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The Friedmann universe on one slide

Cosmological principle: universe homogeneous and isotropic on large scales
Line element of a flat FLRW universe with scale factor a(t):

ds® = g (z)dz"dz” = —dt* 4+ a*(t) [dm2 +dy” + sz]



The Friedmann universe on one slide

Cosmological principle: universe homogeneous and isotropic on large scales

Line element of a flat FLRW universe with scale factor a(t):

ds® = g, (z)dz"dz” = —dt* 4 a*(t) [da:2 +dy” + sz]

Friedmann equations for EM tensor of a perfect fluid and equation of state:
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Isotropic cosmic microwave background (CMB)

Surface of last scattering: CMB photons were released

Thomson scattering recombination: photons decouple
baryon-photon plasma universe becomes transparent
universe expands
and cools down ?

Surface of last scattering



Isotropic cosmic microwave background (CMB)
Surface of last scattering: CMB photons were released

Thomson scattering recombination: photons decouple
baryon-photon plasma universe becomes transparent
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Surface of last scattering

Isotropic microwave radiation: perfect black body spectrum
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Horizon problem and inflation

Why do we observe the same CMB temperature from all directions in the sky?

Causal patches at recombination could have never been in causal contact

- Hot pig Bang
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Horizon problem and inflation

Why do we observe the same CMB temperature from all directions in the sky?

Causal patches at recombination could have never been in causal contact

now
Supf, )
Lhace of last scatte™

oL Hot Big Bant -

Inflation: CMB radiation observed today originates from the same causal patch.

Accelerated expansion d/a = —%2(1 4 3w) > 0 requires w < —1/3

Cosmological constant (w = —1) — exponential expansion a(t) =



Scalar field inflation

How is inflation realized? What is the mechanism behind inflation?
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How is inflation realized? What is the mechanism behind inflation?

How did inflation end in order to allow for structure formation?

Dynamical mechanism: scalar “inflaton” field ¢ drives inflation
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Scalar field inflation

How is inflation realized? What is the mechanism behind inflation?

How did inflation end in order to allow for structure formation?

Dynamical mechanism: scalar “inflaton” field ¢ drives inflation
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Scalar field inflation

How is inflation realized? What is the mechanism behind inflation?

How did inflation end in order to allow for structure formation?

Dynamical mechanism: scalar “inflaton” field ¢ drives inflation
1 397 = V(p)
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. “slow-roll inflation”
1'V(¢) almost constant
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I
“reheating” ¥Pend w(t)

Quantify deviation from DeSitter space (V = const.) by slow-roll parameters
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CMB anisotropies and perturbations

Penzias & Wilson WMAP
Temperature
anisotropies:
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CMB anisotropies and perturbations

Penzias & Wilson WMAP
Temperature
anisotropies:
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COBE PLANCK

Tiny temperature anisotropies originate from quantum fluctuations

w(x,t) = @(t) + dp(x,t), G (T, 1) = Guw (1) + 0gun (7, 1)

single field Inflation: adiabatic fluctuations with almost scale-invariant spectrum

=tk (£) A= an (£)T =



Confronting predictions with observations

Slow-roll observables only depend on the inflaton potential (V, V' and V")
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Confronting predictions with observations

Slow-roll observables only depend on the inflaton potential (V, V' and V")
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Confronting predictions with observations

Main observables: primordial power spectra of scalar and tensor perturbations
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Standard Model Higgs boson = inflaton

A fundamental scalar particle has been observed: the SM Higgs boson

My = 125.09 & 0.24 GeV
(ATLAS/CMS)

Events - Fited by

credit: ATLAS collaboration
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Standard Model Higgs boson = inflaton

A fundamental scalar particle has been observed: the SM Higgs boson

My = 125.09 £ 0.24 GeV

i (ATLAS/CMS)
§ " o Ny [GeV]
credit: ATLAS collaboration
Standard Model Higgs potential: vie)
A
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BEH mechanism: ¢ develops nonzero vev v ~ 246 GeV
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Minimal vs. non-minimal Higgs inflation

Natural approach: Higgs boson minimally coupled to gravity (SM-+gravity)
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Minimal vs. non-minimal Higgs inflation

Natural approach: Higgs boson minimally coupled to gravity (SM-+gravity)

MPZ’ 1 2 7>\ 2 2\2
TR 5(690) Vi) |, V—4( vY)

Slo¢l = [ a'ev=g

Does not work: CMB normalization incompatible with Higgs mass

CMB: 1072 ~ A, < 10*A = X ~ 10713, SM: Mu o Vv ~ 107° GeV

Include lowest order of EFT expansion: add non-minimal coupling £ term
[Bezrukov, Shaposhnikov (2008)]
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Tree-level Higgs inflation: Einstein frame and large &
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Tree-level Higgs inflation: Einstein frame and large &

. . . ~ 5\ 2 2 2
Transformation to Einstein frame: §,, = %gw, (g—i) = % (1 + SUU
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Einstein frame potential V flattens out for large field values ¢ > Mp//€
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Tree-level Higgs inflation: Einstein frame and large &

. . . N 5\ 2 2 2
Transformation to Einstein frame: §,, = %gw, (g—i) = % (1 + 3UU )
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Einstein frame potential V flattens out for large field values ¢ > Mp//€
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For £ ~ 10® — 10" and A ~ 0.1 CMB and Higgs constraints can be satisfied:

Ao<£—2~109 My ~ Vv ~ 125 GeV

Inflationary observables in excellent agreement with observations

ns ~ 0.967, r ~0.003
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Quantum corrections and renormalization group flow

Quantum contributions of heavy SM particles to effective potential important
[Barvinsky, Kamenshchik, Starobinksy (2008)]
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Energy scales of Standard Model and inflation separated by Ei,¢/v ~ 10'*

Renormalization group flow: evaluate running couplings at Fins
[Bezrukov, Shaposhnikov (2009)], [De Simone, Hertzberg, Wilczek (2009)],
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Quantum corrections and renormalization group flow

Quantum contributions of heavy SM particles to effective potential important
[Barvinsky, Kamenshchik, Starobinksy (2008)]

Energy scales of Standard Model and inflation separated by Ei,¢/v ~ 10'*
Renormalization group flow: evaluate running couplings at Fins

[Bezrukov, Shaposhnikov (2009)], [De Simone, Hertzberg, Wilczek (2009)],
[Barvinsky, Kamenshchik, Kiefer, Starobinksy, CS (2009)]

A(t) flows to very small values at high energies and can even become negative
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Implications of a light Higgs: status of the model

Different scenarios for positive A:

1.) Universal: ng, r almost insensitive to My and M, (typically & ~ 10%)

2.) Critical: ng, r very sensitive to My and M; (typically & ~ 10, large r)
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Implications of a light Higgs: status of the model

Different scenarios for positive A:

1.) Universal: ng, r almost insensitive to My and M, (typically & ~ 10%)

2.) Critical: ng, r very sensitive to My and M; (typically & ~ 10, large r)
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Electroweak vacuum becomes unstable for negative \:
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f(R) gravity and quantum
parametrization dependence



f(R) gravity and Starobinsky inflation

Geometrical modification of Einstein's theory — f(R) gravity:

Slg] = / d'ay/~gf(R)

Propagates in addition to spin-two graviton a massive spin-zero “scalaron”
[Stelle (1977)]
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f(R) gravity and Starobinsky inflation

Geometrical modification of Einstein's theory — f(R) gravity:

Slg] = / d'ay/~gf(R)

Propagates in addition to spin-two graviton a massive spin-zero “scalaron”
[Stelle (1977)]

Earliest and most successful model of inflation: Starobinsky inflation

[Starobinsky (1980)]
_ M 1 o
F(R) =55 (R+ ok

Same inflationary predictions as Higgs inflation for M2/3M? = X\ = £ ~ 10"
[Barvinsky, Kamenshchik and Starobinsky (2008)], [Bezrukov, Gorbunov (2012)] [Kehagias, Dizgah, Riotto (2014)]
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Equivalence of f(R) gravity and scalar-tensor theories

Manifestation of a more general classical equivalence: S®F[§, 4] < S¥[g]
GEF [~ - 4 SIMp 5 1 o
S7g, 0l = [ dwy/ =g Tng(aSO) - V(o)

b =N 5 \f o _ MR- f
v — 77 2 = —Mp1 s = -
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S'lg) = / Aoy ~gf(R)
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Equivalence of f(R) gravity and scalar-tensor theories

Manifestation of a more general classical equivalence: S®F[§, 4] < S¥[g]
GEF 4 Mp 5 1 2 7
§5 0.1 = [ aey/=a | "R - @007 - V)
R fi R \/E . MEAR-f
v = G, =4/ Mpln f1, =
$ i Uogu ¥ B pIn fi Vv 4 (f1)? i
s'lg] = /d4wx/—gf(R)

Does the equivalence extend to the quantum level?

ger sr
tree level \

one-loop level
f'lzs = ) F]f

Perturbative calculations in theories of gravity (on a general background)
['t Hooft and Veltman (1974)], [Christensen and Duff (1980)], [Fradkin and Tseytlin (1982)], [Avramidi and
Barvinksy (1983)] ,[Goroff and Sagnotti (1985)], [van de Ven (1992)]
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One-loop calculations in modified theories of gravity

One-loop divergences for a scalar-tensor theory, G = (Ruvpo)? — 4(Ry)? + R?
[Barvinksy, Karmazin, Kamenshchik (1993)], [Shapiro and Takata (1995)], [Kamenshchik and CS (2011)]
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One-loop calculations in modified theories of gravity

One-loop divergences for a scalar-tensor theory, G = (Ruvpo)? — 4(Ry)? + R?
[Barvinksy, Karmazin, Kamenshchik (1993)], [Shapiro and Takata (1995)], [Kamenshchik and CS (2011)]
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One-loop divergences for f(R) gravity, (E., = fi 2087 /6g"", E = ¢"VE,.)
[Ruf and CS (2018a)]
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Off-shell dependence and observables in cosmology

Comparison: off-shell quantum parametrization dependence
[Ruf and CS (2018b)]
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Off-shell dependence and observables in cosmology

Comparison: off-shell quantum parametrization dependence
[Ruf and CS (2018b)]

i i 1 3 1
Ff div _ FEF div _ d4 1/2E _7Euy _ 7R/,Ll/
i ! 3272 ) 9 Ty 36
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NpyPp 220l 1h 20 Al w40
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div

On-shell (E,, = E = 0) the equivalence is restored Flf’ — F1EF|diV =0

Similar result for quantum equivalence between Jordan and Einstein frame
[Kamenshchik and CS (2014)], [Kamenshchik and CS (2015)]
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Off-shell dependence and observables in cosmology

Comparison: off-shell quantum parametrization dependence
[Ruf and CS (2018b)]

i i 1 3 1
Ff div _ FEF div _ d4 1/2E _7Euy _ 7Rpu/
i ! 3272 ) 9 Ty 36
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div div
- It ™ =0

On-shell (E,, = E = 0) the equivalence is restored Flf’
Similar result for quantum equivalence between Jordan and Einstein frame
[Kamenshchik and CS (2014)], [Kamenshchik and CS (2015)]

Beta functions are derived from off-shell divergences: running couplings inherit
parametrization (and gauge) dependence in naive RG improvement

Manifest gauge and parametrization independent observables in cosmology?
Geometric (“unique”) effective action?

[Vilkovisky (1984)], [DeWitt 1985)],[Kamenshchik and CS (2014)], [Kamenshchik and CS (2015)], [Moss
(2014)], [Bounakis and Moss (2018)]
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Conclusions

Non-minimal coupling allows to unify particle physics and early cosmology

Higgs inflation is economical (no additional particles) and predictive

Gravity+SM might be perturbative QFT up to Planck scale

Tighter experimental bounds on M, and r are crucial:
1.) Vacuum (in)stability very sensitive to value of the top mass M;

2.) Detection of primordial gravitational waves would fix tensor-to-scalar ratio r

Need for unambiguous quantum observables in cosmology
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