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Keldysh theory general: A. Kamenev, Field theory or non-equilibrium systems,

Outline Cambridge University Press

Review Lecture I: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven
Open Quantum Systems, Reports on Progress in Physics (2016)

Lecture |: Theoretical background & non-equilibrium phases

* From the quantum master equation to the Keldysh functional integral

e construction

* semiclassical limit, connection to exciton-polariton systems
e “what is non-equilibrium about it?”

e Stationary states of driven open quantum systems
e fate of BKT physics out of equilibrium

* phase transition driven by non-equilibrium drive

Lecture |l: Symmetry and topology out of equilibrium

* Topological states induced by dissipation
e Dynamics: topological field theory out of equilibrium

e Dynamical symmetry classification in- and out-of-equilibrium

Lecture lll: Lindblad-Keldysh 2.0: Measurement induced transitions

e Background: weak continuous measurements

* Measurement induced phase transitions of fermions

* Replica Keldysh field theory approach

Orp = —i[H, p| + L|p]
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Lindblad quantum master equation:
From few to many degrees of freedom

( )
. drive

environment

Owp = —i[H,p| + £y _ LipL! — H{LIL;, p}



What is a driven open quantum system?

e quantum Optics:

-

external fields, e.g. laser
(“driven”)

dissipative environment (“open”)  exchange between system and bath
(e.g. energy, entropy, particle number)

e example: laser driven atom coupled to the radiation field (two-level system)

: A ‘ e> excited state e simple fact: drive essential to access
detuning AJ: S upper level
spontaneous emission
laser drive 1 ® no guarantee for detailed balance
frequency

1 * no obedience of the second law of
v ‘ g > ground state thermodynamics (state purification)




Driven open gquantum systems: microscopic description

e guantum master equation

Orp = —i[H, p] + Z vil2LipLl — LIL;p — pLI L]

A\

J

coherent evolution

= L]

e derivation from system-bath setting: second order time dependent perturbation theory

Y

* example: two-level system

bath modes —
detuning A

laser intensity ——T— ()

laser drive 7
frequency

1 S—

Lindblad operators

/ r Y
drive
GeDp

——

driven-dissipative evolution

-~ environment

Lindbladian; also: Liouvillian

see later, and appendix

add example: quantum cavity

e starting point: system-bath setting
iy =Y e, b,

W
Hop =) gue ™ Lbl, +h. c.
# (for single L)

ﬁt:ﬁ+ﬁb+ﬁs—b

® 3 approximations:
e Born: weak system-bath coupling (2nd order pert. th.)
e Markov: constant (in frequency) bath spectral density

e rotating wave: drive U biggest scale

guNQ
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add example: quantum cavity 


Driven open gquantum systems: microscopic description

e guantum master equation Lindblad operators

e . N
Orp = _i[ﬁ7 ,5} T Z%’ [Qﬁiﬁﬁj — lAl;-rlAli,é — ﬁﬁ;fﬁi] jd”ve

| J .
Y 1 S~— — environment
\_

——
coherent evolution driven-dissipative evolution

= L|p] Lindbladian; also: Liouvilian

* derivation from ‘symmetry’ (i.e. implementing key physical requirements) explain Kraus map, continuum limit
* Lindbladian defines a dynamical map H(t+ At) = p(t) + At - L[]

* with properties

 Hermiticity:  p(¢)" = p(t) = p'(t+ At) = p(t + At) since L[p|! = L[]
e complete positivity: p(t) >0 = p(t+ At) >0 example?
e trace preservation / probability conservation oitrp(t) =0 since trl[p] =0

= up to a unitary transformation (above: diagonal form in index i), L[ plis the most general time-local
generator with these properties G. Lindblad, Commun. Math. Phys. (1976)
Nielsen & Chuang, Chap. 8
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explain Kraus map, continuum limit

Sebastian Diehl
example?


Driven open gquantum systems: microscopic description

e guantum master equation Lindblad operators

N \

Owp = —i[H,p| + > mwil2L;pL! — LIL;p— pLIL;] Gorenyf
h v g T ~— -~ — | environment
coherent evolution driven-dissipative evolution
= L|p] Lindbladian; also: Liouvilian
* interpretation:
17 Al
Op = —i(H — E vil;L;)p+h.c.+2) ZpL
energy decay (dissipation) ensures probability conservation

(fluctuation)

“B — il Oetrp(t) = 0



Driven open gquantum systems: microscopic description

e quantum master equation Lindblad operators

e ’ \
op = —ilH.p] + Y wl2LipL] — LiLip—pLIL] | G

A\ J q
Y 1 S— e — | environment
coherent evolution driven-dissipative evolution

= L|p] Lindbladian; also: Liouvilian | |
explain: many-body, incoherent vs coherent
Lindblad ops (L_1, L_2 vs. L_1+L_2); refer to

literature
e So far: few degrees of freedom in the “system”
e Question: What if we replace few by many degrees of freedom?
= The interface of quantum optics and many-body physics
= Quantum Optics: = Many-Body Physics: = Statistical Mechanics:
coherent and driven-dissipative continuum of spatial physics at the largest
dynamics on equal footing degrees of freedom distances

G >
microphysics »  macrophysics
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explain: many-body, incoherent vs coherent Lindblad ops (L_1, L_2 vs. L_1+L_2); refer to literature 


The interface of quantum optics and many-body physics

= Quantum Optics = Many-Body Physics = Statistical Mechanics

microphysics »  macrophysics

e The experimental platforms: motivation / outlook for this lecture

Atoms Light and more:
¢
P~ e polar
~ k::\‘ < B molecules
|||||”§ti jm“““ 9 '_f - \: \i'T‘/\ \\‘:\;*’ \(\ 'g \ 1@ _ k, ® Nnano- .
’iww (e : P mechanics
= AT N S &
\ e W3 e photon BECs
Bose-Einstein Microcavity arrays Exciton-polariton
condensate in a cavity condensates
Baumann et al., Nature 2010 Houck, Tureci, Koch, Nat. Phys. 2012 Kasprzak et al., Nature 2006

Quantum devices / NISQ Platforms

10— 43 o] =
O S
System (:c; sir@ -EM o g
o1 e -
Reference —1oy : =
o) —HA
Ancilla CIO) =
. [ [ L] ? ““;_E
driven-dissipative
Rydberg gases superconducting circuits ~ Rydberg tweezers trapped ions

S. Helmrich, A. Arias, G. Lochhead, M. Buchhold, . - :
SD, S. Whitlock, Nature (2020): T. Wintermantel, K. Satzinger et al. G. Semeghini et al. arxiv (2021) C. Noel et al.

: | .
.. SD, S. Whitlock, Nat. Comm. (2021) arxiv (2021) Lectures by A. Browaeys! arxiv (2021)
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motivation / outlook for this lecture


The interface of quantum optics and many-body physics

= Quantum Optics = Many-Body Physics = Statistical Mechanics
G >
microphysics »  Mmacrophysics
Microscopic “Thermodynamic” Long wavelength

e Questions and challenges to theory: physics at various length scales

( Novel universal phenomena ? )

[ Efficient theoretical tools ? )

Z[J] = /Dgp (Sl + [ o)

perform the transition form micro-to
macrophysics:

quantum field theory out of equilibrium

( Experimental platforms ? )

40 3&9 cold atoms, light-driven semiconductors, microcavity

AVVAVYS arrays, trapped ions ...

KA



A workhorse model: Lindbladian formulation ~ meednot®e

( single particle pump )

:

Sip = —ilH. p| +Dlp] = LI (manyooy
S

o — gg;r( (% — 1) ng 4+ %(&L%)Q ( single-, two-, ... body loss )

4
e generic microscopic many-body model: ‘Lindblad ¢ theory’

Dol = [ B pde— Hndlopl + % [ 6o~ 3oldunll +

single particle pump single particle loss
72 972 121272
X

two particle loss

e plan:
e translate to Lindblad-Keldysh Many-Body Master 1-1 Keldysh functional
functional integral Equation mapping integral

e how does this model relate e.g. to exciton-polariton systems? (semiclassical limit)
e ‘what is non-equilibrium about it’?
e how to extract the phase structure?
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need not be


Keldysh functional integral
for stationary states of
driven open quantum systems

e Construction from quantum master equation
® Semiclassical limit
e “What is non-equilibrium about it?”

Many-Body Master 1-1 Keldysh functional
Equation mapping integral

Oup = —i(l — S bl E)p+he +23 yiliph! 7z - / D(@, . b_)oi(Sul®s.2-]



Keldysh functional integrals: Why?

e Feynman’s formulation of quantum mechanics e Useful language for systems with many

REVIEWS OF degrees of freedom
M O D E R N P H Y S I C S e general: powerful techniques

* diagrammatic perturbation theory;

Vorume 20, Numser 2 AprriL, 1948

e collective variables:

Space-Time Approach to Non-Relativistic e renormalization group

Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability Y non_equ”lbrlu m KeldySh
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be

found to have a path x(¢) lying somewhere within a region of space time is the square of a sum [ Closer to the real'tlme fOFmU |atI0nS Of

of contributions, one from each path in the region. The contribution from a single path is .
postulated to be an exponential whose (imaginary) phase is the classical action (in units of ) q uantu m meChan ICS

for the path in question. The total contribution from all paths reaching x, ¢ from the past is the
wave function y(x, £). This is shown to satisfy Schroedinger’s equation. The relation to matrix

and operator algebra is discussed. Applications are indicated, in particular to eliminate the o YIeldS dlreCﬂy ObSGrVable quantltles
coordinates of the field oscillators from the equations of quantum electrodynamics. (reSponseS and CorrelatlonS)

1. INTRODUCTION

T is a curious historical fact that modern
quantum mechanics began with two quite
different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were. destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory.
This paper will describe what is essentiallv a

classical action® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems

4 T T

indispensable for many systems:

e disorder infinite harmonic

baths!

open the powerful toolbox of quantum
field theory for many-body non-
equilibrium situations

e dissipation



more details: L. Sieberer, M. Buchhold, SD,

Ke|dysh functional integ ral Keldysh Field Theory for Driven Open Quantum Systems,
Reports on Progress in Physics (2016)

e The basic idea in three steps: h=1

Ul(t,ty) = e *H(t=to)
1. Schrodinger equation: evolving a state vector

10 1)(t) = H[Y)(t) = [¥)(t) = U(t,t0)[1)(to)

2. Heisenberg-von Neumann equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t, to)p(to)UT (¢, to)

e identical for pure (factorizable) states p = |¢><¢|

3. The same is true for the Master Equation:

Oip = —ilH,pl + & Y  LipL] — 1{LIL;, p} = L[]

= p(t) = e“) p(to)



Keldysh functional integral (bosons)  femions: see appendix!

1. Functional integral idea: Was ist Pfadintegral? Herleitung mit Background coherent states;
Bosons/fermions on equal footing OR in appendix
= “Trotterization” of time interval and insertion of coherent states: ¢ (t—t0) — |im (1446, H )N
N — 00
. = 4)(to)

5, Lt to

N
e one time step
e_¢;+1¢”+1\¢n+1 <¢n+1| €_¢;¢n‘¢n> ¢n’
gk " —10 Ha,T,a,
e~ Pn0n (g, q e 10 T al g o—i0s H

~ e PO (pn 1|1 —i8 Hal, a]|éy,)

H normally coherent states (bosons):
TEe Pt et Oniadn (1 — iS, H ¥, |, b)) alg) = ¢|¢)
0 (¢”+§t_¢”) bn—H[D}, 1 1,n]] (@']¢) = e
continuum * «
I 1= [y
dt —idp*(t) - o(t)  H[p"(t), o(t)]
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Was ist Pfadintegral? Herleitung mit Background coherent states; 
Bosons/fermions on equal footing OR in appendix


Keldysh functional integral

1. Functional integral idea:

= “Trotterization” of time interval and insertion of coherent states: ¢! (t—t0) — 1jmp (1+46:H )N
N — o0
o = — 0 0

® many time steps

[T de o) fu dt[—i0.6" (£)-6(t)— H[6" (), 6(1)]
g t

7

—. / D(Qb*, Qb) functional integral measure

e Discussion

operator H -> complex, time dependent functional H
time evolution from overlap of neighbouring states

1

no reference to single particle or many-body Hamiltonian, lattice or continuum!

single set of degrees of freedom for vector evolution



Keldysh functional integral

2. Schrddinger vs. Heisenberg-von Neumann .

e Schrddinger equation: evolving a state vector
10¥)(t) = H|p)(t) = [1h)(t) = U(t, to)[)(to)

e Heisenberg-von Neumann equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t, to)p(to)U" (¢, to)

e Second case: “Trotterization” on both sides:

YV VY e VY e VY

U Ul

e Ht=t0) — Nim (1446, H)" -0
N —o00

= two sets of degrees of freedom for matrix evolution



Keldysh functional integral

3. Schrédinger vs. Quantum Master U(?% to) _ —iH(t—to)

e Schrddinger equation: evolving a state vector

10:|1)(t) = H[p)(t) = |)(t) = U(t, to)[) (to)

e Quantum Master equation: evolving a state (density) matrix

Op = —ilH,p] +Dlp) = L[p] = p(t) =~ p(to)

e |dentical program for Liouville generator of dynamics (left and right action on density matrix)

NV VY VY e VY

p(t) = 1)L 50— Tim (14 6,L)" po o =

N — 00

= two sets of degrees of freedom for matrix evolution



Keldysh functional integral

3. Schrédinger vs. Quantum Master U(?% to) _ —iH(t—to)

e Schrddinger equation: evolving a state vector

10:|1)(t) = H[p)(t) = |)(t) = U(t, to)[) (to)

e Quantum Master equation: evolving a state (density) matrix

Op = —ilH,p] +Dlp) = L[p] = p(t) =~ p(to)

e final step: Keldysh “partition function”

Z =trp(t) = trp(ty) =1

o = —0o0,tf — +00

\/ \/ + contour \/ \/
information on all stages;

(T ¢ (Lo stationarity reached
[( f) [( ) (boundary conditions

Ly = 400 /\ /\ - contour /\ /\ to = —00 irrelevant)




Keldysh functional integral: Final result

e quantum master equation: ~ Oyp = —i|H, p| + D|p]
= —i(Hp— pH)+ K Y (LipL] — $LIL;p — 1pLIL;)
e equivalent Keldysh functional integral:

. (¢
7 — /D(CI>+, O_)elSm[Pr, -] e = ( I )

Sm [(I)—I—a (I)—] — /dt(¢ilat¢—l- o ¢izat¢— o ZL[(I)-H (I)—])

Ly, &)= —i(Hy —H-)—rY (Li,+L;f’_ Y AR A lLT,_L@_)

= recognize Lindblad structure
= simple translation table (for contour normal ordered Lindbladian)

+ contour

e operator right of density matrix -> - contour { }

e operator left of density matrix -> + contour

- contour




Keldysh functional integral: Probability conservation / "causality”

e quantum master equation: ~ Oyp = —i|H, p| + D|p]
= —i(Hp— pH)+ K Y (LipL] — $LIL;p — 1pLIL;)
e equivalent Keldysh functional integral:

| (¢
Z:/D(q>+,c1>_)e1(5M[‘I’+"I’] ‘D*_( i)

Sul®r @] = [ (0% idho. — 07 iDho- — iLID1, D)

Ly, &)= —i(Hy —H-)—rY (Li,+LI’_ Y AR A lLT,_Li,_)

e trace / probability preservation:
* QME: Outrp =tr(—i(Hp— pH) + £y (LipL] — SLIL;p — 3pLIL;)) =0
 Keldysh: Z = trp(t) = 1 t cyclicity

e mnemonic: taking trace = ignoring contour order: (I>+ =d_ = SM [CI)+, CI)_] =0




Einschub: alternative derivation for single mode cavity
- with emphasis on approximations

Physical Observables - postpone discussion eq vs. neq

workhorse model, 0+1 dim.;
- define/derive model, give physical context,
- solve in both operator and Keldysh; use as opportunity to
introduce
-evaluation: role chemical potential; laser threshold;
condensation, symmetry breaking; mention will be

e correlation functions: field insertions on the contour

¢4 (t) + contour o+ (1) rororse moder
S - ¥
tr =400 - contour to = —00

e compute them:

e introduce sources (cf. Stat Mech)

Z="Tr(1-p) = (1)

ZJy,J-| = <€if(j+¢i_j_¢i+c'c°)> Z[0,0] = (1) = 1

e take variational derivative; example above:
82z
07+(t)05% (¢)

normalization

(@7 (t)p— (1))

= interpretation?
= there is a more intuitive basis to do computations


Sebastian Diehl
Einschub: alternative derivation for single mode cavity 
- with emphasis on approximations
- postpone discussion eq vs. neq

Sebastian Diehl
workhorse model, 0+1 dim.; 
- define/derive model, give physical context, 
- solve in both operator and Keldysh; use as opportunity to introduce  
-evaluation: role chemical potential; laser threshold; condensation, symmetry breaking; mention will be workhorse model; 



take out, just correlation vs responses

Correlation vs. response functions: Physics

more details: L. Sieberer, M. Buchhold, SD,
e two basic types of experiments: Reports on Progress in Physics (2016)

e correlation measurements: study

without disturbing

e (linear) response measurements: probe

system with (weak) external fields

eg. quantum OptiCS detector 1

detector 1

difference
current——

n_

difference
current——

n_

t)

detector 2
reference

t)
field

detector 2
reference

field
e.g. photon quadrature component at vacuum e.g. coherent input field
input f('f)|d in homodyne detection: retarded response of
(or: g (7’))

quadrature components
o

directly delivered in the functional framework via basis transformation: Keldysh rotation

ch o 1 Qb_|_ -+ QZS_ “classical field”: center-of-mass coordinate

¢q - \/§ gb_|_ — gb_ “quantum field”: relative coordinate

classical field can acquire finite expectation value (e.g. lasing, Bose condensation)
e quantum / noise field cannot

e probability preservation:

Su[®., P, =0/ =0 VP,



Sebastian Diehl
take out, just correlation vs responses


exercise: verify relation to
operator formalism!

Correlation vs. response functions: Calculation

more details: L. Sieberer, M. Buchhold, SD,
e partition function in new basis Reports on Progress in Physics (2016)

Z[j] = <€if(j+¢i—j—¢*_+6-0-)> _ <eif(jc¢2+jq¢z+c.c.)>

e order parameter / occupation field:
0Z|J|

06200 = =175

e single particle response: how does the field react
to external perturbations?

6%Z
Git—t,x—x')=i— =~
07 (t, X)@, x')
e single particle correlations: how are states occupied?

| 527
155t x)3j4 (1, X))

d,C appear as conjugate pairs for the source  homodyne detection:
J=0 vacuum input

relation to operator formalism response to coherent
(once and for all) field t=t

)]>l=1

t=1, x=x’

N _i<¢c(t7 X)qb; (t,a X/)> — —i@(t o t/)<[§£(t7 X)v qu (t,a x'

j:

GEt—t,x—x)=

. _i<¢c(tax)¢2(tlaxl)> — _i<{$(t7X)a (%T(t/,X,)H — 2<ﬁ<X)> + 1

J:
time and space translation
invariance assumed
Gk Gf
e total Green’s function G = (GA 0 GA = (GB), (GF) =-GE
Hermitian conjugates anti-Hermitian



exercise: verify
calculations on this page!

Correlation vs. response: relation to Keldysh action

more details: L. Sieberer, M. Buchhold, SD,

e by example: master equation for decaying cavity Reports on Progress in Physics (2016)

atp — _i[MOdTéa p] + K<2&p&T o {&Ta’a IO})

e action:
S o /dt(azl7aj2) ( a B O . Zat _2w0 — /I/I% ) ( Al ) time domain
10 — Wo + 1K 1K Qg a, (t)
= PA(w)
— d_w(a* CL*) 0 W — Wy — 1K Aol frequency domain
or \Lelr Yq W — Wo + 1K 21K o a, (w)
< = PR<CL)) = PK .
. _ _ ' 1
e partition function: completion of the square G (w) \

Zljossal = (6] 82 Ucaataiactery _ 1 F 006 22 )

e single particle Green’s function

<<¢c<w>¢z<w'>> (o) 5% (")) ):_ ( ST aj;&fai(w»)

(Pg(w)pi(w')) <¢q(w)§b2<w/)> A A

0j&(w)djq(w’) 6% (w)dje(w’)

i=0

e summary in matrix components (valid beyond example):

0

A K R
G = ( POR gK ) — G = <gA “ > GR/A = [pR/AI=1 K = _gEpKgA

action matrix kernel single particle Green’s function



exercise: verify

Correlation vs. response: relation to KeldySh action calculations on this page!

more details: L. Sieberer, M. Buchhold, SD,

e Dby example: master equation for decaying cavity Reports on Progress in Physics (2016)

atp — _i[MOdTéa p] + K<2&p&T o {CALT(A],, IO})

0 Z@t — Wy — 1K Al time domain
S:/dt(azl,a*) ( . . . ) ( )
q 10y — wp + 1K 20K Qg a, (t)

__ dw (- * * 0 W — Wy — 1K Aol frequency domain
q A, \W

o bservables from the Green’s functions:

e action:

y £ decay of single-particle response: GR(t — t’) — / eiw(t—t’)GR(w) _ H(t - t/)eiw(t—t')e—n(t—t’)

w

2K
(w—wp)? + K2

e Lorentzian spectral density: A(w) = ImGH(w) =

*cavity mode ocoupation  2(7(t)) + 1 = (al(t)a(t) + a()al (1)) = iG* (t — 1) = i / DGR (w) = 1
/ in stationary state w

(Wt — o0)) =0 (t = o0)

= correlation / statistical properties: G K

= response / spectral properties: G R




Back to many-body model: Workhorse Lindbladian

* generic microscopic many-body model: ( single particle pump )

2
8ip = —ilH.pl + Dlpl = LIyl (manboy

H= [ 3L ) beot 30 a

( single-, two-, ... body loss )
kinetic energy two-particle interaction

Dlpl = v [ Bhpdx— 3(Bedlont] + 1 [ [9pdl— 3oldmnll +
single ;(article pump single particle loss
K:/[éipéy — {01202, p}]

two-particle loss

@any-Body Master Equatioa mag;ing [ Ke|dyi8nf:ef;rnacltlonal j




Many-body model: Workhorse Lindblad-Keldysh action

PA

P (

e (Gaussian sector: inverse Green’s
function

0
R

o- [ o

Y

e
Pq

) + 2k hedidg —3 [N+ k) (922 Pedy + 0 dety) + }}
$q_ ¢ P, be ¢ 9
Q SN+ i A +ix
0 o o e 9 e

e retarded/advanced  Pf(w. q) =w — q* — pu + 1 (@) /2

e Keldysh component

e now: simplifications in the semiclassical limit:

e sharp argument close to a critical point
* provides intuition for a frequency regime w < ¥ = Y + Vp

PR (D)

difference: distance from a
phase transition

sum: noise of loss and pumping add up



new logic:

- workhorse model Semi-classical limit and
- push near critical point, power counting . .
- MSR -> Langevin Langevin equations

- discussion: EFT concept in driven open
system: mapping QME for bosons and XP
models to Langevin

- overview Schaubild . :
exciton-polariton two-body quantum

models master equation



Sebastian Diehl
new logic:
- workhorse model
- push near critical point, power counting
- MSR -> Langevin
- discussion: EFT concept in driven open system: mapping QME for bosons and XP models to Langevin
- overview Schaubild


Intermezzo: Exciton-polariton systems

Kasprzak et al., Nature 2006 Imamoglu et al., PRA 1996
© Ea ! photons

'
' I
g f
g f

| |

relaxation

[ )
\& > T e excitons

Bragg mirror
Bragg mirror

lower polaritons

> Kk
loss

e phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq

v2
10 = [——m—qu@ Vp — (A—i%)|¢\2]¢+c

2
/ / / \ \ (C*(t,x)C(t',x")) = vo(t —t')d(x — x)

pump & loss rates two-body loss

propagation elastic collisions

Szymanska, Keeling, Littlewood PRL (04, 06); PRB (07));
Wouters, Carusotto PRL (07,10)



Intermezzo: Exciton-polariton systems

* Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

e stochastic driven-dissipative Gross-Pitaevskii-Eq

/ Szymanska, Keeling, Littlewood PRL (04, 06);
\ PRB (07)); Wouters, Carusotto PRL (07,10)

¢0 A

* mean field —‘
* neglect noise
* homogeneous solution ¢(x,t) = ¢g critical point/% K

naively, just as Bose condensation in equilibrium!

Q1: How does this model relate to the Lindbladian and Lindblad-Keldysh field theory?
e Q2: What is “non-equilibrium” about it?



Semiclassical limit of Lindblad-Keldysh action: power counting

A
s= [ {rop) (pn prc) (5) +2indiousio, =5 [0+im) (02000, + 672000, + ] |

K
, VAL
*
Pq_ ¢ Pa Pe Pq_ K
\\\ \\\\ \\\ ’,/
. - . S . \, . \\,/ .
* (Gaussian sector close to a critical point: UK A+ ik AN T
/’ /7
’ * *
4)2;, ¢C (PC CPC (Pq (Pc
— 0

o retarded/advanced P (w, q)=w —q® —p+i (v —p) /2
e Keldysh component PK — (% + Wp)

d— 2 d+ 2

e canonical field dimensions™: be] = T o < [¢q] — 9

e Qaction is dimensionless: phase €  in the functional integral
e quadratic/Gaussian sector: scaling dimensions of inverse Green’s function known

e intuitive: high order local couplings not relevant at large distances

* for fields in real space. Confirm this: take the critical Gaussian action in real space/time; count exercise

d —d - —t(wt—qx
Op ~ k, 0y ~ kQ, dc ~ k™% dt ~ k 27 What do we get for fields in momentum space? ¢c/q(w,q) = d'xdte"' 4 )¢c/q(t,X)
why? Desq(T) ~ Ll¢c/qa(x)] What are the canonical dimensions of the quartic vertices?



Semiclassical limit of Lindblad-Keldysh action: power counting

A
s= [ {r) (pr prc) (§) + 2imiwmang, —5 [0+ in) (62000, 5oz +cc] |

Y

Pq_ ¢
Gaussian sector at criticality: X A +ik
Pe Pc

— 0

—

~

o retarded/advanced P (w, q)=w —q® —p+i (v —p) /2
e Keldysh component PK — (% + Wp)

d—2 d+2
e canonical field dimensions: (D] = 5 < |pq] = %

= |ocal vertices with more than two quantum fields are irrelevant in the RG sense ind > 2

= note preservance of probability in semiclassical limit Sy;[®., @, =0 =0 V&,
= massive diagrammatic simplification

= to be seen now: result identical to phenomenological models of exciton-polariton
condensates (Wouters and Carusotto PRL 06; Szymanska, Keeling, Littlewood PRL 04)



Semiclassical limit: MSH

| action & Langevin equation

Martin, Siggia, Rose, PRA (1973); Janssen, Z. Phys. B (1976); DeDominicis, J. Phys. (1976)

Keldysh integral after power counting — /D[¢c, gb:’ o Q5*] etS b bc,bq,by]

q

with Martin-Siggia-Rose (MSR) action

S = / {W il +c.c. + 732%@%}

S = {¢%10;pe — He +iHyg}

t,x

" o0

= phi_q only up to
qguadratic order

Hubbard-Stratonovich decoupling e " /ux?:%s = / Dl¢, ] e 77 Jex §T 61 L1 (97687 00)

7= [ Dlee1eH xS [ Dl o1, 0y, 51! (0055

linear in phi_q: Fourier representation of delta-functional

O Oy PO v

= noise averaging

SHc 4

Heo = ra|de|* + Ko|Voe|? + Aa|dide|*, a=c,d

;;i‘i —E) —l-c.c.}

09z

+ LN
0%

§

) 3 (ce)

= ateachinstant = driven-dissipative Gross-Pitaevski equation

of time:



Semiclassical limit and exciton-polariton model

e example of “weak” universality

exciton-polariton two-body quantum
Microscopic Markovian models master equation

Dissipative Action \ /

power counting
(@)}
£
C
T : L

Mesoscopic Dissipative Action| o driven-dissipative
& Gross-Pitaevski
§ —1 equation
RG flow
\/

E_ong Wavelength Effectiv

e
Action j N coarse araining  Universality class
f — OO coarse graining length momgntum 9 at a critical point
k—0

= many microscopic models collapse to an effective low energy model
= form dictated by microscopic symmetries
= longer wavelength behavior to be determined by calculation



Overview: Langevin equations, master equation, Keldysh integral

measurements fermions

(Lecture lll) \ /\ / (Lecture Il

)
. , — quantum: PEIG <cldysh functional
quantum < Langevin equation master equation integral

quantum

stochastic Schrodinger
. Equation semiclassical limit
p
(semi-)” PRGN [Okker-Planck e I\/ISB functional
classical equation equation integral

. \ reWoup l

next
long-wavelength
effective action

A\ S S— —
Y ~"_
stochastic evolution deterministic evolution of probabilistic objects
(noise) (density matrix/ probability distribution)
S— — S
gl Y~
differential formulation integral formulation
* effects of phase coherence still (one time step) (exponentiated evolution operator)

present (cf. BEC as classical wave)



“What is non-equilibrium about it?”




“What is non-equilibrium about it?”

e different notions of ‘non-equilibrium’

Time evolution

= time translation invariance broken (e.g. thermalization, Floquet.. -> Lectures by D. Huse, N.
Cooper, T. Esslinger!)

Stationary states (considered here) notion of NESS

= flux equilibria
e not in static observables:

p=e PH /tre=FH

= any positive semidefinite Hermitian operator can be written like this

e dynamical observables, e.g.:

W) B = e

= non-equilibrium conditions are encoded in the generator of dynamics
= thermal equilibrium realized if generator of dynamics coincides with statistical weight
= otherwise must expect non-equilibrium conditions (Lindbladian)



Sebastian Diehl
notion of NESS


“What is non-equilibrium about it?” more details: see appendix

e non-equilibrium stationary states:
e open system: is it the coupling to a bath —> irreversibility?
= no, can be compatible with thermal equilibrium (Caldeira-Leggett Models)

e driven & open system: it is in the way how we couple to a bath:

H, = H + Hyy + H, Hy, =) eublby, Hine =Y gue ™'Lbl, +h. c.
system s %
bath system-bath
a) b)
€ mremmramennenneasenan s
T bath
=0 U —_ bandwidth
drive frequency
€//t -------------------------- 0)0 0)0
equilibrium non-equilibrium

v=0<g, <wy =€, Iy K wo <V =€,

e the state of the bath is fixed, distribution function 7% /r(w)

e singles out a frame of reference —> drive scale cannot be removed

= driven open nature incompatible with thermal equilibrium



“What is non-equilibrium about it?”

e more formally: quantum master  J;p = —i[H, p] + D|[p]
equation

|\ A N J
Y Y

— Sy — Sp

e equivalent Keldysh functional integral: 2 = /Dq§ie’i(5H[¢i]+SD[¢i])

e equilibrium dynamics microscopically generated by a time-independent (undriven) Hamiltonian alone

Sp =0
L. Sieberer, A Chiocchetta, U. Tauber, A. Gambassi, SD PRB

= symmetry of Keldysh action under discrete transformation (2015); F. Haehl, R. Loganayagam, M. Rangamani, JHEP
derive KMS (2016); M. Crossley, P. Glorioso, H. Liu, JHEP (2016)

operatorial ) : .
- make relationtoour| 18 @+ (t,x) = ¢ (—t+1iB/2,x), @ — —i 7’52 =1 B=1/T
symmetry

e associated “Ward identities” are equilibrium quantum fluctuation-dissipation relations of arbitrary order

any order <=> detailed balance
<=> global thermal equilibrium

e.g. single-particle K (w,q) = 2np(w/T) + 1)[GR(w, q) — G4 (w,q)]

sector

correlations Bose distribution responses

= the Lindbladian (Sp) violates this symmetry and therefore detailed balance explicitly

= intuition: underlying is a (rapidly) driven system with no energy conservation


Sebastian Diehl



Sebastian Diehl
-derive KMS operatorial
- make relation to our symmetry


Equilibrium symmetry: some details G, 8D PRE (5018 ReR A

e Undriven system: equilibrium dynamics generated by a time-independent Hamiltonian

= symmetry of Schwinger-Keldysh action under discrete transformation
Ts: ¢+(t,x) = oL (-t +16/2,x), @ — —i Ti =1 B=1/T

e symmetry: invariance of / = /D¢iei(SH[¢i]+SD[¢i])

e implies for correlation functions

(Olo+]) = (Ts(O[9+])) (Olp]) = /D¢i0[¢i]eis[¢i]

e physical consequence: Fluctuation-dissipation relations, of any order, e.g. single particle sector:

K (w, q) _ (ZnB (w/T) 4 1)[GR(CU, q) _ A (w’ Q)] any order <=> detailed t.).alalnce
<=> global thermal equilibrium

correlations Bose distribution responses

e connection to operator formalism: compact functional formulation of Kubo-Martin-Schwinger boundary
condition: for any two operators A,B,

(A()B(t")) = (B(t' —iB)A(2))- (0) = tr(Op)
o reason: A(t) = e Ht po—iHt ) e—BH/tre—BH

. & cyclic invariance
— A(t)p = pA(t —if) g



Equilibrium symmetry: Semiclassical limit

e Undriven system: equilibrium dynamics generated by a time-independent Hamiltonian

= symmetry of Schwinger-Keldysh action under discrete transformation

Ts: ¢+(t,x) = ¢+ (—t+i6/2,x), @ — —i Ti =1 B=1/T

: : . B :
e semiclassical limit: T large => T30 1 4 zgﬁt

e action on the fields:

irrelevant by power counting
— reproduces classical result

Ta¢e(t,x) = ¢e(—t,%)

7-B¢q (tv X) — ¢Z (—t, X)

H. K. Janssen (1976); C. Aron
et al, J Stat. Mech (2011)

= obtain geometric interpretation of the equilibrium symmetry



Geometric interpretation: equilibrium vs. non-equilibrium dynamics

e couplings spanning the Keldysh action lie in the complex plane

Owp = —ilH, p| + Dlp]

J

7 = /D(cb+,<1>_)ei<SH[<1>+»<I>J+SD[<I>+,<1>]>

v Y
& Sy < Sp & semiclassical limit: higher
terms in Pq irrelevant
A
Im
incoherent/ irrev.
dynamics
&S SD example: two-body processes A
ReA elastic two-body collisions
ImA inelastic two-body losses
>
Re
coherent/ reversible
dynamics

<:>SH



Geometric interpretation: equilibrium vs. non-equilibrium dynamics

equilibrium dynamics non-equilibrium dynamics

Im 4 Im
/ > Re
e coherent and dissipative dynamics may e coherent and dissipative dynamics do occur
occur simultaneously simultaneously
° butthey are not independent e they result from different dynamical resources

= what are the physical consequences of the spread in the complex plane?




-l ==

- so far: near equilibrium, emergent equilibrium
- here: opposite phenomenon, emergent non-

critical behavior equilibrium for small perturbation from eq.
— non-equilibrium RG for workhorse - go via script for NegFT lecture; derive KPZ from
model: Langevin;
- conceptual points: no energy scales, but it can’t be different based on symmetries for

length scales Appl ICatlon smooth part

- location %f poles in ﬁomplex plane; — vortices (along review)
aussian theory - -
1-loop RG slow/fast modes Fate Of BKT phyS|CS N
- physics: emergent equilibriumaone-loop
riven open quantum systems
— more sophisticated: remnants of non-
equilibrium, new exponent
- on the way: shell structure, impadt of slow
modes, additional shell due to|neq

. non-equilibrium
. disordered (rough)

: phase
algebraic quasi-long range order \
(Kosterlitz-Thouless phase) :
— _J :\ r J
—~" L Y
sk

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
L. He, L. Sieberer, SD, PRL (2017)

Microscopic “Thermodynamic” Long wavelength
Quantum Optics Many-body physics Statistical mechanics


Sebastian Diehl
critical behavior
— non-equilibrium RG for workhorse model:
- conceptual points: no energy scales, but length scales
- location of poles in complex plane; Gaussian theory
1-loop RG slow/fast modes
- physics: emergent equilibrium at one-loop

— more sophisticated: remnants of non-equilibrium, new exponent
- on the way: shell structure, impact of slow modes, additional shell due to neq


Sebastian Diehl
KPZ:
- so far: near equilibrium, emergent equilibrium
- here: opposite phenomenon, emergent non-equilibrium for small perturbation from eq.
- go via script for NeqFT lecture; derive KPZ from Langevin; 
it can’t be different based on symmetries for smooth part
— vortices (along review)



Phase transitions in two dimensions

e continuous symmetry U(1): no spontaneous symmetry breaking, but a phase transition

low temperature high temperature

e correlations

1

<¢* (X)¢(O)> ~ I 2K ~ e_r/g
e responses: superfluidity
Ps 7& 0 Ps = 0

e BKT transition: unbinding of vortex-antivortex pairs  J. M. Kosterlitz, D. J. Thouless J. Phys. C (1973)

matter wave interferometry:
Z. Hadzibabic et al. Nature (2006)

... fate in driven open condensates?



Short reminder: Algebraic correlations

low temperature high temperature

e correlations

(¢*(x)$(0)) ~ 1~ =w ~ e /8
e physical reason: gapless spin wave fluctuations

: - _ K 2 2_5/ d’q _
* spinwave action S = /d z(VO)" = 5 2m) 6(—q)f(a)

e phase-amplitude decomposition ¢(x) = p(x)1/2e0) \/n—oez'e(x)
(6 (%)$(0)) & ng (e @GN0y — =2 ((0(x)=6(0))%)

e phase correlator %((H(X) —6(0))%) = /1/a (;52 (ezzq; b _ 273[( log(r/a)

(¢ (1)¢(0)) 4

1 algebraic quasi-long

wrange order

>




microphysics

Driven open dynamics in low dimension

quantum master
equation

e semiclassical limit: driven-dissipative stochastic Gross-Pitaevski equation

stochastic GPE

. V> . . 2
¢ = | =5~ —p+ilyp —m) + (g —ik) [$7| §+¢
i0
= pe
b= KPZ equation ¥
e effective low frequency dynamics see also: G. Grinstein et al., PRL (1993)

phase diffusion phase nonlinearity Markov noise
_ macrophysics
form of the KPZ equation Kardar, Parisi, Zhang, PRL (1986)
Im
e meaning: non-linear spin wave mode | > Re
e nonlinearity: single-parameter measure of non-equilibrium strength (ruled im s auilibrium
out in equilibrium by symmetry)
A0

g = ) Re
non-equilibrium



KPZ equation: A paradigm of non-equilibrium stat mech

e originally: describes stochastic roughening of surface height h(X, t)

O.h = DV?h

smoothens

e simplest physical scenario

A(Vh)?

nonlinear growth

particles deposited

]’L(X, t) A

atrate )

§

noise

Kardar, Parisi, Zhang, PRL (1986)
Review: Krug, Adv. Phys. (1997)

gravitational field



KPZ equation: A paradigm of non-equilibrium stat mech

e originally: describes stochastic roughening of surface height h(X, t)

_ 2 2 Kardar, Parisi, Zhang, PRL (1986)
8th o Dv h )\(Vh) g F?erv?(;w: irrljiq,Adavr.]gIJDhys. (1997)

smoothens nonlinear growth noise

e multiple physical contexts

defect growth in liquid bacterial colony growth burning paper
crystals

drive: electric field drive: sugar drive: oxygen

from Takeuchi et al., Wakita et al., J. Phys. Jpn. Maunuksela et al., PRL

Scientific Reports (2011) Soc. (1997) (1997)



microphysics

Physical implication I: Smooth KPZ fluctuations

quantum master

equation
e How important are non-equilibrium conditions at large distance?
: N I -
e behavior of non-equilibrium strength under m stochastic GPE
coarse graining (RG flow) A# 0
Re
A1 : .
' KPZ equation
v
E RG flow
\
: v
)‘(L*) =1 - : macrophysics
;
1

e 2D: implication: a length scale is generated

167 D3
L* — aoe A2A

\

microscopic (healing)
length




microphysics

Physical implication I: Smooth KPZ fluctuations

quantum master

equation
e How important are non-equilibrium conditions at large distance?
: _— I i
e behavior of non-equilibrium strength under m stochastic GPE
coarse graining (RG flow) A# 0
Re
DN -
KPZ equation
strong non-equilibrium
: . RG fl
<-> KPZ fixed point o
T~
\4
7 macrophysics
weak non-equilibrium

g <> equilibrium fixed point

e general trend: non-equilibrium effects in systems with soft mode are
e enhancedind=1,2
e softened in d = 3 (below a threshold)



E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)

Physical implications |: Absence of algebraic order

167 D3
e generated length scale distinguishes two regimes: L, = age »?a

t {97 (r)9(0))
sub-exponential non-
21 K equilibrium disordered

(rough) phase

algebraic quasi-long range order : —r
(Kosterlitz-Thouless phase)

—— v
L,

equilibrium fixed point relevant KPZ fixed point relevant

= algebraic order absent in any two-dimensional driven open system at the largest distances
= but crossover scale exponentially large for small deviations from equilibrium
= observation in 1D systems (temporal correlations) Bloch group, Paris, private communication




Physical implications Il: Non-equilibrium Kosterlitz-Thouless

KPZ equation for phase variable

010 = DV?0 + \(VO)? + ¢

x1/

<—o—>

compact nature of phase allows for vortex defects in 2D! vortex
key ingredient of Kosterlitz-Thouless transition
F=FE-TS
low T: high T:.
(binding) energy dominates entropy dominates
(]
o % o0 .
' ‘ o . ® 9
% . o
o o® . o
()
@ > @

= so far, compactness of phase variable ignored

= how is this scenario modified in the driven system?

PR

—> 0 <

N K
Vv

anti-vortex




Mini-review: BKT transition

low temperature high temperature
o % X . .
LI y - . . o "o
a e BKT transition: unbinding of vortex-antivortex pairs .
2 o J. M. Kosterlitz, D. J. Thouless J. Phys. C (1973) R I

e Single vortex picture: balance of energy (deterministic) and entropy (statistic)

e Low T: vortices and antivortices bound in neutral pairs (irrelevant at long distance)
e Q: whenis it favorable (free energy) minimum to have unbound vortices?

e energy of single free vortex:
vortex configuration: mapping (7, ) — 0(7, ) = ¢ — V0 = 2840,0(r, ) = tég

— F = K/d2 (VO)? —7TK/ drr——leog(L/a)

e entropy: sum all equally probable possibility of placing vortices in 2D plane at minimal distance a:

S =—kg Zpi logp; = kg log(L/a)2 = but out of equilibrium: no free
: energy at hand!

= field theory approach (analogous

e free energy F=FE-TS= (K —2kgT)log(L/a) Kosterlitz’ real space RG for

vortices)

T J. M. Kosterlitz, J. Phys. C (1974)

e vortex proliferation above KT critical temperature Tx7 = Y.
B



Field theoretical duality approach: Phase compactness

G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

e wait a second — we ignored a fundamental symmetry of polaritons so far
o(t,x) = p(t, x)ew(t’x)
e phase compactness = local discrete gauge invariance under

Ht,x —> Ht,x —+ 27Tnt7x

= how to teach to the KPZ equation? lattice regularization and discrete stochastic update

9t—|—€,x — Ht,x + € (ﬁ[e]t,x + nt,x) + 27Tnt,x 7 — Z /D[O]eiS[Q,ﬁ]

lattice regularized deterministic term “
{ne,x}

stochastic difference discrete noise MSR
equation @ functional integral

_~Ton-equilibrium lattice ™
gauge theory (manifestly |
gauge invariant)




Duality approach: Emergent electrodynamics

e discrete gauge invariant dynamical functional integral S = Z Nt x | =D x + € (L]0]r x + AN x)]
t,x
Z=%" / D607
{ﬁt,x}

0

e dual description in terms of gauge theory: noisy electrodynamics in the presence of charges/
currents (vortices)

Z x Z /D[¢7 é? A7 A]eiS[(b’&,A’A,nv7ﬁU7JU’jU]

{n’UX l’ﬁ’UX 3

J’UX 7J’UX}
A ~ >4 w N~ J
vortex density smooth spin wave fluctuations
and current (equivalent KPZ equation)

e key impact of non-equilibrium conditions: non-linear electrodynamics
e integrate out (perturbatively) smooth fluctuations to get effective theory for vortex interactions



Effective theory for a single vortex-antivortex pair

e equation of motion for a single vortex-antivortex pair
dr O
P —uVV(r)+§ r

equilibrium: Coulomb potential (2D)

Vir) = éln(r/a)

e=K
(sorry..)
@O0 — @
length scale: .
2D 1 \? 3

see also: | Aranson |
et al., PRB (1998) : (&
two-vortex problem '

= noise-activated unbinding for a single pair (at exp small rate)



microphysics

Many pairs: Corrections to Kosterlitz-Thouless flow

quantum master
equation

stochastic GPE "

0.10
equilibrium compact KPZ
0.08 KT flow "
RG flow
0.06
0.04 A / (R
,,' vortex macro 4
1§ . . h ]
,/ unbinding physics
0.02
0.00
0.0 . . . . 05 g1
A B > inv. superfluid stiffness




microphysics

Many pairs: Corrections to Kosterlitz-Thouless flow

quantum master

equation
dK 2722 dy 1 A2 1 AT X2T (1
— — =2 - — — = —
7T d [ owr T aepE \a T Y ar Tawepe (gt
stochastic GPE "
0.10
equilibrium
0.08 KT flow compact KPZ
0.06 modified o
non-equilibrium
Y RG flow
0.04
macro 4
physics
0.02
= vortex unbinding for
0.00 ’ — any value of the noise
OO 01 02 03 04 05 Strength, no phase
. - 5A RN transition
. > ) s L)




L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

Competing length scales and suppression of KT

e two emergent length scales in complementary approaches:

167 D3 2D
L* = ape€ A2 A L’U — a’Oe A
KPZ length vortex length
4
algebraic .

i sub-exponential noise level

! O #

i exponential ® ?

P
KPZ free vortices
L I non-equilibrium strength
e (v

equilibrium

equilibrium limit

e full numerical confirmation of two-scale scenario in
1D (defects: vortices in (1+1)D space-time)

L. He, L. Sieberer, SD PRL (2017)

Rosterlitz-Thouless physics fragile to
non-equilibrium perturbation

=

e 2D simulations demanding



Strong non-equilibrium: Compact KPZ vortex turbulence

« In search of the phase diagram for XP condensates: 1+1 dimensions L. He, L. Sieberer, SD PRL (2017)

noise level

O

color code: vortex density on
space-time plane

B,

Noise activated vortices (TV)

KPZ / equilibrium dominated

T TR e [ T T T Vortex turbulence (VT)
physics <

>

first order non-equilibrium phase transition  non-equilibrium strength

[¢(r)l

P,(1— 1) - P,(1 — A7)

()
4x1073}

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
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8 8 & 8 B
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2X10_3f
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1073}

0. | ‘
0010 0012 0014
g

A
-~

T 1Q(xdx

|6
e 8 & 8 8

0016 0018

= deterministic limit: how does the system generate ' A
its own noise?
= KPZ physics announced in 1D XP condensates Bloch group, Paris



Further instances: Universality in driven open quantum systems

4
« criticality in non-equilibrium @ model

Sieberer et al., PRL (2013)

= dynamical fine-structure distinguishing eq. from non-eq.

e Markovian quantum criticality

Marino, SD, PRL (2016)

= new fixed point in dark state models with quantum scaling

e phase transitions in open Floquet systems

Mathey, SD, PRL (2019)

= absence of criticality (dual to Kibble-Zurek mechanism)

e coupled Ising models

Young et al., PRX (2020)

= new fixed point for strong non-equilibrium drive

e phase transitions with exceptional points

= universality yet to be discovered!

Fruchart et al., Nature (2021)
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Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven
Su m mary IeCtu re | Open Quantum Systems, Reports on Progress in Physics (2016)

Driven open many-body systems: challenge to theory

microphysics > macrophysics

@Iany-Body Master Equatioa ma1p'|;ing [ Keldy;r’:efgrnaﬁtional J

e mapping opens up QFT toolbox, today:

® symmetries: eg. vS. non-eq.

e control of IR fluctuations: understanding low
dimensional gapless phases out of equilibrium

e flexible choice of degrees of freedom: KPZ vs. vortices

e mapping opens up QFT toolbox, next lectures:

* symmetries: ‘weak’ and ‘strong’
e . 2D: L, < L, 1D: L, > L,
® responses out of equilibrium: topological gauge theory (time scales)

* replica field theory for measurements in many-body systems






Appendix:
Fermionic Lindblad-Keldysh functional integral

7 — / D(®, & )oi(Su[er. @]



Fermionic Lindblad-Keldysh functional integral

e We start from the Lindblad equation

Oup = —i[H,p] + > val2LopLl, = LEL,p— pLLL,) (1)

H, L, are functions of fermionic creation and annihilation operators.

e Let us define monomial of creation and anhihilation operators as parity even (odd), if they feature an even
(odd) number of creation and annihilation operators. A Hamiltonian is always a sum of even operators (fermion
superselection rule). However, the Lindblad operators can be either sums of even or sums of odd operators.
In the second case, parity is exhanged with the bath, which is integrated out (the underlying system+bath
Hamiltonian must be even). An important example of odd Lindblad operators are those linear in creation and
annihilation operators, leading to Gaussian Lindblad dynamics.

e We focus on a single time step, denoting the density matrix after the n-th step by p,, = p(t,) (t, = t; + ndq):
pant1 = (L +0:L) [pn] + O(67). (2)

e We represent the density matrix in the basis of fermionic coherent states. They are defined as eigenstates of the
annihilation operator a;|1) = 1;|¢), but the eigenvalues 1); are not complex number but Grassmann 'numbers’,
which anticommute with each other (see textbooks, e.g. Altland/Simons). At the time t,, p, can be written as

(3)

. T T
P = / N N A (/U v e N B T B G T

e The sign in the coherent states on the — contour is motivated by the goal to construct a Keldysh partition
function in terms of a functional integral. To represent this trace, one notes for any operator O acting in a
fermionic Fock space spanned by states |n) the need to commute left and right fermion coherent states in the

last step, according to

O =Y (n|Ofm) =Y [ duldve " |v) (0] | Ofn) = [ dwldve " (4]0|-v). ()



Fermionic Lindblad-Keldysh functional integral

e Next, the matrix element (¢4 ,,4+1|p2.n+1[1— nt1), which appears in the coherent state representation of ps 41,
is expressed in terms of the corresponding matrix element ¢,,. This requires evaluating

(g 1| LY 4 n) (- )] = Y- nt1) (5)
= =i (et H s ) (<ol = o) = @rnia W) (<l H] = o))

+ Z Vo [2 <¢+,n+1 |[:a|¢+,n> <_¢—,n|EL| — w_,n+1>

— (W mr L Lalts ) (=l = ¥ ni1) + Wi nr1 [s,0) (—0- B Lal = 0 n11)) |-

e Discarding sublteties of operator ordering, taking the continuum limit N — oco0,d0t — 0, t; — ¢; = const., and
subsequently ¢; — t; — oo, by re-exponentiation, this leads to the Keldysh action

- / DL, y] e+, (6)

Sl ] :/ [¢1i3t¢+ — i —iy(2L! L~ L} L, .~ LT_,aL_,a)}. (7)
t,x

e Note the order 2LT_’aL + o for the contour coupling ‘jump’ term in the Lindblad Keldysh action, reversed
compared to the Lindblad equation (1). This is chosen such that the formula is valid both for parity even
and odd Lindblad operators. In the odd case, writing the action in the original ordering of the Lindblad
equation, there is a prefactor (—1) in front of the jump term due the minus sign in the coherent states on the —
contour. This is compensated by exchanging the order to the form above. As a mnemonic, this way probability
conservation is ensured.



Appendix:
Equilibrium vs. non-equilibrium dynamics

drive frequency

elu ---------------------- a)O a)()

equilibrium non-equilibrium



Equilibrium vs. non-equilibrium dynamics

equilibrium non-equilibrium
« Single oscillator mode coupled to a bath (e.g. fermion) a) b)
. “ A ~ 6‘” ..........................
Ht — HO + Hint + Hb
v = O 1% \
Hy = woala iy =" €,blb, ath bandwidih —__ drive freq.
€ e
system H  path . “o ®o
T —ivt T
Hi« = Zgﬂ,e a'b, +h. c. system-bath r=0<g, Kw e, gy<<w LVRE,
v’

® wy, €, are the system and bath frequencies. The bath consists of discrete modes p and we will take the continuum
limit below. It is coupled to the system with real valued strength g,,.

e v is the driving frequency, which we will compare to the other energy scales below. For the simple drive
considered here, we can choose a rotating frame where the system-bath Hamiltonian becomes time independent,
and the system frequency is replaced wg — 0 = wg — v, with detuning 0.

e However, once the state of the bath is fixed by a choice of bath correlation functions, the drive scale v cannot
be eliminated from the problem (cf. the last line in Eq. Q4) below). The generator of time evolution Hy and the
state of the (sub-)system then form an inseparable entity and must not be considered in autonomy.

e To directly compare equilibrium and Lindblad limits, we work in the Keldysh functional integral. The action
St = So + Sint + S, corresponding to (ﬁ) is defined with

Sy = /dtaT(t)(i(?t — wo)72a(t), Sint :/dtZgu(e_i”taT(t)szu(t) +h. c.), Sy :/ dt Y bl ()G ()b (t). (2)



Equilibrium vs. non-equilibrium dynamics

equilibrium non-equilibrium
Single oscillator mode coupled to a bath (e.g. fermion) a) b)
. “ A ~ 6‘” ..........................
Ht — HO + Hint + Hb
v = O 1% \
Hy = woala iy =" €,blb, ath bandwidih —__ drive freq.
€ e
system H  path . “o ®o
. vt 4
i = Zgue “*a'b, +h. c. system-bath r=0<g, Kw e, gy<<w LVRE,
v’

e Each bath mode is here assumed to be in a state of thermodynamic equilibrium, described by the Fermi
distribution function np(e) = 1/(e=P¢ + 1) for a mode at energy e and temperature T = 1/3. The Green’s
function of the bath obtains by inversion of the G;l operator for all yu, which reads

N —ient—t) [ (L =np(en)0(t —t') —np(en)0(t —1) —nr(€ey)
Gu(t —t) = —ie (=) ( (1 — nn(e,)) (1= ()0t — 1) = np(e)o(t — ) ) (3)

e Integrating out the bath, we obtain

AS = /dtdt’ ot (e " Bt — t)a(t) :/dthaT(t)e_wTB(T)a(t—7‘), B(t) ==Y g2mGu(7)T,

— /g—:aT(w +v)B(w)a(w +v) = / g—:aT(w)B(w —v)a(w), B(w) = /dTGiWTB(T). (4)



Limit of thermodynamic equilibrium

« Single oscillator mode coupled to a bath (e.g. fermion)

I:It = ﬁo —|—Hint ‘|‘ﬁb

e This is a system, where there is no drive,
v=0<K g, <wy =€, (5)
e We then find

Bw) = iwhe (g ) ) ) - A, J@) =7 5 e, ), Aw) = Yk, ©

)
€ €, — W
T 7 H

where we have introduced the bath spectral density J(w) to parameterize the imaginary part. For many real
baths, this function is constant to good approximation (ohmic bath). The bandwidth of the bath enters implicitly

by the extent of the p summation. There is also a frequency dependent Lamb shift A(w), which is a Hamiltonian
term renormalizing the bare frequency wy.

e The system action then reads (neglecting the Lamb shift)

Seq = /dt[al(z’@t —wo)ag — al (i8; — wp)a_] (7)

_i/ ;Z—C;J(w)w{(l —np(w))[2a’ ay — aLaJr —ala_]+ nF(w)[Qa_aL — 0L+airF —a_a']}.

e This action obeys the thermal symmetry 73 introduced in the main part.



Non-equilibrium (Lindblad) limit

« Single oscillator mode coupled to a bath (e.g. fermion)

I:It = ﬁo —|—Hint ‘|‘ﬁb

e Now we consider a driven system, where the drive is the largest scale:

gy K wo K Ve, (8)

e Again we work at weak coupling. The driving frequency is on the order of that of the bath oscillators, i.e. the
bath has a sizeable density of states at the driving frequency, such that emission of excitations generated by
the drive (carrying energy ~ v) into it can take place. However, the system itself evolves on much slower time
scales (~ wp).

e This justifies the Markov approximation, where a(t — 7) ~ a(t) in the last expression in (14) — strictly speaking,
we are working in the limit #=! = 0. We then obtain

AS =~ /dtaT(t)[/ drB(t)e™™ a(t) = /dtaT(t)B(l/)a(t), (9)

where, with the usual conventions for a decay rate x and a Lamb shift A,

B(v) = m(_éézﬁm 1Eﬁ2n> — AT, /ﬁzﬂzu:gi(S(eu—u), A=Av), n=np(v), (10)

e The Lindblad action is local in the time domain and reads, again dropping the Lamb shift
Sneq = /dt[al(z’@t —wo)ag — al (10, —wp)a_ — ir{(1 —7)[2a ay — a1a+ —ala_]+ 7’L[2a_ajF - a+airF — a_a'(J}1)

e This action does not obey the thermal symmetry 73 .
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= Quantum Optics = Many-Body Physics = Statistical Mechanics
microphysics »  macrophysics
States
e order by dissipation: quantum ® phase coherence and entanglement for bosons
mechanical? and spins
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Order by dissipation

WAYA

KA

SD, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, P. Zoller, Nat. Phys. (2008);
B. Kraus, H.P. Buchler, SD, A. Micheli, A. Kantian, P. Zoller, PRA (2008);
F. Verstraete, M. Wolf, J. I. Cirac, Nature Physics 5, 633 (2009).

Microscopic “Thermodynamic” Long wavelength
Quantum Optics Many-body physics Statistical mechanics



Dark states in Lindblad equations

\

environment

J

e quantum master equation Lindblad operators
pl+ K E (LipL; — 5{L; L;, p})
.
coherent evolution driven-dissipative evolution

e Key concept: Dark states
L;|D) =0 Vi

= time evolution stops when p = |D)(D| *

*for e.g. H|D) = E|D)

drive



Dark states in Lindblad equations

e guantum master equation Lindblad operators

(9 — —[H ]_I_ (L LT_ l{LTL/}) [ \drive
0= —1H,p|+ K iPLy; — 514y Ly, p j
1\ J 17 _/ .
Y ~ L environment )
coherent evolution driven-dissipative evolution

e |nteresting situation: unique dark state solution

Hilbert space

L8

8

dark subspace

= you can enter, but never leave *

= directed motion in Hilbert space p — |1D){(D|

. = dissipation removes entropy, increases purity
for e.g. H|D) = E|D)



Order by dissipation:
Bosons

WAYA

KA

SD, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, P. Zoller, Nat. Phys. (2008);
B. Kraus, H.P. Buchler, SD, A. Micheli, A. Kantian, P. Zoller, PRA (2008);
F. Verstraete, M. Wolf, J. I. Cirac, Nature Physics 5, 633 (2009).

Microscopic “Thermodynamic” Long wavelength
Quantum Optics Many-body physics Statistical mechanics



Dark states: From quantum optics to many particles

e optical pumping: three internal (electronic) levels  Aspect et al., PRL (1998); Kasevich, Chu, PRL (1992)

N —

g+1) |D>
dark state bright state
\D> ~g+1) + ’9 1) 1B) ~|g41) — |9-1)




Dark states: From quantum optics to many particles

e optical pumping: three internal (electronic) levels  Aspect et al., PRL (1998); Kasevich, Chu, PRL (1992)

N —

g+1) |D>
dark state

D >~\g+1 +!g 1)
e 1 atom on 2 sites: external (spatial) degrees of freedom (atoms on optical lattice)

— /A

(a] + al) vac)

symmetric
superposition

. UQVCM:E i

- combination of drive and dissipation enables purification

e N atoms on M sites (optical lattice)
\ e I BEC) = (Zaz) lvac)
12



Dissipative many-body state preparation

e Lindblad operators for BEC dark state: KA

Lz’ = (CL;L —I—CL,:-r_l_l)(CLi —CL,L'_|_1) LZ’BEC> =0V
= |Long range phase coherence/ boson condensation builds up from quasilocal dissipative operations

e uniqueness of stationary solution can be shown

= QOrdered phase reached from arbitrary initial state
— p(t) — |BEC)(BEC| for t — oo

e experimental realizations: entanglement generation
p = |D)(D|

D) — %(|0000> L1

GHZ state of
four ions

Universal open-system quantum simulator,
Schindler et al., Nature (2011) (Blatt group)



Topological order by dissipation:
dissipative Kitaev chain

s g gt Pt g i

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. (2011)
Review: C.-E. Bardyn, C. Kraus, E. Rico, M. Baranov, A. Imamoglu, SD, NJP (2013)

Microscopic “Thermodynamic” Long wavelength
Quantum Optics Many-body physics Statistical mechanics


http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Rico_E/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Baranov_M/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1

Kitaev's quantum wire (Hamiltonian scenario)

e spinless superconducting fermions on a lattice H=)_
i

e Hamiltonian in Bogoliubov basis H = Z €;

two inequivalent
representatives

a; = A4

-9 -9 -0 -9 =9 =9

trivial phase

ﬁ—!
physical site

~'|'~

—]a:.ralurl +Aa;a;. +h.c. —,u(a

G;|G) = 0V

Kitaev, Physics Uspekhi (2001)

.'_

i~

a—

superconductor

complex basis
H =c¢ aial
a = L (c1 +icp)
2
Majorana (real) basis

H = %6 C1C2

fermion as onsite pairing
of two Majoranas



Kitaev's quantum wire (Hamiltonian scenario) Kitaev, Physics Uspekni (2001)
—

onductor

e spinless superconducting fermions on a lattice

superC

e Hamiltonian in Bogoliubov basis H = Z eZ&TZLZ a;|G) =0V1
e two inequivalent ocall
representatives quaslioca
. N, — l + _ + T)
CLZ 'L — 2 a/Z_|_1 CL’L—I_]. ajz a/
=9 0-9 -9 09 09 -9 0 0=—=0 00 O—0 0—0 0—0 O
ﬁ—J
physical site
trivial phase nontrivial phase
bulk edge
- BCS p-wave superfluid in - unpaired zero energy Majorana edge
ground state modes, or

- gapped Spectrum - hon-local BOQOIiUbOV fermion



Dissipative Majorana quantum wire

e reconsider simplemost Lindblad operators and dark state condition:

Li — (CLI—I—GJ;-[_|_1)(CI,¢—CL¢_|_1) ECQLAZ LZ|D> =0V
®* main insight:
o aj boson creation => D) = |BEC, N) fixed number BEC dark state
. a,}L fermion creation => D) = |BCS, N) fixed number BCS pair dark state
e this example: IBCS, N) = |Kitaev, V)

SD, E. Rico, M. A. Baranov, P.

e connection to Kitaev model: emergent eigenoperators in thermodynamic limit Zoller, Nat. Phys. (2011)

fixed number

; ; long times fixed phase

— . _ (T T

Li = (a; +a;;q)(a; — aip1) - > U= (a; +a;, 4 +a; —a;41)
= ~ 7 ~ “ —*“low energies” N -~ RN -~ y

D) = |Kitaev, 0) ‘@

standard Kitaev p-wave superfluid state Kitaev’'s Majorana operators


http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Rico_E/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Baranov_M/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1

Mechanism: Fixed number vs. fixed phase Lindblad operators

e spinless fermions for simplicity SD, W. Yi. A. Daley, P. Zoller, PRL (2010)
e fixed number Lindblad operators e fixed phase Lindblad operators
L, = ClA, ;= Cl 4 re? A
<~
e resulting dark state e resulting dark state (with AN ~ 1/ \/N)
IBCS,N) = G""|vac) IBCS,0) = exp(re?GN)|vac)

® requirements

translation invariant creation and annihilation part antisymmetry

(5
C;f = Zvi_ja;- CT = ’U]{CLL P — — — —QP_f

. U
J
A; = Zui_jaj A = upag GT = Z gpkcikc};
J
k



Spontaneous symmetry breaking and dissipative gap

e use equivalence of fixed number and fixed phase states in thermodynamic limit

e use exact knowledge of stationary state: linearized long time evolution
T 1 T _ 1
O EHCOIE STngtanth — Hthta o}
q

® properties
fixed by average particle

. . . number
e relation to microscopic operators fixed spontaneously
; t — 00 T\ i 6/
“low energy limit”
o effective fermionic quasiparticle operators damping rate liq

£q|BC’S7 (9> — () ;fulfill Dirac algebra -> uniqueness

\

3Irmions

2 2 AR 1 2 3
o= o [ el )+ 2) >(on) A

bosons

e (dissipative gap in the damping rate

= scale generated in long time evolution (single particle sector)
= robustness of prepared state against perturbations



Properties: Topological states induced by dissipation

V' generic features of topological states

= insensitivity of edge modes against ¢ reason.
microscopic details in the bulk: p
= disorder o %P:—i[A,P]‘FZW)Pab(bL
"= Nnon-pure bulK states {]“]J} # 0

[N
adiaba’FiC A=irtU Pap = a(t)|0:p|b(1))
connection phys. evolution

v braiding of dissipative universal

Majoranas by adiabatically changing£\> S
e implication:

cf. work by Avron, Fraas, Graf, J. Stat. Phys. (2012); o . . .
Avron, Fraas, Graf, Kenneth, New J. Phys. (2010) = dissipative braiding in networks

= non-abelian statistics

(Alicea et al., Nat. Phy% 2011)

gil (a) V2 (b) Y2 72 < V2 (d) 71
v topological origin T “T.
= topological invariant of the bulk (for N 7

mixed, dissipative systems)



Topological field theory far from equilibrium

F. Tonielli, J. Budich, A. Altland, SD
PRL (2020)

microphysics > macrophysics

@(/\) W % Ay dA, —A_dA_




Motivation: Quantum states vs. quantum dynamics

e quite general quantum evolution: Lindblad operators

Oip = —i[H,pl + v Y (LapLl, — 3{L! La,p})

7

A\ J
Y v
coherent evolution driven-dissipative evolution

e simple example: damped harmonic oscillator (quantum cavity)

H=wya'a L =a

m:(A)/ \uozo

r

\

environment

. g _ 1
evolution Op = —i|H, p Oip = k(apa’ — +{a'a, p})
. Peq = e M Pneq
stationary state e
: _ coincide! .
Jlim = 0)(0] < > Pneq = [0)(0]
OO .
ground state dark state L;|D) =0V

rggggrr?sigatlo (9 (t) e—iwot quaLV[ativer diﬁe;ent! (9(75)6_775
ita+alj reversible, equilibrium irreversible, non-equilibrium

drive



Motivation: Quantum states vs. quantum dynamics

e quite general quantum evolution: eliminate environment Lindblad operators

R TRy A~ T AT 1 ATA/ f \drive
815:0 — _Z[Hap] + ’%Z(LOHOLQ o §{LaLOM/0 ) ‘j

A\ J

v ~ environment
coherent evolution driven-dissipative evolution

e enter topology:

e topology is encoded in the state (wave function)

e observables are oftentimes dynamical responses (to gauge fields)

e example: Chern insulator (e.g. quantum Hall)

Questions:
Is there a topological response in irreversible out of
equilibrium dynamics?
Are there chiral edge modes (reversible) on top of a
dissipative bulk (irreversible)?

cf., for single particle problems: Albert, Bradlyn, Fraas, Jiang, PRX (2016)
following Avron, Fraas, Graf, J. Stat. Phys. (2012); Avron, Fraas, Graf, Kenneth, New J. Phys. (2010)




dissipative topological superconductors: SD, Rico, Baranov, Zoller, Nat. Phys. (2011),

. . ] dissipative Tls: Goldstein, SciPost (2019); Shavit, Goldstein, PRB (2020)
Different dynamics: overview

Hamiltonian scenario Lindblad scenario

Q . unique ground state * unique dark state

CU :

N H|D) =0 L.|D)=0 Va
Ex.: Chern insulator Ex.: dissipative Chern insulator

coincide!
< ->
band 1 L

L34
band 2
& very different! . . .
= « (micro) reversible / unitary - > * irreversible / dissipative
o . _ e far from equilibrium: detailed
g, e thermal equilibrium (detailed balance) balance violated  see Lecture |

Sieberer, Chiocchetta, Taeuber, Gambassi, SD, PRB (2015)

Op = —i[H, f] Oip =k Y (LapLl, — 3{L} La,p})



Model: Driven open Chern insulator

e starting point: class A insulator, no discrete symmetry to protect topological state
A A ~\T
R R . R . . ) R ¢q = (¢1,q7¢2,q)
i = [0y da-a)ig= [ U Ve'o Vi = [ oy s
q q q

_ T
—— —— lq — (ll,qv l2,q)
dq = (2mqy, 2mge, —m? + q*)*
e ground state condition lix|D) =1 |D)=0 ¥x o
/ = - \\
model M1: no number conservation ). odel M2: number conservation [f)a, N] —0Va \
,/( \\
Lo = l1x, lg,x’ 71 =72 = TM1 [ Lis= ﬂ,zlp L3, = ¢1,2l$7 Yi...4 = VM2

1 external particle " /\\ system acts as its own
' reservoir «  particle reservoir

2

quadratic, solvable quartic, strongly interacting

gzggﬁgncontmwty O (x) = Vj(x) + 0(0) con \ equation 8tﬁ(X) — "

—

= same dark state, different dynamics (non-equilibrium congarvation ws)



Program: Extracting the topological field theory

map into Keldysh functional integral (better for concrete calculations)
intermezzo: weak and strong symmetries in the Keldysh formalism
minimal coupling to U(1) gauge field

compute the effective gauge field action, encoding the long wavelength response

»(1



more details: Sieberer, Buchhold, SD, ROPP (2016)
Intermezzo: Symmetries in the Keldysh formalism

e closed time path (fermions, bosons) for recap & fermions: see appendix Lecture |

\/ v + contour \/ \/
Z =trp(t) = p(tr)¢ 4 (to) /D¢i€ [ +]
Ly = +oc /\ /\ - contour /\ /\ to =

e Lindblad-Keldysh action HL = H[4], L+ = L[]

left action  right action

N /
S[wi]:/tx[mzatm—m— I —ZZWQ(QLT Lot — LY Loy — L La,_)}

 basis separating responses and correlations: . = %(%ﬁ +Y_), Y, = %(TM — )

“classical field’ ‘quantum field’

e symmetries have contour structure, e.g. global U(1):
i (t,x) = e F Yo (1, x)

e symmetry generators X4+, X— < Xe=X+"TX-» X¢= X+ —x-)/2

U(1) U-(1) U.(1) Uy(1)



more details: Sieberer, Buchhold, SD, ROPP (2016)
Intermezzo: Classification of symmetries

Buca, Prosen, NJP (2013)
e overview: strong and weak symmetries Lieu et al., PRL (2020)

e focus: continuous global symmetry U(1)

e strong symmetries: independent transformations on both contours

U.(1) x Uy(1)

= conservation laws, gapless hydrodynamic modes (Noether theorem)

e weak symmetries: both contours ‘in phase’, U, (1) explicitly broken, X4 = 0

Uc(1)

= spontaneous breaking of ‘classical’ symmetry: gapless Goldstone modes
(Goldstone theorem)



Intermezzo: Classical/weak symmetry

 recall generic Lindblad model ( single particle pump )

:

Sip = —ilH. p| +Dlp] = LI (manyooy
S

o — gg;r( (% — 1) ng 4+ %(&L&X)Q ( single-, two-, ... body loss )

N N A A A A 1 (24 )
D[p] = vp/[qﬁlpcbx — {0, p}]. + %/prqﬂl — 3{okdx P}l +
* single particle pump single particle loss
o [ 620017 - 3(612% 0
e symmetries: two particle loss

e U.(1) invariance: both contours transform ‘in phase’

A

b — eXg

o butno U,(1)invariance

e interesting physics is associated to the spontaneous breaking of U.(1)



Intermezzo: Classical/weak symmetry, semiclassical limit

see also Lecture |: semiclassical similar h — 0
e extracting the physics: associated Keldysh action here: semiclassical as N — 0o

A
S = /t {(cb:,d);;) ( “ J;K) (f;q) + 2P0y — 3 (A T 1K) (97 0ty TB o) +c.c.}}

PP =i+ V2 +p+izm—m) PY*=(PHT  PK =iy +7,)

N

e assume a condensation is taking place:

e classical / occupation field: macroscopic occupation N — oo (more precisely: only g=0 mode scales)

N1/2 A () = v/ —1/2 Ze—iqw(bc(q)
q

belq) ~ N2 = (@) ~ 77475

e quantum field:

1

~ s N

dq(q) ~ N° = ¢q()

= expand action up to second order in ¢,(q)

= semiclassical (large occupation N) limit governed by Martin-Siggia-Rose (MSR) action

q 5¢* Phys. B (1976); DeDominicis, J. Phys. (1976)
c

o _ / {¢* 05|o¢] L ee +PK¢Z%} Martin, Siggia, Rose, PRA (1973); Janssen, Z.
t,x

S= [ {67i0,0c — He+ iHy) Ha = ra|de]” + KalVoc|® + Aaldioc|*, a=cd

t,x 4
= analyze like ordinary condensation problem (¢ potential)



Intermezzo: Classical/weak symmetry, spontaneous breaking

e equation of motion:

OH., 57-[d

O = 5gr ~ Vogr

PKgbq Ho = /ddl’[raWc‘Q + Koz|v¢6’2 + ga\¢c|4]

o U.(1) invariance: ¢c — €X°de, g — X,

. _ H
e stat. state on mean field level: neglect quantum field, homogeneous fields g T

o stat. state determined by Hd alone (Tc adjusts in rotating frame)

= condensation for 74 = vy — v, < 0

e visually clear:

= Sombrero potential with degenerate manifold of minima

= system chooses one of the minima spontaneously

= motion along this manifold costs no action

e more generally valid: Keldysh Goldstone theorem

If a global continuous weak symmetry is broken, there is an exact zero mode.

e holds including fluctuations and beyond semiclassical limit  more details: Sieberer, Buchhold, SD, ROPP (2016)



Intermezzo: Conservation laws and quantum/strong symmetry

e example: model M2, with number conservation [Ea, N] =0V« N;E ?;:;sera\tzii:s own
£1,2 — A1r’2[17 £3,4 — 121,2527 Y1...4 = YM2 \/ \ ;

e intuition: no number exchange with the bath W

e on Keldysh contour: ot v
z1,2 — (L1,2)i —> independent phase rotations, symmetry U, (1) x U_(1) = U.(1) x U,(1)

e Keldysh Noether construction: more details: Sieberer, Buchhold, SD, ROPP (2016)
e promote Ocq — 0.4(%, )

e change of action: S — S5+ /dtd2a: [(%chgj + 0,0, |

e vanishing variation: (;;ic Lo — O I, =0 or 0,00, = —V.q
where universally for time-local non-relativistic dynamics JO = ap¥ap. + Yothg = Vb + P p
and J_;,q is model specific Jg = Pobg + Y e = ViV — YT
e Noether charges:
U.(1): N, = /d2x<J§> =0 Uy(1): N = /d2x<J3> =N

= formalising the obvious: particle number conserved in M2
= useful to build minimal coupling prescription



Spontaneous breaking of quantum/strong symmetry: M2 —> M1

e strongly interacting problem, but dark state exactly known: Self-consistent Born approximation
(analogous to mean field theory for dissipative superconductor)

o O Ll al—zwaw*zl
(DL me = ——o—  with o = S T et = il

e effective action in single particle sector: M2 reduces to M1 under replacements

T — A
Lio— 1y, Lgy— 1 Yy =7
e single particle Green’s function foq — _QW (1‘:; 0-27 qu — _|_1. Yq :ﬁ\dq]
’ w Ya ’ W =+ 1Yq

e emergent dissipative single-particle spectral gap Yq=0 = f_ym2

e spectral Green’s function topologically trivial, topology encoded in the Keldysh ‘noise’ component
(would go unseen in non-Hermitian topology) Kawabata et al. PRX (2018); Zhou, Lee PRB (2018)

e non-Hermitian single-particle Green’s function, coincides with the one for model M1: particle
number conservation masked / quantum symmetry spontaneously broken

= Quantization of the response? How does the system remember its number conserving origin?



Many-body gap: Dissipative insulator

e single particle gap emerges in mean field theory

e does not rule out slow diffusive modes (e.g. from particle number conservation)

e study robustness against most plausible local two-body excitation for half-filled system: particle-hole

e |ocal particle-hole excitation on top of dark state in momentum space

k) = n V2 / & loq|D)
q

e density matrix with up to one particle, one hole excitation

A u
p = po|D){D] + px k) (K| -
e closed set of evolution equations with leading behaviour <
= 2 ~ 2 r
Orpo = 2ym” px, Orpx = —2ym” pk Ls.s

= particle-hole excitation damps exponentially fast with twice the gap of a single particle

= strong analogy to a Hamiltonian insulator despite different dynamics (e.g. no energy conservation)



Microscopic gauge-matter action: minimal coupling and response

e resolution: the full functional integral knows about number conservation, lost only by approximation

= first couple to the gauge field, then do the approximations

e gauge theory: global U.(1) x U,(1) —>local U.(1) x U,(1): works only for M2

e then, covariant derivative a,ﬂﬁi — (au — iAi)wi
| | s _
» Lindblad operators carry gauge field L, = <ot + lqg = Vq¥q

Ly — L1+ 18, VV ™)1 Ay = Ly —ih] (ail)1 4

: I : \ Berry connectlon
iInessential

1
U.=d2V di | matri ~ 1=
qa qVq iagonal matrix — 2(9 UU B

e gauge-matter (current) coupling in quartic. LLLQ:

A
Am
LT T spatial components temporal

@ (Lindblad operators) component



Microscopic gauge-matter action: minimal coupling and response

e resolution: the full functional integral knows about number conservation, lost only by approximation

= first couple to the gauge field, then do the approximations

e gauge theory: global U.(1) x U,(1) —>local U.(1) x U,(1): works only for M2

e then, covariant derivative a,ﬂﬁi — (au — iAi)wi
| | s _
» Lindblad operators carry gauge field L, = <ot + lqg = Vq¥q

Ly — L1+ 18, VV ™)1 Ay = Ly —ih] (ail)1 4

: I : \ Berry connection
inessential - —
7

1
Uq = dqVq diagonal matrix

e gauge-matter (current) coupling in mean field decoupling:

L ;
(I} L )ng = ——om—em + + e .



Microscopic gauge-matter action: minimal coupling and response
>

microphysics macrophysics
e Response: cumulant expansion to second order (= one-loop approximation)
x (2) x (1) x (1) A HIJA
Z[A]:€(< >‘|' < ) )_esz I,3 H”_( 0 Hg})
Ao =0 s\

e diagrammatically

OO AN LG

II.q(w,0) IT.q( 01l (0,0)w
e leading frequency term
cq W ; .0
w (9001_[,& : (O, O) = —— €jj TI'[O' F] = —IW €4 8 — —1
J 2 p 2T
with Berry curvature  F' = O, as — Og, Q1 for above two-band model

= quantised response of the purely dissipative quantum system (within effective one-loop theory)
= gauge invariance demonstrated to first order in derivative expansion



Intermediate summary: symmetries and responses
>

microphysics D macrophysics

e Effective single particle Green’s function for number conserving M2 indistinguishable from number-violating M1

w2+7§l7 wa w + i7q

w,q

= topology in driven open fermion system is ‘in the noise’ (!)

= interpretation: spontaneous symmetry breaking of U_q(1)

P. Hohenberg, B. Halperin,

= see also: Hohenberg-Halperin dynamical models for classical critical dynamics RMP (1977)

e Hydrodynamics remembered for suitable approximation scheme
dn(x) = VJ(x)

= current operator well defined as the definition of charge in system vs. bath is unambiguous
= see also: Hohenberg-Halperin dynamical models for classical critical dynamics with conserved charges

e Electromagnetic response: all possible contributions in 1-loop approximation

47

= ¢ = —1 quantised

0
S[Aq A, = / {— eHvP (AH,C&,AM +Au,q8,/Ap,c) + M B. B, + iAQBﬂ Br =€;;0;A;1

= subleading Maxwell-like terms



Macroscopic gauge action: Keldysh topological field theory

microphysics macrophysics

e what are the key ingredients for the results?
e particle number quantization: large gauge invariance

e spatially homogeneous gauge transformation on the Keldysh contour

gauge field: A% (t) — AL (t) + Iy x=(t) &  matter: ﬁi (t) = eiXi(t)N

. A g
Us(t+00)UL(t+6t) Up(HUL(t) temporal boundary condition:

\ L/ ; cary cor
VY corew VV KUi(tom(to)U*(to)iﬁ(to)
t

<€
P(tf){ > S S } P(Lo
tf = 400 /\ /\ - contour /\ /\ t() = —0Q0

p(to) number eigenstate
— o ilx+(to)=x=(to))N L q

o~

temporal bulk: invariance under Uy (1) x U_(1) number quantized: N € N
: . _ phase accumulated
e large gauge invariance: X+ (to) — X— (to) + 27mn ] n € /Z along closed time path
e implication for effective theory: eiS [A] — 6735 [A]+2min _ eiS [A] => constraint on action coefficient

e remark: more physical interpretation than at thermal equilibrium (periodicity due to Matsubara torus)



Macroscopic gauge action: Keldysh topological field theory (bulk)

microphysics macrophysics

e most general form of the Keldysh Chern-Simons action for pure states

Scs[A] = / dtd2xM[J€/u/p A‘;(‘),,Aﬁ

real: hermeticity of time
dependent density matrix

S[Ae, 0] =0 N T S"An Ay = —S[A., —A,)

0 0 quantized: large gauge invariance
N — 4
1J 0 0

\ imaginary: hermeticity

real: large gauge invariance

e symmetries: probability conservation

} => must vanish

e standard Chern-Simons action emerges:

0
SCS[A] — E /A_|_ dA+ — A_ dA_

= contour decoupled Hamiltonian structure on top of purely dissipative bulk



Bulk-boundary correspondence

microphysics macrophysics

Chan, Hughes, Ryu, Fradkin, PRB (2013)

e adjustment of functional bosonization approach to Keldysh: lack of local U.(1) x U,(1) gauge
invariance on boundary gives rise to new boundary degree of freedom

e add all possible leading terms allowed by global U.(1) x U,(1) invariance

S‘yZO — / [ - ‘9{ aﬂpqaw@c T vﬁquax% T (C = q)} T D{ﬁﬁpqaiSOc — (C N Q)} T in(aqu)Q]
t.x

9

N— e \ - 4 \ 4
gl g Y

chiral propagation diffusion conserved noise

= all terms consistent with particle number conservation are subleading: sharply defined chiral modes
w = vq + iDq?
= qualitatively unmaodified for mixed states

= potentially interesting non-linear fluctuating hydrodynamics different from equilibrium
Chen-Lin, Delcatraz, Harnoll, PRL (2019)
= unseen if mislead by "hidden’ U_q(1) symmetry of effective single-particle action
—> implications for non-Hermitian bulk-boundary correspondence?
Kawabata, Shiozaki, Ueda, Sato, PRX (2018); Zhou, Lee PRB (2018)



Summary: Symmetry analysis

microphysics macrophysics

Key ingredients:

e global U.(1) x U,(1)invariance (number conservation)
e |arge gauge invariance (number quantization)

e pure states (but see outlook)

Implications:

e standard Chern-Simons action emerges (dissipative corrections subleading in derivative expansion)

0
SeslA] = - / A dA. — A_dA_

= contour decoupled Hamiltonian structure on top of purely dissipative bulk

e bulk-boundary correspondence: sharp chiral edge models with subleading width

w = vq + iDq2 v determined by Lindblad parameters



Outlook: Topological field theory for mixed states

winding number
_ 4 dk= (= =
e basic riddle/paradox: | W= ]{ o @ - (Tl X Opig)
e.g. Wang, Troyer, Dai, PRL (2013)
* observables tend not to be topologically quantized for mixed states (eq/neq)  -i—

: . _ e.g. Viyuela, Rivas, Martin-Delgado, PRL
e topology of density matrices well defined (2014); Huang, Arovas, PRL 2014);

Budich, SD, PRB (2015)

e resolution (for Dirac stationary theory in arbitrary dimension)

Z. Huang, X. Sun, SD, in preparation

e Effective real time gauge response action is topological but non-perturbative in ~ Pure states: rig| =1
the temporal gauge field, with structure (e.g. odd spacetime dim.)

S /d2nfE 73[%, ‘mH C2n [AC] / Chern class denS|ty

Con[AS] = — = Omiagy ge g g

/ W 14 o Y 2n —14 oy
Chern number (quantized) only dim.less ratio: purity gap
q __ q q _ q
e topological properties related to Ao = /thO Plag + 27n, flm|] = Plag, Blm|] + 27
e U,(1) large gauge invariance i.e. number quantization under large Uq(1)
e global Uq(l)invariance, i.e. number conservation BILH;OP[CLE]) +2mn, Blm|] = ag

e linear response observables non-quantized

generalizes ‘ensemble geometric phase’

° i .
non-linear response observables can be quantized Bardyn, Wawer, Altland, Fleischauer, SD PRX (2017)




Symmetry classes of open Fermionic
quantum matter

irreversible non-

equilibrium
dynamics

A. Altland, M. Fleischhauer, SD, PRX (2021)



Motivation: Classification of open quantum systems

e physical setting: free systems (matrix representation)

closed system open system
e classified object: Hermitian matrices e classified object: non-Hermitian matrices
H Hf =H K=H —1D HY'=H, D'=D

® symmetry operations: ® symmetry operations:

e time reversal T e time reversal T Hzgj‘rc‘)iitri]?” T

e charge conjugation C e charge conjugation » (1

e chiral symmetry S ® chiral Symmetry S U ST
® result: 10 classes ® result: 38 classes

Altland, Zirnbauer PRB (1996) Kawabata, Shiozaki, Ueda, Sato, PRX (2018); Zhou, Lee PRB (2018)

¢ applications: classification of fermion topological states
(topological insulators, superconductors)

Kitaev AIP (2009); Ryu, Furusaki, Schnyder, Ludwig NJP (2010)

e physical interpretation of non-Hermitian matrix?
e particle statistics?

e causality?

® generalization to interacting systems?

® Open issues:

= goal: first principles classification of general generators of fermion quantum dynamics



Classifying general fermionic quantum dynamics state 1)) € F

. . . . - 4 dynamics
e starting point: symmetry operations in fermionic Fock space (state)
{ai7 aj}
* time reversal T Ta; T~ = uryj aj, TiT~! = —i,
* charge conjugation C:  Ca,C™'=ucyal, CiC™ =+,
e chiral symmetry q - Sa,S™! = ug;; a;’ g1 — 4.

¢ physical principle: invariance of the equation of motion (dynamics)

equilibrium unitary / \ non-equilibrium irreversible

. T Er A 5 — —ilH. 5 E:““T_lﬁ“ 5
(9,5,0: —’L[H,IO] atp_ Z[H7 p] T K (LOéIOLa Q{LQLCHIO})
«
- reproduces ground state classification Fook space
- extends to irreversible eq. dyn.
& c
= object of classification: generator of dynamics 5 § 5
(including interacting) S S
; % =

e classification of the state (incl. stationary) follows

stationary phases




Classifying general fermionic quantum dynamics

. resu|ts' A Attland. M. Fleischh SD. PRX (2021 transformations || non-equilibrium ||equilibrium |[steady state
; . Altland, M. Fleischhauer, SD, ( ) < Ox gDl p I o/r
T| UrOU) - |+ | - - +
: : : (e : N —ULO0TUc —
e states: 10 classes, irrespective to the dynamics stabilizing it S Tt " ' i 1
e —Ug S - - -

e dynamics: fundamental distinction of eq. and non-eq. dynamics

=17 =3 + (7 + 7) dynamical symmetry classes

= the ‘watershed’ is equilibrium vs. non-equilibrium, not reversible vs. irreversible

: ' ' irreversible non- : irreversibl
unitary Irre\{le'tr)s'lble equilibrium unitary e euiﬁber;ittj)rﬁ

dynamics equill rllum 9 ) dynamics 9 _
dynamics dynamics dynamics

irreversible non-
equilibrium
dynamics

e implications (for out of equilibrium dynamics):

e different representation / transformation rules of antiunitary symmetries:

crucial for practical applications

e non-Hermitian matrix classification not robust in presence of interactions




Origin of dynamical fine structure

* time reversal in quantum mechanics is a combined transformation state

e static: action in Fock space A dynamics
T: TaT '=uryja;, TiT ' =—i,
e dynamical: action in the time domain
t— —t inidy) = HJ)
e full guantum mechanical time reversal:
ToE  Ef(t)=f(-1)

= ‘pvlay movie backwards’
= does not make sense in general irreversible dynamics |
= but can be extended to irreversible equilibrium dynamics {

irreversible
equilibrium equilibrium
dynamics dynamics

unitary
dynamics

e thermal time reversal (Keldysh formulation): see lecture |
inverse temperature

T O Eﬁ Ef (t) — f ( —1 + ;ﬁ) related to Kubo-Martin-Schwinger

boundary conditions / FDT

= transformation laws of quantum mechanics smoothly extend to irreversible eq. dynamics
= out of equilibrium, ¢ — +t and full time reversal gets represented differently (different trafo laws)



Implications for Gaussian dynamics

e classification encompasses interacting systems, but now make contact to matrix classifications

e Lindblad generator 0up = —i[H, p] + Z(leaﬁle —{Ll Lo, p})
(87
e H quadratic, Lindblad operators linear: 3 structure matrices
]:I = %ATHA Zizljza — %AT(D — ’&P)A Aa = ( 2? ) Nambu vector
® with constraints: acts in Nambu exercise: verify
/ space these relations!
e Fermi statistics: H=-0,H'v,, D=o0,D'0,, P=-0,Plo,
e Hermiticity of Lindblad map: H'=H, D'=D, P =-_P

e complete positivity of Lindblad map: D >0



Implications for Gaussian dynamics
e classification encompasses interacting systems, but now make contact to matrix classifications

e Lindblad generator 0ip = —i[H, p] + Z(QZALQ,&ZALL —{Ll La, p})

* H quadratic, Lindblad operators linear: 3 structure matrices

]A{ = %ATHA Zizljza — %AT(D — ’&P)A Aa = < g? ) Nambu vector

* Keldysh functional integral 7 = /D(¢7¢)eis

e 0 ~ K ¢ .
S = %/g_w(waang) (W—Kw wQPw > <zg> Kw — H_ZDw

noise / fluctuation

dissipation

Dw — D, Pw =P Markovian

¢ Lindblad case
Bw
D, non-Markovian, fixed by fluctuation-dissipation relation

® equilibrium case P, = itanh ( 5

¢ steady state encoded in covariance matrix

N dw 1 1
Ty = tr(p[A,, Al]) = —2i P,
= w(plde, Af) = -2i [ PP

equal time Keldysh Green’s function



Gaussian dynamics: two gaps

¢ classification requires robustness, encoded in action

W oe 0 w— K c ,
S:%/g_w(waang> (W—Kw 2Pw )(zg) K,=H —1D,

inv. ret. Green’s function poles of retarded Green’s function ‘ oY)
A

e spectral gap: no zero modes of spectral matrix K,

purely Hamiltonia;l\_/

® purity gap: no zero modes of (Hermitian) covariance matrix \

purely dissipative
oA A . [ dw 1 1
oy = tr(p[Aa, Al]) = —22/% (w_K wa KT>
w — Dw/ ab

for parameterization

AN A

= tr(p[0ar — Al A4]) = (tanh © ),y p=1e

\ tanh structure seen in eigenbasis

—bATOA (e tATOA)

e example: equilibrium case © = SH

= purity gap closing for zero modes of H (i.e. spectral gap closing
= or infinite temperature 5 =0

e criterion in the presence of a spectral gap: no zero modes of fluctuation matrix P,

= purity gap = ‘fluctuation gap’



Different representation of anti-unitary symmetries

e table of transformation rules for Gaussian dynamics characterized by generators H, P, D

Class|T C S|1 2 3 4
Fock space
A |000j0 Z 0 Z
AIIT |0 C@Z 0 Z O o =
transformations || non-equilibrium [|equilibrium ||steady state ALETO 0lo 0 o0 7 § 7 &
_— O =
X Ox P H o/I BDI¢E» +|Z 0 0 0 3 e =
T| UrOU) - - - D 0(Z2 Z 0 0 . DIA( 3 -
C| —UEoTUc 4 + + DINC O +|Z2 Z2 Z 0 H v P
S| —Udo'Us — + + All 00 Zx Z>2 7 v
CH¢E ) +|Z2 0 Zy 7
C 010 Z 0 Z: ‘ stationary phases ’
CI +/0 0 Z O

= anti-unitary transformation with i —> - i (T,S) rules different from Altland-Zirnbauer classification for

dynamics out of equilibrium: 17 =3 + 7 + 7 dynamical classes

= in 3 classes, no anti-unitary symmetry present
= in 7 classes (6 with T, 1 with S), anti-unitary transformations laws of equilibrium ¢t — —t + 73 present
= in 7 classes (6 with T, 1 with S), anti-unitary transformations laws of non-equilibrium ¢ — +4¢ present

= pboth equilibrium and non-equilibrium collapse onto Altland-Zirnbauer classification in stationary state

= study concrete example



Different representation of anti-unitary symmetries (qualit.)

transformations ||non-equilibrium ||equilibrium ||steady state
e example: chiral 2-band insulator in 1D (SSH) f; - %XUT 1 i) P ’j Gf
T T - -
[l [} [l [] — T T 7] \ —
e covariance matrix for stationary steady state (trans. inv.) g C‘&‘;Tgf P B s :: +
— — — — N : _‘ — - ) *
', = ng - X ‘nk‘gl
e impose chiral symmetry with Usg = 2., : USFUg = —I
. C _ dk =
= characterized by winding number W = 50
_17_)77777
non-equilibrium

> = 1 7 - 7 next pg.
Mk =Tk T e R (K + hkx) RO for details

= to stabilize a chiral state, H must not be chiral in the usual sense out of equilibrium

USHUJr =GJ{ <> inz-direction




Different representation of antiunitary symmetries (formulas)

e example: chiral 2-band dissipative insulator in 1D

® covariance matrix for stationary steady state (trans. inv.)

T, = it -5

¢ |indbladian: cools into SSH model ground state (rate K)
Li; = \%(al,iﬂ + as ),

e symmetry class BDI with Ut = 1, Usg

7| <1

A

e 71, = Y& = (cos k,sink,0)’

—

e add Hamiltonian Hp = hy - X

Ng = Yk —

= chirally symmetric stationary state for

e compare to equilibrium

m2—|—|fzk|2

(/i + EkX) (T X hg)
US]—IUJr =(FH inz-direction

_ h h
i, = 2k tanh —B|2’“|

||

= chirally symmetric stationary state for

transformations || non-equilibrium ||equilibrium |[steady state
X Ox H | D P H e/r

T| UrOU) - |+ | - +

c| -Ulo*0c || + | - | + + +

s| —uTotus G N 6) +

Lo ;

Ny

Uc =2,

(—a1,i+1 + az,)

_ A dk
w—j{%a

winding number

—1
=

—

\
\
\

\

x

\

S

UsHU, [ (;/)L] in x-y-plane




All 3 generators needed for robust classification out of eq.

¢ the most fundamental description of quantum system is in terms of a system-bath Hamiltonian.

® Q: does a robust classification of symmetries exist in terms of that Hamiltonian?

* A: not out of equilibrium, since this ignores the state of the bath

® (Markovian) non-equilibrium
K=H—-—D, P

® equilibrium

Fock space ’

reversible dissipation

K,=H—1D, % 8 §
2 2 5
‘ Bw S S e D, P from non-equilibrium baths (drive,
Fo = itanh { == | De, H i P different t tures, chem. pot. etc.)
ifferent temperatures, chem. pot. etc.
fluctuation \/ /—V . i P
o e D, P independent
e D, P from self-thermalization or | stationary phases |

¢ single non-Hermitian matrix

equilibrium bath
classification not perturbatively stable

e transformation rules of fixed by ~(w—K)'P(w— K1
system-bath H
e D, P not independent AK =AK|H, D, P|
J concrete ex: Altland, Fleischhauer, SD
PRX (2021)
® non-Hermitian classification can work ® non-Hermitian matrix classification not robust
® put only 10 classes compatible with causality e different ruleset

Lieu, McGinley, Cooper PRL (2020)



Summary lecture |

® states

= topologically ordered states can be induced by
Lindblad dynamics k.(‘/_\

e dynamical universality: topology beats dynamics

A’In A
= ‘Dasin of attraction’ for topological field theory encompasses l

equilibrium and non-equilibrium dynamics
= topologically protected emergent reversible dynamics on 9

top of irreversible bulk e A dAL —A_dA_

e dynamical fine structure: symmetry classes

= states: 10 classes, irrespective to the dynamics stabilizing it

= dynamics: fundamental distinction of eq. and non-eq. dynamics | 7 i N irreversible Nreversible non-

dvnamics /' equilibrium equilibrium

=17 =3 + 7 + 7 dynamical symmetry classes

= The ‘watershed’ is equilibrium vs. non-equilibrium,
not reversible vs. irreversible
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Introduction

Small quantum systems: measurements

e two types of quantum dynamics

—iHt
& t t
) - = -~ J1)
0) 9t)
deterministic /\ /\ )
Schrédinger evolution ) P, 1) stochastic measurement
HPA ‘¢> H evolution

for measurement observable M = me\)\ (A = Zm,\PA
A

e dynamics non-trivial (eigenstates not shared) once [H, M] # 0 wU . P

Many-body systems: Phase transitions

20}

e non-commuting operators lead to (quantum) phase transitions
most important ingredient! !

H=H, +gH, [Hy, Hs] # 0

9c
® \ | / o e.g. Mott-insulator to superfluid
/ | \ transition in cold atoms

0.0
0.0 0.010 0.020  0.030

J/U

= combine measurement and many particles: similar scenario?
In particular: how does the transition manifest itself?


Sebastian Diehl
In particular: how does the transition manifest itself?

Sebastian Diehl
most important ingredient!


Entanglement phase transitions in random circuits

. Skinner, Ruhman, Nahum Li, Chen, Fisher, PRB
first example and phenomenology PRX (201 9) (201 8. 201 9)

e model and key ingredients:

RSN O ARRRARAN
" | | || |
e randomly chosen local entangling unitary ,+ +, ,+ +, || H I
gates ! ¢t ¢ t ¢ 4 | | ]|
- ¢ ¢ ¢ ¢ L1 ] | b
e projective local measurement of non- o I —
commuting observables — g L |
T T T bbb bbb

X

e basic picture: competition in many-body context (single trajectory, exactly local meas. of G,L-Z )

# measurements/time

g = 0 g_l — () g —
® O # unitaries/time
/' \ o =11
chaotic / non-integrable dynamics convergence to product state |[{c;}) = H o)
i
= entanglement growth = entanglement saturation

e Procedure _ _ _
e track single quantum trajectories (pure states)

: : non-commuting
e compute the quantity of interest (e.g. entanglement entropy) >
 average over trajectory ensemble {o: ) {(|{oi}] ~ 1



Sebastian Diehl
first example and phenomenology


Entanglement phase transitions in random circuits
Skinner, Ruhman, Nahum Li, Chen, Fisher, PRB

PRX (2019) (2018, 2019)
e model and key ingredients: . .
TR e bt 1T
e randomly chosen local entangling unitary ,+ +, ,+ +, || H I
gates ! ¢t ¢ t ¢ 4 | | ]|
o ¢ ¢ ¢ o I . b
e projective local measurement of non- o I —
commuting observables — g | l l l l I.
I I I I I I &

X

e basic picture: competition in many-body context (single trajectory, exactly local meas. of G,L-Z )

g = 0 Jc g_l —0 g _ #measIJreITlenIs/time
® I S # unitaries/time
e S~ L S~ const. "\ o =14
chaotic / non-integrable dynamics convergence to product state |[{c;}) = H o)
= volume law = area law :

e Procedure _ _ _
e track single quantum trajectories (pure states)

: : non-commuting
e compute the quantity of interest (e.g. entanglement entropy) >
 average over trajectory ensemble {o: D) {(|{oi}] ~ 1

= Phase transition in entanglement growth at finite competition ratio g



Entanglement phase transitions: Physical pictures

_ # measurements/time
o T e 9=
O | O # unitaries/time
chaotic / non-integrable dynamics convergence to product state

non-commuting unitary and measurement dynamics

e entanglement picture Skinner, Ruhman, Nahum PRX (2019) Li, Chen, Fisher, PRB (2018, 2019)

scrambling -> extensive disentangling evolution
entanglement entropy

e quantum error correction picture  Choi, Bao, Qi, Altman, PRL (2020); Fan et al. arxiv (2020); Li Fisher PRB (2021)

fast information spreading protects from measurement as errors
errors (read-out by measurement) (extract information)
e purification picture Gullans, Huse, PRX (2020); Gopalakrishnan, Gullans arxiv (2020)
initially mixed state remains mixed (thermal) initially mixed state purifies to product state

e statistical mechanics picture e.g. mapping to spin model partition function: Jian, You, Vasseur Ludwig, PRB (2020)

field theory based on replica symmetry: Nahum, Roy, Skinner, Ruhman, PRX Quantum (2021)

long ranged correlation short ranged correlation
functions? which ones? functions? which ones?

= Here: non-equilibrium statistical mechanics approach to a monitored fermion chain



Outline lecture llI

g=0 Jc g_l _0 # measurements/time

O I O g = # unitaries/time

N\

chaotic / non-integrable dynamics convergence to product state

non-commuting unitary and measurement dynamics

e strong projective vs. weak continuous measurements
e measurements: description?

e ‘observables’

e continuously monitored lattice fermions
e many-body problem: phase

transitions? e BKT type phase transition from critical to area law phase

e signatures beyond entanglement entropy
e Lindblad-Keldysh 2.0:
e how to understand?

e replicated Lindblad equation

e replicated Keldysh field theory

= Quantum phase transition in trajectory wavefunction, revealed in non-linear-in-state observables



Theory background:
Strong projective vs. weak continuous measurements




Review: Jacobs, Steck, Contemp.

Projective vs. weak measurements Phys. (2006)

e projective measurement: acquire full knowledge about observable

e—iﬁt

Wo> > |¢t>

deterministic
Schrédinger evolution P, |y) stochastic measurement

||P>\ |¢> ” evolution

= know post-measurement position x_0 with certainty

e instantanegus collapse of wave function, but real measuremexts take time: continuous observation

A(:UO) = (Q'VTN)l/‘l/dx B—WAt(fU—CL’O)Q |$><ZE| At—>>0 (Q'yAt)l/Zle—fyAt(fc—xo)Q

T

= strong projective measurement for At — oo

= weak continuous measurement for small At, but large number of repetitions N:

At -0, N — oo, At-N — const. cf. functional integral construction!

e—th A

Vo) A A A A AN ANNANNAN AV




Review: Jacobs, Steck, Contemp.

Probabilistic character of weak measurements Phys. (2006)

e probability to measure Z0 on state [1)) = /dm¢(w)\x> intime At — 0

p(x0) = | A(wo) )] = trlAT (z0) A(wo)| ) (Wl]  Afwg) = (2120)1 /418K —w0)

e the measurement outcome x_0 is a Gaussian random variable with

e expectation value {(zo)) = /dﬂfoxop(ﬂfo) E (2’YTA75)1/2/dﬂfo/dfwﬁo6_27“(“7_‘7”(”2|¢(ﬂf)|2 = /de(fIf)!Q = (&)

1
e variance <<5U(2)>> - <<5’70>>2 = M guantum mechanical
expectation

e stochastic formulation (cf. Fokker-Planck vs. Langevin): parameterize

Lo = <§7> + AA—I/Z T~ Gaussia.n random AW =0
variable RTVAT — % ATV ~ \/Kt
gl
Az
e stochastic update of wave function: [Vi1Az) = A( )91)
| A(zo)44)]]

« for short observation times: expand |¥t+at) = A(zo)|tx) to linear order At = dt — 0 exercise: verify this!

dlpe) = [Yerar) — ) = {[=57(@ — (2))7]dt + (& — (2))]dW }[4)



Weak measurements: stochastic Schrodinger equation (SSE)

—ZAtH e ’yAt(a: z0)?

) AR A AR R R R )

e generalize: stochastic Schrodinger equation for quantum trajectory |¢t> Belavkin (1987); Gisin, Percival (1993)

dltpr) = dt(—iH — 3> (g — (An)e)?[1be) + Zle (= (fu)e) [¢r)

l l Y -

(M) = (WYe|fu|1y)

e Hamiltonian added, many degrees of freedom, 7i; = nzf

e works for measurement operators with discrete spectrum (measurement record continuous,

e.g. Stern-Gerlach
J ) measurement of a spin 1/2

e measurement only dynamics H =0: measurement dark states Pt (o) |
e dW ‘multiplicative noise’: inactive when 7 |t)¢) = (1) +|Wy) : long time
* e.g.ineigenstate 1 |1Yy) = n|y) 2
\ dark state of N\ ~ shorttime
measurement operator ﬂﬁr b\// M
= continuous collapse: convergence to measurement eigenstate 2 1 [ : 2 3
for long times (more gen. for) [H, 7] = 0 AW

measurement record zo = (Z) + AL



Weak measurements: stochastic Schrodinger equation (SSE)

‘WAA/\/\/\/\/\A/\/\/\/\/\'W>

e governed by stochastic Schrodinger equation for quantum trajectory ‘¢t> Belavkin (1987); Gisin, Percival (1993)

dltpr) = dt(—iH — 3> (g — (An)e)?[1be) + ZQZWl (= (fu)e) [¢r)

l l Y -

()e = (el vy)

e Hamiltonian added, many degrees of freedom, n; = ﬁ;f

e works for measurement operators with discrete spectrum (measurement record continuous,
e.g. Stern-Gerlach)

e Can we expect a measurement induced phase transition similar to projective measurements? Yes!

(27At)1/4 —yAt(z—x0)? At;oo

e no competition => no phase transition upon interpolation A(zo) = |[20) (o

e Demonstrated numerically Szyniszewski, Romito, Schomerus, PRB (2019)

[

 dt

= expect no extra phase transition upon taking temporal continuum limit

= continuum limit useful for analytical approach measurement induced

i 7 .g phase transitions (e.g. Keldysh field theory approach)
C




Monitored dynamics: Extracting information

* stochastic Schrédinger equation for projector Py = |1)¢) (¢ random variable

dpy = dt(—i[H, p;] — ’YZ 2upet — nipr — peni]) + > dWi{u — (fu)e, pr}
— 1

S—

= statistical analysis: consider trajectory ensemble

e first try: statistical average of SSE for projector

e deterministic, linear Lindblad equation for Pt = |11 ) (1
e 7; Hermitian: heating to infinite temperature — py ~ 1

e usual observables:

statistical average

quantum average—><0A> = <¢t‘é‘¢t> > <O> = <¢t‘é‘¢t> — tr[OAE]

= evaluated on featureless infinite T state

= use state-dependent observables <OA(‘¢>)> = trO(p)p

_ =t
more promising, because in general  F'(p) # F[p] OIOAOI§¢2<¢(;||OOOOO
A B L
e examples: < >
e von Neumann entropy SUN (l, L) = <10g(pA)> arbitrarily high power of state projector
e correlation function <ﬁz> <ﬁj> quadratic in state projector



An example: one fermion on two sites (two-level system) N\

e toy model: trajectory evolution of single fermion on two sites

) 2 Y
[Vitar) = [0e) — tdtHeg|te) + »  dWi (g — (Ru)e) [1e)
2 X [X
o= H—iK ﬁ[:—J( 102+h.c.) K = %lzzl(m—<m>t)2

guiding physical picture:
= thermodynamic limit: pinning quantum phase transition may happen at sharply defined point

= signalled in nonlinear-in-state ‘observable’, like the covariance matrix

_ ﬂ U —

= pinning to measurement eigenstate = vanishing time spent in eigenstate

e invisible in linear averages e seen in averaged trajectory covariance matrix

] 0.2
’ (n1) ’ S
0.5 I | L ° <n1>(n2> — <n1n2>
O <n1n2> ° o
0.02

0.05 v/ 1 005 o~/ 1



Entanglement phase transition in a
monitored fermion chain

Hamiltonian: A ) ‘ ..... OTO ..... ‘T‘ ..... O ..... ‘ ..... O entanglement growth
Cl+1Cl + C; Cl+1

% % %ivcg Ci
Monltorlng O ........... O ...... O. ................ O. .......... O entanglement Saturatlon

O. Alberton, M. Buchhold, SD, PRL (2021)



.I.
1YC; C
Monitored fermion dynamics c{/ § ----- 2 Jox =

e \Weak continuous measurements in many-body system

d|ipy) = di(— ZM12|¢15 + ZszMl|¢t>

Gau55|an whlte noise &« g

e competition: g =

]2

e unitary dynamics: hopping  measurement operators M, = i — (1)

e H = 0: evolution stops after collapse into dark state

H = —JZ (CZTCZH + CZTHCZ) Ml\¢t> =0 for  ylthe) = nyli)
z

eigenstate of measurement operator

= volume law entanglement entropy = area law entanglement entropy

Sun(L/2,L) = trpalog(pa) <" L Sun(L/2, L) = so

pa = trp|Ve) (V] e caveat: |1t is a random variable
e binary measurement outcomes generate

A . . .
b L extensive configurational entropy
< >

= ‘observables’: entanglement entropy, traj. averaged correlators



Trajectory ensemble phase diagram: Entanglement entropy

A L < Loexp(v/70/7)
Son (L2, L) ~ L™

\Qlume law ““"“ area IaW/ 100 L 200

subextensive,
critical Sun(L/2,L) ~ sq

e weak monitoring Je e strong monitoring
2v/7 =005
"}//J:O.15 . ,Y/le '
—~ 'q 4—

finite size crossover Q"

S/ 2 1 ~v/J =3
g
0

8 8§ § 8§ 8siss———

S’UN(L/27 L

M-
Ot
~
(G
-
~| =

7 Sun(L/2,L) ~ log, L
/k - - >
3 W/C/Jc ’y/J measurement/hopping
=
~ .
= purely unitary case not
= J smoothly connected
n
= extended subextensive, critical phase at intermediate see also Chen, Li, Fisher,
Lucas PRR (2020)

monitoring
= new phase transition for physical measurement protocol
= consistent with Cao, Tilloy, De Luca SciPost (2019)

only excluding volume law in thermodynamic limit



Characterizing the weak monitoring phase

g="/J
| I PN
Jde
e extended criticality: Connected correlation function e emergent conformality: Mutual information
Cijitr = () (ig1) — (RiNig1) T(A, B) =S,n(A) + Syn (A)
N~ (sin(ml/L))2 ;\ _
NN = AN - = (.25
10 ; S\ O\ 101_5 Y
= 10
N I g
1 <
s I
:“‘
L/7msin(wl/L) . 1OI_2 1()'_1 100
e captures all distinct phases: U
( 0 for H =0 . . .
conformally invariant critical point. Nahum et al.
Ciiny o 4 exp(—1/§) fory>J PRX (2019); Li Chen Fisher PRB (2019); Jian et
Sy ]2 for v < J al. PRB (2020);
\ [~ for v =10

= emergent conformally invariant critical phase for weak monitoring



Characterizing the phase transition

g=n/J
| S
e effective central charge c(7) e essential scaling of the central charge: scaling
collapse above phase transition
S L [
Sun(l, L) = @ log, | — sin = + s(7)
3 s L
102
101.
217 Sy —
100 —~ .‘.\‘0.
'™ -
c(7) T
10~ 1] %
S)
102 ™
.
Q‘.
10_3 () ...................... — ..................... ...................... ................. ."....‘“
~10 -5 0 5)

parameter dependent c

random systems: Cardy Jacobsen PRL (1997);
Refael, Moore PRL (2004)

= sudden jump reminiscent of BKT = BKT universal behavior

= establishes BKT type phase transition

= further: measurement protocol dependence, trajectory entanglement distribution as probe of transition...



Keldysh replica field theory approach
to
measurement induced phase transitions

M. Buchhold, Y. Minoguchi, A. Altland, SD, arxiv:2102.08381

|
microphysics »  macrophysics




Continuum (1+1) dimensional model

e preface: model obtains from naive continuum limit and bosonization of lattice fermion model

fermionic variant > bosonized variant
e Hamiltonian: massless Dirac fermions ¥, — (ﬁR,x,zﬁL,x)T Luttinger liquid
A . A T i - v A 2 f 2
T ™ X .
phase density

e measurement operators: current and vertex operators

A A A 1 n
rate V1 : Oi1g = Ui, = Ja(jo) > O12=——0:04 linear gapless
s
rate Yg : OAQ,Q; = Ulo, 0, > Oz » = mcos(2¢, ) nonlinear
O(1)

common eigenstates: ¢, |Up) = ¢.|¥p)

e stabilize product dark states: exactly local

e realize competition: do not commute with H (phase fluctuations)



Signatures of phase transition in many-body problem

e Analysis of limiting cases:
evolution of covariance m

atrix g=20

Cij = (ninj) — (n;){(n;)

e strong monitoring: perturbation theory

e hierarchy of equations of motions expanded to leading order 1/g

Cz'j =

(—1)|i—j+1|(2|i —j| = 3)! (2J2> =

il =G\

= |eading exponential decay, in line with numerics



Signatures of phase transition in many-body problem

o o (o
e Analysis of limiting cases: / \

. . . -1 _p
evolution of covariance matrix g = g =

Cij = (ninj) — (n;){(n;)

e weak monitoring: Ricatti equations V. P. Belavkin (1987); Kalman filtering in cavity optomechanics, Wieczorek et al. PRL (2015)

(V)

e quadratic theory:  H = oy /((%;9:(;)2 + (0p¢2)° My~ —2(0,(¢s — (d2)))

e evolution of covariance matrix governed by Ricatti equation, steady state solvable in momentum space

Ce = C)sin(l/2) = | Cy= 20 cor- e (5o

p— ‘Z_']|2 7.‘.21}2

= algebraic decay reproducing numerical result at weak monitoring
= ground state Luttinger liquid result reproduced as
L

’y%O: Ck—
27



Signatures of phase transition in many-body problem

e Analysis of limiting cases:
evolution of covariance matrix g=120

Cij = (ninj) — (n;)(n;)

e back to strong monitoring: Ricatti equations

e absence of Hamiltonian: systems evolves into product of local number eigenstates

Gz |V) = P |V) for all x

e expand about homogeneous configuration ;. = ©

Mo — (ng) = — (m * a?) (562 — (562)) ~ —m(00e — (062))  m =1/

= pinning seen as a gap opening in the effective Hamiltonian

e solution of the Ricatti equation for gapped quadratic theory

li—3| 1

Cij ~my /g€ ¢ §

B log(2mym? /v)

= reproduces the qualitative behavior of fermionic strong monitoring approach

g="/J
*gﬁ_1:0
_16 1
T2 2 4



Intermediate summary

e Analysis of limiting cases: evolution of covariance matrix

Cii = (ninj) — (n;)(n;)

g=0

/

e |uttinger + Ricatti approach

. — .C(j)2
it —

= algebraic decay

= depinned phase

\

X

e fermionic and Luttinger + Ricatti approach

_ li—J]

= exponential decay

= pinned phase

/

= there must be a phase transition at some finite g_c
= strongly reminiscent of a deconfined to pinning transition in Sine-Gordon models
= develop field theory approach capture it



Towards the relevant degrees of freedom: Replica approach

e Q: What is the structure of C’xy <n;cny> <7A7Jac> <ﬁy>

(1) ) O-@-O@-O@-O@-O
e Introduce replicas in Hilbert space  |Uy) = |¢),7) ® |¢,7) = S

Al =n, ®1
A2 =1®n,

1
Pt = U, ) (U]

= |inear statistical average of replica density matrix

= correlations of relative replica coordinate

e Quantum master equation (truncate coupling to p )

Aoo@oob 0-8-0-9-0-9-0--0

: O80-80@ 0@
O, 2R = ®
tP 0-8-0-8-0-8-0-8-0 oo&oo <>f:<>*o<>ofzjO
i[p?R H®)] — %[Mga% (VL) 2] V{Mé”, (M), p*R}}
individual heating Lindbladians replica coupling

. **
----------------------------------------------------------

= study structure of 2-replica theory



Boson replica quantum master equation

» Boson measurement H(®) — (0,02 + (8,0(*))?

21 ),
N{e’ 1 N N{e’
O§a2 = xqﬁﬁ?‘) Oézg =0  linear case first
oeoepeces . 4@ = 41 4 42 average coordinate

00-0:0:0:-9-0-0-0

e New degrees of freedom
2:3:%:2:: (") = (D) — H(2) replica fluctuations

= Master equation becomes separable

e Average coordinate: heating to infinite temperature (<—> unbounded growth of mode occupation)

-1 (a a 2 (a “(a a “(a “(a
9,0V = i[p\@, H@] 1 %Z (@;cb( ) (9,4 >>) (@) (8xgb( ) (8,0 >>)
l AN only jump term!

e Relative coordinate: cooling/damping into dark state

0" = ilp " HO = L3 {(2:60)%, 00— nojump term:
[
* further separable:  0,¢{”) = —iHl\”) | Hor = o [ (0.6 + (1~ in?)(0.0)° ="

gapless non-Hermitean Hamiltonian



Boson replica quantum master equation

e Boson measurement H(®) — QL (0,02 + (8,0(*))?
™ x
918 1 7 (« N 0
0},,2 == x(bfv ) ngg = mcos(2¢,) general case

e O5*) couples relative and absolute degrees ~ m cos(v2(4(@ + ¢(M))

, L

00:-0:0:0-9:0:00

=how dO _ 4 .eFeceo dEgrees enter? — <§g§3a)¢2§ca)> = 00 nonlinearity irrelevant for qggja)

l = integrate out qB;@ in Gaussian approx. for ,5(“)

e Non-hermitian Schrdodinger equation for relative coordinate

8t‘¢§r)> — —Z.Heff‘w§r)> = cooling into dark state
Hor = o [ (9:0)* + (1= in?)(0:6)* ~i" [ [1 - cos(v30,)
; :Beffect of non-linearity

= non-Hermitian Sine-Gordon: pinning via cos term, depinning via theta term

= extract physics in path integral approach



Effective non-Hermitian Hamiltonian and path integral

Fendley, Saleur, Zamolodchikov,

= Sine-Gordon action with complex coefficients

International Journal of Modern Physics (1993)

K
S—/t,x{w—w

(00— 1(0.0| ~ ircos(o) |

1 1

e ‘Wick rotation’ brings free part to standard Euclidean (2+0) dimensional form (x,t) — (n2x,in~ 2t)

= RG flow: standard KT flow with complex K, A

D\ :(2 _ S—W)A,

K
O K = — N

non-Hermitian Hermitian

A(s)] 4
A 10%

e UV flow modified

= shift of phase border

¢ |R flow reaches
standard KT flow

= same long wavelength
properties

- Gaussian *
fixed-point -
]

strong coupling

fixed-point

1

2



Effective non-Hermitian Hamiltonian and path integral

Fendley, Saleur, Zamolodchikov,

= Sine- ' ' iCi
Sine-Gordon action with complex coefficients International Journal of Modern Physics (1993)

5= (o 5@~ n@s07] — ircos(o) |

1 1

e ‘Wick rotation’ brings free part to standard Euclidean (2+0) dimensional form (x,t) — (n2x,in~ 2t)

= RG flow: standard KT flow with complex K, A

= |R flow reaches standard KT flow

., T~
weak measurement strong measurement
depinned phase pinned phase
”..,"A. .... 4
RO W 2

4 o

"0’ 0" 2 2»
(7/ v )c A 2 Y / 1%

A\ N\ _J

I 'd 'd
interaction irrelevant: flow interaction relevant: flow
to free gapless theory to free massive theory

= gapless generalized CFT phase with algebraic correlations and varying exponent

= phase transition in the BKT universality class in line with numerics



" = | 1 _ n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n replicas: Lindblad-Keldysh 2.0 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas

e evolution operator th = exp [—(ZI:I - Mf)dt + §Mt] expansion to second order: SSE
? dl
e single replica t Vag , th> t
1

tf + contour 0 -contour L



" = | _ n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n repllcas' Llndblad KeldySh 20 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas £ = dW (sorry...)
e evolution operator th = exp [ ZH + MQ)dt + fMt expansion to second order: SSE
.l.
e single replica (th | ‘h
+ contour - contour
_ _ ()
Z(1,{€}) = trpiy o0 = =3 Z20{8) = Z2(1)

>
ts tWt

intra-replica noise average

Sual¥l =3 o | (ridcte = Hibo,v0)

515[‘1’—22/ 7 — EM,]

— Z(l) — /D\Ij exXp [Z(SLH[\IJ] -+ Sl’M[\IJ])] SlM[\Ij] /[M2 + M2 ——(M_|_—|—M ) ]

7(1,{¢}) = / D] exp [i(Sh.z1[ V] + S1.¢[¥])

= measurement expectation values cancel =i /t [0+0- — 502 + 507]
= |indblad-Keldysh functional integral reproduced (Herm. Lindblads) M=0-0



" = | _ n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n repllcas' Llndblad KeldySh 20 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas

e evolution operator th = exp [—(ZI:I - Mf)dt + §Mt] expansion to second order: SSE

/ inter-replica noise average

® n replicas
< J > N = r_\_g« ——
Zn{eH=| - |z =2
S, u[¥] = ia PP — BB, 9]
Z(n,{&}) = /D[\Ij] exp [i(Sn,m V] + S e[¥])] o== = /t( >
Suclwl =i 303 [ a2 - gart”)

n collective coupling

S| 0] = @-/tz [ (M0 + (a0 o roise!

=1

. Z(n) = / DU exp [i(So 1 [¥] + Sp ar[¥])]

= collective coupling to noise

TP . . — n\?
= structural simplification for linear measurement dynamics —3 ( >, MY + Mf)) ]
=1



n replicas: Decoupling of Gaussian theories

D =0,

o

e practical importance: reduction to linear / Gaussian bosonic theory in limiting cases

e bosonized action in the presence of noise:

/ bosonic field

S|¢] = Sn,z(9] + Sn.cld]

S, Z Z ¢(l) 02 — 92)ph) Sneld] =i Z Z/ O(l)

l 1 o=
OW =D D =1mm,d,

e decoupling of center-of-mass and relative modes

e Fourier expansion in replica space

n—1
1 - 21kl
¢a t.x — —n Z B_ZTQSS‘Z),:U
k=0
§S
e equation of motion 56 = =0
(k) _
0; by = (0,

= no reference to measurement expectation value
= exact decoupling into:

= 1 collective ‘hot’ mode, heating to infinite temperature

o=+ =1

l
o)

quadratic

—£(08) - 0)

replica space picture

4 dWw,

dWs

k>0

= (n-1) ‘cold’ modes, do not ‘see’ the noise, cool to ground state of non-Hermitian Hamiltonian



Calabrese, Cardy, JPA (2009)

Entanglement entropies from replica approach traced out -

L0 o + L
e Keldysh path integral representation of 7 4(n,{£}) = trp'} - A

B | w
A zz1

e formulate boundary condition via operator insertion (in the presence of noise):

+ A

- o vy ¢ A
— iSp [ V] IR VA — 2.t | |
ZA (n)a {f}) /D[\If] Te +,z,t¢ _ Ve € A translation by one in

replica space

e e.g. free massless Dirac fermions (after bosonization into equivalent Luttinger Hamiltonian): factorization

n

(I exp (—ﬂ%) / dz[§(z — 20) — 6(z — (z0 + L>>]¢£f2,t)> Zhco, Huera, J. Sl

E—1 Mech. (2005)

ZA(nv {5})

= boundary conditions appear as opposite charges
= k = 0 mode does not contribute!

= k 7 0 independent of noise & !



Calabrese, Cardy, JPA (2009)

Entanglement entropies from replica approach traced out -

L0 o + L
e Keldysh path integral representation of 7 4(n,{£}) = trp'} - A

B | w
A 121

e n-th Rényi entropy

+ 4

Sn = ﬁ log Za(n,{&})

e von Neumann entropy

S = lim S, = 2(¢= V"0

C.T
n—1 > >0

= correlator in the Gaussian dark state wave function



Entanglement transition from replica approach

e focus on von Neumann entropy S in Gaussian limiting regimes
Je g="/v

massless % I K’ massive

= o) log(L) § = Le(y)log(m ™) ~ L
® sub-volume log-law e saturation to area law
e c(y—0)—1 1A
= ground state entropy of massless Dirac c(7) A=0

¢ in Gaussian state:
c(y — 00) ~ L2  > 0.1

= compatible with numerics in critical phase

1 10 ~ 100

e with RG improvement, qualitatively similar to T
numerics

v

0 T 025 0.5 Y



Entanglement transition from replica approach

e focus on von Neumann entropy S in Gaussian limiting regimes

massless

¢
-/

5= zc(y)log(L)
e sub-volume log-law
e c(y—0)—1
= ground state entropy of massless Dirac

e in Gaussian state:
c(y = 00) ~y 12
= compatible with numerics in critical phase
e non-commuting limit: v = 0
finite temperature initial state
S~ L

= volume law <—> finite temperature massless Dirac

1
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U
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g="/v
K’ massive
1 —1 0
S = zc(y)log(m™") ~ L
e saturation to area law
S’UN(L/27 L) ~ é “““““““““““
volume law .-~ area law

o
o
*

subextensive,
critical

Son(L/2,L) ~ s

S’UN(L/27 L) ) 10g2 L
- - >

'Yc/']c 7/‘]

= underpins entanglement transition at finite critical g

summary:

= picture qualitatively in line with numerics



Other incarnations of measurement induced phase transitions
Th. Mueller, SD, M. Buchhold, arxiv:2105.08076

* long ranged hopping model see also Minato et al, arXiv:2104.09118: Block et al. arxiv:2104.13372

e new scaling behavior & new phase transition

1/p algebraic scaling
Qa = N | b% I y potential tricritical
y .
Xxxx XXX§X§X§ 04l entropy x//xlf 2/3 llllIFlllllllllllllli‘-lllfelgllznlelllll
) x5 X S Lb XX o*
§§ 0.3] vIN ™ x 1 O
sl correlator 5% 0:2] : & BKT
C(l) ~ 17 ]
(1) ~ ~ { x CFT - area law
| | | | x o} x’ gg ..
Lo 02 04 06 08 1 % 02770LTT06T 08y 4y 1 —> ()
Buchhold et al. Y

e replica-bosonization approach explains numerical findings:
new cos non-linearity from phase fluctuations

e critical point of novel transition p = 3/2

e scaling behavior

2 pan logg!  p>302
CH QI D1 <p<3/2 Sn) QL7 D 1<p<3/2
| ill-defined p <1 | ill-defined p <1

prev. work

e striking parallel to ground
state phase diagram

Maghrebi et al., ©* ’ =l E
PRL (2017) - ; 15



Other incarnations of measurement induced phase transitions

robustness of log-area transitions: other competition patterns

e critical phase stabilized by engineered dissipation

a1 = cijy = (0] +%‘+)(U'

1

_Uj_)

e area law phase stabilized by staggered Hamiltonian

N
H=V>» (-1)0]

e interacting model -> trajectory MPS approach up to 80 sites

(c)

SVN (N/27 N)

site position

entropy scaling

crit. point via eff. central charge

T. Botzung, SD, M. Mueller, arxiv:2106.10092

dissipation vs. dissipation: Regemortel

et al., PRL (2021)

unique Dicke dark state:

N k
D)~ (o) e

1=1

see also Fuji, Ashida, PRB (2020)

scaling of correlation function

-1
(d) 4 — 1 10 S
0.1 S o c1lo e
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quantum trajectory analysis entropy statistics
. g 1 1 1
12 /‘Jumpl t; (il) <o i - (2) 3 (h) (i)
: | e ~ critical critical area
6 " I 1 3 E 0.5 h 0.5 int 0.5 h
. |[ 1 z phase poin phase
C | | I ] : ~
I : ' . 2 AT ol 1
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= full phenomenology established in large scale MPS approach

= bosonization study?



Concept for experimental observation e 9% P Karten.

e recent protocols for measuring entanglement entropies work for deterministic dynamics only
Elben et al., PRL (2018); Vermersch et al. PRA (2019)

e ideas for spin systems: entropy of auxiliary entangled system
Gullans, Huse, PRL (2020);

exp. in trapped ions (Monroe group): Noel et al. arxiv (2021) O ‘ O ‘ ‘ O

k/(]\_/v ’y

* here: withess phase transition directly via recorded trajectories: t
homodyne detection Jhom

e recall form of recorded signal o _
AWrL 1 connec e_ covariance
Ji,t — <nz>t 4 — A7 (blue), signals (red)

/ N

homodyne  trajectory wavefunction noise
current expectation value AW, AW, = 4y Atds 1104 5

e correlation functions from averaging over exp. runs

e platforms: superconducting circuits/Rydberg tweezers?

Majer et al. Nature (2007); Mallet et al. Nat. Phys. (2009); Nagiloo
et al. Nature Comm. (2016); Gu et al. Phys. Reports (2017) 10741




S | t ”l O. Alberton, M.Buchhold, SD PRL 126. 170602 (2021)
ummary ecture M. Buchhold, Y. Minoguchi, A. Altland, SD, arXiv:2102.08381

e monitored fermions: new type of measurement induced phase transition

g=1/J
g O | A — O
sub-volume entropy scaling critical point in area law entropy scaling
gapless phase BKT universality class gapped phase
non-hermitean CFT massive boson

e nonlinear-in-state ‘observables’ beyond entanglement entropy
e ‘hot’ and ‘cold’ modes as relevant degrees of freedom for the transition via replica field theory

e physical picture: transition induced by pinning into measurement operator eigenstates

Directions:
integrability vs. non-integrability

e area-to-volume law transitions as incomplete decoupling of ‘hot’ and ‘cold’ modes? O. Lunt, A. Pal, PRR (2020)
purification perspective:
Gullans, Huse, PRX (2020);

e experimental observability in weakly monitored quantum simulation platforms? entropy measurement
Noel et al. arxiv (2021)

e stabilization of pure state phases by continuous measurement?






