \bar{O} U_T^\dagger$	-	+	-	+	+	
C	$-U_C^T O^T \bar{U}_C$	+	-	+	+	+	
S	$-U_S^T O^\dagger \bar{U}_S$	-	-	-	+	+	

winding number

$$w = \oint \frac{dk}{2\pi} \vec{a} \cdot (\vec{n}_k \times \partial_k \vec{n}_k)$$



All 3 generators needed for robust classification out of eq.

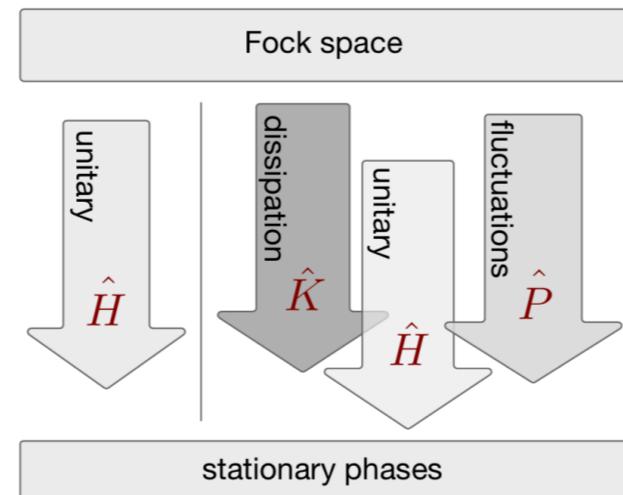
- the most fundamental description of quantum system is in terms of a system-bath Hamiltonian.
- Q: does a robust classification of symmetries exist in terms of that Hamiltonian?
- A: not out of equilibrium, since this ignores the **state of the bath**

- equilibrium

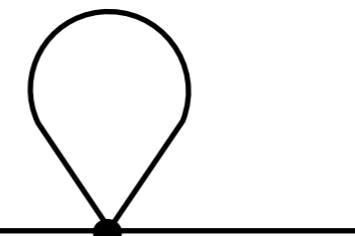
reversible dissipation
 $K_\omega = H - iD_\omega$

fluctuation
 $P_\omega = i \tanh\left(\frac{\beta\omega}{2}\right) D_\omega$

- D, P from self-thermalization or equilibrium bath
- transformation rules of fixed by system-bath H
- D, P not independent



$$\sim (\omega - K)^{-1} P (\omega - K^\dagger)^{-1}$$



concrete ex: Altland, Fleischhauer, SD
PRX (2021)

- non-Hermitian classification can work
- but only 10 classes compatible with causality

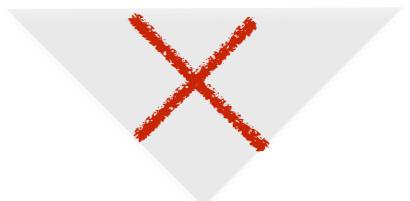
Lieu, McGinley, Cooper PRL (2020)

- (Markovian) non-equilibrium

$$K = H - iD, \quad P$$

- D, P from non-equilibrium baths (drive, different temperatures, chem. pot. etc.)
- D, P independent
- single non-Hermitian matrix
classification not perturbatively stable

$$\Delta K = \Delta K[H, D, P]$$

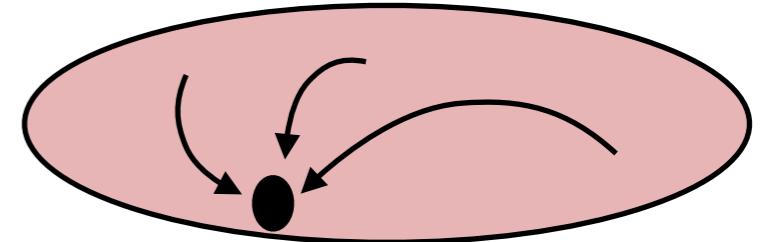


- non-Hermitian matrix classification not robust
- different ruleset

Summary lecture II

- **states**

- topologically ordered states can be induced by Lindblad dynamics



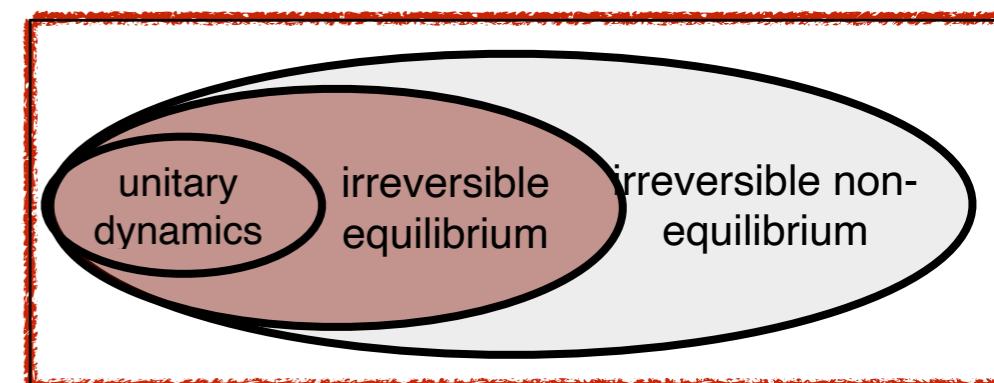
- **dynamical universality**: topology beats dynamics

- ‘basin of attraction’ for topological field theory encompasses equilibrium and non-equilibrium dynamics
 - topologically protected emergent reversible dynamics on top of irreversible bulk

$$\frac{\theta}{4\pi} \int A_+ dA_+ - A_- dA_-$$

- **dynamical fine structure**: symmetry classes

- states: 10 classes, irrespective to the dynamics stabilizing it
 - dynamics: fundamental distinction of eq. and non-eq. dynamics
 - $17 = 3 + 7 + 7$ dynamical symmetry classes
 - The ‘watershed’ is equilibrium vs. non-equilibrium, not reversible vs. irreversible



Lecture III

Lindblad-Keldysh 2.0: measurement induced phase transitions

- Background: weak continuous measurements
- Measurement induced phase transitions of fermions
- Replica Keldysh field theory approach

Sebastian Diehl

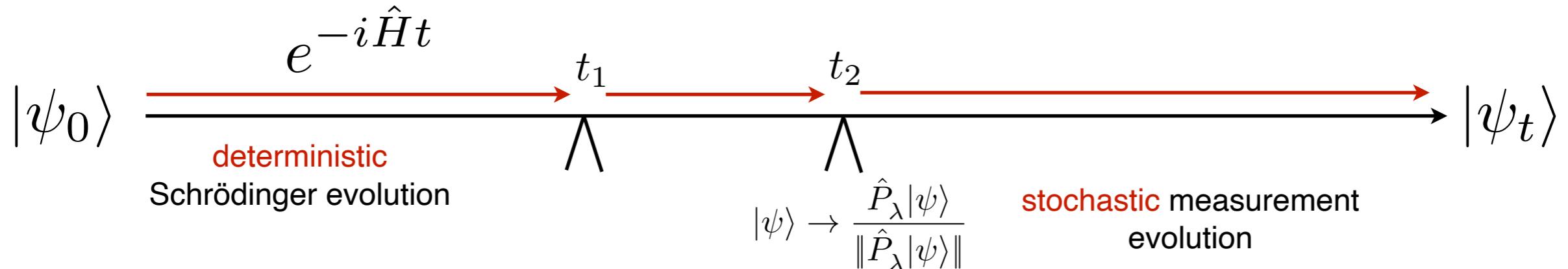
Institute for Theoretical Physics, University of Cologne

European Research Council
Established by the European Commission

Introduction

Small quantum systems: measurements

- two types of quantum dynamics



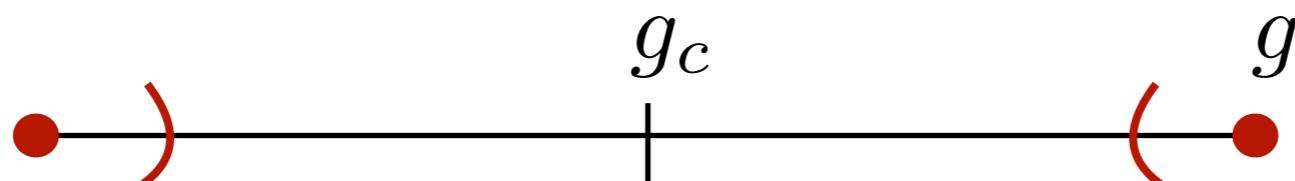
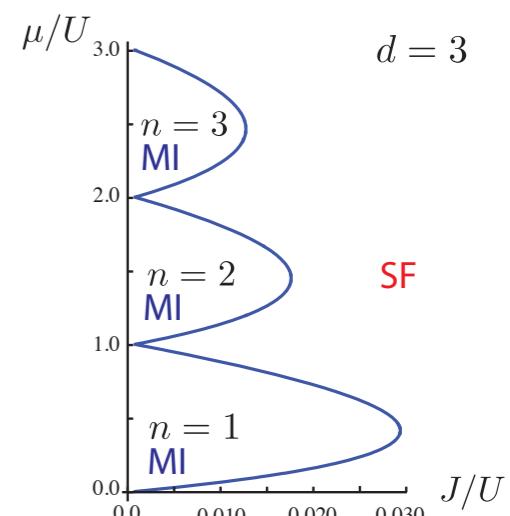
for measurement observable $\hat{M} = \sum_{\lambda} m_{\lambda} |\lambda\rangle\langle\lambda| \equiv \sum_{\lambda} m_{\lambda} \hat{P}_{\lambda}$

- dynamics non-trivial (eigenstates not shared) once $[\hat{H}, \hat{M}] \neq 0$

Many-body systems: Phase transitions

- non-commuting operators lead to (quantum) phase transitions
most important ingredient!

$$\hat{H} = \hat{H}_1 + g\hat{H}_2 \quad [\hat{H}_1, \hat{H}_2] \neq 0$$



e.g. Mott-insulator to superfluid transition in cold atoms

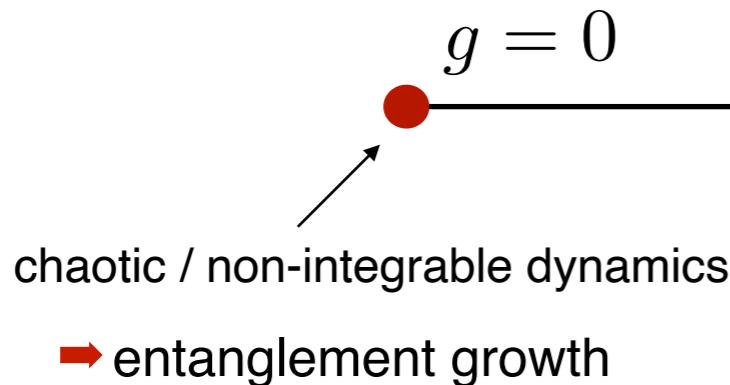
- combine measurement and many particles: similar scenario?
In particular: how does the transition manifest itself?

Entanglement phase transitions in random circuits

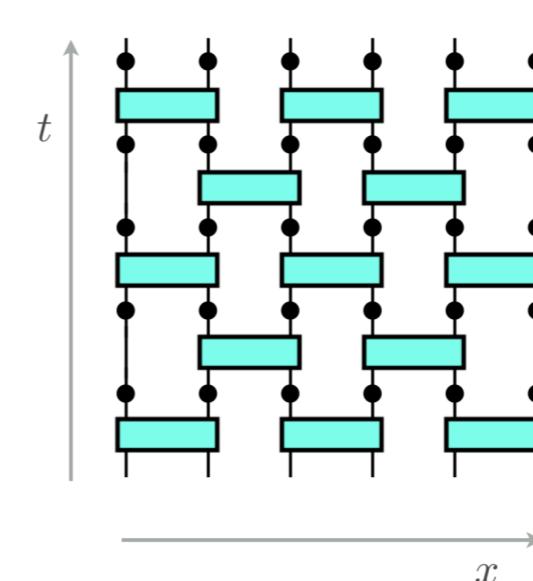
first example and phenomenology

- model and key ingredients:
 - randomly chosen local entangling unitary gates
 - projective local measurement of non-commuting observables

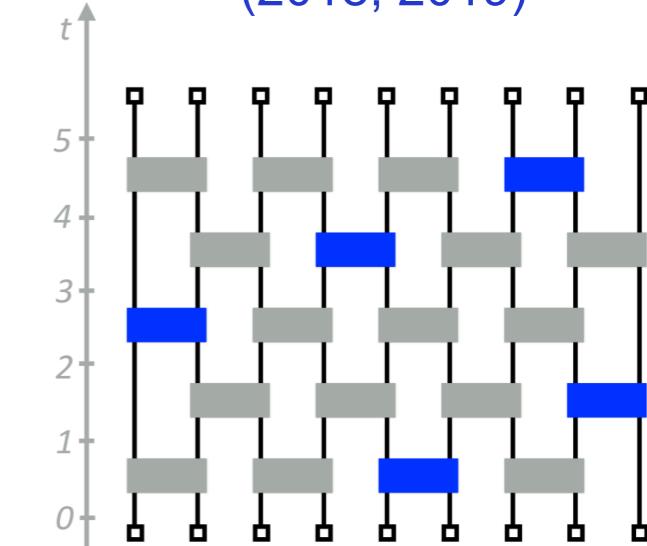
- basic picture: competition in many-body context (single trajectory, exactly local meas. of σ_i^z)



Skinner, Ruhman, Nahum
PRX (2019)

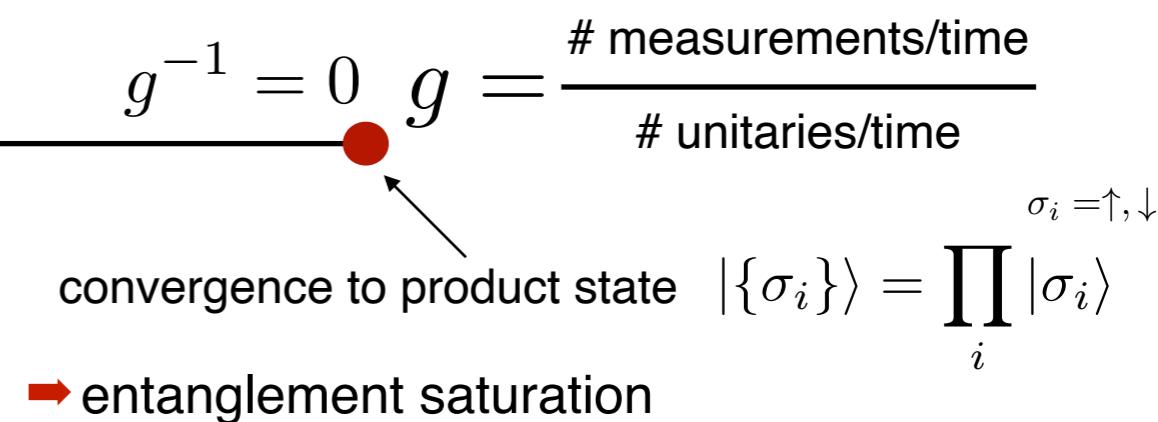


Li, Chen, Fisher, PRB
(2018, 2019)



Procedure

- track single quantum trajectories (pure states)
- compute the quantity of interest (e.g. entanglement entropy)
- average over trajectory ensemble



non-commuting

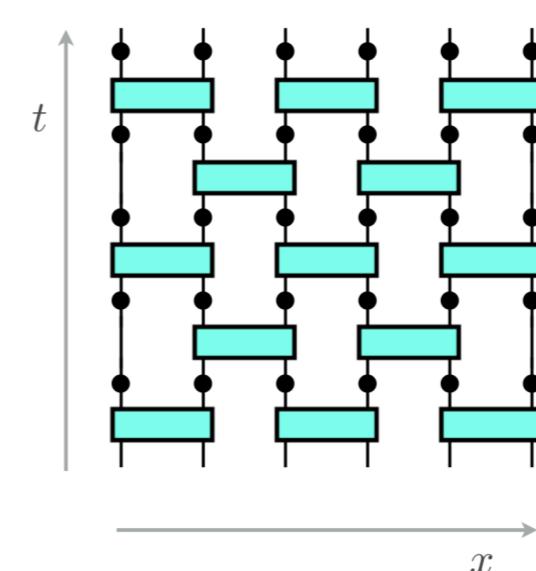
$$\overline{|\{\sigma_i\}\rangle\langle|\{\sigma_i\}|} \sim 1$$

Entanglement phase transitions in random circuits

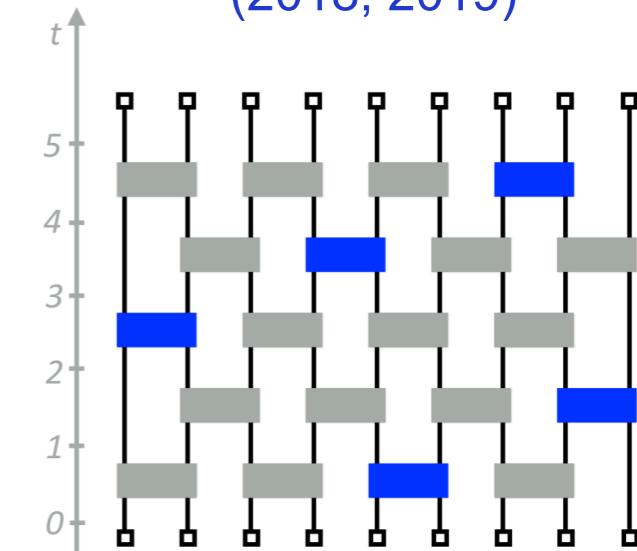
- model and key ingredients:

- randomly chosen local entangling unitary gates
- projective local measurement of non-commuting observables

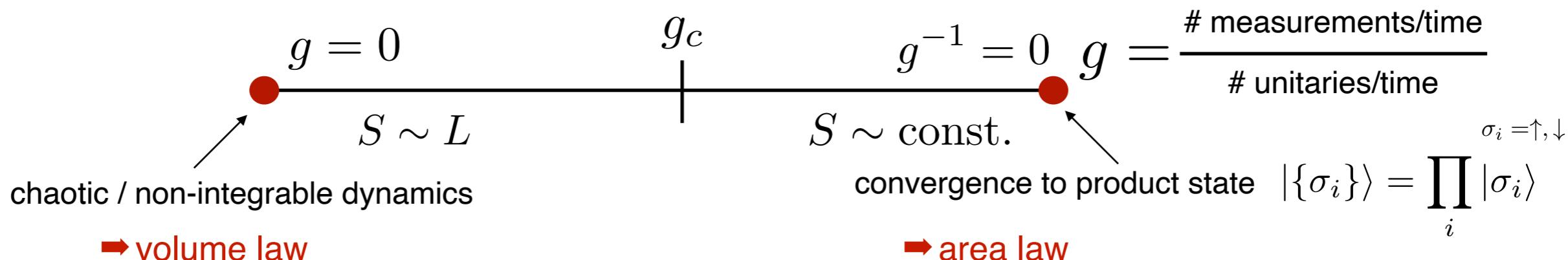
Skinner, Ruhman, Nahum
PRX (2019)



Li, Chen, Fisher, PRB
(2018, 2019)



- basic picture: competition in many-body context (single trajectory, exactly local meas. of σ_i^z)



- Procedure

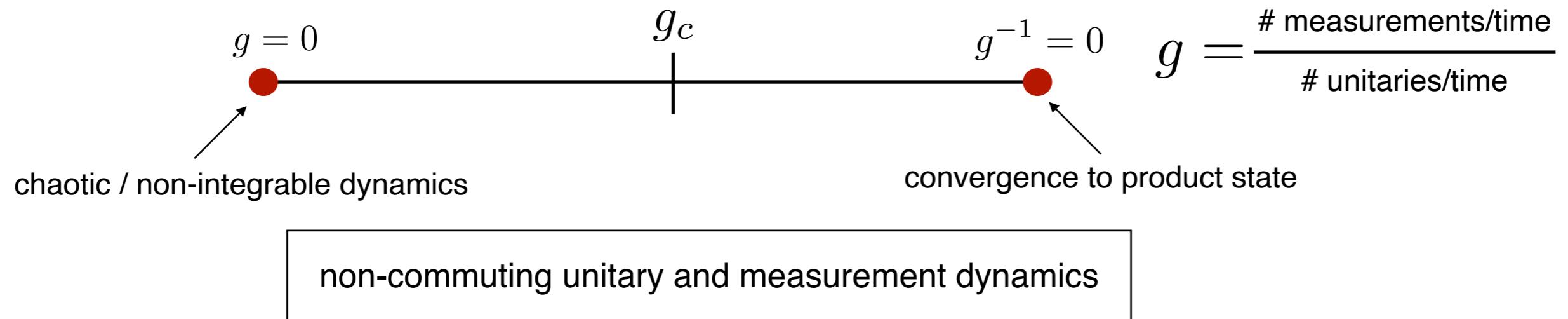
- track single quantum trajectories (pure states)
- compute the quantity of interest (e.g. entanglement entropy)
- average over trajectory ensemble

Phase transition in entanglement growth at **finite** competition ratio g

non-commuting

$$|\langle \{\sigma_i\} \rangle \langle \{\sigma_i\} | \sim 1$$

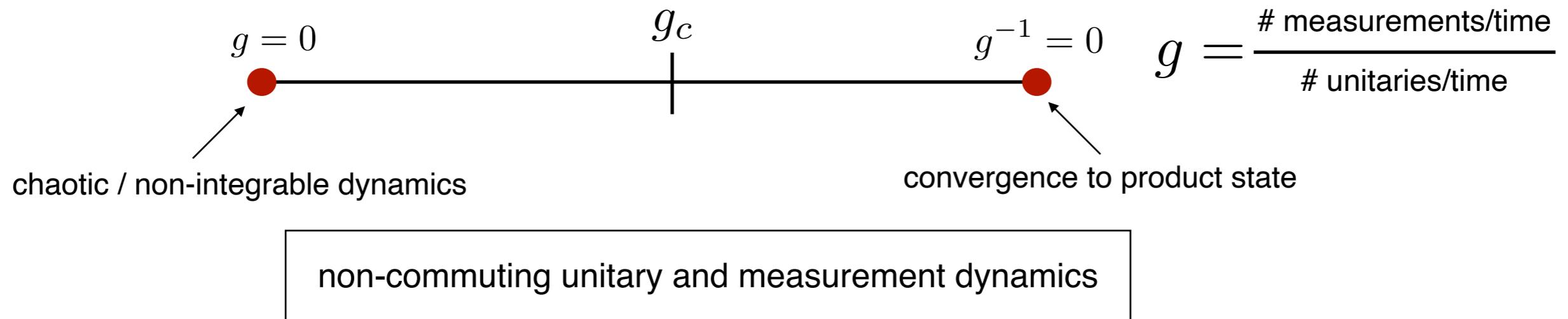
Entanglement phase transitions: Physical pictures



- entanglement picture Skinner, Ruhman, Nahum PRX (2019) Li, Chen, Fisher, PRB (2018, 2019)
 - scrambling \rightarrow extensive entanglement entropy
 - disentangling evolution
- quantum error correction picture Choi, Bao, Qi, Altman, PRL (2020); Fan et al. arxiv (2020); Li Fisher PRB (2021)
 - fast information spreading protects from errors (read-out by measurement)
 - measurement as errors (extract information)
- purification picture Gullans, Huse, PRX (2020); Gopalakrishnan, Gullans arxiv (2020)
 - initially mixed state remains mixed (thermal)
 - initially mixed state purifies to product state
- statistical mechanics picture e.g. mapping to spin model partition function: Jian, You, Vasseur Ludwig, PRB (2020)
field theory based on replica symmetry: Nahum, Roy, Skinner, Ruhman, PRX Quantum (2021)
 - long ranged correlation functions? which ones?
 - short ranged correlation functions? which ones?

→ Here: non-equilibrium statistical mechanics approach to a monitored fermion chain

Outline lecture III

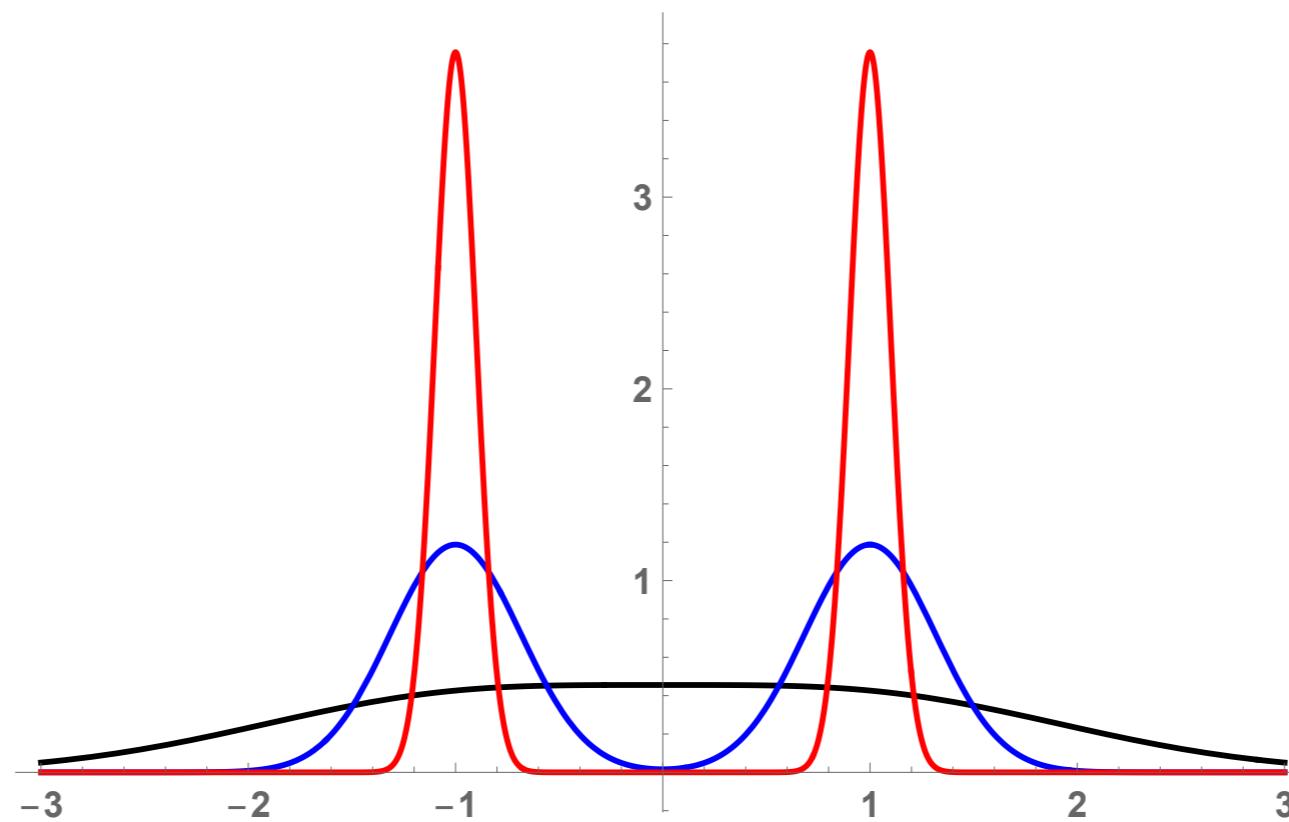


- measurements: description?
- many-body problem: phase transitions?
- how to understand?

- strong projective vs. weak continuous measurements
- ‘observables’
- continuously monitored lattice fermions
- BKT type phase transition from critical to area law phase
- signatures beyond entanglement entropy
- Lindblad-Keldysh 2.0:
 - replicated Lindblad equation
 - replicated Keldysh field theory

→ Quantum phase transition in trajectory wavefunction, revealed in non-linear-in-state observables

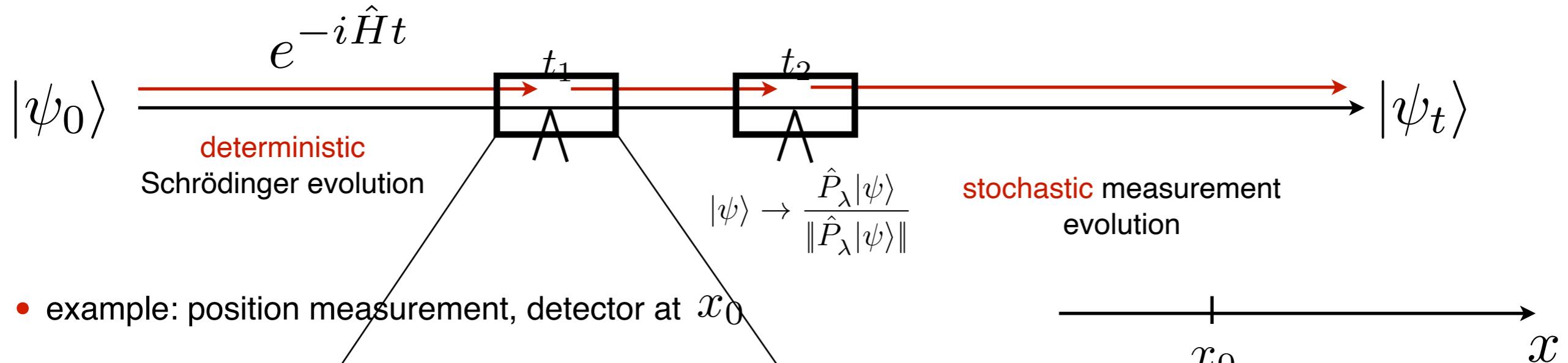
Theory background: Strong projective vs. weak continuous measurements



Projective vs. weak measurements

Review: Jacobs, Steck, Contemp. Phys. (2006)

- projective measurement: acquire full knowledge about observable



- example: position measurement, detector at x_0

$$\hat{A}(x_0) = |x_0\rangle\langle x_0| = \int dx \delta(x - x_0) |x\rangle\langle x|$$

→ know post-measurement position x_0 with certainty

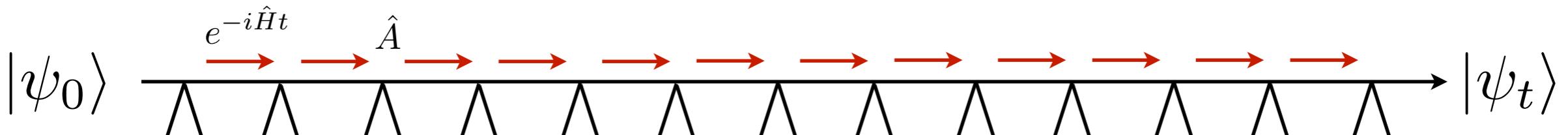
- instantaneous collapse of wave function, but real measurements take time: **continuous observation**

$$\hat{A}(x_0) = \left(\frac{2\gamma\Delta t}{\pi}\right)^{1/4} \int dx e^{-\gamma\Delta t(x-x_0)^2} |x\rangle\langle x| \xrightarrow{\Delta t \rightarrow 0} \left(\frac{2\gamma\Delta t}{\pi}\right)^{1/4} e^{-\gamma\Delta t(\hat{x}-x_0)^2}$$

→ **strong projective measurement** for $\Delta t \rightarrow \infty$

→ **weak continuous measurement** for small Δt , but large number of repetitions N :

$\Delta t \rightarrow 0, \quad N \rightarrow \infty, \quad \Delta t \cdot N \rightarrow \text{const.}$ cf. functional integral construction!



Probabilistic character of weak measurements

Review: Jacobs, Steck, Contemp. Phys. (2006)

- probability to measure x_0 on state $|\psi\rangle = \int dx \psi(x) |x\rangle$ in time $\Delta t \rightarrow 0$

$$p(x_0) = \|\hat{A}(x_0)|\psi\rangle\| = \text{tr}[\hat{A}^\dagger(x_0)\hat{A}(x_0)|\psi\rangle\langle\psi|] \quad \hat{A}(x_0) = \left(\frac{2\gamma\Delta t}{\pi}\right)^{1/4} e^{-\gamma\Delta t(\hat{x}-x_0)^2}$$

- the measurement outcome x_0 is a Gaussian random variable with

- expectation value $\langle\langle x_0 \rangle\rangle \equiv \int dx_0 x_0 p(x_0) = \left(\frac{2\gamma\Delta t}{\pi}\right)^{1/2} \int dx_0 \int dx x_0 e^{-2\gamma\Delta t(x-x_0)^2} |\psi(x)|^2 = \int dx x |\psi(x)|^2 = \langle\hat{x}\rangle$

- variance $\langle\langle x_0^2 \rangle\rangle - \langle\langle x_0 \rangle\rangle^2 = \frac{1}{4\gamma\Delta t}$ quantum mechanical expectation

- stochastic formulation (cf. Fokker-Planck vs. Langevin): parameterize

$$x_0 = \langle\hat{x}\rangle + \frac{\Delta W}{\Delta t} \quad \text{Gaussian random variable}$$

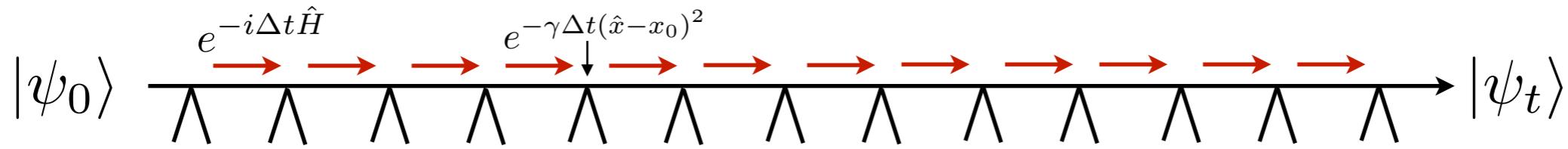
$$\overline{\Delta W} = 0 \quad \overline{\Delta W \Delta W} = \frac{\Delta t}{4\gamma} \implies \Delta W \sim \sqrt{\Delta t}$$

- stochastic update of wave function: $|\psi_{t+\Delta t}\rangle = \frac{\hat{A}(x_0)|\psi_t\rangle}{\|\hat{A}(x_0)|\psi_t\rangle\|}$

- for short observation times: expand $|\psi_{t+\Delta t}\rangle = \hat{A}(x_0)|\psi_t\rangle$ to linear order $\Delta t \equiv dt \rightarrow 0$ exercise: verify this!

$$d|\psi_t\rangle \equiv |\psi_{t+dt}\rangle - |\psi_t\rangle = \{[-\frac{1}{2}\gamma(\hat{x} - \langle\hat{x}\rangle)^2]dt + (\hat{x} - \langle\hat{x}\rangle)dW\}|\psi\rangle$$

Weak measurements: stochastic Schrödinger equation (SSE)



- generalize: **stochastic Schrödinger equation** for **quantum trajectory** $|\psi_t\rangle$ Belavkin (1987); Gisin, Percival (1993)

$$d|\psi_t\rangle = dt(-i\hat{H} - \frac{\gamma}{2} \sum_l (\hat{n}_l - \langle \hat{n}_l \rangle_t)^2) |\psi_t\rangle + \sum_l dW_l (\hat{n}_l - \langle \hat{n}_l \rangle_t) |\psi_t\rangle$$

$\langle \hat{n}_l \rangle_t = \langle \psi_t | \hat{n}_l | \psi_t \rangle$

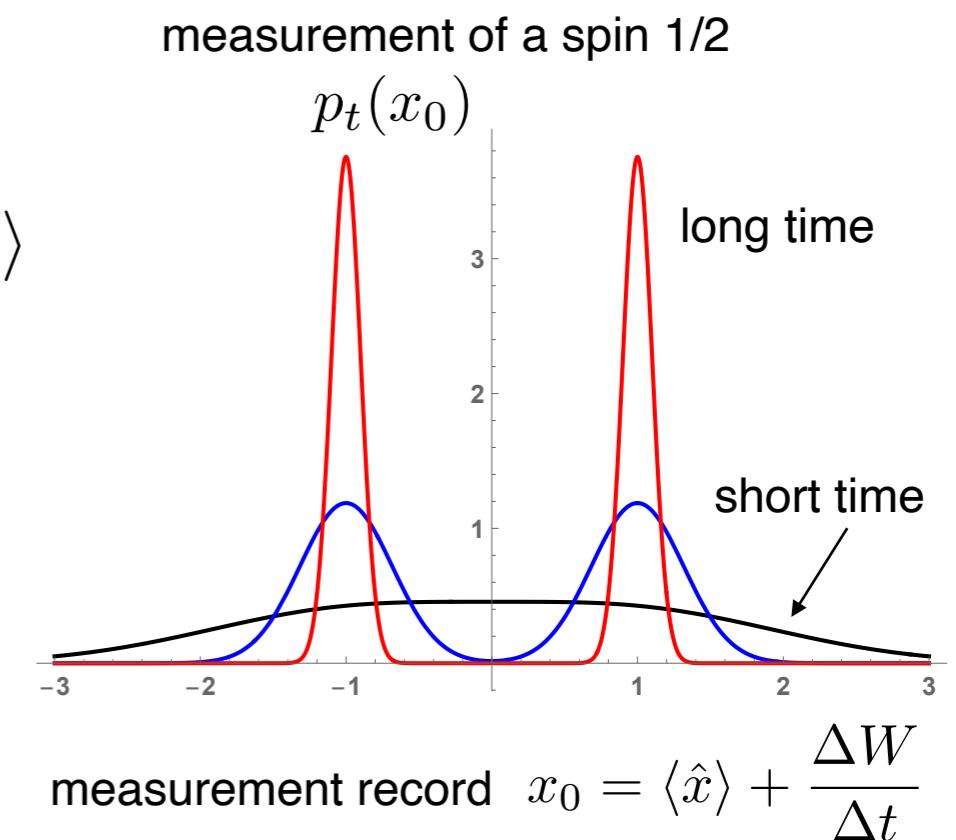
- Hamiltonian added, many degrees of freedom, $\hat{n}_l = \hat{n}_l^\dagger$
- works for measurement operators with discrete spectrum (measurement record continuous, e.g. Stern-Gerlach)
- measurement only dynamics $H=0$: **measurement dark states**

- dW 'multiplicative noise': inactive when $\hat{n}_l |\psi_t\rangle = \langle \hat{n}_l \rangle_t |\psi_t\rangle$

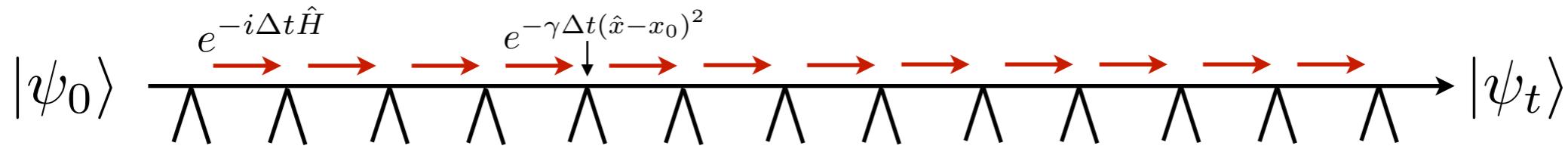
- e.g. in eigenstate $\hat{n}_l |\psi_t\rangle = n |\psi_t\rangle$

dark state of
measurement operator

- **continuous collapse**: convergence to measurement eigenstate for long times (more gen. for) $[\hat{H}, \hat{n}_l] = 0$



Weak measurements: stochastic Schrödinger equation (SSE)

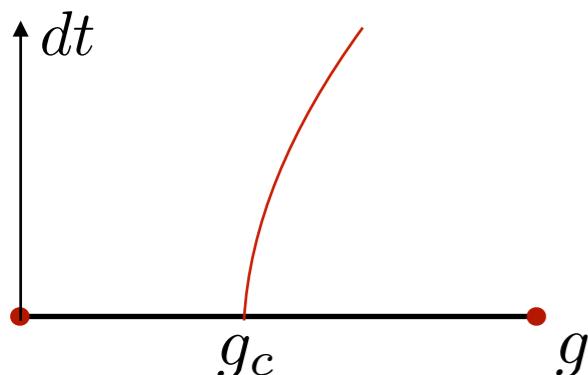


- governed by **stochastic Schrödinger equation** for **quantum trajectory** $|\psi_t\rangle$ Belavkin (1987); Gisin, Percival (1993)

$$d|\psi_t\rangle = dt \left(-i\hat{H} - \frac{\gamma}{2} \sum_l (\hat{n}_l - \langle \hat{n}_l \rangle_t)^2 \right) |\psi_t\rangle + \sum_l dW_l (\hat{n}_l - \langle \hat{n}_l \rangle_t) |\psi_t\rangle$$

$\langle \hat{n}_l \rangle_t = \langle \psi_t | \hat{n}_l | \psi_t \rangle$

- Hamiltonian added, many degrees of freedom, $\hat{n}_l = \hat{n}_l^\dagger$
- works for measurement operators with discrete spectrum (measurement record continuous, e.g. Stern-Gerlach)
- Can we expect a measurement induced phase transition similar to projective measurements? Yes!
 - no competition \Rightarrow no phase transition upon interpolation $\hat{A}(x_0) = \left(\frac{2\gamma\Delta t}{\pi}\right)^{1/4} e^{-\gamma\Delta t(\hat{x}-x_0)^2} \xrightarrow{\Delta t \rightarrow \infty} |x_0\rangle\langle x_0|$
 - Demonstrated numerically Szyniszewski, Romito, Schomerus, PRB (2019)



- expect **no extra phase transition** upon taking temporal continuum limit
- continuum limit useful for analytical approach measurement induced phase transitions (e.g. Keldysh field theory approach)

Monitored dynamics: Extracting information

- stochastic Schrödinger equation for projector $\hat{\rho}_t = |\psi_t\rangle\langle\psi_t|$ ← random variable

$$d\hat{\rho}_t = dt \underbrace{(-i[\hat{H}, \hat{\rho}_t] - \gamma \sum_l (2\hat{n}_l \hat{\rho}_t \hat{n}_l - \hat{n}_l^2 \hat{\rho}_t - \hat{\rho}_t \hat{n}_l^2))}_{l} + \sum_l dW_l \{\hat{n}_l - \langle \hat{n}_l \rangle_t, \hat{\rho}_t\}$$

→ statistical analysis: consider trajectory ensemble

- first try: statistical average of SSE for projector

- deterministic, linear **Lindblad equation** for $\rho_t = \overline{|\psi_t\rangle\langle\psi_t|}$
- \hat{n}_l Hermitian: heating to **infinite temperature** → $\rho_t \sim 1$
- usual observables:

$$\text{quantum average} \rightarrow \langle \hat{O} \rangle = \langle \psi_t | \hat{O} | \psi_t \rangle \xrightarrow{\text{statistical average}} \overline{\langle \hat{O} \rangle} = \overline{\langle \psi_t | \hat{O} | \psi_t \rangle} = \text{tr}[\hat{O} \overline{\hat{\rho}_t}]$$

→ evaluated on featureless infinite T state

→ use **state-dependent observables** $\overline{\langle \hat{O}(|\psi\rangle) \rangle} = \text{tr} \hat{O}(\hat{\rho}) \overline{\hat{\rho}}$

more promising, because in general

$$F(\overline{\hat{\rho}}) \neq \overline{F[\hat{\rho}]}$$

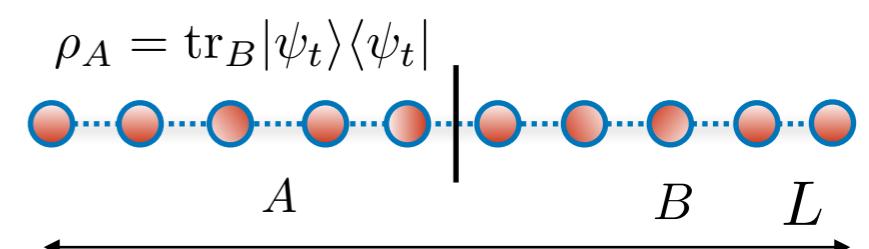
- examples:

- von Neumann entropy

$$\overline{S_{vN}(l, L)} = \overline{\langle \log(\rho_A) \rangle}$$

- correlation function

$$\overline{\langle \hat{n}_i \rangle \langle \hat{n}_j \rangle}$$



arbitrarily high power of state projector

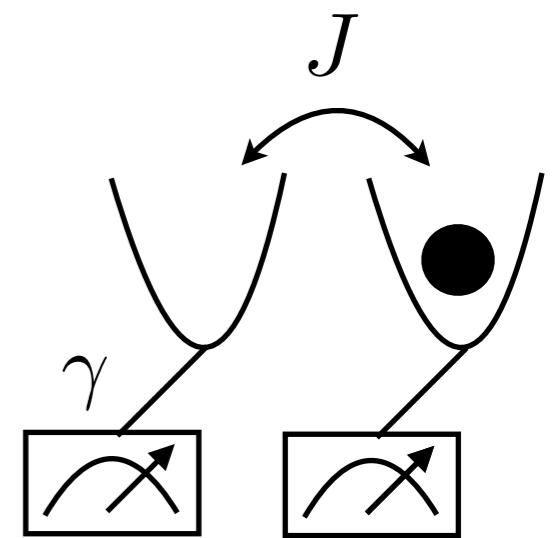
quadratic in state projector

An example: one fermion on two sites (two-level system)

- toy model: trajectory evolution of single fermion on two sites

$$|\psi_{t+dt}\rangle = |\psi_t\rangle - idt\hat{H}_{\text{eff}}|\psi_t\rangle + \sum_{l=1}^2 dW_l (\hat{n}_l - \langle \hat{n}_l \rangle_t) |\psi_t\rangle$$

$$\hat{H}_{\text{eff}} = \hat{H} - i\hat{K} \quad \hat{H} = -J (c_1^\dagger c_2 + h.c.) \quad \hat{K} = \frac{\gamma}{2} \sum_{l=1}^2 (\hat{n}_l - \langle \hat{n}_l \rangle_t)^2$$

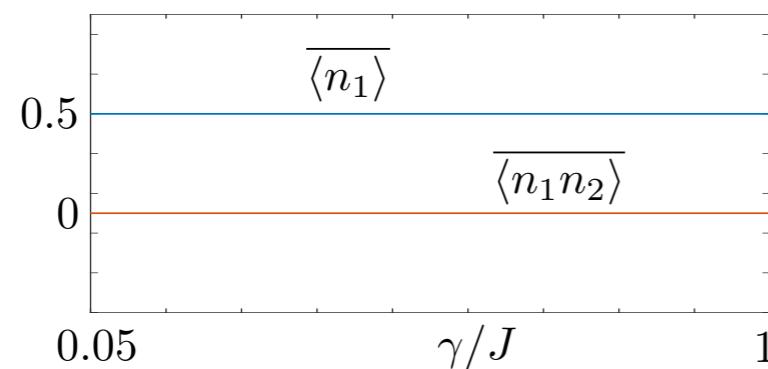


guiding physical picture:

- thermodynamic limit: pinning quantum phase transition may happen at sharply defined point
- signalled in nonlinear-in-state ‘observable’, like the covariance matrix

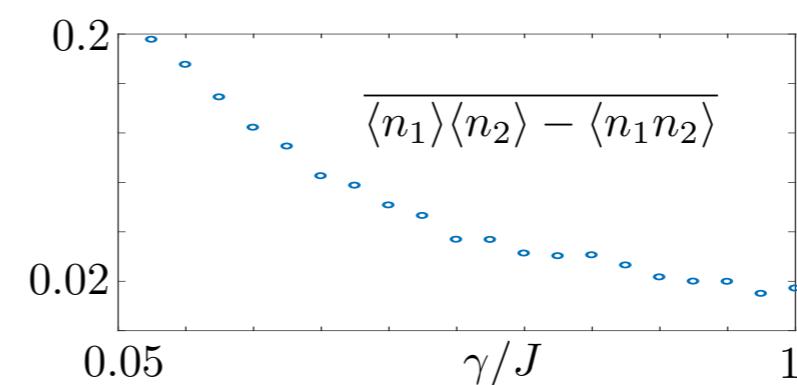
→ pinning to measurement eigenstate

- invisible in linear averages



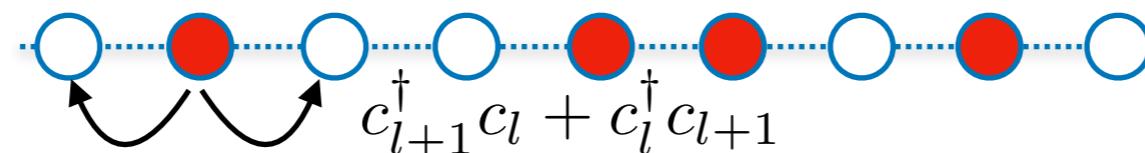
→ vanishing time spent in eigenstate

- seen in averaged trajectory covariance matrix



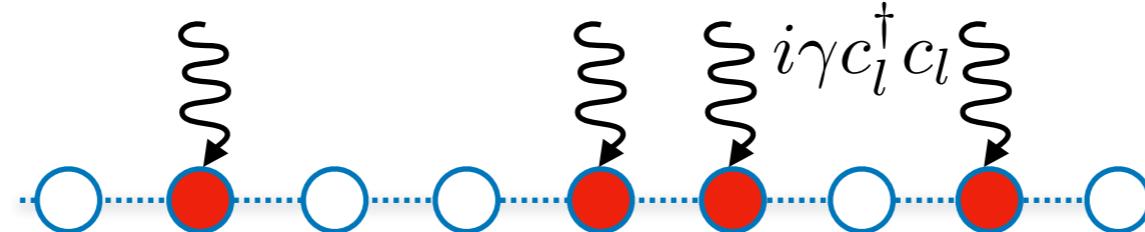
Entanglement phase transition in a monitored fermion chain

Hamiltonian:



entanglement growth

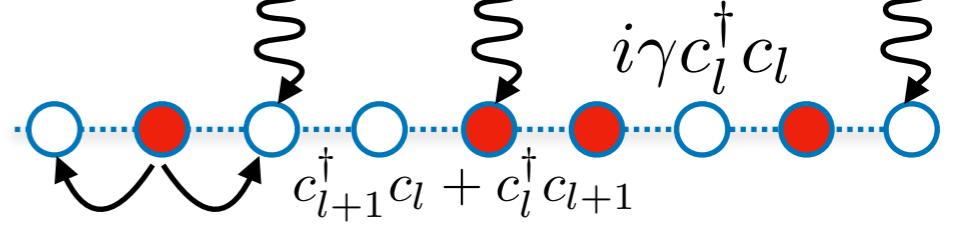
Monitoring:



entanglement saturation

O. Alberton, M. Buchhold, SD, PRL (2021)

Monitored fermion dynamics



- Weak continuous measurements in many-body system

$$d|\psi_t\rangle = dt(-i\hat{H} - \frac{\gamma}{2} \sum_l \hat{M}_l^2 |\psi_t\rangle + \sum_l dW_l \hat{M}_l |\psi_t\rangle)$$

Gaussian white noise

- competition: $g = \frac{\gamma}{J}$

- unitary dynamics: hopping

- measurement operators $\hat{M}_l = \hat{n}_l - \langle \hat{n}_l \rangle_t$

- $H = 0$: evolution stops after collapse into **dark state**

$$H = -J \sum_l (c_l^\dagger c_{l+1} + c_{l+1}^\dagger c_l)$$

$$\hat{M}_l |\psi_t\rangle = 0 \quad \text{for} \quad \hat{n}_l |\psi_t\rangle = n_l |\psi_t\rangle$$

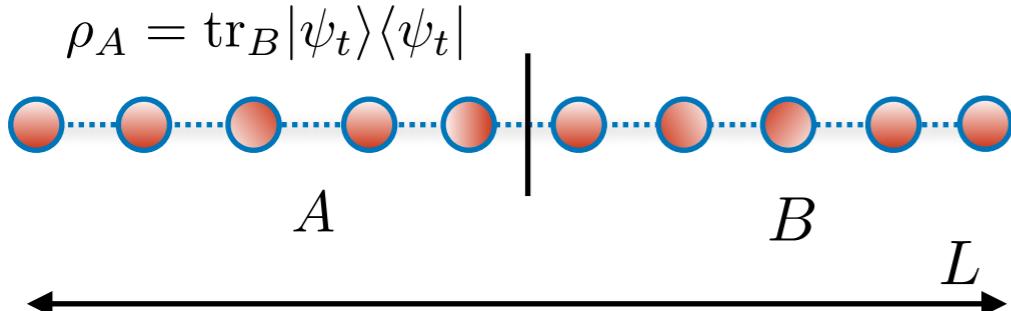
eigenstate of measurement operator

→ volume law entanglement entropy

$$S_{vN}(L/2, L) = \text{tr} \rho_A \log(\rho_A) \xrightarrow{t \rightarrow \infty} L$$

→ area law entanglement entropy

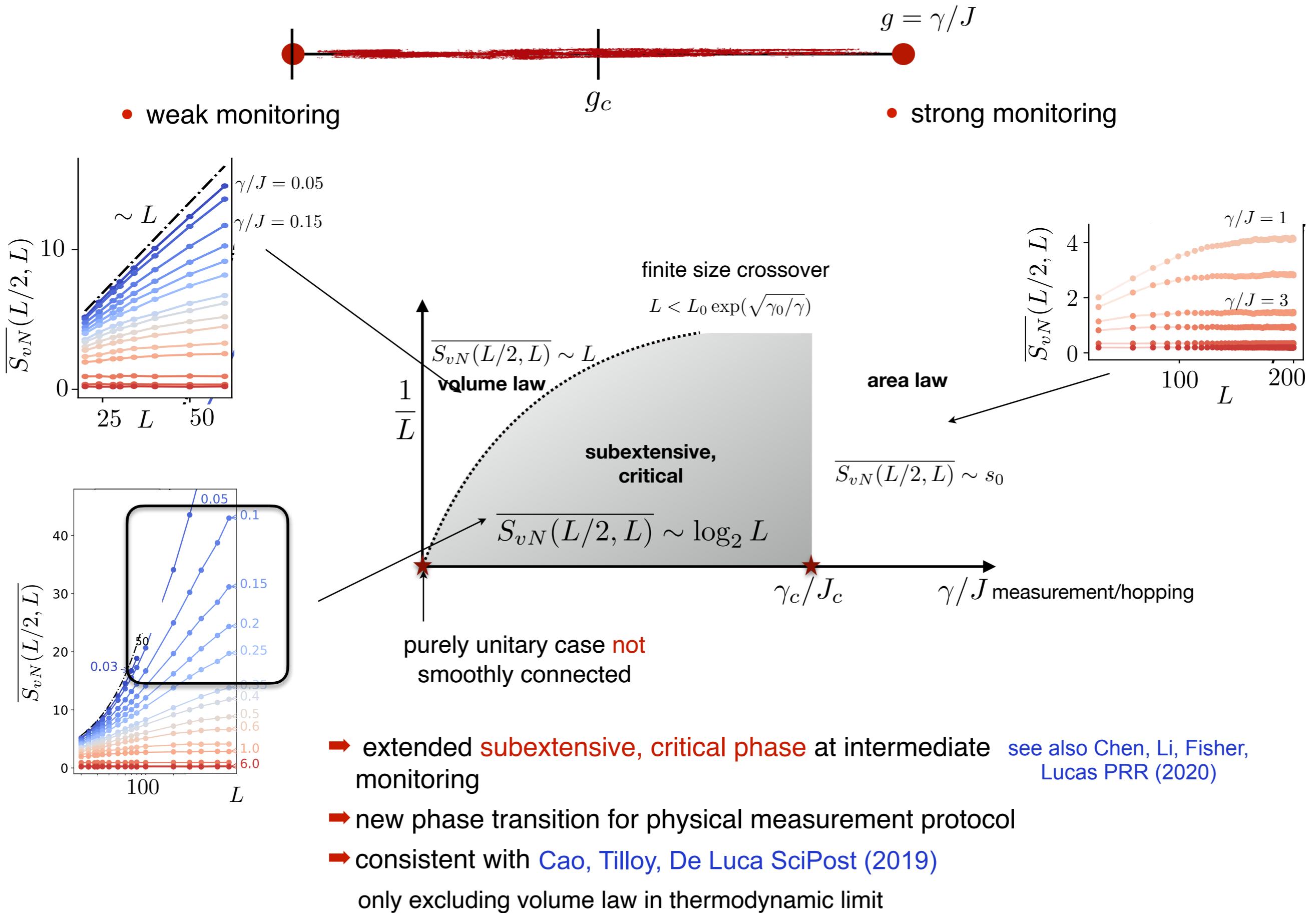
$$S_{vN}(L/2, L) = s_0$$



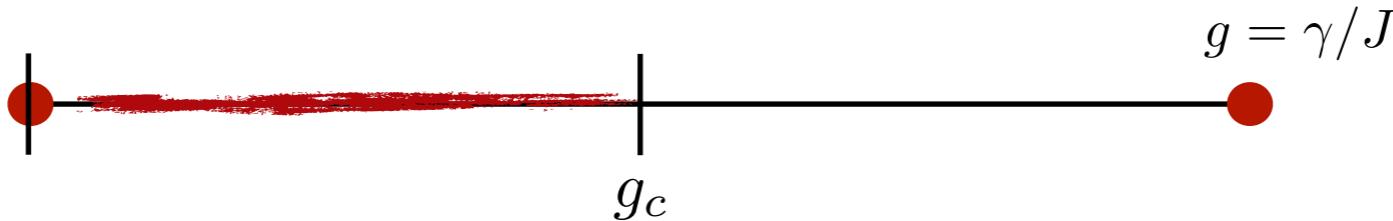
- caveat: $|\psi_t\rangle$ is a random variable
- binary measurement outcomes generate extensive **configurational entropy**

→ ‘observables’: entanglement entropy, traj. averaged correlators

Trajectory ensemble phase diagram: Entanglement entropy



Characterizing the weak monitoring phase



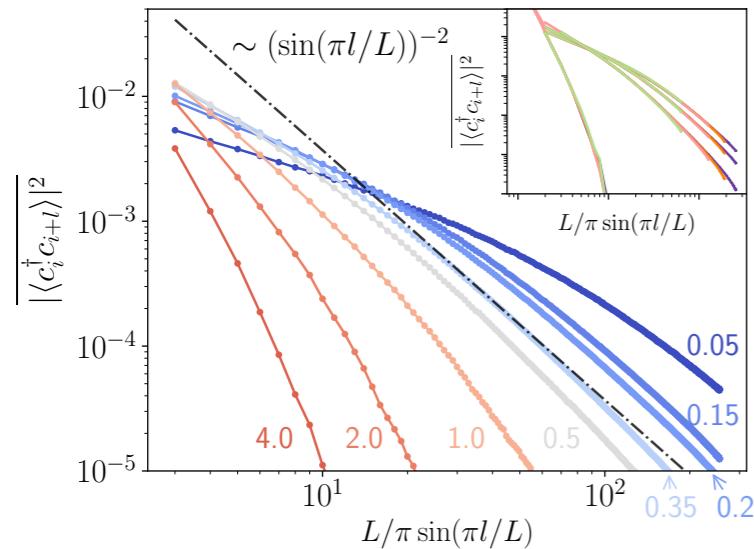
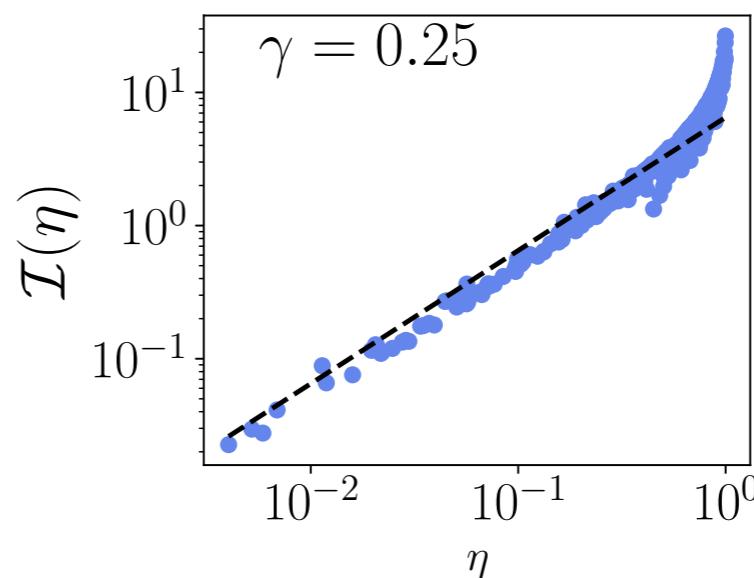
- extended criticality: Connected correlation function
- emergent conformality: Mutual information

$$C_{i,i+l} = \overline{\langle \hat{n}_i \rangle \langle \hat{n}_{i+l} \rangle} - \overline{\langle \hat{n}_i \hat{n}_{i+l} \rangle}$$

$$\sim l^{-2}$$

$$\mathcal{I}(A, B) = \overline{S_{vN}(A)} + \overline{S_{vN}(B)}$$

$$+ \overline{S_{vN}(A \cup B)}$$



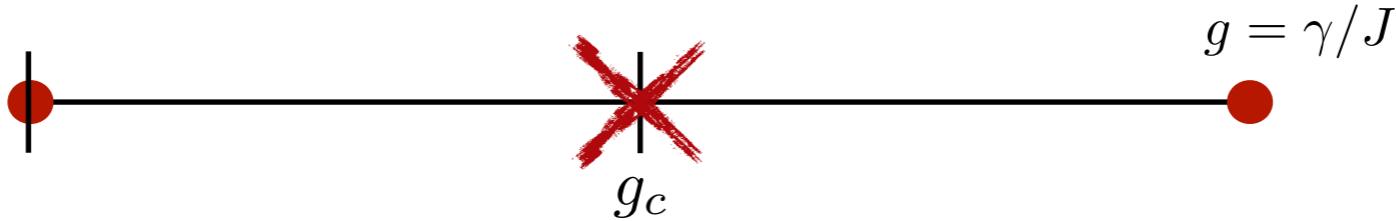
- captures all distinct phases:

$$C_{i,i+l} \sim \begin{cases} 0 & \text{for } H = 0 \\ \exp(-l/\xi) & \text{for } \gamma \gg J \\ l^{-2} & \text{for } \gamma \ll J \\ l^{-1} & \text{for } \gamma = 0 \end{cases}$$

conformally invariant critical point: Nahum et al. PRX (2019); Li Chen Fisher PRB (2019); Jian et al. PRB (2020);

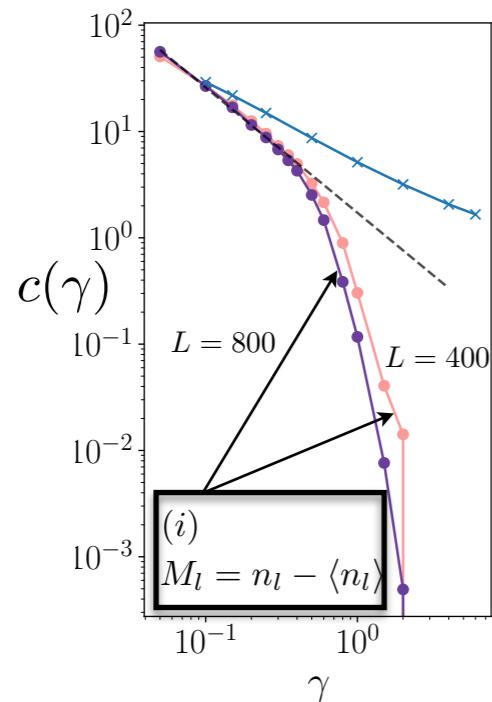
→ emergent conformally invariant critical phase for weak monitoring

Characterizing the phase transition



- effective central charge $c(\gamma)$

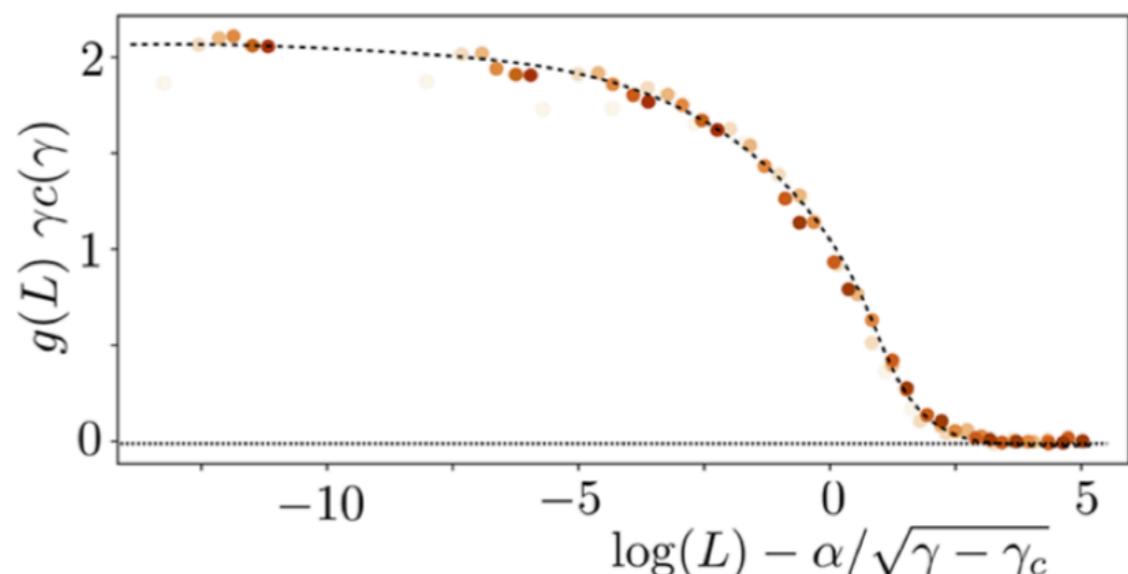
$$\overline{S_{vN}(l, L)} = \frac{c(\gamma)}{3} \log_2 \left[\frac{L}{\pi} \sin \left(\frac{\pi l}{L} \right) \right] + s(\gamma)$$



parameter dependent c

random systems: Cardy Jacobsen PRL (1997);
Refael, Moore PRL (2004)

- essential scaling of the central charge: scaling collapse above phase transition



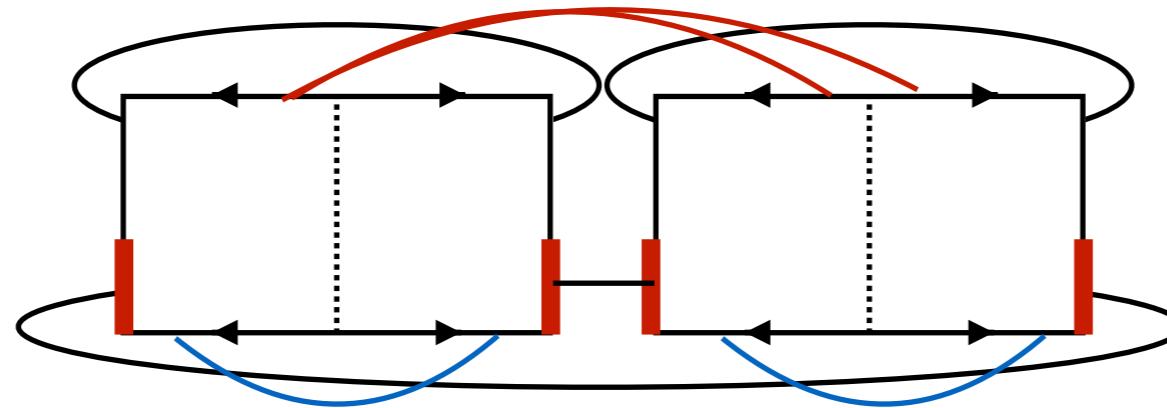
→ sudden jump reminiscent of BKT

→ BKT universal behavior

→ establishes BKT type phase transition

→ further: measurement protocol dependence, trajectory entanglement distribution as probe of transition...

Keldysh replica field theory approach to measurement induced phase transitions



M. Buchhold, Y. Minoguchi, A. Altland, SD, arxiv:2102.08381

microphysics

macrophysics

Continuum (1+1) dimensional model

- preface: model obtains from naive continuum limit and bosonization of lattice fermion model

fermionic variant \longrightarrow bosonized variant

- Hamiltonian: massless Dirac fermions $\hat{\Psi}_x = (\hat{\psi}_{R,x}, \hat{\psi}_{L,x})^T$ Luttinger liquid

$$\hat{H} = iv \int_x \hat{\Psi}_x^\dagger \sigma_z \partial_x \hat{\Psi}_x \longrightarrow \hat{H} = \frac{v}{2\pi} \int_x [(\partial_x \hat{\theta}_x)^2 + (\partial_x \hat{\phi}_x)^2]$$

phase density

- measurement operators: current and vertex operators

$$\text{rate } \gamma_1 : \hat{O}_{1,x} = \Psi_x^\dagger \Psi_x = \hat{J}_x^{(0)} \longrightarrow \hat{O}_{1,x} = -\frac{1}{\pi} \partial_x \hat{\phi}_x \text{ linear gapless}$$

$$\text{rate } \gamma_2 : \hat{O}_{2,x} = \Psi_x^\dagger \sigma_x \Psi_x \longrightarrow \hat{O}_{2,x} = \underbrace{m \cos(2\hat{\phi}_x)}_{\mathcal{O}(1)} \text{ nonlinear}$$

common eigenstates: $\hat{\phi}_x |\Psi_D\rangle = \phi_x |\Psi_D\rangle$

- stabilize product dark states: exactly local
- realize competition: do not commute with H (phase fluctuations)

Signatures of phase transition in many-body problem

$$g = \gamma/J$$

- Analysis of limiting cases:
evolution of covariance matrix

$$C_{ij} = \overline{\langle n_i n_j \rangle} - \overline{\langle n_i \rangle} \overline{\langle n_j \rangle}$$

- strong monitoring: perturbation theory
 - hierarchy of equations of motions expanded to leading order $1/g$

$$C_{ij} = \frac{(-1)^{|i-j+1|} (2|i-j| - 3)!!}{2^{|i-j+1|} |i-j|!} \left(\frac{2J^2}{\gamma^2} \right)^{|i-j|}$$

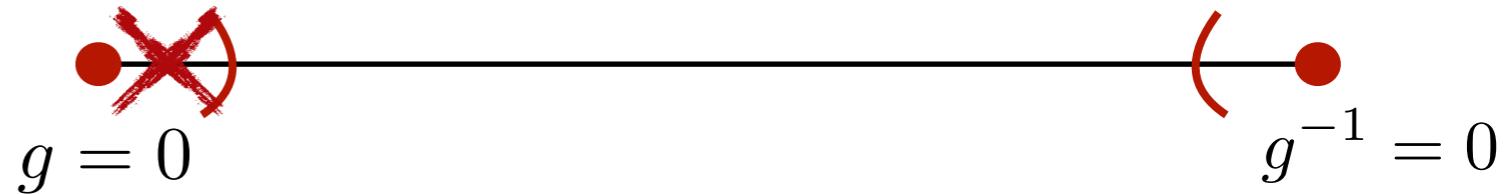
$$\Rightarrow C_{ij} \sim e^{-|i-j|/\xi} \quad \xi = \frac{1}{2} \log^{-1} \left(\frac{\gamma}{J\sqrt{2}} \right)$$

→ leading exponential decay, in line with numerics

Signatures of phase transition in many-body problem

$$g = \gamma/J$$

- Analysis of limiting cases:
evolution of covariance matrix



$$C_{ij} = \overline{\langle n_i n_j \rangle} - \overline{\langle n_i \rangle} \overline{\langle n_j \rangle}$$

- weak monitoring: Riccati equations [V. P. Belavkin \(1987\)](#); Kalman filtering in cavity optomechanics, Wieczorek et al. PRL (2015)

- quadratic theory: $H = \frac{v}{2\pi} \int_x (\partial_x \theta_x)^2 + (\partial_x \phi_x)^2$ $M_x \approx -\frac{1}{\pi} (\partial_x (\phi_x - \langle \phi_x \rangle))$

- evolution of covariance matrix governed by Riccati equation, steady state solvable in momentum space

$$C_k = C(\gamma) \sin(|k|/2)$$

$$\implies$$

$$C_{ij} = \frac{C(\gamma)}{|i - j|^2}$$

$$C(\gamma) = \frac{v}{4\gamma} \sqrt{2 \left(\sqrt{\frac{16\gamma^2}{\pi^2 v^2} + 1} - 1 \right)}$$

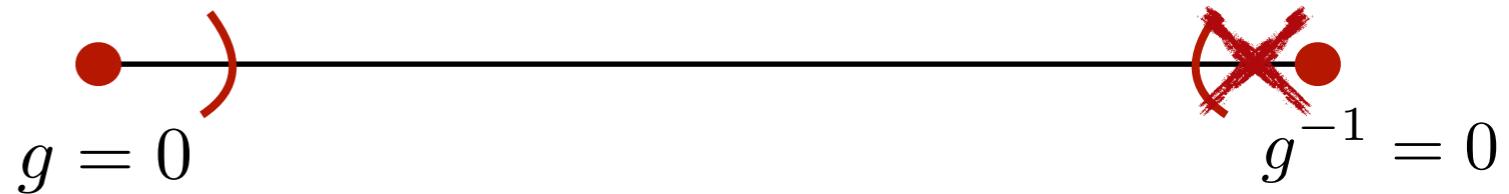
- algebraic decay reproducing numerical result at weak monitoring
- ground state Luttinger liquid result reproduced as

$$\gamma \rightarrow 0 : \quad C_k = \frac{|k|}{2\pi}$$

Signatures of phase transition in many-body problem

$$g = \gamma/J$$

- Analysis of limiting cases:
evolution of covariance matrix



$$C_{ij} = \overline{\langle n_i n_j \rangle} - \overline{\langle n_i \rangle} \overline{\langle n_j \rangle}$$

- back to strong monitoring: Riccati equations

- absence of Hamiltonian: systems evolves into product of local number eigenstates

$$\phi_x |\psi\rangle = \varphi_x |\psi\rangle \quad \text{for all } x$$

- expand about homogeneous configuration $\varphi_x = \varphi$

$$n_x - \langle n_x \rangle = - \left(m + \frac{\partial_x}{\pi} \right) (\delta\phi_x - \langle \delta\phi_x \rangle) \approx -m(\delta\phi_x - \langle \delta\phi_x \rangle) \quad m = \sqrt{\frac{16}{\pi^2 \alpha^2} - \frac{1}{4}}$$

→ pinning seen as a **gap opening** in the effective Hamiltonian

- solution of the Riccati equation for gapped quadratic theory

$$C_{ij} \sim m \sqrt{\frac{\nu}{8\pi\gamma}} e^{-\frac{|i-j|}{\xi}} \quad \xi = \frac{1}{\log(2\pi\gamma m^2/\nu)}$$

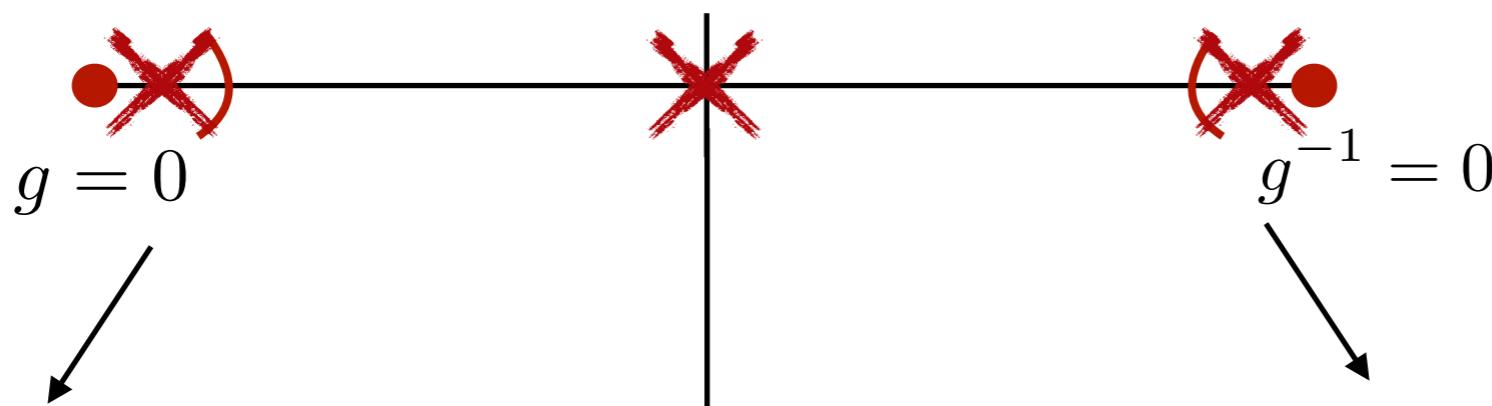
→ reproduces the qualitative behavior of fermionic strong monitoring approach

Intermediate summary

- Analysis of limiting cases: evolution of covariance matrix

$$C_{ij} = \overline{\langle n_i n_j \rangle} - \overline{\langle n_i \rangle} \overline{\langle n_j \rangle}$$

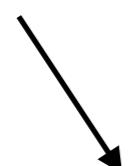
$$g = \gamma/J$$



- Luttinger + Riccati approach

$$C_{ij} = \frac{C(\gamma)}{|i - j|^2}$$

- algebraic decay
- depinned phase



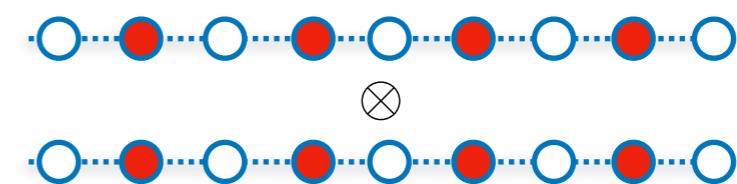
- there must be a phase transition at some finite g_c
- strongly reminiscent of a deconfined to pinning transition in Sine-Gordon models
- develop field theory approach capture it

$$C_{ij} \sim e^{-\frac{|i-j|}{\xi}}$$

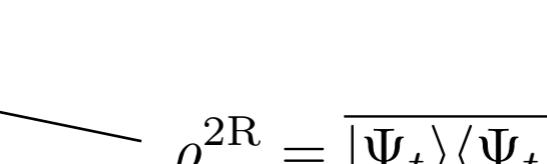
- exponential decay
- pinned phase

- fermionic and Luttinger + Riccati approach

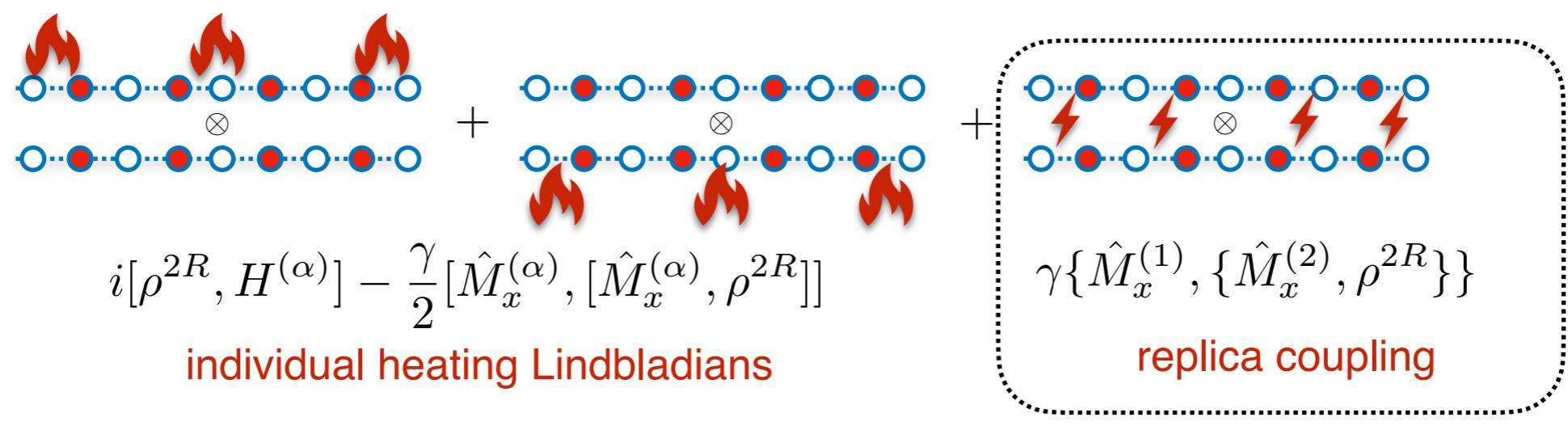
Towards the relevant degrees of freedom: Replica approach

- Q: What is the structure of $C_{xy} = \overline{\langle \hat{n}_x \hat{n}_y \rangle} - \overline{\langle \hat{n}_x \rangle} \langle \hat{n}_y \rangle$
 - Introduce replicas in Hilbert space $|\Psi_t\rangle = |\psi_t^{(1)}\rangle \otimes |\psi_t^{(2)}\rangle =$


$$\hat{n}_x^{(1)} = \hat{n}_x \otimes \mathbf{1}$$

$$\hat{n}_x^{(2)} = \mathbf{1} \otimes \hat{n}_x$$
 - Then $C_{xy} = \frac{1}{2} \text{Tr} \left[\left(\hat{n}_x^{(1)} - \hat{n}_x^{(2)} \right) \left(\hat{n}_y^{(1)} - \hat{n}_y^{(2)} \right) \rho^{2R} \right]$


→ linear statistical average of replica density matrix

→ correlations of relative replica coordinate
 - Quantum master equation (truncate coupling to ρ^{3R})
- $$\partial_t \rho^{2R} =$$


$$i[\rho^{2R}, H^{(\alpha)}] - \frac{\gamma}{2} [\hat{M}_x^{(\alpha)}, [\hat{M}_x^{(\alpha)}, \rho^{2R}]]$$

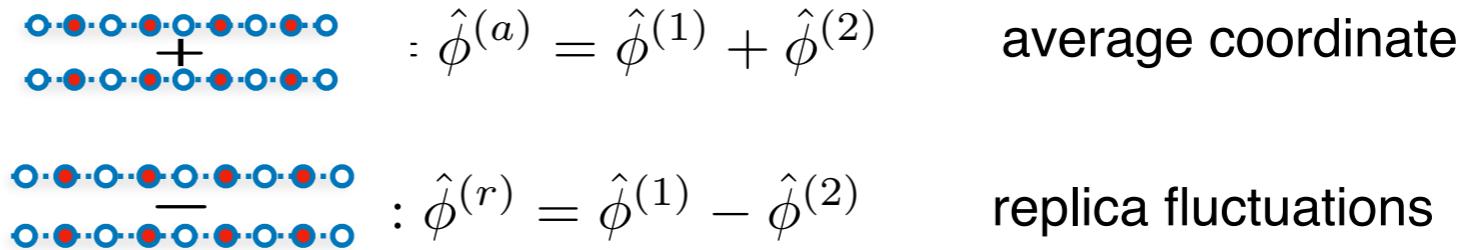
individual heating Lindbladians

replica coupling
- study structure of 2-replica theory

Boson replica quantum master equation

- Boson measurement $H^{(\alpha)} = \frac{\nu}{2\pi} \int_x (\partial_x \hat{\phi}^{(\alpha)})^2 + (\partial_x \hat{\theta}^{(\alpha)})^2$

$$\hat{O}_{1,x}^{(\alpha)} = -\frac{1}{\pi} \partial_x \hat{\phi}_x^{(\alpha)} \quad \hat{O}_{2,x}^{(\alpha)} = 0 \quad \text{linear case first}$$



→ Master equation becomes **separable**

- Average coordinate: **heating** to infinite temperature (\leftrightarrow unbounded growth of mode occupation)

$$\partial_t \rho^{(a)} = i[\rho^{(a)}, H^{(a)}] + \frac{2\gamma}{\pi} \sum_l \left(\partial_x \hat{\phi}^{(a)} - \overline{\langle \partial_x \hat{\phi}^{(a)} \rangle} \right) \rho^{(a)} \left(\partial_x \hat{\phi}^{(a)} - \overline{\langle \partial_x \hat{\phi}^{(a)} \rangle} \right)$$

only jump term!

- Relative coordinate: **cooling/damping** into dark state

$$\partial_t \rho^{(r)} = i[\rho^{(r)}, H^{(r)}] - \frac{\gamma}{\pi} \sum_l \left\{ (\partial_x \hat{\phi}^{(r)})^2, \rho^{(r)} \right\}$$

no jump term!

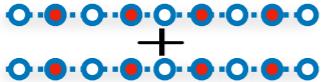
- further separable: $\partial_t |\psi_t^{(r)}\rangle = -i H_{\text{eff}} |\psi_t^{(r)}\rangle$

$$H_{\text{eff}} = \frac{\nu}{2\pi} \int_x (\partial_x \hat{\theta})^2 + (1 - i\eta^2)(\partial_x \hat{\phi})^2$$

$$\eta^2 = \frac{2\gamma}{\nu}$$

gapless non-Hermitean Hamiltonian

Boson replica quantum master equation

- Boson measurement $H^{(\alpha)} = \frac{\nu}{2\pi} \int_x (\partial_x \hat{\phi}^{(\alpha)})^2 + (\partial_x \hat{\theta}^{(\alpha)})^2$
- $\hat{O}_{1,x}^{(\alpha)} = -\frac{1}{\pi} \partial_x \hat{\phi}_x^{(\alpha)}$ $\hat{O}_{2,x}^{(\alpha)} = m \cos(2\hat{\phi}_x)$ general case
- $\hat{O}_{2,x}^{(\alpha)}$ couples relative and absolute degrees $\sim m \cos(\sqrt{2}(\hat{\phi}_x^{(a)} \pm \hat{\phi}_x^{(r)}))$
- how do  degrees enter? → $\langle \hat{\phi}_x^{(a)} \hat{\phi}_x^{(a)} \rangle = \infty$ nonlinearity irrelevant for $\hat{\phi}_x^{(a)}$
- ↓ → integrate out $\hat{\phi}_x^{(a)}$ in Gaussian approx. for $\hat{\rho}^{(a)}$

- Non-hermitian Schrödinger equation for relative coordinate

$$\partial_t |\psi_t^{(r)}\rangle = -i H_{\text{eff}} |\psi_t^{(r)}\rangle \quad \rightarrow \text{cooling into dark state}$$

$$H_{\text{eff}} = \frac{\nu}{2\pi} \int_x (\partial_x \hat{\theta})^2 + (1 - i\eta^2)(\partial_x \hat{\phi})^2 - i \frac{\gamma m}{\pi} \int_x [1 - \cos(\sqrt{8}\hat{\phi}_x)]$$

effect of non-linearity

- non-Hermitian Sine-Gordon: pinning via cos term, depinning via theta term
- extract physics in path integral approach

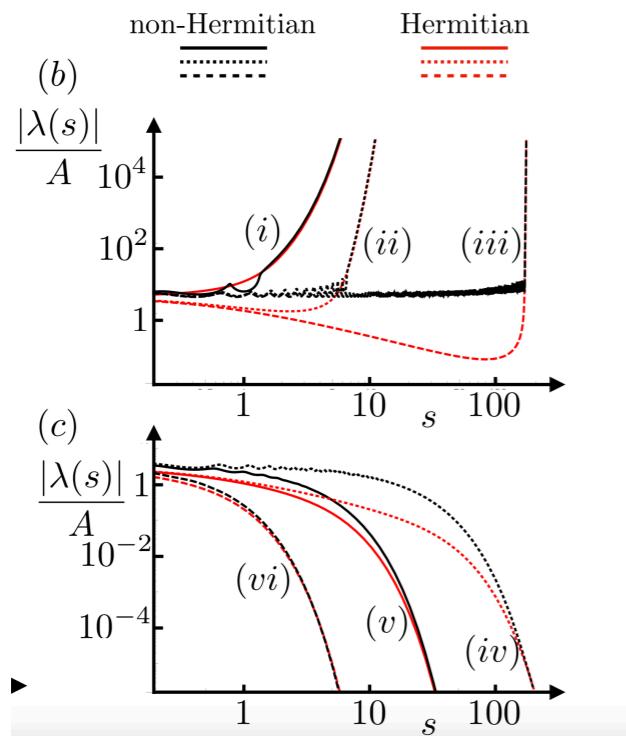
Effective non-Hermitian Hamiltonian and path integral

→ Sine-Gordon action with complex coefficients

Fendley, Saleur, Zamolodchikov,
International Journal of Modern Physics (1993)

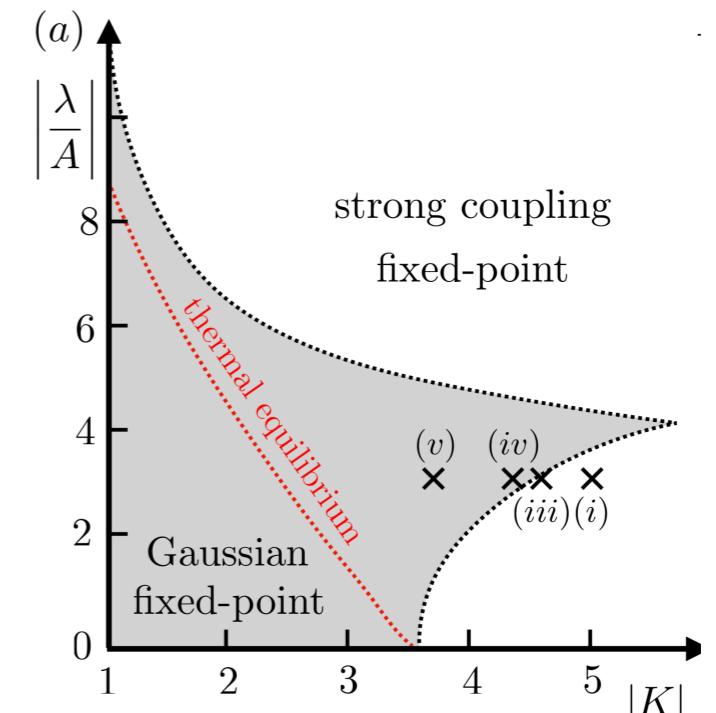
$$S = \int_{t,x} \left\{ \frac{K}{16\pi} \left[\frac{1}{\eta} (\partial_t \phi)^2 - \eta (\partial_x \phi)^2 \right] - i\lambda \cos(\phi) \right\}$$

- ‘Wick rotation’ brings free part to standard Euclidean (2+0) dimensional form $(x, t) \rightarrow (\eta^{\frac{1}{2}}x, i\eta^{-\frac{1}{2}}t)$
- RG flow: standard KT flow with complex K, λ



$$\begin{aligned}\partial_s \lambda &= \left(2 - \frac{8\pi}{K}\right) \lambda, \\ \partial_s K &= -\lambda^2\end{aligned}$$

- UV flow modified
- shift of phase border
- IR flow reaches standard KT flow
- same long wavelength properties



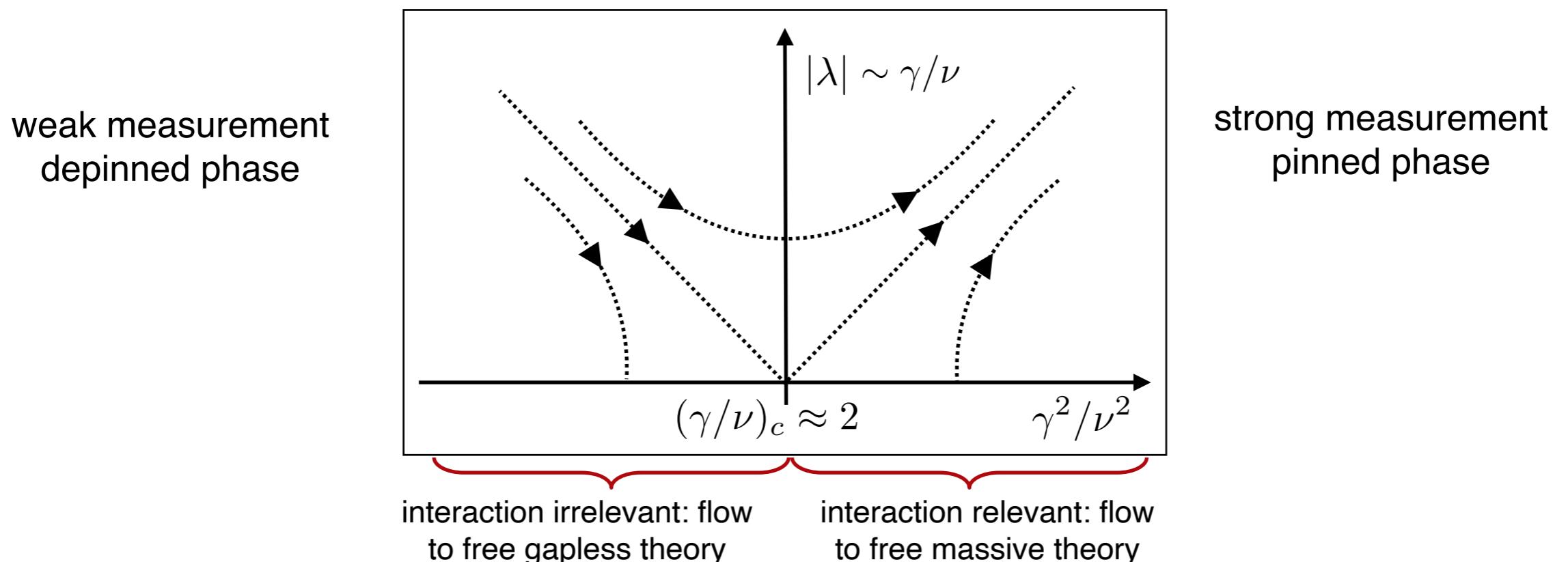
Effective non-Hermitian Hamiltonian and path integral

→ Sine-Gordon action with complex coefficients

Fendley, Saleur, Zamolodchikov,
International Journal of Modern Physics (1993)

$$S = \int_{t,x} \left\{ \frac{K}{16\pi} \left[\frac{1}{\eta} (\partial_t \phi)^2 - \eta (\partial_x \phi)^2 \right] - i\lambda \cos(\phi) \right\}$$

- ‘Wick rotation’ brings free part to standard Euclidean (2+0) dimensional form $(x, t) \rightarrow (\eta^{\frac{1}{2}}x, i\eta^{-\frac{1}{2}}t)$
- RG flow: standard KT flow with complex K, λ
- IR flow reaches standard KT flow



- gapless generalized CFT phase with algebraic correlations and varying exponent
- phase transition in the BKT universality class in line with numerics

n replicas: Lindblad-Keldysh 2.0

n-replica Hamilton-Keldysh: Aleiner, Faoro, Ioffe, AoP (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker, Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)

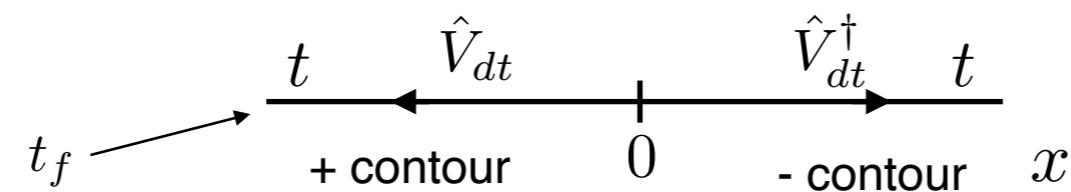
- Motivation:

- Generalization of ‘hot’ and ‘cold’ modes?
- Entanglement entropies?

- Lindblad-Keldysh construction for n replicas

- evolution operator $\hat{V}_{dt} = \exp \left[-(i\hat{H} + \hat{M}_t^2)dt + \xi \hat{M}_t \right]$ expansion to second order: SSE

- single replica



n replicas: Lindblad-Keldysh 2.0

n-replica Hamilton-Keldysh: Aleiner, Faoro, Ioffe, AoP (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker, Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)

- Motivation:

- Generalization of ‘hot’ and ‘cold’ modes?
- Entanglement entropies?

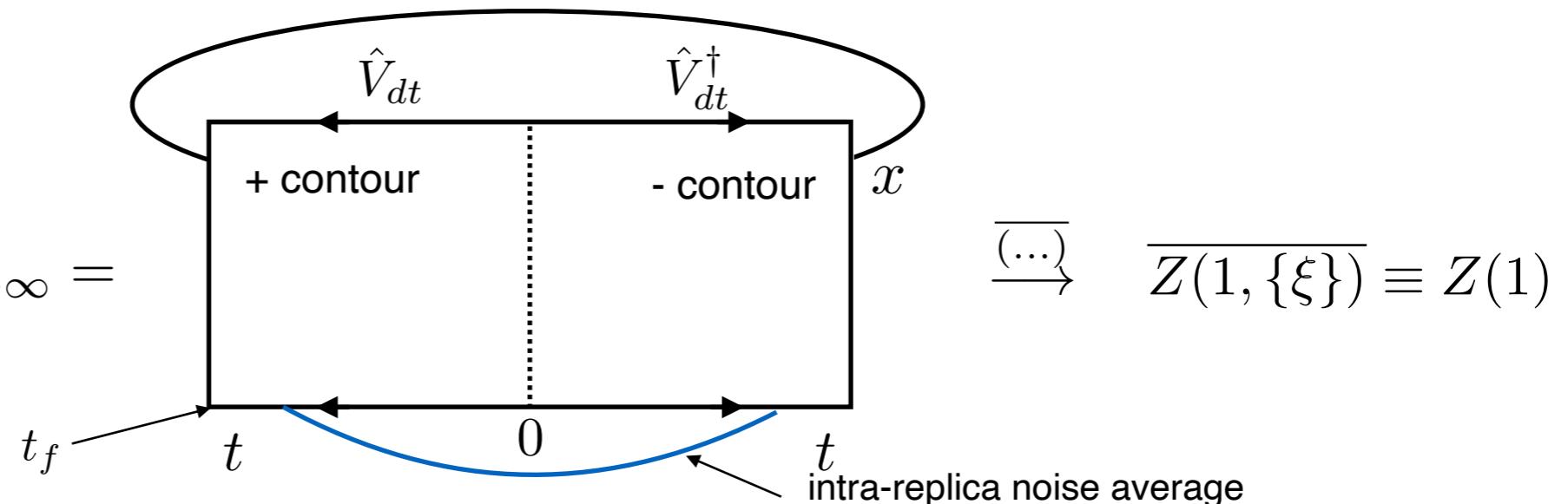
- Lindblad-Keldysh construction for n replicas

$$\xi \equiv dW \text{ (sorry...)}$$

- evolution operator $\hat{V}_{dt} = \exp \left[-(i\hat{H} + \hat{M}_t^2)dt + \xi \hat{M}_t \right]$ expansion to second order: SSE

- single replica

$$Z(1, \{\xi\}) = \text{tr} \rho_{t_f \rightarrow \infty} =$$



$$Z(1, \{\xi\}) = \int \mathcal{D}[\Psi] \exp [i(S_{1,H}[\Psi] + S_{1,\xi}[\Psi])]$$

$$\implies Z(1) = \int \mathcal{D}\Psi \exp [i(S_{1,H}[\Psi] + S_{1,M}[\Psi])]$$

→ measurement expectation values cancel

→ Lindblad-Keldysh functional integral reproduced (Herm. Lindblads)

$$S_{1,H}[\Psi] = \sum_{\sigma=\pm} \sigma \int_t (\bar{\psi}_\sigma i\partial_t \psi_\sigma - H[\bar{\psi}_\sigma, \psi_\sigma])$$

$$S_{1,\xi}[\Psi] = i \sum_{\sigma=\pm} \int_t [M_\sigma^2 - \xi M_\sigma]$$

$$\begin{aligned} S_{1,M}[\Psi] &= i \int_t [M_+^2 + M_-^2 - \frac{1}{2}(M_+ + M_-)^2] \\ &= -i \int_t [O_+ O_- - \frac{1}{2}O_-^2 + \frac{1}{2}O_+^2] \end{aligned}$$

$$M = O - \bar{O}$$

n replicas: Lindblad-Keldysh 2.0

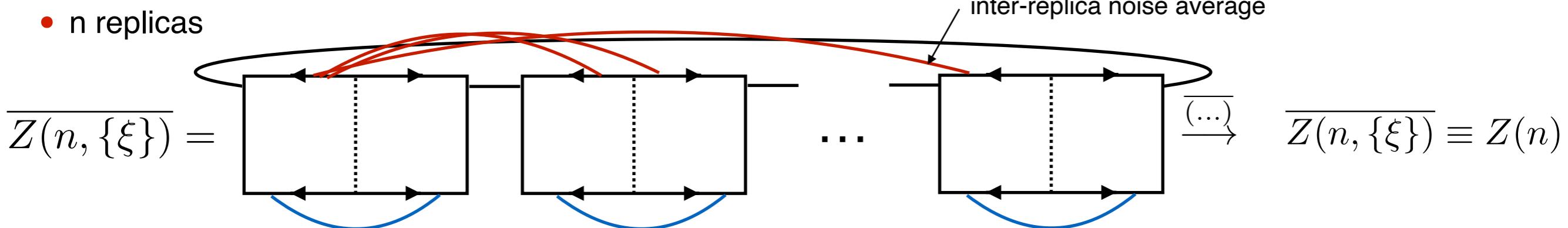
n-replica Hamilton-Keldysh: Aleiner, Faoro, Ioffe, AoP (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker, Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)

- Motivation:

- Generalization of ‘hot’ and ‘cold’ modes?
- Entanglement entropies?

- Lindblad-Keldysh construction for n replicas

- evolution operator $\hat{V}_{dt} = \exp \left[-(i\hat{H} + \hat{M}_t^2)dt + \xi \hat{M}_t \right]$ expansion to second order: SSE



$$Z(n, \{\xi\}) = \int \mathcal{D}[\Psi] \exp [i(S_{n,H}[\Psi] + S_{n,\xi}[\Psi])]$$

$$\implies Z(n) = \int \mathcal{D}\Psi \exp [i(S_{n,H}[\Psi] + S_{n,M}[\Psi])]$$

→ collective coupling to noise

→ structural simplification for linear measurement dynamics

$$S_{n,H}[\Psi] = \sum_{\sigma=\pm} \sum_{l=1}^n \sigma \int_t \left(\bar{\psi}_\sigma^{(l)} i \partial_t \psi_\sigma^{(l)} - H[\bar{\psi}_\sigma^{(l)}, \psi_\sigma^{(l)}] \right)$$

$$S_{n,\xi}[\Psi] = i \sum_{\sigma=\pm} \sum_{l=1}^n \int_t \left[(M_\sigma^{(l)})^2 - \xi M_\sigma^{(l)} \right]$$

$$S_{n,M}[\Psi] = i \int_t \sum_{l=1}^n \left[\left([M_+^{(l)}]^2 + [M_-^{(l)}]^2 \right) \text{to noise!} \right. \\ \left. - \frac{1}{2} \left(\sum_{l=1}^n M_+^{(l)} + M_-^{(l)} \right)^2 \right]$$

collective coupling

n replicas: Decoupling of Gaussian theories

$$D = \partial_x$$

$$D = \pi m$$



- practical importance: reduction to linear / Gaussian bosonic theory in limiting cases
- bosonized action in the presence of noise:

$$S[\phi] = S_{n,H}[\phi] + S_{n,\xi}[\phi]$$

bosonic field

$$S_{n,H}[\phi] = -\frac{1}{2\pi} \sum_{l=1}^n \sum_{\sigma=\pm} \sigma \int_{t,x} \phi_{\sigma}^{(l)} (\partial_t^2 - \partial_x^2) \phi_{\sigma}^{(l)} \quad S_{n,\xi}[\phi] = i \sum_{\sigma=\pm} \sum_{l=1}^n \int_{t,x} \left[(O_{\sigma}^{(l)} - \bar{O})^2 - \xi (O_{\sigma}^{(l)} - \bar{O}) \right]$$

$$O_{\sigma}^{(l)} = D\phi_{\sigma}^{(l)}, \quad D = \pi m, \partial_x$$

- decoupling of center-of-mass and relative modes
- Fourier expansion in replica space

$$\phi_{\sigma,t,x}^{(l)} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} e^{-i \frac{2\pi k l}{n}} \phi_{\sigma,t,x}^{(k)}$$

- equation of motion $\frac{\delta S}{\delta \phi} = 0$

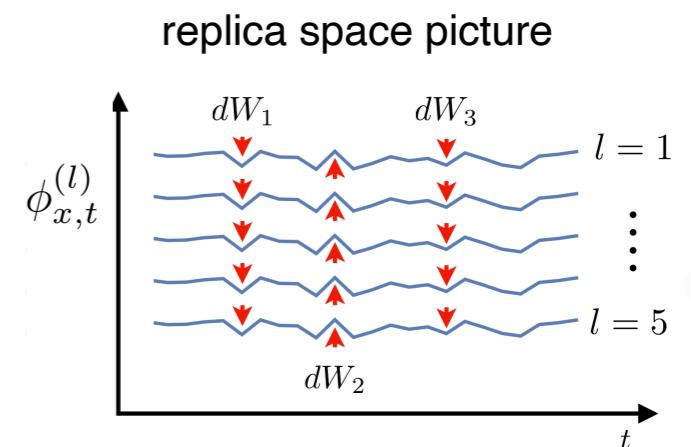
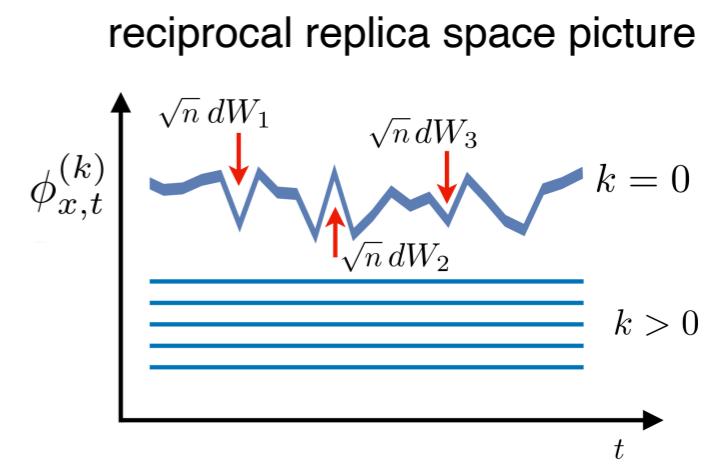
$$\partial_t^2 \phi_{+}^{(k)} = (\partial_x^2 - \frac{\gamma i}{\pi v} D^2) \phi_{+}^{(k)} + \sqrt{n} \xi \delta_{k,0}$$

→ no reference to measurement expectation value

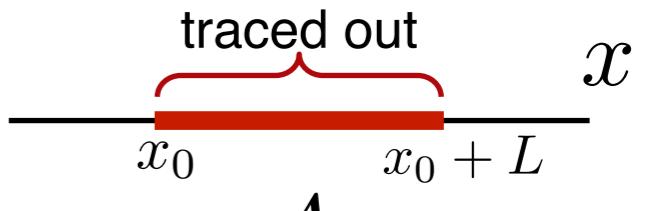
→ exact decoupling into:

→ 1 collective ‘hot’ mode, heating to infinite temperature

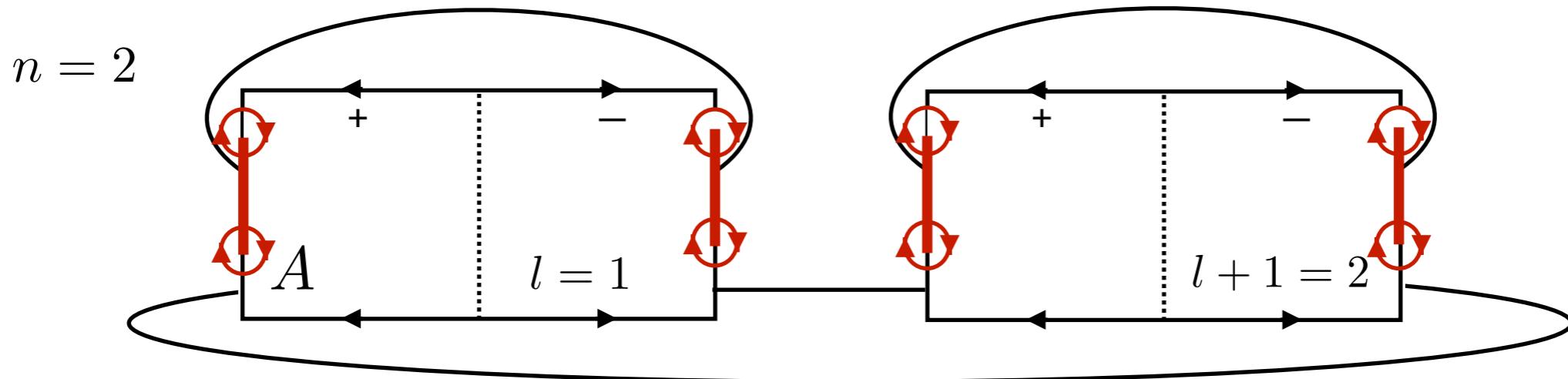
→ (n-1) ‘cold’ modes, do not ‘see’ the noise, cool to ground state of non-Hermitian Hamiltonian



Entanglement entropies from replica approach



- Keldysh path integral representation of $Z_A(n, \{\xi\}) = \text{tr} \rho_A^n$



- formulate boundary condition via operator insertion (in the presence of noise):

$$Z_A(n, \{\xi\}) = \int \mathcal{D}[\Psi] T e^{iS_n[\Psi]} \quad T\Psi_{+,x,t_f}^{(l)} = \begin{cases} -\Psi_{-,x,t_f}^{(l)} & \forall x \notin A \\ -\Psi_{-,x,t_f}^{(l+1)} & \forall x \in A \end{cases}$$

translation by one in replica space

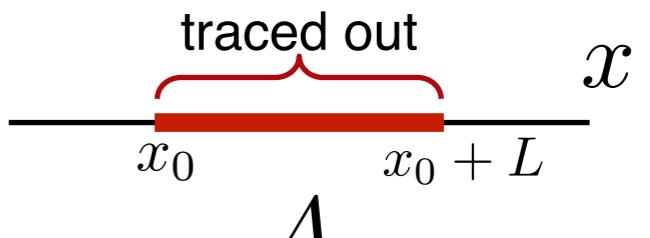
- e.g. free massless Dirac fermions (after bosonization into equivalent Luttinger Hamiltonian): factorization

$$Z_A(n, \{\xi\}) = \left\langle \prod_{k=1}^n \exp \left(-\sqrt{2}i \frac{k}{n} \int dx [\delta(x - x_0) - \delta(x - (x_0 + L))] \phi_{c,x,t}^{(k)} \right) \right\rangle$$

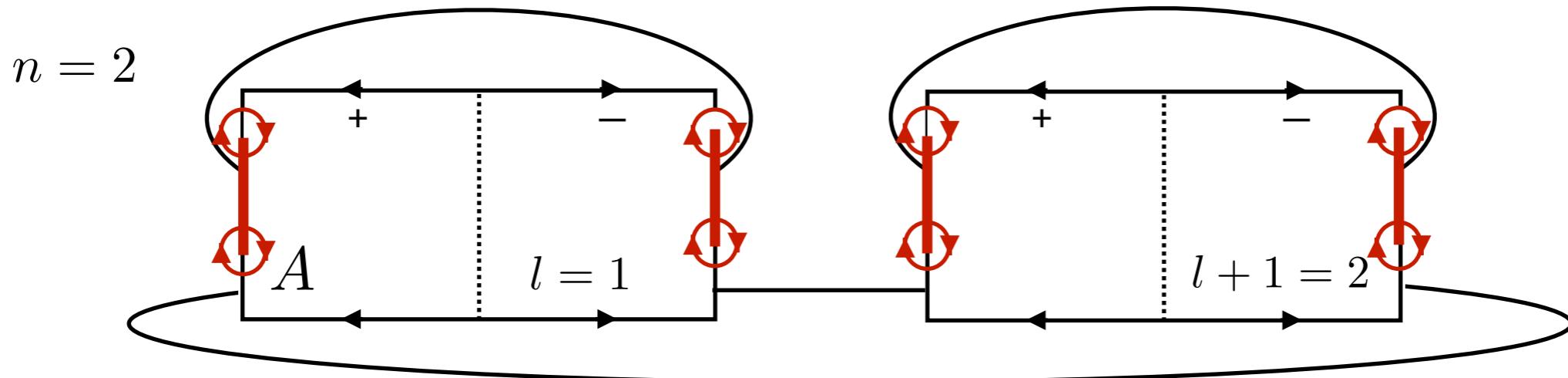
ground states: Casini, Fosco, Huerta, J. Stat. Mech. (2005)

- boundary conditions appear as opposite charges
- $k = 0$ mode does not contribute!
- $k \neq 0$ independent of noise ξ !

Entanglement entropies from replica approach



- Keldysh path integral representation of $Z_A(n, \{\xi\}) = \text{tr} \rho_A^n$



- n-th Rényi entropy

$$S_n = \frac{1}{1-n} \overline{\log Z_A(n, \{\xi\})}$$

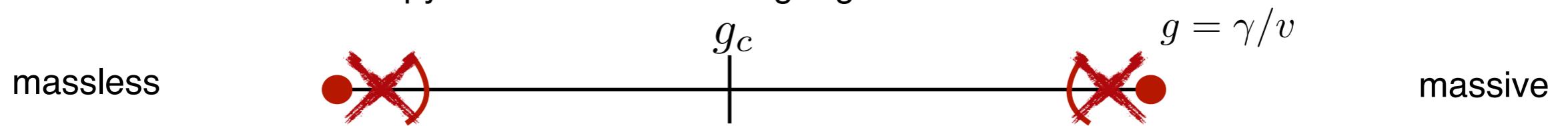
- von Neumann entropy

$$S = \lim_{n \rightarrow 1} S_n = \frac{2}{3} \langle \phi_{c, x_0}^{(k>0)} \phi_{c, x_0+L}^{(k>0)} \rangle$$

→ correlator in the Gaussian dark state wave function

Entanglement transition from replica approach

- focus on von Neumann entropy S in Gaussian limiting regimes



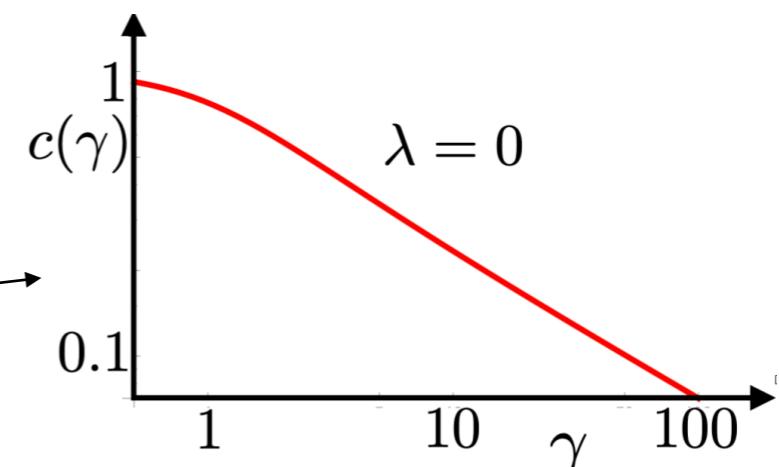
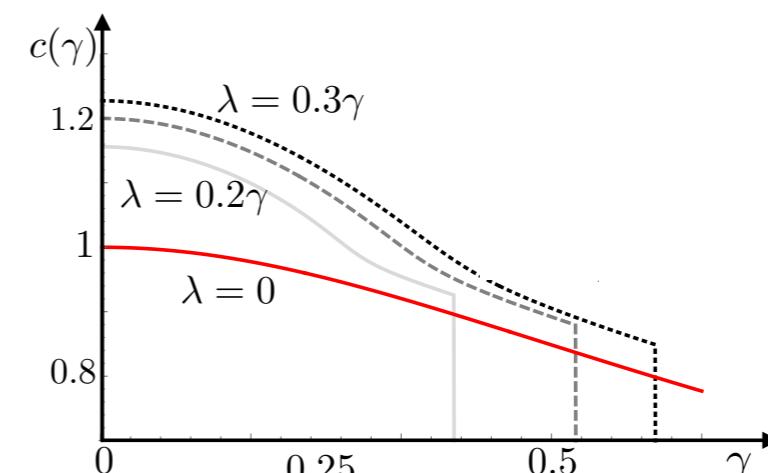
$$S = \frac{1}{3}c(\gamma) \log(L)$$

- sub-volume log-law
- $c(\gamma \rightarrow 0) \rightarrow 1$
- \rightarrow ground state entropy of massless Dirac

• in Gaussian state:
 $c(\gamma \rightarrow \infty) \sim \gamma^{-1/2}$

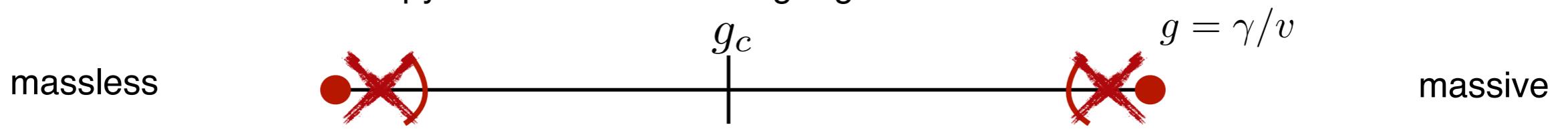
\rightarrow compatible with numerics in critical phase

- with RG improvement, qualitatively similar to numerics



Entanglement transition from replica approach

- focus on von Neumann entropy S in Gaussian limiting regimes



$$S = \frac{1}{3}c(\gamma) \log(L)$$

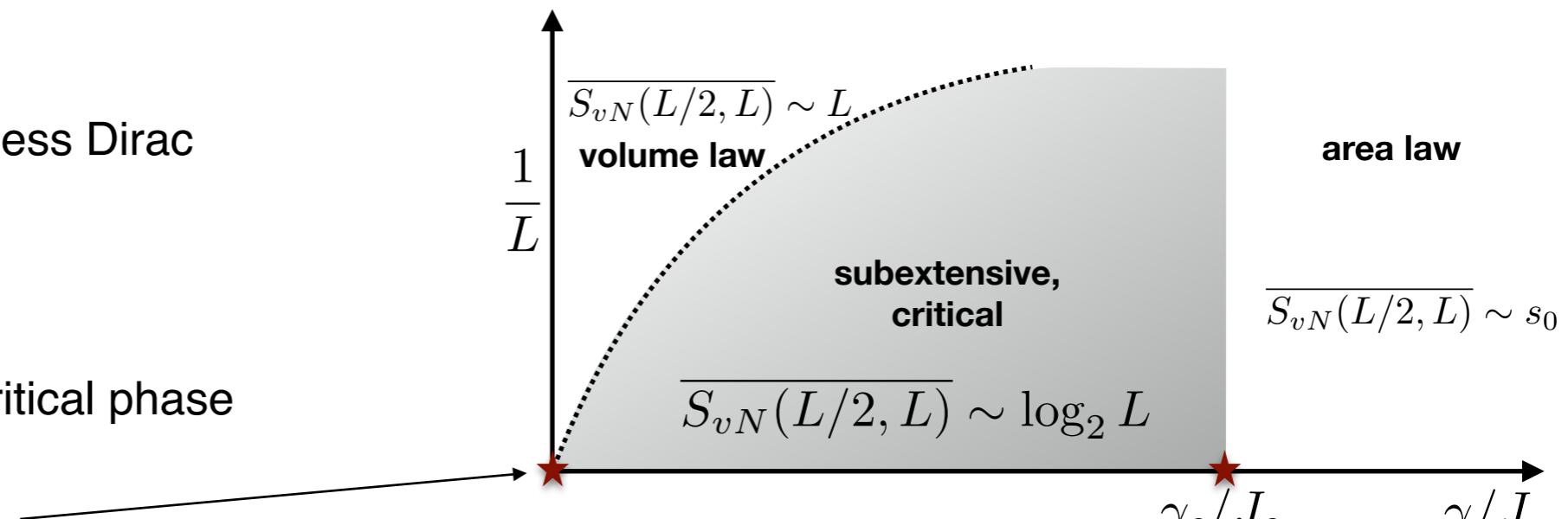
- sub-volume log-law
- $c(\gamma \rightarrow 0) \rightarrow 1$
 - ground state entropy of massless Dirac
- in Gaussian state:
 $c(\gamma \rightarrow \infty) \sim \gamma^{-1/2}$
 - compatible with numerics in critical phase
- non-commuting limit: $\gamma = 0$
finite temperature initial state

$$S \sim L$$

- volume law \leftrightarrow finite temperature massless Dirac

summary:

- underpins entanglement transition at finite critical g
- picture qualitatively in line with numerics

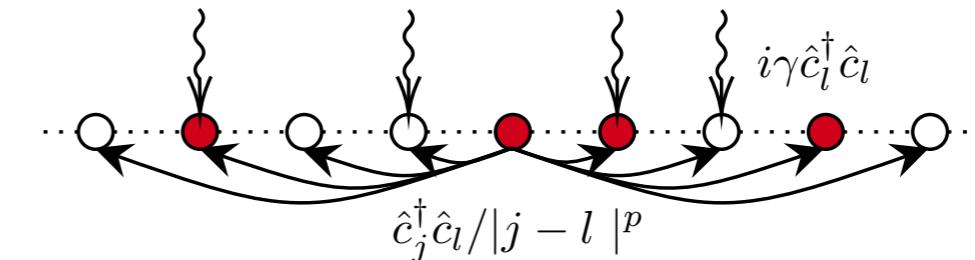


Other incarnations of measurement induced phase transitions

Th. Mueller, SD, M. Buchhold, arxiv:2105.08076

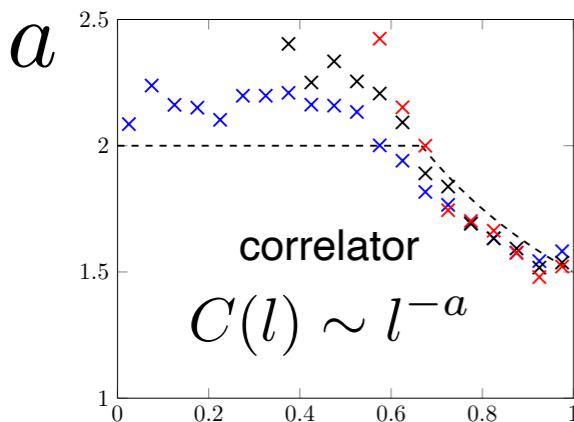
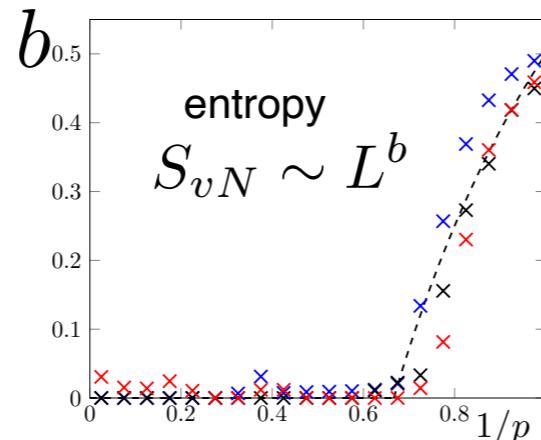
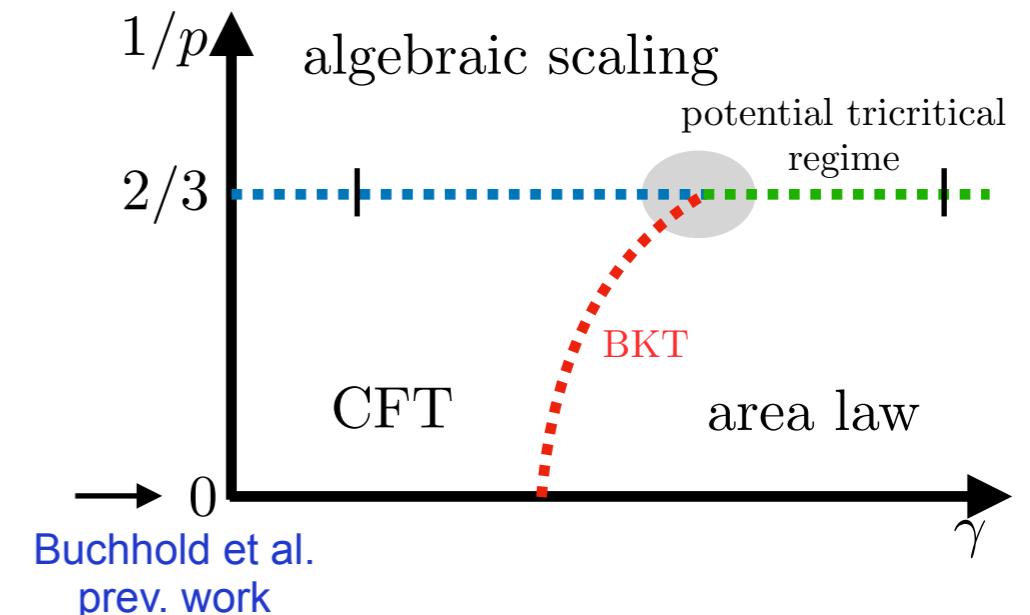
- long ranged hopping model

$$\hat{H}_{LR} = \sum_{l \neq m} \frac{\hat{c}_l^\dagger \hat{c}_m}{|l - m|^p} \quad 1 < p < \infty$$



see also Minato et al, arXiv:2104.09118; Block et al. arxiv:2104.13372

- new scaling behavior & new phase transition



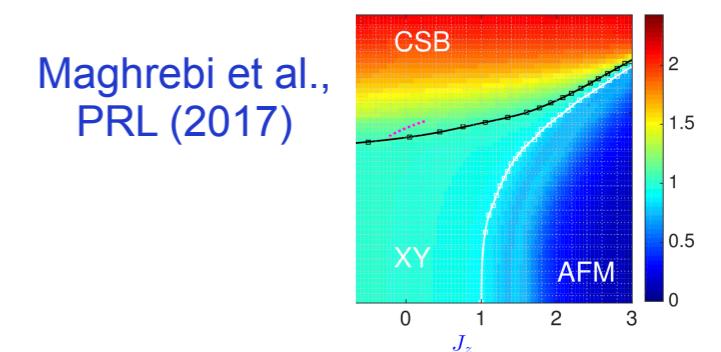
- replica-bosonization approach explains numerical findings: new cos non-linearity from phase fluctuations

- critical point of novel transition $p = 3/2$
- scaling behavior

$$C(l) \sim \begin{cases} l^{-2} & p > 3/2 \\ l^{-(p+1/2)} & 1 < p < 3/2 \\ \text{ill-defined} & p < 1 \end{cases}$$

$$S_{vN}(l) \sim \begin{cases} \log_2 l & p > 3/2 \\ l^{3/2-p} & 1 < p < 3/2 \\ \text{ill-defined} & p < 1 \end{cases}$$

- striking parallel to ground state phase diagram



Other incarnations of measurement induced phase transitions

T. Botzung, SD, M. Mueller, arxiv:2106.10092

- robustness of log-area transitions: other competition patterns

- critical phase stabilized by engineered dissipation

$$c_l = c_{\langle i,j \rangle} = (\sigma_i^+ + \sigma_j^+)(\sigma_i^- - \sigma_j^-)$$

- area law phase stabilized by staggered Hamiltonian

$$H = V \sum_i^N (-1)^i \sigma_i^z$$

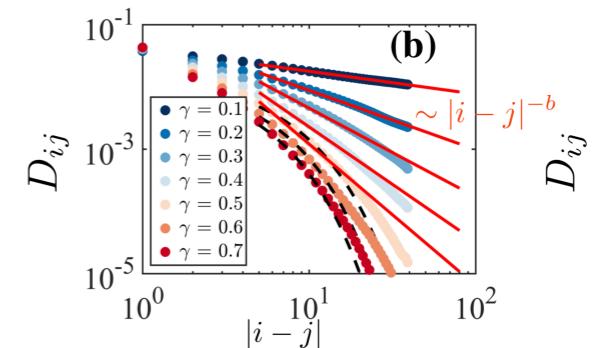
- interacting model -> trajectory MPS approach up to 80 sites

unique Dicke dark state:

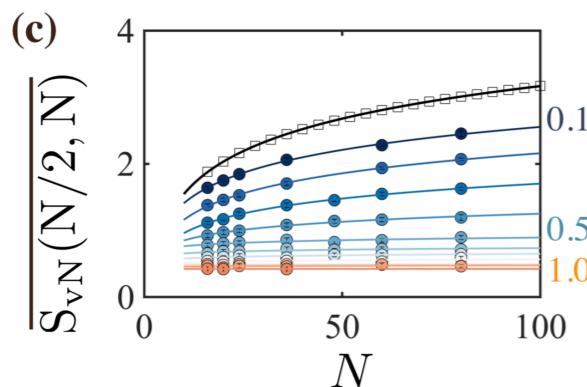
$$|D_N^{(k)}\rangle \approx \left(\sum_{i=1}^N \sigma_i^+ \right)^k |\downarrow\rangle^{\otimes N}$$

see also Fuji, Ashida, PRB (2020)

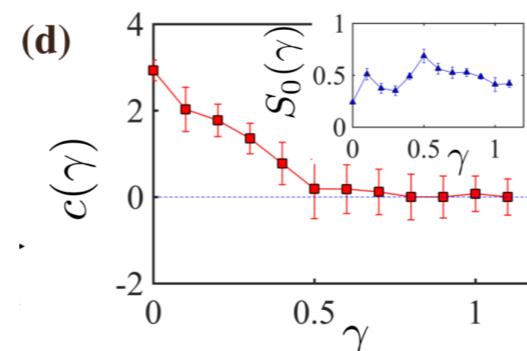
scaling of correlation function



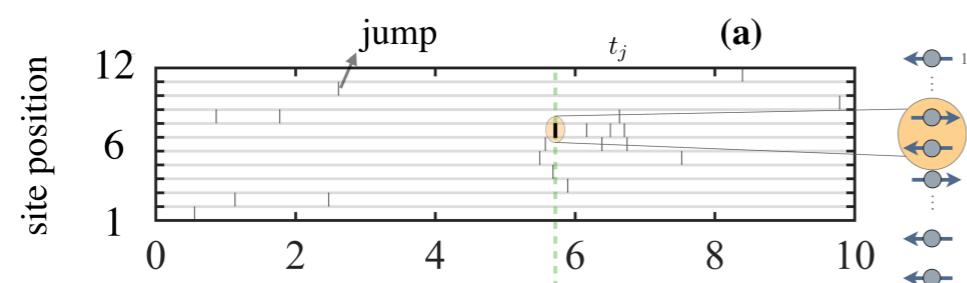
entropy scaling



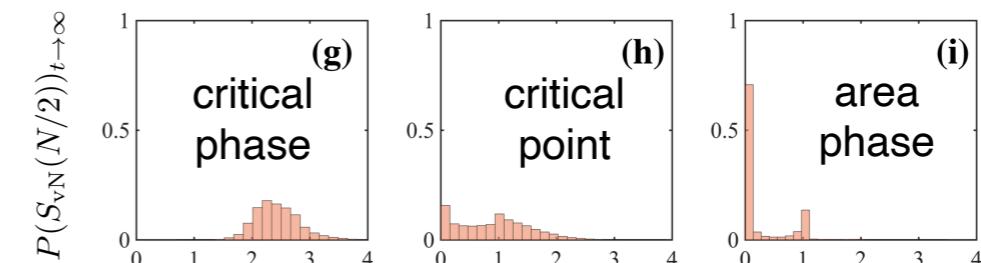
crit. point via eff. central charge



quantum trajectory analysis



entropy statistics



→ full phenomenology established in large scale MPS approach

→ bosonization study?

Concept for experimental observation

with T. Bintener, M. Buchhold, J. Yago, P. Kirton,
A. Daley (Strathclyde)

- recent protocols for measuring entanglement entropies work for deterministic dynamics only
[Elben et al., PRL \(2018\); Vermersch et al. PRA \(2019\)](#)
- ideas for spin systems: entropy of auxiliary entangled system
[Gullans, Huse, PRL \(2020\);](#)
[exp. in trapped ions \(Monroe group\): Noel et al. arxiv \(2021\)](#)

- here: witness phase transition directly via recorded trajectories:
homodyne detection
- recall form of recorded signal

$$J_{i,t} = \langle \hat{n}_i \rangle_t + \frac{\Delta W_{i,t}}{\Delta t}$$

homodyne current trajectory wavefunction expectation value noise

$$\overline{\Delta W_{i,t}} = 0$$

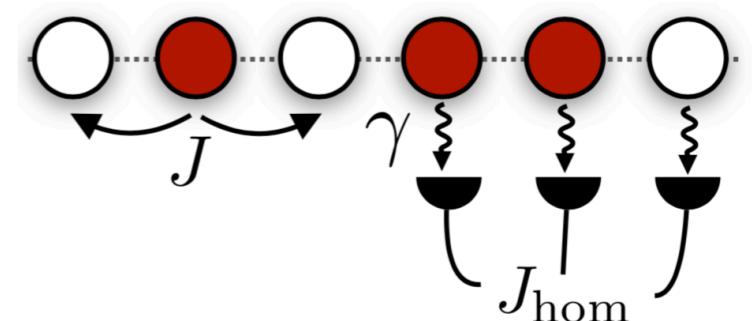
$$\overline{\Delta W_{i,t} \Delta W_{j,t'}} = 4\gamma \Delta t \delta_{t,t'} \delta_{i,j}$$

- correlation functions from averaging over exp. runs

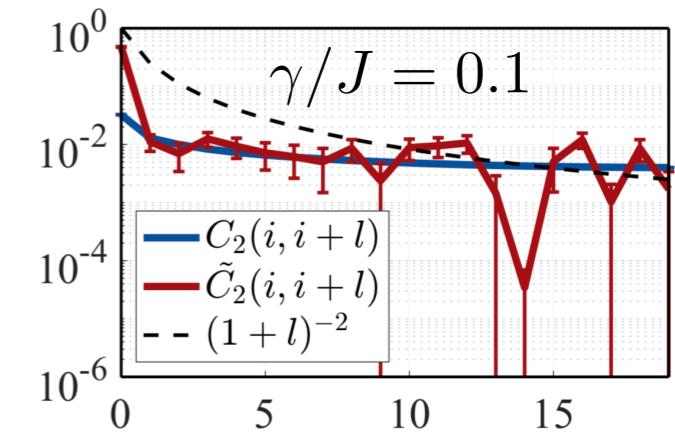
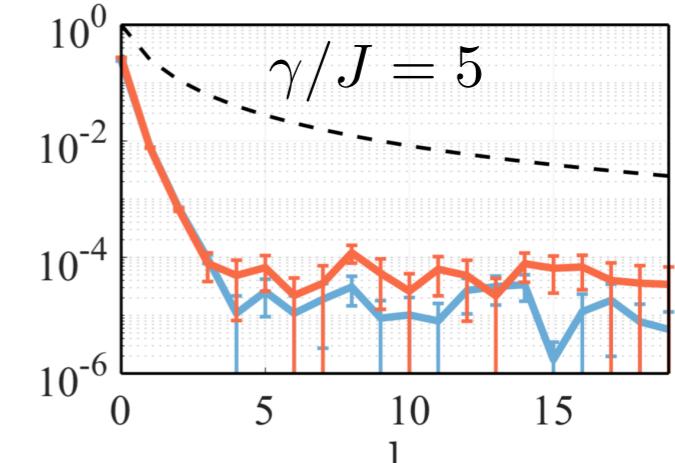
$$\overline{\langle \hat{n}_i \rangle_c(t) \langle \hat{n}_j \rangle_c(t)}$$

- platforms: superconducting circuits/Rydberg tweezers?

[Majer et al. Nature \(2007\); Mallet et al. Nat. Phys. \(2009\); Nagiloo et al. Nature Comm. \(2016\); Gu et al. Phys. Reports \(2017\)](#)



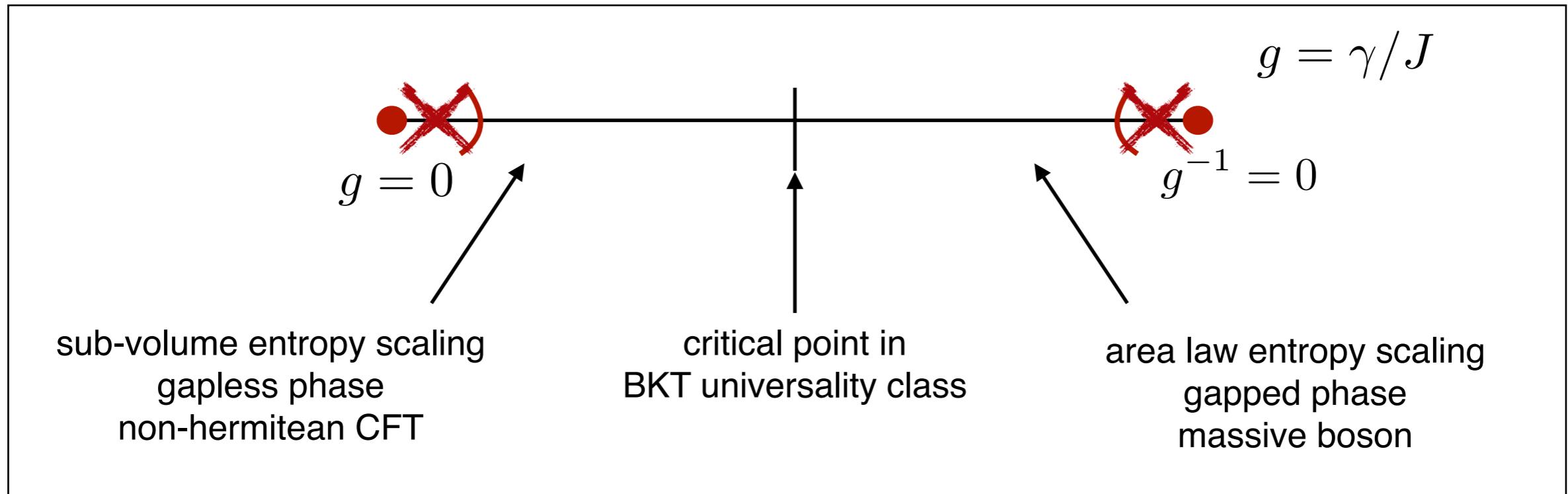
connected covariance
(blue), signals (red)



Summary lecture III

O. Alberton, M. Buchhold, SD PRL 126. 170602 (2021)
M. Buchhold, Y. Minoguchi, A. Altland, SD, arXiv:2102.08381

- monitored fermions: new type of measurement induced phase transition



- nonlinear-in-state ‘observables’ beyond entanglement entropy
- ‘hot’ and ‘cold’ modes as relevant degrees of freedom for the transition via replica field theory
- physical picture: transition induced by pinning into measurement operator eigenstates

Directions:

- area-to-volume law transitions as incomplete decoupling of ‘hot’ and ‘cold’ modes?
- stabilization of pure state phases by continuous measurement?
- experimental observability in weakly monitored quantum simulation platforms?

integrability vs. non-integrability:
O. Lunt, A. Pal, PRR (2020)
purification perspective:
Gullans, Huse, PRX (2020);
entropy measurement
Noel et al. arxiv (2021)

