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Keldysh theory general: A. Kameneyv, Field theory or non-equilibrium systems,
Outline Cambridge University Press

Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven Open
Quantum Systems, Reports on Progress in Physics (2016)

Lecture | & II: Theoretical background & non-equilibrium phases
Op = —ilH, p] + L]p]

* From the quantum master equation to the Keldysh functional integral

e construction

* semiclassical limit, connection to exciton-polariton systems . .
* “what is non-equilibrium about it?” ell'l®] — /D(S(I)QISM [2+02]

e Applications: stationary states of driven open quantum systems

e fate of BKT physics out of equilibrium
* phase transition induced by non-equilibrium drive

Lecture lll: Lindblad-Keldysh 2.0: Measurement induced phase transitions of fermions

e weak continuous measurements

* replica approach and replica Keldysh functional integral

time

e BKT transition of replica fluctuations




Lindblad quantum master equation:
From few to many degrees of freedom

( )
. drive

environment

Owp = —i[H,p| + £y _ LipL! — H{LIL;, p}



What is a driven open quantum system?

e quantum optics:

-

external fields, e.g. laser
(“driven”)

dissipative environment (“open”)  exchange between system and bath
(e.g. energy, entropy, particle number)

e example: laser driven atom coupled to the radiation field (two-level system)

_ R ‘ e> excited state e simple fact: drive essential to access
detuning A}, ___________ upper level
‘ A
laser intensity —— (") f, coupling to radiation field: e implications:
spontaneous emission
_ * no minimisation of energy

laser drive v ® no guarantee for detailed balance
frequency

| ! ‘ g> ground state * no obedience of the second law of
thermodynamics (state purification)




Driven open gquantum systems: microscopic description

e guantum master equation Lindblad operators

e . N
Orp = _i[FL ,5} T Z%’ [Qﬁiﬁi;f — ﬁzﬁiﬁ — ﬁﬁ};ﬁi] jd”ve

A\ J *
Y [ —— £ | environment
coherent evolution driven-dissipative evolution /

= [,[,5] Lindbladian; also: Liouvillian lattice site, spin ...

e derivation from system-bath setting: second order time dependent perturbation theory

* example: two-level system e starting point: system-bath setting

bath mod Hy, = e.blb,
st A1 e) Ho=H+ 0+ B 5
detuning /A t S H. .y, = Zgueﬂ”t LbL + h. c.
A A === IJI |
* bath: infinitely many mode modes than system  (forsingle L)

laser intensity —+— Q . :
e 3 approximations:

laser drive 7/ * Born: weak system-bath coupling -> bath unaffected by
frequency system (2nd order pert. th.)

— |g)
L=lg)e|] =0

H=tod (g o ) () 4 ~0

&
<

* Markov: system evolution slow wrt bath -> time-local evolution

* rotating wave: drive I/ selects relevant energy regimes



Driven open gquantum systems: microscopic description

e guantum master equation Lindblad operators

e . N
Orp = _i[FL ,5} T Z%’ [Qﬁiﬁﬁj — lAl,}LlAli,é — ﬁﬁ;fﬁi] jd”ve

\ J
— environment
\_

——
coherent evolution driven-dissipative evolution

= L|p] Lindbladian; also: Liouvilian

e derivation from ‘symmetry’ (i.e. implementing key physical requirements)
* Lindbladian defines a dynamical map H(t+ At) = p(t) + At - L[]
* with properties
 Hermiticity:  p(t)" = p(t) = pl(t + At) = p(t + At) since L[p|! = L[]
e complete positivity:  p(t) >0 = p(t + At) >0
e trace preservation / probability conservation Oitrp(t) =0 since trl[p] =0

= up to a unitary transformation (above: diagonal form in index i), L[ plis the most general time-local
™ N o generator with these properties G. Lindblad, Commun. Math. Phys. (1976)
Goran Lindblad Nielsen & Chuang, Chap. 8




Driven open gquantum systems: microscopic description

e guantum master equation Lindblad operators

P \

Op = —Z[H,,O} + E il2LipL; — L L;ip — pL; L] ZI
h v g T ~— -~ — | environment
coherent evolution driven-dissipative evolution

L|p|]  Lindbladian; also: Liouvillian

* interpretation:

Orp = H—zZ%LT )p + h.c. —I—QZ% ,OLJf

energy decay (dissipation) ensures probability conservatlon
(fluctuation)

“B — il Oetrp(t) = 0



Driven open gquantum systems: microscopic description

e quantum master equation Lindblad operators

e ’ \
op = —ilH.p] + Y wl2LipL] — LiLip—pLIL] | G

A\ J q
Y 1 S— e — | environment
coherent evolution driven-dissipative evolution

= L|p] Lindbladian; also: Liouvilian

e So far: few degrees of freedom in the “system”

* Question: What if we replace few by many degrees of freedom?

= The interface of quantum optics and many-body physics

= Quantum Optics: = Many-Body Physics: = Statistical Mechanics:
coherent and driven-dissipative continuum of spatial physics at the largest
dynamics on equal footing degrees of freedom distances

G
microphysics »  macrophysics




The interface of quantum optics and many-body physics

= Quantum Optics = Many-Body Physics = Statistical Mechanics

microphysics »  macrophysics

e The experimental platforms: light-matter systems realize driven open quantum matter

Atoms Light Solids and more:
x\‘\ e polar
= ~ . ~y \‘% \\/\ L molecules
::' .::;:”“ o 4 .‘f = \‘\ \\:\ﬂ\ o) g P & ¢ nano-
- iﬂ\ il micowae 2 IV mechanics
= AT N S @
\ e photon BECs
Bose-Einstein Microcavity arrays Exciton-polariton
condensate in a cavity condensates
Baumann et al., Nature (2010) Houck, Tureci, Koch, Nat. Phys. (2012) Kasprzak et al., Nature (2006)
Quantum devices / NISQ Platforms
o) - o] |
AAAA A syom | — 1 & o
0.96 x 0.93 x 0.78 x 0.95 x 0.96 » v ’ '. :z; sl:'@ ‘E @ g
xomxomxoasxoeax R N I = I E:@ g
0.98 x 0.90 x 0.31 x 0.93 x 0.98 Reference—:z; i E
M v i1 VAN +dunvy) I Ancilla Cm uﬁ
. . . . o) A
driven-dissipative
Rydberg gases superconducting circuits ~ Rydberg tweezers trapped ions

S. Helmrich, A. Arias, G. Lochhead, M. Buchhold, K. Satzinaer et al
SD, S. Whitlock, Nature (2020); T. Wintermantel, 5 .an 962062 1?' G. Semeghini et al. Science (2021)
. SD, S. Whitlock, Nat. Comm. (2021) cience (

C. Noel et al. Nat.
Phys. (2022)



The interface of quantum optics and many-body physics

= Quantum Optics = Many-Body Physics = Statistical Mechanics
G >
microphysics »  Mmacrophysics
Microscopic “Thermodynamic” Long wavelength

e Questions and challenges to theory: physics at various length scales

( Novel universal phenomena ? )

[ Efficient theoretical tools ? )

Z[J] = /Dgp (Sl + [ o)

perform the transition form micro-to
macrophysics:

quantum field theory out of equilibrium

( Experimental platforms ? )

40 3&9 cold atoms, light-driven semiconductors, microcavity

o \a/" arrays, trapped ions, NISQ ...

KA



exercise: derive equation

A workhorse model: Lindbladian formulation for field expectation value!

( single particle pump )

:

9ip = —i[H.pl + Dl = L[y (manyooy
S

o — / gg;r( (% — 1) ox + %(&L&X)Q ( single-, two-, ... body loss )

4
e generic microscopic many-body model: ‘Lindblad ¢ theory’

Dol = [ B pde— Hndlopl + % [ 6o~ 3oldunll +
* single particle pump " single particle loss
o [ 620017 - 3(612% 0

e basic physics: mean field theory t icle |
wo particle loss

e study evolution of d(x,t) = <gg(x)>(t) — tr[gg(x)ﬁ(t)] p = HP = [¢(x))(o(x)]
coherent state
e homogenous limit  ¢(X,t) = ¢(t) p Tm[V]

10e(t) = [—p — i(y = vp) + (A = iK)|o(1) ] (t)

= overdamped motion in potential landscape

= condensation / spontaneous U(1) symmetry breaking for “Yi — “Vp <0 7

bo



A workhorse model: Lindbladian formulation

( single particle pump )

:

Sip = —ilH. p| +Dlp] = LI (manyooy
S

o — / ng( (% — 1) ng 4+ %(&L&X)Q ( single-, two-, ... body loss )

4
e generic microscopic many-body model: ‘Lindblad ¢ theory’

Dol = [ B pde— Hndlopl + % [ 6o~ 3oldunll +

single particle pump single particle loss
72 972 121272
X

two particle loss

e plan:
e translate to Lindblad-Keldysh Many-Body Master 1-1 Keldysh functional
functional integral Equation mapping integral

e how does this model relate e.g. to exciton-polariton systems? (semiclassical limit)
e ‘what is non-equilibrium about it’?
e how to extract the phase structure?



Keldysh functional integral
for stationary states of
driven open quantum systems

Leonid W. Keldysh e Construction from quantum master equation
e Semiclassical limit
e “What is non-equilibrium about it?”

Many-Body Master 1-1 Keldysh functional
Equation mapping integral

Oup = —i(l — S bl E)p+he +23 yiliph! 7z - / D(@, . b_)oi(Sul®s.2-]



Keldysh functional integrals: Why?
e Feynman’s formulation of quantum mechanics o

REVIEWS OF
MODERN PHYSICS -

Useful language for systems with many
degrees of freedom

general: powerful techniques

Vorume 20, Numser 2

AprrirL, 1948

Space-Time Approach to Non-Relativistic
Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(¢) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of %)
for the path in question. The total contribution from all paths reaching x, ¢ from the past is the
wave function y(x, £). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

1. INTRODUCTION

T is a curious historical fact that modern
quantum mechanics began with two quite
different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were. destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory.
This paper will describe what is essentiallv a

classical action® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems

4 LI -

e diagrammatic perturbation theory;
e collective variables;
e renormalization group

e non-equilibrium Keldysh

e closer to the real-time formulations of
quantum mechanics

e gives unified view on and principles (e.g.
symmetries) for equilibrium and non-
equilibrium systems

e indispensable for many systems:

e disorder infinite harmonic

o dissipation baths!

e open the powerful toolbox of quantum
field theory for many-body non-
equilibrium situations



more details: L. Sieberer, M. Buchhold, SD,

Ke|dysh functional integ ral Keldysh Field Theory for Driven Open Quantum Systems,
Reports on Progress in Physics (2016)

e The basic idea in three steps: h=1

Ul(t,ty) = e *H(t=to)
1. Schrodinger equation: evolving a state vector

10 1)(t) = H[Y)(t) = [¥)(t) = U(t,t0)[1)(to)

2. Heisenberg-von Neumann equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t, to)p(to)UT (¢, to)

e identical for pure (separable) states p = |¢><¢ |

3. The same is true for the Lindblad equation:

Oip = —ilH,pl + & Y  LipL] — 1{LIL;, p} = L[]

= p(t) — eﬁ(t_tc’)p(to) linear superoperator (acts from both
sides on density matrix)



1. Functional integral idea

= “Trotterization” of time interval and insertion of coherent states: ~ ¢*(*=%0) — 1im (1 46, H)"
N — 00

\/ v \/ ....... \/ \/ \/ D) (t)

5t_t—t0 to

e one time step: evaluate matrix element
(observe structure, details later!)

—b* — 30, n+1¢n+1 B (o — ¢ Pn
e ¢n¢n <¢n—|—1’6 01 H ’¢n> ‘(/b + (/b + ‘ |¢n ¢n
—’1,575
- it [-i6(1)0:6(8)" —H[$" (1) (V)]

5,5 — 0
° many time steps: coherent states (bosons):
/ [T 2 e, Jul dtl=i0,¢" (1)-6(t) H[$" (£),6(1)] al6) = 9l9)
ST ~ - (@']¢) = e*¢
Y action
—: /D(c/ﬁ*,cb) functional integral measure 1 — / d¢*d¢6 ><¢‘
= operator H -> complex, time dependent functional H "




2. Schrodinger vs. Heisenberg-von Neumann

e Schrédinger equation: evolving a state vector Ul(t,ty) = e *H(t=to)
10:0)(t) = H|Y)(t) = |¥)(t) = U(E, o)) (to)

e Heisenberg-von Neumann equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t,to)p(to)U" (¢, o)

e Second case: “Trotterization” on both sides:

YV VY e VY e VY

U gt Tt

e1t=t) — Iim (1+i6,H)"  s=10
N — 00

= two sets of degrees of freedom for matrix evolution



3. Schrodinger vs. Lindblad

e Schrédinger equation: evolving a state vector Ul(t,ty) = e *H(t=to)
10:0)(t) = H|Y)(t) = |¥)(t) = U(E, o)) (to)

e Lindblad equation: evolving a state (density) matrix

Op = —ilH,p] +Dlp) = L[p] = p(t) =~ p(to)

e |dentical program for Liouville generator of dynamics (left and right action on density matrix)

NV VY VY e VY

p(t) = 1)L 50— Tim (14 6,L)" po o =

N — 00

= two sets of degrees of freedom for matrix evolution



Keldysh partition function

e Schrdédinger equation: evolving a state vector

10)(t) = H 1) (1)

U(t, tg) = e =10

= [¥)(t) = U(t, o)1) (to)

e Lindblad equation: evolving a state (density) matrix

e final step: Keldysh “partition function”

Z =trp(t) = trp(ty) =1

Orp = —i|H, p| + Dlp| = L]p]

V'V

+ contour

VYV

= p(t) = ") p(t)

o = —0o0,tf — +00

p(tr)4

information on all stages;
P (t() ) stationarity reached
(boundary conditions

Ly =+

AN

- contour

AN

irrelevant
t() = —0OC )



Detailed calculation: damped harmonic oscillator 4

e Kkey steps present for single degree of freedom, e.qg.

Llp] = —ilwoa'a, p| + k(2apa’ — {a'a, p}) p(t) = et=t)L 5o — Jim (1+6:£)" po
t—1t
® one time step 0 = N .
\7/\\/ V/\ Y coherent states (bosons):
< p(to) >

¢ 64 ) () / alg) = ¢|o)

e many time steps in temporal continuum limit <gb"gb> — ? ¢
do*do _ .«
e from a single free to many interacting degrees of freedom 1= / - e ?? ¢><¢‘
o==
e single d.o.f. o (1) /dt (0+1) dimensional field theory

 many d.o.f.s, lattice bo.i(t), /dtz

e many d.o.f.s, continuum ¢, (¢, %), /dtddaf (d+1) dimensional field theory

e works analogously for interactions (subtlety: operator ordering for non-linear L)

e |eft out: fermions (additional sign in odd-parity Lindblad operators)



Keldysh functional integral for interacting many-body system

e Lindblad equation: Otp = —i|H, p| + D|p]

= —i(Hp—pH) + £ Y (LipL] — 3L Lip — $pLIL;)

e equivalent Keldysh functional integral:

(I)i:(¢i:)
-

Sul®r @] = [ (0% idho. — 07 iDho- — iLID1, D)

Ly, &)= —i(Hy —H-)—rY (Li,+LI’_ Y AR A lLT,_Li,_)

= recognize Lindblad structure

= simple translation table (for contour normal ordered Lindbladian)

e operator right of density matrix -> - contour
e operator left of density matrix -> + contour

+ contour

t

- contour

= caveat: contour diagonal Lindblad terms need temporal regularisation to track operator ordering




Keldysh functional integral: structural properties

e Keldysh functional integral:

. _ (9
7 = /D((IDJF,CI)_)eI(SM[CI)*’(I)] (I)i_( i )

Sul®s.@) = [ dH(61i016. — %010 — iL[B+. @)

LI®, @ J=—i(Hi—H )—r)_ (Lz’,+L;r,_ — il Ly - %LI,_LZ-,_)

Hi = H(d4) etc.

e focus on three key aspects, reflecting different levels of inclusion of fluctuations

1. Probability conservation (zero order)

2. Deterministic limit (first order)
| » | p+ 09 _
3. Fluctuations (quantum and class. statistical) fully included
e next lecture, compromise: semiclassical limit, classical classical path

statistical fluctuations included (minimizes S)



1. Probability conservation / causality”

e trace / probability conservation:

¢ cyclicity
e Keldysh: J/ = trp(t) — 1 7 — /D(q)+’q)_)ei(SM[<I>+,CI>_]
e will argue: reflected on the action as
(I)_|_ — (I)_ = SM[(I)_|_,(I)_] — O
e redundancy A 00,
(0)(t) = tx[0p(1)] = tx[p(£)O] VVV VIV
A t to — —0o0
(0)(t) = (04(8)) = (O-(1)) ———
O—O_

— 0=0,7 = i(s(By(t),D_(1)) = i(s(Do(t), Do () VYt = /t:dt’s(qu(t’),@—(t’))

e mnemonic: taking trace = ignoring contour order
e motivates Keldysh rotation



1. Probability conservation and Keldysh rotation

e trace / probability conservation:

¢ cyclicity
o Keldysh: 7 = trp(t) = 1 g _ /D(q)+’q)_)ei(SM[<I>+,<I>_]
e make probability conservation more handy:
e starting point: contour basis: S+, D]  with S[®L,P_ =P ]=0
e Keldysh rotation Pe _ L (ot o _ Ao O+ center-of-mass
qbq \/5 q5+ — ¢_ \/5 1 —1 qb_ relative
e action in Keldysh/RAK basis S|P, D,
e probability conservation S [q)C, (I)q — O] — 0

A

* interpretation of the fields: use (¢) = (¢, ) = (Pp_)

e “classical” field can acquire expectation value R
(<—> condensation, spontaneous symmetry breaking) <¢> — <¢c>/\/§’ <¢q> — ()

e “quantum?” field cannot



2. Deterministic limit

Keldysh functional integral P+ 09 _
classical path
Z — /D(q)_l_ q) )el(SM [(I)_|_,(I)_] (minimizes S)
LD
4 Im[V]

probability conservation: zero order in the quantum field ~ S|®., &, = 0] =0

first order in quantum field: ordering principle due to condensation

e classical / occupation field: macroscopic occupation N — oo (more precisely: only g=0 mode scales) %o

/ .
be(q) ~ N2 = ¢e(x) ~ ]‘fi /2 ~ N be(x) = V2N eT%¢(q)
q

e quantum field:

1
Pq(q) ~ N’ = Gq(x) ~ viz2 N2
. . 6S L 08
expand the action to leading order  S[®, = (&, + ®,)/V2,d_ = (. — ®,)/V2] ~ / [ 50 + @, 5¢*]
X,t c C
05 05

can do integral over quantum field Z = | D|oc, dc|0 0 <

R / Gertd [&zﬁc] [&bZ]

N . . . . 0S 0.5
only deterministic configuration contributes with 56 =0= S

e ) L i _ ~ . exercise: make connection to
= deterministic limit Lindblad phi?4: dissipative Gross-Pitaevskii mean field theory  operator mean field theory



2. Deterministic limit

 Keldysh functional integral P+ 09 _
classical path
Z — /D(q)_l_ q) )el(SM [(I)_|_,(I)_] (minimizes S)
LD
4 Im[V]

e probability conservation: zero order in the quantum field ~ S|[®., ®, = 0] =0

e Summary:

e deterministic limit of Keldysh functional integral dominated by single field configuration
minimizing bare Keldysh action

55 _,_ 85
0pe 09

e applications: systems in the presence of condensation/ collective degrees of freedom
and low noise level, e.g.

e Bose condensation: dynamics of zero temperature weakly interacting Bose gases (cold atoms)
e Light condensation: classical optics, waveguides, ... (“non-Hermitian physics”)




e Classical field theories: single configuration has it all, the one minimising S|[¢] i.e.

3. Fluctuations

e Quantum /statistical field theories: Summation over all possible field configurations

/ DoeiSle]

Keldysh functional integral

/D((I)+, (I)_)eiS[CI)_|_,CI>_]

©+ 0P _

o el

- -
S=- - - e

@ classical path

e probability conservation: zero order in the quantum field S|P, o, = 0]=0

deterministic limit: first order in quantum field

how to quantify deviations from the deterministic limit?

(minimizes S)

= correlation functions: fluctuations around deterministic configuration

= response functions: impact of an external perturbation

det.:

~ (e




exercise: verify relation to
operator formalism!

3. Fluctuations: Correlation vs. response functions

more details: L. Sieberer, M. Buchhold, SD,
e introduce complex contour dependent sources (cf. StatMech) Reports on Progress in Physics (2016)

<eif(j+<bi—j—¢>"_+c.c-)> _ <€if(jc¢;+jq¢:+c.c.)> Zlj=01=2Z=1

normalization

Z1j] =

e order parameter / occupation field:

VAL
<¢c(t7x)> — _7’@ :
Ja(f,x) lj=0
e single particle response: how does the field react reIatio?ofcgp:rrgt%rfgﬁ;nalism F=t x =¥
to external perturbations? ST
0°Z . (¢ "N L _0(t — ' 0 IS l—l
= —i{gc(t,x)9, (', X)) = —if(t — U')([o(¢,x), 0" (t',x')]) =

j:

GRt—t,x—x') =i— =
( ) 5J;(t,x)@,x’)

e single particle correlations: how strong are fluctuations?

6027 . .
= —i{0e(t )01 X)) = —il{B(tx), 81 (¢, X)) = 2(a(x)) + 1

07 (t,x)07q(t',x") 15
extra: how are states occupied?

t=1t, x=x’

GEit—t,x—x)=

time and space translation

invariance assumed
K R
e total Green’s function G = (gA % ) G4 = (GR)T, (GK)Jr = -Gk

Hermitian conjugates anti-Hermitian

N prob. conservation



exercise: prove formulas
on this page!

3. Fluctuations: Correlation vs. response functions & Keldysh action

more details: L. Sieberer, M. Buchhold, SD,

e by example: master equation for decaying cavity Reports on Progress in Physics (2016)

atp — _i[deTda p] + K’<2&p&T o {dT&, IO})

o % % 0 10y — wWn — 1K €bc time domain
S_/dt(qbc,%) ( 9, — wo i t 2@,2 ) ( o, ) ¢, (1)

e action:

= PA(w)
o % 0 W — Wy — 1K ch frequency domain
Joeo (o Sw TEONE) T
“ = PR(CL)) = PK .

~

claim: G 'w)



exercise: prove formulas
on this page!

3. Fluctuations: Correlation vs. response functions & Keldysh action

more details: L. Sieberer, M. Buchhold, SD,

e by example: master equation for decaying cavity Reports on Progress in Physics (2016)

atp — _i[MOdTéa p] + K<2&p&T o {&Ta’a IO})

e action:

o % 0 10 — wp — Ik D time domain

S = /dt(¢ca¢q) ( Zﬁt — wo + ik ViK ) ( ¢q ) ¢V(t)
= P4 (w)
_ * % O W — Wy — 7:/4{, ch frequency domain
— /dt(¢ca¢q) ( W — wo + 1K 21K ) ( bq ) ¢V(w)
= PR — K
— W =P

e partition function: Gaussian integration G (w) .

Zje, jo] = ('] 85U batigoethe)y - 1) o7 (532)G ) ( 92 )
e single particle Green’s function

((fﬁc(w)dﬁ(w/» (Pc(w)py(w')) ):_ 5j;(c§)26?q(w’) 5j;(f)25§c(w/)
(Pg(w)pi(w')) <¢q(w)§b2<w/)> A A

0j&(w)djq(w’) 6% (w)dje(w’)

= 1G(w)d(w — ')

i=0

e summary in matrix components (generally valid — beyond Gaussian single mode example):

0

A K (R
G = ( POR gK ) = G = (gA ¢ > GH/A = [pR/A=L K = _gRpKgA

action matrix kernel single particle Green’s function



exercise: prove formulas
on this page!

3. Fluctuations: Correlation vs. response functions & Keldysh action

more details: L. Sieberer, M. Buchhold, SD,

e by example: master equation for decaying cavity Reports on Progress in Physics (2016)

Op = —ilwod'a, p| + k(2apa’ — {a'a, p})
o % % 0 10y — wWo — 1K €bc time domain
S = /dt(¢ca ¢q) ( Zﬁt — wo + ik ViK ) ( ¢q ) ¢V(t)

_ * ok 0 W — Wy — 1K ch frequency domain
B /dt(¢cv¢q) ( W — wo + 1K Q’ioli ) ( Oq ) ¢1/(w)

o bservables from the Green’s functions:

e action:

) £ _ decay of single-particle response: GE(t—t) = / eiw(t—t')GR(w) = 0(t — t’)eicﬁ(t—t')e—ﬁ(t—t')

w

2K
(w—wp)? + K2

e Lorentzian spectral density: A(w) = ImGH(w) =

cavity mode occupation  2(i(1)) + 1 = {al(t)a(t) + a(t)al (£)) = iG¥ (t — 1) = i / DGR (w) = 1
/ in stationary state w

= correlation / statistical properties: G K

= response / spectral properties: G R




School on quantum many-body
phenomena out of equilibrium
August 25/26, 2023

ICTP Trieste, Italy Uniz\:‘eﬁii;[i:jr;c

Driven Open Quantum Systems:
From Micro- to Macrophysics

Lecture |l

* From the quantum master equation to the Keldysh functional integral .
Op = —i[H, p| + L|p]
* construction

* semiclassical limit, connection to exciton-polariton systems
* “what is non-equilibrium about it?”

_ iS[®y, P _]
* Applications: stationary states of driven open quantum systems Z = / D(®y,d_)e™t™r

e fate of BKT physics out of equilibrium
* phase transition driven by non-equilibrium drive

G >
microphysics »  macrophysics




Back to many-body model: Workhorse Lindbladian

* generic microscopic many-body model: ( single particle pump )

2
8ip = —ilH.pl + Dlpl = LIyl (manboy

H= [ 3L ) beot 30 a

( single-, two-, ... body loss )
kinetic energy two-particle interaction

Dlpl = v [ Bhpdx— 3(Bedlont] + 1 [ [9pdl— 3oldmnll +
single ;(article pump single particle loss
K:/[éipéy — {01202, p}]

two-particle loss

@any-Body Master Equatioa mag;ing [ Ke|dyi8nf:ef;rnacltlonal j




Many-body model: Workhorse Lindblad-Keldysh action

e after Keldysh rotation:

Szftx{(qsz,qsz;)\( O

Y

PK
y
after Fourier: G 1 (w,q)

Pq

e (Gaussian sector: inverse Green’s function

e retarded/advanced P (w,q)

PK

e Keldysh component

e now: simplifications in the semiclassical limit:

e sharp argument close to a critical point

A
P > (Cbc) + 20600, 0q —2 [N+ ir) (¢ dedy + gb(’;ngcgbq) + c.c.] }

$q_ ¢ Pa be ¢ K
\\\ ‘\\ \\\ ’,/
N ) AN . N/ .
X ik A +ix K A+ik
’ R
’
4 */
4)2;, ¢C ¢2< ¢C 4)q (PC

2M

()

w—{a — i)+ i@ =) /2

difference: distance from a
phase transition

sum: noise of loss and pumping add up

* provides intuition for a frequency regime w << v = v + 7,

e now: “what is non-equilibrium about it?”



Semi-classical limit and
Langevin equations

exciton-polariton two-body quantum
models master equation




Intermezzo: Exciton-polariton systems

Kasprzak et al., Nature 2006 Imamoglu et al., PRA 1996

1

E A !'photons

|}
' [ |
' [ |
""""""""""" | ,
\ ¥
) .
I g
.'.---r r"1_ ’
i s ' '._: \ )
" 1 -1.1. .I '
| i : G{\ |

relaxation

excitons

Bragg mirror
Eragé mirror

lower polaritons

> K

loss

e phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq

\V£: Szymanska, Keeling, Littlewood PRL

, _ v o _ 2 04,06); PRB (07
Z@ﬂb [ 2 pt }%9 /%) + ()\ Zl{\)hb’ ] qb T C Wouter(s CarLsotto F(’RL) (07,10)
- \

pump & loss rates two-body loss (C*(t,x)C(t',x")) = v6(t —t)d(x — x)

propagation elastic collisions
OH. 57—ld
o structure: 10;¢p = + 7 +C _ 3 2 2 4
5o Phgr T Ha= [ dalralof + Kal V6P + Aalol’
coherent dissipative dom § n0|s”e <= t |
(reversible) (irreversible) random force aflowing 10 explore a — C, d

various configurations



Intermezzo: Exciton-polariton systems

* Bose condensation seen despite non-equilibrium conditions

Kasprzak et al., Nature 2006

e stochastic driven-dissipative Gross-Pitaevskii-Eq

/ Szymanska, Keeling, Littlewood PRL (04, 06);
\ PRB (07)); Wouters, Carusotto PRL (07,10)

¢0 A

* mean field —‘
* neglect noise
* homogeneous solution ¢(x,t) = ¢g critical point/% K

naively, just as Bose condensation in equilibrium!

Q1: How does this model relate to the Lindbladian and Lindblad-Keldysh field theory?
e Q2: What is “non-equilibrium” about it?



Semiclassical limit of Lindblad-Keldysh action: power counting

PAN (6N | o N L e ./
S = /tx{(qbi,cbi;) ( OR PK) (iq) + —5 (A + i) (952 pey

$q_ P Pq_ ¢:
\\ \\\
N S .
e Gaussian sector close to a critical point: }Q A+ ik
’
>|</, *
4)q ¢C ¢C CPC
— U

e retarded/advanced P (w,q) =w — q2 —u+i(y — fyp) /2
e Keldysh component PK — 7 (’Yl + Wp)

d— 2 d+ 2

e canonical field dimensions: (D] = 5 < [¢pg] = ——

e action is dimensionless: phase e"” in the functional integral
e d> 2:couplings with more than two quantum fields irrelevant in the RG sense

e massive simplification: semi-classical Martin-Siggia-Rose-Janssen-de Dominicis action

S = / {qb* O519] + c.c. + z‘27¢;¢q} S = {0510 — He +iHyg )}
t,xX

q 5¢Z t,x H " iH .
linear quadratic ermitian anti-Hermitian



Relation to driven-dissipative Gross-Pitaevskii-equation

e Equivalence of semiclassical theory and Langevin equations

e structure of action in semiclassical limit (Martin-Siggia-Rose-Janssen-de Dominicis functional integral)

/ [¢C7¢c7¢m¢ ] Sloe,bc.¢q:¢4]

s= [ {o { q 104 S= [ {0ridipe — Mo +iHa)
5¢ t,x
e Decouple the quantum field (undoing Gaussian integration) 4
10t e — 5%0 =+ 57{21 —& | +c.c.
/D§§ 2'yftx§§/D¢c’gbC,(bq,gb] [ ( ¢ Y Soc; ) }
0S
oo

e Recognize Fourier representation of delta-constraint: Langevin equation
1 . . OH. 5Hd

p— D * 27 ft7x € E / D C * < C - 1 O

/ €7 e 60, 9116 (1000 — 555 +igor =€) 3 (ee)

= noise averaging = at each instant = driven-dissipative Gross-Pitaevski equation
of time:

= cf. deterministic limit: noise added, system
explores many configurations



Semiclassical limit and exciton-polariton model

e example of “weak” universality (loss of memory of microscopic physics)

exciton-polariton

Microscopic Lindblad microphysics Lindblad phi4 theory
Action \
power counting
(@)
£
S
© . . . .
E/Iesoscopic Dissipative Actioa S) driven-dissipative
2 Gross-Pitaevski
§ k —1 equation
RG flow
\/

E_ong Wavelength Effectiv

e
Action j N coarse araining  Universality class
f — OO coarse graining length momgntum 9 at a critical point
k—0

= many microscopic models collapse to an effective low energy model
= form dictated by microscopic symmetries
= longer wavelength behavior to be determined by calculation



Overview: Langevin equations, Lindblad equation, Keldysh integral

stochastic Schrédinger equation
(measurements, Sec. 10)

f \ S e T Ea,

: i Heisenberg- Lindblad . Lindblad-Keldysh
g vnoeblnd Langevin equation il il functional integral
semi- * Langevin equation Fokker—EIanck MSR\.JD functional
classical equation integral
- 1\ /
) 7 b S ga®
e okl g
stochastic evolution deterministic evolution of probabilistic objects
(noise) (density matrix/ probability distribution)
o — I N— ~ —
differential formulation integral formulation
(one time step) (exponentiated evolution
operator)

* effects of phase coherence still
present (cf. BEC as classical wave)



“What is non-equilibrium about it?”




“What is non-equilibrium about it?”

e different notions of ‘non-equilibrium’
Time evolution

= time translation invariance broken (e.g. thermalization, Floquet..) see lectures by Anatoly and Norman!

Stationary states (considered here)

= flux equilibria
e not in static observables:

p=e PH /tre=FH

= any positive semidefinite Hermitian operator can be written like this

e dynamical observables, e.g.:

W) B = e

= non-equilibrium conditions are encoded in the generator of dynamics
= thermal equilibrium realized if generator of dynamics coincides with statistical weight
= otherwise must expect non-equilibrium conditions (Lindbladian)




“What is non-equilibrium about it?”

e non-equilibrium stationary states:

e open system: is it the coupling to a bath —> irreversibility?
= no, can be compatible with thermal equilibrium (Caldeira-Leggett Models)

e driven & open system: coupling to multiple incompatible baths (e.g.
different temperatures, chemical potential, driving strength...)

( single particle pump )

2
(manyoody ™
S

( single-, two-, ... body loss )

e result from independent microscopic processes
e system is ‘confused’ which bath to thermalise to
e some fluxes through the system

= driven open nature incompatible with thermal equilibrium
= how to sharply quantify?



“What is non-equilibrium about it?”: Use symmetry!

e more formally: quantum master  J;p = —i[H, p] + D|[p]
equation

|\ A N J
Y Y

— Sy — Sp

e equivalent Keldysh functional integral: 2 = /Dq§ie’i(5H[¢i]+SD[¢i])

e equilibrium dynamics microscopically generated by a time-independent (undriven) Hamiltonian alone

Sp =10

L. Sieberer, A Chiocchetta, U. Tauber, A. Gambassi, SD PRB

= symmetry of Keldysh action under discrete transformation (2015); F. Haehl, R. Loganayagam, M. Rangamani, JHEP
(2016); M. Crossley, P. Glorioso, H. Liu, JHEP (2016)

Ts:  ¢+(t,x) = o+ (—t+16/2,%), @ — —i T5 =1 B=1/T

e associated “Ward identities” are equilibrium quantum fluctuation-dissipation relations of arbitrary order 4

e.g. single-particle K (w,q) = 2np(w/T) + 1)[GR(w, q) — G4 (w,q)]

sector

correlations Bose distribution responses

any order <=> detailed balance
<=> global thermal equilibrium

= the Lindbladian (Sp) violates this symmetry and therefore detailed balance explicitly

= intuition: no global bath to thermalise to



Equilibrium symmetry: Semiclassical limit

e Full symmetry:
Ta: ou(t,x) = dr(—t+116/2,x), ©— —i B=1/T
. 3
= "2 %y (—t,x)
e semiclassical limit: T large => eiigat ~ 1+ ig(?t

e action on the fields:
irrelevant by power counting

Todelt: x) = 62(—t,%) + 5O

a A t, X), reproduces classical result
Y H. K. Janssen (1976); C. Aron

Tadq(t,x) = qb:;(—t, X) + %@gbz(—t, X ) et al, J Stat. Mech (2011)

= obtain geometric interpretation of the equilibrium symmetry



Geometric interpretation: equilibrium vs. non-equilibrium dynamics

® in semi-classical Martin-Siggia-Rose-Janssen-de Dominicis action

S:/ {qb*ds[cbc] +c.c.—|—i2fy¢;¢q} S:/t (6710, 00e — He + 1 Ha)

109k
_ 3 2 2 4 o
Ha—/dx[raw FEL VR +Alét]  a=cd

A

Im
incoherent/ irrev.
dynamics
H d example: two-body processes A

ReA elastic two-body collisions

ImA inelastic two-body losses
>

Re

coherent/ reversible
dynamics

He




Geometric interpretation: equilibrium vs. non-equilibrium dynamics

equilibrium dynamics non-equilibrium dynamics

Im 4 Im
/ > Re
e coherent and dissipative dynamics may e coherent and dissipative dynamics do occur
occur simultaneously simultaneously
° butthey are not independent e they result from different dynamical resources

= what are the physical consequences of the spread in the complex plane?




Application:
Fate of BKT physics in
driven open quantum systems

A
\ non-equilibrium
. disordered (rough)
: phase
algebraic quasi-long range order \
(Kosterlitz-Thouless phase) :
— _J :\ r J
—~ L Y
sk

E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)
L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
L. He, L. Sieberer, SD, PRL (2017)

Microscopic “Thermodynamic” Long wavelength
Quantum Optics Many-body physics Statistical mechanics



Phase transitions in two dimensions

e continuous symmetry U(1): no spontaneous symmetry breaking, but a phase transition

low temperature high temperature

e correlations

1

<¢* (X)¢(O)> ~ I 2K ~ e_r/g
e responses: superfluidity
Ps 7& 0 Ps = 0

e BKT (Berezhinskii-Kosterlitz-Thouless) transition: unbinding of vortex-antivortex pairs

J. M. Kosterlitz, D. J. Thouless J. Phys. C (1973)

]
o % e .
. ‘ @ e ® 9
) 0 *
o e
o ) :
matter wave interferometry: ... fate in driven open condensates?

Z. Hadzibabic et al. Nature (2006)



Short reminder: Algebraic correlations

low temperature high temperature

e correlations

(¢*(x)$(0)) ~ 1~ =w ~ e /8
e physical reason: gapless spin wave fluctuations

: - _ K 2 2_5/ d’q _
* spinwave action S = /d z(VO)" = 5 2m) 6(—q)f(a)

e phase-amplitude decomposition ¢(x) = p(x)*/2e?™) ~ | /nge?™)

(6" (x)(0)) = ng ("I = =2 ((OCI=0(0)))

1/a d2 iqr
» phase correlator  (0(x) — 0(0))’) = / ( 2752 (e o b _ S log(r/a)
: 4
(#"(r)¢(0)) 1 algebraic quasi-long

wrange order

>




Description: Effective model

e mesoscopic starting point: driven-dissipative stochastic Gross-Pitaevski equation

. V> . .
’Lath: —% _M—FZ(’YP_’YZ)_F(Q_Z/{)‘QMQ ¢+C
¢ = pe”
e effective low frequency dynamics see also: G. Grinstein et al., PRL (1993)

phase diffusion phase nonlinearity Markov noise

form of the KPZ equation Kardar, Parisi, Zhang, PRL (1986)

e meaning: non-linear spin wave mode

e nonlinearity: single-parameter measure of non-equilibrium strength (ruled
out in equilibrium by symmetry)

Im

Im

microphysics

quantum master
equation

stochastic GPE

KPZ equaton ¥

macrophysics

| A7 =0

> Re

equilibrium

A0

g = ) Re
non-equilibrium



KPZ equation: A paradigm of non-equilibrium stat mech

e originally: describes stochastic roughening of surface height h(X, t)

O.h = DV?h

smoothens

e simplest physical scenario

A(Vh)?

nonlinear growth

particles deposited

]’L(X, t) A

atrate )

§

noise

Kardar, Parisi, Zhang, PRL (1986)
Review: Krug, Adv. Phys. (1997)

gravitational field



KPZ equation: A paradigm of non-equilibrium stat mech

e originally: describes stochastic roughening of surface height h(X, t)

_ 2 2 Kardar, Parisi, Zhang, PRL (1986)
8th o Dv h )\(Vh) g F?erv?(;w: irrljiq,Adavr.]gIJDhys. (1997)

smoothens nonlinear growth noise

e multiple physical contexts

defect growth in liquid bacterial colony growth burning paper
crystals

drive: electric field drive: sugar drive: oxygen

from Takeuchi et al., Wakita et al., J. Phys. Jpn. Maunuksela et al., PRL

Scientific Reports (2011) Soc. (1997) (1997)



E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015) microphysics

Physical implication I: Smooth KPZ fluctuations

quantum master

equation
e How important are non-equilibrium conditions at large distance?
: _— I i
e behavior of non-equilibrium strength under m stochastic GPE
coarse graining (RG flow) A# 0
Re
DN -
KPZ equation
strong non-equilibrium
: . RG fl
<-> KPZ fixed point o
T~
\4
7 macrophysics
weak non-equilibrium

g <> equilibrium fixed point

e general trend: non-equilibrium effects in systems with gapless mode are
e enhancedind=1,2
e softened in d = 3 (below a threshold)



microphysics

Physical implication I: Smooth KPZ fluctuations

quantum master

equation
e How important are non-equilibrium conditions at large distance?
: N I -
e behavior of non-equilibrium strength under m stochastic GPE
coarse graining (RG flow) A# 0
Re
A1 : .
' KPZ equation
v
E RG flow
\
: v
)‘(L*) =1 - : macrophysics
;
1

e 2D: implication: a length scale is generated

167 D3
L* — aoe A2A

\

microscopic (healing)
length




E. Altman, L. Sieberer, L. Chen, SD, J. Toner, PRX (2015)

2D: Absence of algebraic order out of equilibrium

A (07(1)9(0))

algebraic quasi-long range orderg
(Kosterlitz-Thouless phase)

generated length scale distinguishes two regimes:

167 D3
L* — aoe >\2A

sub-exponential non-
equilibrium disordered
(rough) phase

~—

equilibrium fixed point relevant

KPZ fixed point relevant

= algebraic order absent in any two-dimensional driven open system at the largest distances
= but crossover scale exponentially large for small deviations from equilibrium
= observation in 1D systems (KPZ scaling exponents found)

B=1/3

temporal
scaling

—2log (|gV])

2 -

Q. Fontaine et al., Nature
(Aug 24 2022)

spatial

10 20
At2/3 (p52/3)

30

x=1/2

scaling




Physical implications Il: Non-equilibrium Kosterlitz-Thouless

e KPZ equation for phase variable

x1/

0,0 = DV?0 + \(V0)” + ¢ N
¢
e compact nature of phase allows for vortex defects in 2D! vortex
e key ingredient of Kosterlitz-Thouless transition
F=FE-TS
low T: high T:.
(binding) energy dominates entropy dominates
(]
o % o0 .
' ‘ o . ®9
% . o
o o® . o
()
@ > @

= how is this scenario modified in the driven system?

A

A

R

—> 0 <

N

v

4

anti-vortex



Mini-review: BKT transition

low temperature high temperature

o % o0 . .
. % ° e L)

a e BKT transition: unbinding of vortex-antivortex pairs .
° o J. M. Kosterlitz, D. J. Thouless J. Phys. C (1973) S

e Single vortex picture: balance of energy (deterministic) and entropy (statistic)

e Low T: vortices and antivortices bound in neutral pairs (irrelevant at long distance)
e Q: whenis it favorable (free energy minimum) to have unbound vortices?

e energy of single free vortex:
vortex configuration: mapping (7, ) — 0(7, ) = ¢ —> VO = 1840,0(r, ) =

— F = K/d2 (VO)? —WK/ drr——leog(L/a)

S =
[QV
©-

e entropy: sum all equally probable possibilities of placing vortices in 2D plane at minimal distance a:

S =—kg Zpi logp; = kg log(L/a)2 = but out of equilibrium: no free
: energy at hand!

= field theory approach (analogous

e free energy F=FE-TS= (K —2kgT)log(L/a) Kosterlitz’ real space RG for

vortices)

T J. M. Kosterlitz, J. Phys. C (1974)

e vortex proliferation above KT critical temperature Tx7 = Y.
B



L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)

Compact KPZ G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

e wait a second — we ignored a fundamental symmetry of polaritons so far: local discrete gauge invariance
o(t,x) = p(t,x)e %) Ot,x — Ot x + 27N x

e Teaching symmetry to KPZ equation:

Otiex = Orx +€(L]O)ex +Me.x) + 27Ny x 7 — Z /D[(g]eiS[G,ﬁ]
lattice regularized deterministic term {fs.x}
stochastic difference discrete noise MSRJD
equation functional integral

. lattice gauge theor
Non-equilibrium , -
electrodynamic duality:

Electric field <=> smooth phase fluct. (KPZ)
Z X Z /D[¢’ &)A,A]eis[¢7éaAaAanv7ﬁvaJU,jv]

{n’UX lﬁvX,
JUX7JUX}

Charges <=> vortices

Dynamical & non-equilibrium analog of non'equ”"?rium
: : electrodynamic theory
Kosterlitz-Thouless construction

= Q: What is the effective theory for vortices out of equilibrium?



Effective theory for a single vortex-antivortex pair

e equation of motion for a single vortex-antivortex pair
dr O
P —uVV(r)+§ r

equilibrium: Coulomb potential (2D)

Vir) = éln(r/a)

e=K
(sorry..)
@O0 — @
length scale: .
2D 1 \? 3

see also: | Aranson |
et al., PRB (1998) : (&
two-vortex problem '

= noise-activated unbinding for a single pair (at exp small rate)



microphysics

Many pairs: Corrections to Kosterlitz-Thouless flow

quantum master
equation

stochastic GPE "

0.10
equilibrium compact KPZ
0.08 KT flow "
RG flow
0.06
0.04 A / (R
,,' vortex macro 4
1§ . . h ]
,/ unbinding physics
0.02
0.00
0.0 . . . . 05 g1
A B > inv. superfluid stiffness




microphysics

Many pairs: Corrections to Kosterlitz-Thouless flow

quantum master

equation
dK 2722 dy 1 A2 1 AT X2T (1
— — =2 - — — = —
7T d [ owr T aepE \a T Y ar Tawepe (gt
stochastic GPE "
0.10
equilibrium
0.08 KT flow compact KPZ
0.06 modified o
non-equilibrium
Y RG flow
0.04
macro 4
physics
0.02
= vortex unbinding for
0.00 ’ — any value of the noise
OO 01 02 03 04 05 Strength, no phase
. - 5A RN transition
. > ) s L)




L. Sieberer, G. Wachtel, E. Altman, SD, PRB (2016)
G. Wachtel, L. Sieberer, SD, E. Altman, PRB (2016)

Competing length scales and suppression of KT

e two emergent length scales in complementary approaches:

167 D3 2D
L* = ape€ A2 A L’U — a’Oe A
KPZ length vortex length
4
algebraic .

i sub-exponential noise level

! O #

i exponential ® ?

. g A\
KPZ free vortices
L I non-equilibrium strength
e (v

equilibrium

equilibrium limit

e numerical confirmation of two-scale scenario in 1D
(defects: vortices in (1+1)D space-time)

L. He, L. Sieberer, SD PRL (2017)

Rosterlitz-Thouless physics fragile to
non-equilibrium perturbation

=

e 2D simulations demanding



A phase transition driven by non-equilibrium strength

A

L. He, L. Sieberer, E. Altman, SD, PRB (2015)
L. He, L. Sieberer, SD, PRL (2017)



L. He, L. Sieberer, E. Altman, SD, PRB (2015)
see also: K. Yi, V. Gladilin, M. Wouters, PRB (2015)

Sequence of Scales L. He, L. Sieberer, SD, PRL (2017)

e direct numerical solution of driven-dissipative GPE in one dimension

e Study temporal instead of spatial coherence function _ _
numerical evidence

- . . . 1 :
equilibrium diffusive subexponential | &Xponential
R Pzscain | 45
, _alt—
b=t
l : : '
: i disordered S
I
| i ~ e_c|t_t/| g 10
: <
| I 10
1 1
l :
| . > 1 10
l l It — ']
_ E./o
e Crossover scale T.~0 2 T,~e e/
noise level
algebraic exponential

= no spatial vortices in 1D —> what causes the emergent length scale beyond KPZ?



Space-time vortices in 1D

* Physical origin: compactness of phase field

vortex in space-
time plane

+0 < 4T

4! » A \ .

A .
N ) . round trip
- ‘ o Ap =27
2- v » ~ -

spatial phase slip

topologically nontrivial phase field configurations on (1+1)D space-time plane
* unbound at infinitesimal noise level (weak non-equilibrium)

. . . 2\ —1 —1/2 _—x°/(4D
- interaction potential:  (0; + DO;)” " ~ (Dt) [2g=a"/(4DY) cf. 2D static equilibrium: V™2 ~ log(|x|)

- explains qualitative features

1. temporal scaling (random uncorrelated charges)  (¢*(z,t)¥(z,t)) ~ e clt='l

Ee/o (mapping to static 2D active smectic A liquid crystal)

Toner and Nelson, PRB (1984)

2. noise level dependence of crossover scale 1, ~ e



Strong non-equilibrium: Compact KPZ vortex turbulence

In search of the phase diagram for XP condensates

noise level
o)

physics in strong non-
equilibrium condition

?

P>\

non-equilibrium strength



Strong non-equilibrium: Compact KPZ vortex turbulence

« In search of the phase diagram for XP condensates: 1+1 dimensions L. He, L. Sieberer, SD PRL (2017)

noise level

O

color code: vortex density on
space-time plane

B,

Noise activated vortices (TV)

KPZ / equilibrium dominated ¢  °~  _ _ _ _ L ____

: Vortex turbulence (VT)
physics <

>

first order non-equilibrium phase transition  non-equilibrium strength

[¢(r)l

P,(1— 1) - P,(1 — A7)
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= deterministic limit: how does the system generate ' A
its own noise?



Phase transition driven by non-equilibrium strength

e ualitative reason: competition in lattice regularized model (compact KPZ)

0 X = SWﬂ]+AWﬂ] £

Y
equilibrium
lattice site
>>L' = V0; = 0,11 — 0,
0
V, =
E/N,i 5X7,

S=D+ DT =387

fixed point
structures

attractive repulsive

=> emergent Liouville thm.

diV[AVN] =0

non-equilibrium

Vi :KZCOSXj VN = )\Zsinxj
J

j
Dij = 0ij+1 — Oij

A=D-DV'=-A"
hyperbollc elliptic

= high dimensional
configuration space
= transition to chaos



Further instances: Universality in driven open quantum systems

A A
e . 4 .
e criticality in non-equilibrium ¢~ model Sieberer et al., PRL (2013)
= dynamical fine-structure distinguishing eq. from non-eq. S
g3
e Markovian quantum criticality Marino, SD, PRL (2016)
g2
= new fixed point in dark state models with quantum scaling
> g1
e phase transitions in open Floquet systems  Mathey, SD, PRL (2019) B N\ e
= absence of criticality (dual to Kibble-Zurek mechanism)
z]f“.l; g21 Bsoni}c'%l,.~""
e coupled Ising models Young et al., PRX (2020) b o)
N
Decoupl{i ”.R
= new fixed point for strong non-equilibrium drive P ch —
qu111.11)1"11111‘.1‘.3":’
1111(‘."," NEFP
\‘/
e phase transitions with exceptional points Fruchart et al., Nature (2021) 7R
o _ . Zelle, Daviet, Rosch, SD arxiv Va s
= fluctuation induced first oder transition  (2023) I ( (' ™ LN



Review: L. Sieberer, M. Buchhold, SD, Keldysh Field Theory for Driven
Summary lecture | & || Open Quantum Systems, Reports on Progress in Physics (2016)

Driven open many-body systems: challenge to theory

microphysics > macrophysics

@Iany-Body Master Equatioa ma1p'|;ing [ Keldy;r’:efgrnaﬁtional J

e mapping opens up QFT toolbox:

® symmetries: eg. vS. non-eq.

e control of IR fluctuations: understanding low
dimensional gapless phases out of equilibrium

e flexible choice of degrees of freedom: KPZ vs. vortices

e next lecture: open systems -> measurements in many body systems

e weak continuous measurements oD: L, < L 1D: L, > L
. v >k . v *

(time scales)
* replica approach and replica Keldysh functional integral

e BKT transition of replica fluctuations for monitored fermions
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Introduction

Small quantum systems: Measurements

e two types of quantum dynamics

—iHt
& t
) = -~ J1)
0) )
deterministic /\ /\ )
Schrodinger evolution ) P,|Y)  probabilistic measurement
HPA ‘¢> H evolution

for measurement observable M = me\)\ (A = Zm,\PA
A

e dynamics non-trivial (eigenstates not shared) once [H, M] # 0 wU . P

Many-body systems: Phase transitions

20}

e non-commuting operators lead to (quantum) phase transitions

10F

H = H; + gH> Hy, Ha| # 0
0'%0 0.010 0.020 0.030 J/U
9c
\ | / e.g. Mott-insulator to superfluid
® / | \ ® transition in cold atoms

= combine measurement and many particles: similar scenario?



Entanglement Phase Transitions in Random Circuits
Skinner, Ruhman, Nahum Li, Chen, Fisher, PRB

PRX (2019) (2018, 2019)
e model and key ingredients: . .
? ¢ ¢ ¢ ¢ T 7777
=Bl
e randomly chosen local entangling unitary — || H I
gates S E e e
o ¢ ¢ ¢ ¢ I .
e projective local measurement of non- o I —
commuting observables — g L |
T T T L bbb
xr
e basic picture: competition in many-body context (single trajectory, exactly local meas. of G,L-Z )
o 1 # measurements/time
g="0 g =0 g= ——
® O # unitaries/time
/' \ oi =11
chaotic / non-integrable dynamics convergence to product state |[{c;}) = H o)
= entanglement growth = entanglement saturation Z

e Procedure _ _ _
e track single quantum trajectories (pure states)

: : non-commuting
e compute the quantity of interest (e.g. entanglement entropy) >
 average over trajectory ensemble {o: ) {(|{oi}] ~ 1




Entanglement Phase Transitions in Random Circuits
Skinner, Ruhman, Nahum Li, Chen, Fisher, PRB

PRX (2019) (2018, 2019)
e model and key ingredients: . .
TR e bt 1T
e randomly chosen local entangling unitary ,+ +, ,+ +, || H I
gates ! ¢t ¢ t ¢ 4 | | ]|
o ¢ ¢ ¢ o I . b
e projective local measurement of non- o I —
commuting observables — g | l l l l I.
I I I I I I &

X

e basic picture: competition in many-body context (single trajectory, exactly local meas. of G,L-Z )

g = 0 Jc g_l —0 g _ #measIJreITlenIs/time
® I S # unitaries/time
e S~ L S~ const. "\ o =14
chaotic / non-integrable dynamics convergence to product state |[{c;}) = H o)
= volume law = area law :

e Procedure _ _ _
e track single quantum trajectories (pure states)

: : non-commuting
e compute the quantity of interest (e.g. entanglement entropy) >
 average over trajectory ensemble {o: D) {(|{oi}] ~ 1

= Phase transition in entanglement growth at finite competition ratio g



Outline Lecture I

_ # measurements/time
o T e 9=
O | O # unitaries/time
chaotic / non-integrable dynamics convergence to product state

non-commuting unitary and measurement dynamics

e strong projective vs. weak continuous measurements

e measurements: description?
e ‘observables’

e BKT type phase transition from critical to area law phase
e many-body problem: phase

transitions? e signatures beyond entanglement entropy

e replicated Lindblad equation

e how to understand?
e replicated Keldysh field theory

* how to observe? * post vs. preselection

= Quantum phase transition in trajectory wavefunction, revealed in non-linear-in-state observables



Theory Background:
Strong projective vs. weak continuous measurements




Review: Jacobs, Steck, Contemp.

Projective vs. Weak Measurements Phys. (2006)

e projective measurement: acquire full knowledge about observable

—iHt
€ >t1 >t2 >
o) i\ i\ > |Y1)
deterministic )
Schrédinger evolution P, |y) stochastic measurement
¥) — p evolution
N
e example: projective position measurement ! >
L0 £z

e measurement observable

X = / drx|z) (x| = / dxzP(x)

e measurement outcome A\ = xg

outcome (eigenvalue)

e projector onto that state
P(a0) = o) ao] = [ dod(a —a0) ) o

= know post-measurement position x_0 with certainty



Review: Jacobs, Steck, Contemp.

Projective vs. Weak Measurements Phys. (2006)

e projective measurement: acquire full knowledge about observable

e—iﬁt

Wo> > |¢t>

deterministic
Schrédinger evolution P, |y) stochastic measurement

||P>\ |¢> ” evolution

e projective measurement ! >
L0 L

Plao) = |zo){(ah| = / 0z 6(z — x0) ) x|

outcome (eigenvalue)

= know post-measurement position x_0 with certainty

e instantaneous collapge of wave function, but real measurements take time: continuous observation

P(xo) — A(zo) = (F4)H* / dz e~ VAHE=20) | (7] = (2VALY1/4—yAt(E—w0)’

T

= strong projective measurement obtains for At — oo

= weak continuous measurement obtains for small At, but large number of repetitions N:

At -0, N — oo, At-N — const. cf. functional integral construction!

e—th A

Vo) A A A A AN ANNANNAN AV




Review: Jacobs, Steck, Contemp.

Probabilistic Character of Weak Measurements Phys. (2006)

probability to measure X0 on state ) = /dm¢(w)\x> intime At — 0

p(x0) = | A(wo) )] = trlAT (z0) A(wo)| ) (Wl]  Afwg) = (2120)1 /418K —w0)

the measurement outcome x_0 is a Gaussian random variable with

« expectation value ((z0)) = / dzozop(zo) = (2AL)1/2 / dz / dzzge= Y AUE—20° [y (2)|? = / dez|y(x)? = (2)

1

e variance 2\y 2 __ _— quantum mechanical
({z0)) — ({20)) Ay At expectation
stochastic formulation (cf. Fokker-Planck vs. Langevin): parameterize
To = <§j> 4 AW~ Gaussian random AW =0
2vAt variable AWAW =1At = AW ~ VAt
Az
stochastic update of wave function: |[Vi+at) = A( 0)[¥r)
[|A(20)[e)]]

for short observation times: expand |¥t+a¢) = A(zo)|¥:) to linear order At = dt — 0

dlpe) = [Yerar) — ) = {[=57(@ — (2))7]dt + (& — (2))]dW }[4)



Weak Measurements: Stochastic Schrodinger Equation

—ZAtH e ’yAt(a: z0)?

) AR A AR R R R )

V. P. Belavkin (1987)

e governed by stochastic Schrodinger equation for quantum trajectory ‘¢t>

dltpr) = dt(—iH — 3> (g — (An)e)?[1be) + Zle (= (fu)e) [¢r)

l l Y -

(M) = (WYe|fu|1y)

» Hamiltonian added, many degrees of freedom,f; = 7]

e works for measurement operators with discrete spectrum (measurement record continuous,

e.g. Stern-Gerlach
J ) measurement of a spin 1/2

e measurement only dynamics H =0: measurement dark states Pt (o) |
e dW ‘multiplicative noise’: inactive when 7 |t)¢) = (1) +|Wy) : long time
e e.g.in eigenstate 17 |1)) = ny|1y) 2
\ dark state of N\ ~ shorttime
measurement operator Azir %\// M
= continuous collapse: convergence to measurement eigenstate 5 = - | 1‘ 7 2
for long times (more gen. for) [H, 7] = 0 AW

measurement record zo = (Z) + AL



Weak Measurements: Stochastic Schrodinger Equation

‘WAA/\/\/\/\/\A/\/\/\/\/\'W>

e governed by stochastic Schrodinger equation for quantum trajectory ‘¢t> Belavkin (1987); Gisin, Percival (1993)

dltpr) = dt(—iH — 3> (g — (An)e)?[1be) + ZQZWl (= (fu)e) [¢r)

l l Y -

(e = (Ve|fulve)

» Hamiltonian added, many degree of freedom, 7y = 7]

e works for measurement operators with discrete spectrum (measurement record continuous,
e.g. Stern-Gerlach)

e Can we expect a measurement induced phase transition similar to projective measurements? Yes!

(2’7At)1/4 —~yAt(z—x0)? At—)oo

e no competition => no phase transiton A(zg) = [zo) (0]

e Demonstrated numerically Szyniszewski, Romito, Schomerus, PRB (2019)

[

 dt

= expect no phase transition upon taking temporal continuum limit

= continuum limit useful for analytical approach measurement induced

i .g phase transitions (e.g. Keldysh field theory approach)
Je




Monitored Dynamics: Extracting Information

e |4)¢) is a random variable -> needs statistical analysis

e stochastic Schrédinger equation for projector p; = \¢t> <¢t|

dps = dt(—i[H, pi] + 3 Z (27upity — {07, pr}) ‘|‘ZdWl{nl (u)es pe} <

S—

= statistical analysis: consider trajectory ensemble

e usual observables:

X X X statistical average _ _ o
(O) = (¢t|Olhr) = tr|Opy] > (0) = (Y|Olhr) = tr[Opy]

guantum average e.g. trajectories

e Problem: Hermitian measurement operators => ﬁt ~ 1

= one way to see this: upon statistical average of equation of motion,

e deterministic, linear Lindblad equation for Pt = 1) (1]
e 7; Hermitian: heating to infinite temperature — p; ~ 1



Monitored Dynamics: Extracting Information

e |4)¢) is a random variable -> needs statistical analysis

e stochastic Schrodinger equation for projector Py = |1 ) (V4|
dpy = dt(—ilH, pi] + 3 Y (2fupiiy — {07, pe}) + > dWi{fy — ()¢, pi}
l l
= statistical analysis: consider trajectory ensemble

e usual observables:

X A X statistical average _ _ o
(O) = (t|Ohr) = tr|Opy] > (O) = (¥|Olthy) = tr[Opy]

quantum average e.g. trajectories

e Problem: Hermitian measurement operators => ﬁt ~ 1

= solution: use state-dependent ‘observables” (O (|1)))) = trO(p)p
more promising, because in general  F'(p) # F|[/] pa = trp|Pe) (V]
A B L
e examples: < >
e von Neumann entropy SUN (l, L) = <10g(pA)> arbitrarily high power of state projector

e correlation function <ﬁz> <ﬁj> quadratic in state projector



An example: TLS / one fermion on two sites N

e toy model: trajectory evolution of single fermion on two sites

) 2 Y
[Vitar) = [0e) — tdtHeg|te) + »  dWi (g — (Ru)e) [1e)
2 X [X
o= H—iK ﬁ[:—J( 102+h.c.) K = %lzzl(m—<m>t)2

guiding physical picture:
= thermodynamic limit: pinning quantum phase transition may happen at sharply defined point

= signalled in nonlinear-in-state ‘observable’, like the covariance matrix

_ — U - -

= pinning to measurement eigenstate = vanishing time spent in eigenstate

e invisible in linear averages e seen in averaged trajectory covariance matrix

] 0.2
’ (n1) ’ S
0.5 I | L ° <n1>(n2> — <n1n2>
O <n1n2> ° o
0.02

0.05 v/ 1 005 /T 1



Entanglement Phase Transition in a
Monitored Fermion Chain

Hamiltonian: A ) ‘ ..... OTO ..... ‘T‘ ..... O ..... ‘ ..... O entanglement growth
CH_1CZ + C; Cl+1

% % %ivcg Ci
Monltorlng Q ........... O ...... O. ................ O. .......... O entanglement Saturatlon

O. Alberton, M. Buchhold, SD, PRL (2021)



.I.
1YC; C
Monitored Fermion Dynamics c{/ § ----- o O =

e \Weak continuous measurements in many-body system

d|ipy) = di(— ZM12|¢15 + ZszMl|¢t>

Gau55|an whlte noise &« g

e competition: g =

]2

e unitary dynamics: hopping  measurement operators M, = i — (1)

e H = 0: evolution stops after collapse into dark state

H = —JZ (CZTCZH + CZTHCZ) Ml\¢t> =0 for  ylthe) = nyli)
z

eigenstate of measurement operator

= volume law entanglement entropy = area law entanglement entropy

Sun(L/2,L) = trpalog(pa) <" L Sun(L/2, L) = so

pa = trp|Ve) (V] e caveat: |1t is a random variable
e binary measurement outcomes generate

A . . .
b L extensive configurational entropy
< >

= ‘observables’: entanglement entropy, traj. averaged correlators



Trajectory Ensemble Phase Diagram: Entanglement Entropy

e weak monitoring Je e strong monitoring
|y /0 =0.05

"}//J:O.15 . ,Y/le '
< 3 4
i“ finite size crossover Q"
5 A L<L0exp(\/'yo/7) SZ/ 21 v/J =3
) Son(L/2,L) ~ L . O (L8t e sstnm—

() | o=s=st=t—b—ps

\w;xlume law .+ e Iaw/ 100 L 200

subextensive,
critical Sun(L/2,L) ~ sq

w-
Ot
h
(G
-
~| =

Son(L/2, L)

£ Sun(L/2, L) ~ log, L
’ 2

T i 1
0.15 7C/JC ’y/,] measurement/hopping

purely unitary case not
J smoothly connected

16.0

= extended subextensive, critical phase at intermediate monitoring



Characterizing the Weak Monitoring Phase

g="/J
| I PY
Jdc
e extended criticality: Connected correlation function e emergent conformality: Mutual information
Ciitr = (i) {figr) — (Rifbiqr) T(A, B) =Syn(A) + Son (A)
2 + Sun (AU B)
\’\.\N (sin(wl/L))~2 _ — 025
10-2 ; N 3 101 7
100
L/7msin(wl/L)
e captures all distinct phases: p = 21203
‘ 3 L13024
( 0 for H =0
C exp(—1/&) forvy>J
Gl ™S _9
[ for v < J o y -
1 conformally invariant critical point: Nahum et al.
\ [ for v =10 PRX (2019); Li Chen Fisher PRB (2019); Jian et

al. PRB (2020);

= emergent conformally invariant critical phase for weak monitoring



Characterizing the Phase Transition

g="/J
P o
o effective central charge c(7) e essential scaling of the central charge: scaling
T c(7) . L . 7l e collapse above phase transition
vIN U, - 3 g9 T L Y
10°
101.
217 Sy, —
109 —~ .‘.\‘0.
'™ -
() ‘(g “.~;
- 1 :
S)
102 =
.
Q‘.
10-3 () s ————————————— ——————— .'o....“.
~10 —5 0 d

parameter dependent c

random systems: Cardy Jacobsen PRL (1997);
Refael, Moore PRL (2004)

= sudden jump reminiscent of BKT in 1+1
dimensions (Berezhinskii-Kosterlitz-
Thouless)

= BKT universal behavior

= numerically establishes BKT type phase transition



Replica Field Theory Approach
to
Measurement Induced Phase Transitions

M. Buchhold, Y. Minoguchi, A. Altland, SD, PRX 11, 041004 (2021)

|
microphysics »  macrophysics




Continuum (1+1) dimensional Model

e approach problem from the weakly measured side

>

e model: phenomenologically motivated continuum limit for lattice fermions (weak measurement regime)

time

100

80

60

40

20

v =0.01

left mover

wL,az

right mover

wR,az

patch velocity v, = Ox€(k)|r=k, >0

e weak measurement: Hamiltonian dominates, measurement as perturbation

e stack of almost decoupled patches (rotating wave approximation in real space and time)

e focus on patch with strongest backscattering k,, = 7 /2 : Dirac model



100
Continuum (1+1) dimensional Model 30
o 60
e model: phenomenologically motivated continuum limit for £ left mover right mover
lattice fermions (weak measurement regime)
o . . A A A 0 (R) 1
e Hamiltonian: massless Dirac fermions W, = (¢ ., ¥r..)" Luttinger liquid
. . . . bosonization . v A o o
H = zv/\lflazﬁm\lfm — > H = %/[(890033) + (8$¢$> ]
* dictionary * phase density
fermionic variant bosonized variant

e measurement operators: local particle density —> current and vertex operators

A A A 1 n
rate V1 : Oi1g = Ui, = Ja(jo) > O = = e Do linear gapless

> OAQ,:B — mcos(2q3m) nonlinear
O(1)

rate Y2 : OAQ,Q; = \Illax\Ifx

common eigenstates: ¢, |Up) = ¢.|¥p)

e stabilize product dark states: exactly local
e realize competition: do not commute with H (phase fluctuations)



100
Continuum (1+1) dimensional Model 20
o 60
e model: phenomenologically motivated continuum limit for £ left mover right mover
lattice fermions (weak measurement regime)
o . . A A A 0 (R) 1
e Hamiltonian: massless Dirac fermions W, = (¢ ., ¥r..)" Luttinger liquid
. . . . bosonization . v A o o
H = zv/\lf];az@m\lfm — > H = %/[(890090) + (8ac¢ac) ]
* dictionary * phase density
fermionic variant bosonized variant

e measurement operators: local particle density —> current and vertex operators

A A A 1 n
rate V1 : Oi1g = Ui, = Ja(jo) > O = = e Do linear gapless

> OAQ,:B — mcos(Qggm) nonlinear

rate Y2 : OAQ,Q; = \Ifl,ax\lfx

= intuition: bosonic theory is long-wavelength hydrodynamics of conserved fermions

= problem setting: non-Hermitian Gaussian theory + cos-nonlinearity



Towards the Relevant Degrees of Freedom: Replica Approach (n=2)

e Access state-dependent observables, e.g. covariance matrix

e Replica approach via tensor products (analogous: introducing spatial index in second quantization)

e replica conditioned density matrix ﬁ(l) =p®1, ﬁ(2) =1®)p P = W>1<¢‘ ,
o) = [p ) p®) =
162 — ﬁ(l)p@) — ﬁ X ﬁ O-@ O @O @-O-@-O
Y
* replica operators, e.g. ﬁg}) =f, ® 1, ﬁ(xQ) =1Q 7, oY Yol Yoo o Xe
e Covariance matrix:  (,,, = %tr[(ﬁg) _ ﬁg(f))(ﬁ?(jl) _ ﬁgf))ﬁ | = Ltr[(al) — ﬁ(2))(n3(Jl) _ 7aL(2)),02]

e More generally: all quadratic-in-state observables encoded in

E = |U ) (U = |inear statistical average of replica density matrix



Towards the Relevant Degrees of Freedom: Replica Approach (n=2)
e (Goal: derive evolution equation for 2-replica density matrix

= can be decoupled for Gaussian theory
= interacting theory: useful truncation possible

= fits problem well: impact of weak non-linear term on top of Gaussian theory. E.g. density covariance:

Copy = %tr[(@xqgfcl) — 81;(%532))(8%%1) — &ygg?(f))g] Gaussian correlator

e replicated stochastic quantum master equation (n = 2) 4

O P2 = ® + ® + ® :

Z [— ( H(m) 5 Z M(m) M(m) 02 } +7 Z{Mz(l)a {Mz(2)7ﬁ2}}
l : p

m=1

individual heating Lindbladians replica coupling

.
L *
----------------------------------------------------------

2
+dW Z Z{Ml(m), p2}+ stochastic forcing

m=1

e decoupling for Gaussian theories



Boson Replica Quantum Master Equation: Free Theory

e Boson measurement H(®) — QL (0,02 + (8,0(*))?
T x
O ‘(@) | |
Oy, = Dy O; . =0 linear case first (Gaussian theory)

090:0-0-090-®0  (a) (1) 1(2) i
SO0 SOPOEIE oY =\ + ¢ average coordinate
e New degrees of freedom

::Z:%:Z:: (") = (D) — H(2) replica fluctuations

= Master equation becomes separable
e Average coordinate: heating to infinite temperature (<—> unbounded growth of mode occupation)

8,0\ = i[p @ H@] 1 Z( 9,0 — gg<a>>) (@ (aqua) _ <ax§g<a>>)<_ only jump term!
e Relative coordinate: cooling/damping into dark state
2™ = ilp™, HO = 23" {0,672, 00 L e o jump term!
T
T . T A . h 2
* further separable: - 0yv;") = ~iHllr”) | Hor = 5 [ (0.0 + (1 = in)(0:0)7 P =1

gapless non-Hermitean Hamiltonian

e observable of interest exclusively depends on relative coordinate

Cry = 5102657 0,6. po]



Boson Replica Quantum Master Equation: Including Interactions

e Boson measurement H (%) — QL ( ¢(a>) + (8 g(a))
v
(o 1 T (« A (o A
O§32 - x(bg; ) ngg = mcos(2¢,) general case

e Of 33 couples relative and absolute degrees ~ m cos(v/2(¢!*) + ¢{"))

00:-0:0:0-9:0:00

=how do _, . e5eoeo degreesenter? —> <§g§3a)¢2§ca)> = 00 nonlinearity irrelevant for qggja)

l = integrate out qB;@ in Gaussian approx. for ,6(“)

e Non-hermitian Schrdodinger equation for relative coordinate

ﬁtwgr)> — —iHeﬁ\¢§T)> = cooling into dark state
Hor = 5 [ (0:0)° + (1= in")(8:0)° 7% | [1 — cos(vBdy)
:Beffect of non-linearity

= non-Hermitian Sine-Gordon: pinning via cos term, depinning via theta term

= extract physics in path integral approach



Effective Non-Hermitian Hamiltonian and Path Integral

- i Gord " ith | Hicient Fendley, Saleur, Zamolodchikov,
Ine-Laordon action with compliex coetticients International Journal of Modern Physics (1993)

5= (o 5@~ n@s07] — ircos(o) |

1 ) 1

e ‘Wick rotation’ brings free part to standard Euclidean (2+0) dimensional form (x,t) — (n2x,in~ 2t)

= RG flow: standard KT flow with complex K, A

= shift of phase border

8T
non-Hermitian Hermitian a S >\ p— (2 — —) >\7
( b) i SoUoUl K
M)l 2 ! Al ~ /v
A 10% |
10} N
e UV flow modified e A =
1F “ ( ................. .‘{
4 - A

* IR flow reaches >

standard KT flow (V/V)e = 2 Sl
~ Y — Y ~
)
Same ang wavelength interaction irrelevant: interaction relevant:
properties flow to free gapless flow to free massive
theory -> Gaussian theory

approximation good
= gapless generalized CFT phase with algebraic correlations and varying exponent

= phase transition in the BKT universality class in line with numerics



- 1 - | - n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n Repllcas' Llndblad KeldySh 20 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas

e evolution operator th = exp [—(ZI:I - Mf)dt + §Mt] expansion to second order: SSE
? dl
e single replica t Vag , th> t
1

tf + contour 0 -contour L



- ' - | - n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n-Replicas: Lindblad-Keldysh 2.0 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas

e evolution operator th = eXp ZH + MQ)dt + fMt expansion to second order: SSE
T
e single replica (th _ ‘h
+ contour - contour
Z(1,{€}) = trpe, o0 = o Z4e) = 2()

>

intra-replica noise average

Sual¥l =3 o | (ridcte = Hibo,v0)

515[‘1’—22/ 7 — EM,]

— Z(l) = /D\Ij exXp [Z(SLH[\P] -+ SLM[\I}])] SlM[\Ij] /[M2 + M2 ——(M_|_—|—M ) ]

7(1,{¢}) = / D] exp [i(Sh,£1[¥] + S1.¢[T])]

= measurement expectation values cancel =i /t 040 — 502 + 507]
= |indblad-Keldysh functional integral reproduced (herm. Lindblads) M=0-0



- ' - | - n-replica Hamilton-Keldysh: Aleiner, Faoro, loffe, AoP
n-Replicas: Lindblad-Keldysh 2.0 (2016); Tsuji, Werner, Ueda, PRA (2017); Shenker,

Stanford, JHEP (2015); Ansari, Nazarov, JETP (2016)
e Motivation:

e (Generalization of ‘hot’ and ‘cold’ modes?

e Entanglement entropies?

e Lindblad-Keldysh construction for n replicas

e evolution operator th = exp [—(Z[:I - Mf)dt + §Mt] expansion to second order: SSE

/ inter-replica noise average

e nreplicas
< 11 > i \ r_\_g* > >_
Snlt) = Y30 [ (Wiv®) — HED. v
Z(n,1&1) = / D[¥] exp [i(Sn, 1 [¥] + Sp.e[P])] == / ( )
Sucw) =i 3037 [ [a)? - ]

collective coupling

[MJ(:)]2 4 [MJ(FZ)P) to noise!

= collective coupling to noise
. . . . - 1 M(l) M(l) 2
= structural simplification for linear measurement dynamics 2 E , -



n-Replicas: Decoupling of Gaussian theories

D =0,

o

e practical importance: reduction to linear / Gaussian bosonic theory in limiting cases

e bosonized action in the presence of noise:

/ bosonic field

S|¢] = Sn,z(9] + Sn.¢ld]

S, Z Z ¢(l) 82 — 92)p Sneld] =i Z Z/ O(l)

lla

OW =D D =1mm,d,

e decoupling of center-of-mass and relative modes

e Fourier expansion in replica space

n—1
1 -2kl
¢a t.x — —n Z e_ZTqbg,{t),x
k=0
§S
e equation of motion 56 = =0
(k) _
0; by = (0,

= no reference to measurement expectation value
= exact decoupling into:

= 1 collective ‘hot’ mode, heating to infinite temperature

o==1 =1

l
o)

quadratic

—£(09) - 0)

replica space picture

4 dWw,

dWs

k>0

= (n-1) ‘cold’ modes, do not ‘see’ the noise, cool to ground state of non-hermitean Hamiltonian



Calabrese, Cardy, JPA (2009)

Entanglement Entropies from Replica Approach traced out .

L0 o + L
* Keldysh path integral representation of n-th moment 7 4 (n, {{}) = trp} - A

B | w
A zz1

e formulate boundary condition via operator insertion (in the presence of noise):

+ A

- o vy ¢ A
— iSp [ V] IR VA — 2.t | |
ZA (n)a {f}) /D[\If] Te +,z,t¢ _ Ve € A translation by one in

replica space

e e.g. free massless Dirac fermions (after bosonization into equivalent Luttinger Hamiltonian): factorization

n

(I exp (—ﬂ%) / dz[§(z — 20) — 6(z — (z0 + L>>]¢£f2,t)> Zhco, Huera, J. Sl

E—1 Mech. (2005)

ZA(nv {5})

= boundary conditions appear as opposite charges
= k = 0 mode does not contribute!

= k 7 0 independent of noise & !



Calabrese, Cardy, JPA (2009)

Entanglement Entropies from Replica Approach traced out .
Lo xo + L
* Keldysh path integral representation of n-th moment 7 4 (n, {g }) = trp’y < 14

+ A

B | w
A 121

e n-th Rényi entropy

Sn = ﬁ log Za(n,{§})

e von Neumann entropy

S = lim S, = 2(¢= V"0

C.T
n—1 0

= correlator in the Gaussian dark state wave function



Construction summary and entanglement entropy

traced out traced out
. 1 : ;
* Rényientropy S, (L) = ——1log Za(n, {dW}), Za(n,{dW}) = tz[(p5)"] 1 oy
—-n \/
e von Neumann entropy: 1n — 1 Calabrese, Cardy, JPA (2009)

e in practice need theory for n Keldysh replicas

e decoupling of center-of-mass and relative modes (exact for Gaussian states -> good away from transition)

replica space picture reciprocal replica space picture
[ dW, dWs A Jndw,
(D)

VndWs

(k) ) k=0
—— I — Gyt "\/\\/\/v\/\f
¢Zc,t v S T
v :
\

e observation 1:

e 1 mode heats up (noisy)
e n-1 modes cool down (noiseless)

* observation 2: e noisy contribution A independent

e all A dependence in noiseless modes!

= entropy determined by noiseless modes
= rationalizes analogy to ground state phase transition



Entanglement Transition from Replica Approach

e focus on von Neumann entropy S in Gaussian limiting regimes
Je g="/v

massless % I x’ massive

5= %C(V) log(L) S = ic(y)log(m™") ~ L°
* sub-volume log-law e saturation to area law
e c(y—0)—1 1‘
= ground state entropy of massless Dirac c(7) A=0

¢ in Gaussian state:
c(y — 00) ~ L2  > 0.1

= compatible with numerics in critical phase

e with RG improvement, qualitatively similar to T
numerics

0 025 0.5 iR



Entanglement Transition from Replica Approach

e focus on von Neumann entropy S in Gaussian limiting regimes
Je g="/v

massless % I % massive

1
= _ _ 1 —1 0
S 30(7) log(L) S = zc(y)log(m™") ~ L
e sub-volume log-law e saturation to area law
e c(y—0)—1 t
. SUN(L/QjL)NL ............

= ground state entropy of massless Dirac 1| volume taw,..~" area law

e in Gaussian state: L .
subextensive,

C(’y — OO) ~ 7_1/2 . critical Son(L/2,L) ~ s
= compatible with numerics in critical phase Sun(L/2,L) ~ log, L

e non-commuting limit: v = 0 /* *
Ve/ Je

finite temperature initial state
S~ L
= volume law <—> finite temperature massless Dirac

= underpins entanglement transition at finite critical g
= picture qualitatively in line with numerics



Revealing measurement-induced phase transitions by
pre-selection

w/o pre-selection with pre-selection

entangled! yisentangled ; dark state

states : states A

M. Buchhold, T. Miiller, SD,
arxiv:2208.10506 (2022)

Thomas Muller Michael Buchhold



Observability of the transition?

e Standard quantum mechanical observables: need to reproduce identical state
e Randomness of measurements outcomes masks transition in gm observables

way out for Cliffords: Gullans, Huse, PRL (2020); O\/’UOVO\}\}&J&
) ——

* Post-selection problem: exp: C. Noel et al. Nat Phys. (2021)
|91

e Select one string of measurement outcomes (trajectory) select!

e build an ensemble of identical states with same trajectory

= number of outcomes (single site) |%0)

of measurements
2

= post-selection exponentially costly (1) =y

>
e Pre-selection solution: M. Buchhold, T. Miiller, SD, arxiv:2208.10506 (2022) time

e break randomness in measurement outcomes
e steer system into unique representative state in Hilbert space 1 4’?

|Y) - e—
B

pre-selected
state

ol

(dark state) N

= can be done gently: no modification of entanglement structure & [%o)
universal properties (as post-selection)
= no exponential overhead: observable by standard means in

NISQ platforms >
time




Pre-selection concept

e pull MIPT to observable level <—> study measurement averaged density matrix

prist = X[pe)St

e unmodified dynamics w/o preselection:
YO with ﬁ(o)’ j;l(()) _ (EZ(O))T
— x( [i] — 0 fully mixed stationary state
e modified dynamics with pre-selection:

ﬁ(o),i(o) — ﬁ,i such, that

1. There exists a pure dark state representing
one possible measurement outcome,

pp = |D)(D| st X[pp] =0
2. The dark state is unique

3. Modifications preserve symmetries and are
irrelevant in the RG sense

e.g. temporal continuum limt ~ X'[p| =

A

)+ Y Lipkf - ME L )
[

hermitian . T

1Y¢;

..... ‘O.
C{/\j Cl_|_1cl + Czrcl—l—l

ex.: monitored fermions

= pre-select representative state (e.g. with
order parameter)

= directionality in Hilbert space

= phases and phase transitions unmodified



Pre-selection: connection to absorbing state transitions
e dynamics O;p = X (p) = X1(p) + v X2(p)

unitary non-unitary
X1(p) : X2(p)
prefers prefers trajectory entanglement entropy:
entangled product .
e Y= Ve S(ﬁA)N|A|
e unmodified
measurement Y <Ye: S(pa)~|Al],log(|4])
dynamics: _ _ _
product entangled but: extensive configuration entropy

states states




Pre-selection: connection to absorbing state transitions
e dynamics O;p = X (p) = X1(p) + v X2(p)

unitary non-unitary
X1(p) : X2(p) -
prefers prefers trajectory entanglement entropy:
entangled product
. V2% S(pa) ~ |A]°
e unmodified
measurement Y <Ye: S(pa)~|Al],log(|4])
dynamics:
product entangled but: extensive configuration entropy
states states
dynamically dynamically
unstable stable
e pre-selected
dynamics w/
dark state: /5 D
phase transition: pre-selection fails pre-selection succeeds

Y <%Ye: P7PD Y>Ye: P—pp




Pre-selection: connection to (quantum) absorbing state transitions

e dynamics O;p = X (p)

= X1(p) + v X2(p)

unitary non-unitary

Xa(p) :

prefers
entangled (
e unmodified }
measurement Ve A
dynamics:

prefers
product

trajectory entanglement entropy:

V2 Yet S(pa) ~ Al

Y <Ye: S(pa)~ |A] log(|A])

product entangled but: extensive configuration entropy
states states
dynamically dynamically

unstable
e pre-selected
dynamics w/
dark state:

(up to time scale exp in system size)

time

wetting
transition

stable

5 position

wetted/active critical

absorbing/dry

= transition in the dynamics

= structure of absorbing state
transition in Hilbert space!

H. Hinrichsen, Adv. Phys. (2000);
G. Odor, RMP (2004)



Example: 'Classical’ preselection dynamics in monitored fermions

e choice of representative dark state: ~ pp = [101010...)(101010...|

e modify generator of dynamics: condition hopping on state (non-linear in state):

HY - H=H[p with Hl[pp]=0
Wiseman, Milburn, PRL (1993) J = D[pl =2 — (-] = [(u) ])? = (Gugn) ] = [(g2)])?
e distinguishes phases via Néel order

with feedback

= config.
i entropy
= removed!

time
2




Example: 'Classical’ preselection dynamics in monitored fermions

e choice of representative dark state: ~ pp = [101010...)(101010...|

e modify generator of dynamics: condition hopping on state (non-linear in state):

A

HY - H=H[p with Hl[pp]=0
Wiseman, Milburn, PRL (1993) J = ol =2 — (| (1) ] — () ) = ([(ugn) ] — [ (Ryga)])?

e distinguishes phases via Néel order
e dark state phase transition: BKT

w/o feedback with feedback
Tg; S o - . :g ,:f. = .4 — : | | :
15l : : 0 ~vS(L/2)| *32640128256
| Tog L | *3206401286256
1=} B 2 config. o i\ ]
L L : entropy 0.3 % { 10t B .
o o removed! ! I . =
10° =
g £, 0.2 ES = ¢85 i - =0
+ : {3 0 101k =
i )
f ; - 10 = ! =
| gile PO A N S
| | (Rufiy1) s 0020106081
i | ) 1 11 with pre-sgeilecst.i?rgl i \ ’Y
— e 0 | B >lied | " o oo
0 () 1 i 0 1 2
(7 . 70) log L

= entanglement entropies coincide: phases / phase transition unmodified
= but there exist standard gm observables witnessing it



Example: ‘quantum’ preselection modified measurement

operators A
/ [Hv pD] =0
e modify operators: linear in state Op =1ilp, H| —~ E {L}LLZ, pt — 2LlpL2L ElﬁD _ 0
[
z
re ® measurement
correct prese|eCt|On
< e A A entanglement
O THEN @ Uhop Ly = Uy f‘@
- | | [Ulv ﬁl] 7é 0 i
=l 0 Ik @ * non-Gaussian %|
. . evolution -
bt n . physical state
._O_._O_‘_O_._O f —— | | —
target state 0 S(l, L)/ log(L) L
DMRG simulations, M. Buchhold, T. Muller, SD, in progress
e detect transition e field theory
_ 2 ~
| | té_ O1L- Li=n; — exp[iw(c;cm + ¢l ¢))] T
10° = n A n n —
E (AL AN Or Gy + €OS(Ps) — Oppy + cOS(Ps) + 1040,
N
1 I * e Heisenberg-Langevin theory (or equivalent Keldysh)
10_ ; / A A 5 A A ) A A
N (atQ - 0%)%: + 7y €08 ¢y + Y 8iN Gy (Op P + SIN Py ) = &,
| L 8~—16—-—21§—-—32
L0-2 L 8 1623 = irrelevant in weak measurement regime: infinite T state

0 0.2 y 0.4 0.6 = becomes relevant at transition: pinning



Outlook: Quantum absorbing transitions beyond directed percolation?

e Grassberger-Janssen conjecture: No! Janssen, Z. Phys. B (1981); Grassberger, Z. Phys. B (1982)

e Qualitative overview:

classical quantum quantum absorbing
Jc | e gc
* | —

mixed mixed “ pure

e possible pure state scenarios:
Sieberer, Buchhold, SD, ROPP (2016)

e general quantum dynamics w/ dark/absorbing state (or equivalent Keldysh)
Oup=—ilH,pl+~ ) LipL!l — L{LIL;,p} H=) hi—»H=> L] L

repulsive fixed point attractive fixed point

dark/absorbing state

L;|D) =0 Vi

: dark state



Outlook: Quantum absorbing transitions beyond directed percolation?

e Grassberger-Janssen conjecture: No!

e Qualitative overview:

classical
e

Janssen, Z. Phys. B (1981); Grassberger, Z. Phys. B (1982)

quantum
Ye

quantum absorbing

Jc
——

mixed mixed “ pure

e possible pure state scenarios:

Sieberer, Buchhold, Diehl ROPP (2016)

e general quantum dynamics w/ dark/absorbing state (or equivalent Lindblad-Keldysh functional integral)

Oup=—ilH,pl+~ ) LipL! — L{LIL;,p} H=) hi—»H=> L] L

L;|D) =0 Vi dark/absorbing state

product (w/o entanglement)

State

entangled (‘non-trivial vacua’)

w/o conservation law

directed percolation

| D) = (BCS superfluid)

Dynamics

w/ conservation law

1+1: present problem, BKT

d+1,d > 1: tbd

D)

(topological insulator)



Summary

General non-unitary quantum dynamics hosts new types of phases and phase transitions

e here: critical to area law entanglement phase transition

e BKT transition revealed by Keldysh replica field theory

Observability via pre-selection

e |ike post-selection, but no exponential overhead

w/o pre-selection with pre-selection

entangled! yisentangled i dark state

* various strategies for NISQ platforms e S
g’ 2 mixed state mixed state absorbing state
g g % : 1 transition
H H N g 5 entangled ; disentangled entangled disentangled
* link to quantum absorbing state transitions T T )
weak : strong weak : strong
Outlook

e general principles for observability?
e higher dimensions: novel quantum absorbing state transitions beyond directed percolation?

e relation of measurement vs. disorder problems? role of conservation laws? symmetry
classification? Poboiko, Pépperl, Gornyi, Mirlin, arXiv:2304.03138 (2023)

e emergent CFT behavior?







