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Cosmic history
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The Friedmann universe on one slide

Cosmological principle: universe homogeneous and isotropic on large scales

Line element of a flat FLRW universe with scale factor a(t):

ds2 = gµν(x)dxµdxν = −dt2 + a2(t)
[
dx2 + dy2 + dz2]

Friedmann equations for EM tensor of a perfect fluid and equation of state:

H2 =

(
ȧ

a

)2

=
κ

3
ρ

ρ̇ = −3H (ρ+ p)

p = ω ρ

 ρ ∝ a−3 (ω+1)

epoch ω ρ(a) a(t)

matter 0 a−3 t2/3

radiation 1/3 a−4 t1/2

vacuum −1 const. eHt

a(t0) ∆x

expansion ∆t = t1 − t0

matter radiation vacuum

a(t1) ∆x

ln ρ(a)

ln a

ρinf ∼ const.

ρr ∼ a−4

ρm ∼ a−3

ρde ∼ const.
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Isotropic cosmic microwave background (CMB)

Surface of last scattering: CMB photons were released
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Surface of last scattering

Isotropic microwave radiation: perfect black body spectrum

Projection of the sphere

TCBM ' 2.7 K

Discovered by Penzias & Wilson, 1964

COBE collaboration
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Horizon problem and inflation

Why do we observe the same CMB temperature from all directions in the sky?

Causal patches at recombination could have never been in causal contact

Hot Big Bang

surface of last sc
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Inflation: CMB radiation observed today originates from the same causal patch.

Accelerated expansion ä/a = −κρ
6

(1 + 3ω) > 0 requires ω ≤ −1/3

Cosmological constant (ω = −1) → exponential expansion a(t) = eHt
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Scalar field inflation

How is inflation realized? What is the mechanism behind inflation?

How did inflation end in order to allow for structure formation?

Dynamical mechanism: scalar “inflaton” field ϕ drives inflation

S[ϕ, g] =

∫
d4x
√
−g
[
−1

2
∂µϕ∂

µϕ− V (ϕ)

]
, ωϕ =

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

During inflation ϕ slowly rolls (ϕ̇2 � V ) down the the potential ωϕ ≈ −1

V (ϕ)

ϕ(t)

ϕ̇(t)

ϕend

�slow-roll in�ation�

V (ϕ) almost constant

�reheating�

Quantify deviation from DeSitter space (V = const.) by slow-roll parameters

εV =
M2

P

2

(
V ′

V

)2

, ηV = M2
P
V ′′

V
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CMB anisotropies and perturbations

1964
1992

2003
2013

Temperature
anisotropies:
∆T
T
' 10−5T ' 2.7K

Penzias & Wilson

COBE

WMAP

PLANCK

Tiny temperature anisotropies originate from quantum fluctuations

ϕ(x, t) = ϕ̄(t) + δϕ(x, t), gµν(x, t) = ḡµν(t) + δgµν(x, t)

single field Inflation: adiabatic fluctuations with almost scale-invariant spectrum

Ps(k) = As(k∗)

(
k

k∗

)ns−1+...

, Pt(k) = At(k∗)

(
k

k∗

)nt+...

, r :=
At

As
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Confronting predictions with observations

Slow-roll observables only depend on the inflaton potential (V , V ′ and V ′′)

As =
2

24π2εV

V

M4
P

, ln
(
1010As

)
= 2.975± 0.056 68% CL

ns = 1 + 2ηV − 6εV , r = 16εV

Planck 2018 results, arXiv:1807.06211
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Confronting predictions with observations

Main observables: primordial power spectra of scalar and tensor perturbations

Ps(k) =: As(k∗)

(
k

k∗

)ns−1+...

, Pt(k) =: At(k∗)

(
k

k∗

)nt+...

, r :=
At

As

Slow-roll inflation: observables depend on the inflaton potential V

As =
2

24π2εV

V

M4
P

, ns = 1 + 2ηV − 6εV , r = 16εV

What is the fundamental nature of the inflaton field?

from: Astron. Astrophys. 594 (2016) A20
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Standard Model Higgs boson = inflaton

A fundamental scalar particle has been observed: the SM Higgs boson

MH = 125.09± 0.24 GeV

credit: ATLAS collaboration

(ATLAS/CMS)

Standard Model Higgs potential:

V (ϕ2) =
λ

4
(ϕ2 − v2)2

0−v v ϕ

V (ϕ)

BEH mechanism: ϕ develops nonzero vev v ' 246 GeV
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Minimal vs. non-minimal Higgs inflation

Natural approach: Higgs boson minimally coupled to gravity (SM+gravity)

S[g, ϕ] =

∫
d4x
√
−g

[
M2

P

2
R− 1

2
(∂ϕ)2 − V (ϕ)

]
, V =

λ

4

(
ϕ2 − v2)2

Does not work: CMB normalization incompatible with Higgs mass

CMB: 10−9 ' As ∝ 104λ⇒ λ ' 10−13, SM: MH ∝
√
λv ∼ 10−5 GeV

Include lowest order of EFT expansion: add non-minimal coupling ξ term
[Bezrukov, Shaposhnikov (2008)]

S[g, ϕ] =

∫
d4x
√
−g

[
U(ϕ)R− 1

2
(∂ϕ)2 − V (ϕ)

]
, U =

1

2

(
M2

P + ξϕ2)

11



Minimal vs. non-minimal Higgs inflation

Natural approach: Higgs boson minimally coupled to gravity (SM+gravity)

S[g, ϕ] =

∫
d4x
√
−g

[
M2

P

2
R− 1

2
(∂ϕ)2 − V (ϕ)

]
, V =

λ

4

(
ϕ2 − v2)2

Does not work: CMB normalization incompatible with Higgs mass

CMB: 10−9 ' As ∝ 104λ⇒ λ ' 10−13, SM: MH ∝
√
λv ∼ 10−5 GeV

Include lowest order of EFT expansion: add non-minimal coupling ξ term
[Bezrukov, Shaposhnikov (2008)]

S[g, ϕ] =

∫
d4x
√
−g

[
U(ϕ)R− 1

2
(∂ϕ)2 − V (ϕ)

]
, U =

1

2

(
M2

P + ξϕ2)

11



Minimal vs. non-minimal Higgs inflation

Natural approach: Higgs boson minimally coupled to gravity (SM+gravity)

S[g, ϕ] =

∫
d4x
√
−g

[
M2

P

2
R− 1

2
(∂ϕ)2 − V (ϕ)

]
, V =

λ

4

(
ϕ2 − v2)2

Does not work: CMB normalization incompatible with Higgs mass

CMB: 10−9 ' As ∝ 104λ⇒ λ ' 10−13, SM: MH ∝
√
λv ∼ 10−5 GeV

Include lowest order of EFT expansion: add non-minimal coupling ξ term
[Bezrukov, Shaposhnikov (2008)]

S[g, ϕ] =

∫
d4x
√
−g

[
U(ϕ)R− 1

2
(∂ϕ)2 − V (ϕ)

]
, U =

1

2

(
M2

P + ξϕ2)

11



Tree-level Higgs inflation: Einstein frame and large ξ

Transformation to Einstein frame: ĝµν = 2U
M2

P
gµν ,

(
∂ϕ̂
∂ϕ

)2

=
M2

P
2U

(
1 + 3U

′2

U

)

Ŝ[ĝ, ϕ̂] =

∫
d4x
√
−ĝ
[
M2

P

2
R(ĝ)− 1

2
(∂ϕ̂)2 − V̂

]

Einstein frame potential V̂ flattens out for large field values ϕ�MP/
√
ξ

31 32 33 34 35 36 37 38

0

2.×10-11

4.×10-11

6.×10-11

8.×10-11

φ

V
/M
P
4

1

4

λ

ξ2
=const.

λ

4
(φ/MP )

4 V̂

M4
P

=
V

4U2

=
λ

4

(
ϕ2 − v2

)2
(M2

P + ξϕ2)2 '
1

4

λ

ξ2

For ξ ' 103 − 104 and λ ' 0.1 CMB and Higgs constraints can be satisfied:

As ∝
λ

ξ2
' 10−9, MH '

√
λv ' 125 GeV

Inflationary observables in excellent agreement with observations

ns ' 0.967, r ' 0.003
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Quantum corrections and renormalization group flow

Quantum contributions of heavy SM particles to effective potential important
[Barvinsky, Kamenshchik, Starobinksy (2008)]

Energy scales of Standard Model and inflation separated by Einf/v ' 1014

Renormalization group flow: evaluate running couplings at Einf

[Bezrukov, Shaposhnikov (2009)], [De Simone, Hertzberg, Wilczek (2009)],
[Barvinsky, Kamenshchik, Kiefer, Starobinksy, CS (2009)]

λ(t) flows to very small values at high energies and can even become negative
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Implications of a light Higgs: status of the model

Different scenarios for positive λ:

1.) Universal: ns, r almost insensitive to MH and Mt (typically ξ ∼ 103)

2.) Critical: ns, r very sensitive to MH and Mt (typically ξ ∼ 10, large r)

33 34 35 36
t

1. ´ 10-11

2. ´ 10-11

3. ´ 10-11

4. ´ 10-11

5. ´ 10-11

V
ïHtL�MP

4

1.)

33 34 35 36
t

1. ´ 10-11

2. ´ 10-11

3. ´ 10-11

4. ´ 10-11

5. ´ 10-11

V
ïHtL�MP

4

2.)

Electroweak vacuum becomes unstable for negative λ:

Tunnelling: EW vacuum metastable if lifetime τEW ∼ Γ−1
tunnel > τuniverse

30 32 34 36 38 40

-1.×10-11

0

1.×10-11

2.×10-11

3.×10-11

t=ln (φ/Mt )

V
/M
P
4

from: JHEP 1312 (2013) 089

Instability sign of new physics or SM+gravity valid up to MP?
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1.) Universal: ns, r almost insensitive to MH and Mt (typically ξ ∼ 103)

2.) Critical: ns, r very sensitive to MH and Mt (typically ξ ∼ 10, large r)
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2.)

Electroweak vacuum becomes unstable for negative λ:

Tunnelling: EW vacuum metastable if lifetime τEW ∼ Γ−1
tunnel > τuniverse
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f (R) gravity and quantum
parametrization dependence

15



f(R) gravity and Starobinsky inflation

Geometrical modification of Einstein’s theory — f(R) gravity:

S[g] =

∫
d4x
√
−gf(R)

Propagates in addition to spin-two graviton a massive spin-zero “scalaron”
[Stelle (1977)]

Earliest and most successful model of inflation: Starobinsky inflation
[Starobinsky (1980)]

f(R) =
M2

P

2

(
R+

1

6M2
R2

)

Same inflationary predictions as Higgs inflation for M2
P/3M

2 = λ = ξ ' 104

[Barvinsky, Kamenshchik and Starobinsky (2008)], [Bezrukov, Gorbunov (2012)] [Kehagias, Dizgah, Riotto (2014)]

ns = 1− N

2
, r =

12

N2
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Equivalence of f(R) gravity and scalar-tensor theories

Manifestation of a more general classical equivalence: ŜEF[ĝ, ϕ̂]⇔ Sf [g]

ŜEF[ĝ, ϕ̂] =

∫
d4x
√
−ĝ
[
M2

P

2
R̂− 1

2
(∂ϕ̂)2 − V̂ (ϕ̂)

]

l ĝµν =
f1

U0
gµν , ϕ̂ =

√
3

2
MP ln f1, V̂ =

M4
P

4

f1R− f
(f1)2

l

Sf [g] =

∫
d4x
√
−gf(R)

Does the equivalence extend to the quantum level?

Perturbative calculations in theories of gravity (on a general background)
[’t Hooft and Veltman (1974)], [Christensen and Duff (1980)], [Fradkin and Tseytlin (1982)], [Avramidi and

Barvinksy (1983)] ,[Goroff and Sagnotti (1985)], [van de Ven (1992)]
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−ĝ
[
M2

P

2
R̂− 1

2
(∂ϕ̂)2 − V̂ (ϕ̂)

]
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One-loop calculations in modified theories of gravity

One-loop divergences for a scalar-tensor theory, Ĝ = (R̂µνρσ)2 − 4(R̂µν)2 + R̂2

[Barvinksy, Karmazin, Kamenshchik (1993)], [Shapiro and Takata (1995)], [Kamenshchik and CS (2011)]

Γ̂ EF
1

∣∣div
=

1

32π2ε

∫
d4x ĝ1/2

{
− 71

60
Ĝ − 43

60
R̂µνR̂

µν − 1

40
R̂2 +

1

6
R̂V̂2 −

1

2

(
V̂2

)2

+ U−1
0

[
13

3
R̂ V̂ +

1

3
R̂ (∂µϕ̂∂

µϕ̂) + 2
(
V̂1

)2

+ 2 V̂2 (∂µϕ̂∂
µϕ̂)

]
− U−2

0

[
5 V̂ 2 + V̂ (∂µϕ̂∂

µϕ̂) +
5

4
(∂µϕ̂∂

µϕ̂)2

]}

One-loop divergences for f(R) gravity, (Eµν = f−1
1 δSf/δgµν , E = gµνEµν)

[Ruf and CS (2018a)]

Γ f1
∣∣div

=
1

32π2ε

∫
d4x g1/2

[
−71

60
G − 609

80
RµνR

µν +
1

3

f

f2
− 115

288

(
f

f1

)2

− 1

18

(
f1

f2

)2

− 15

64

f

f1
R+

3919

1440
R2 +

15

64
R∆ ln f1 + E

(
55

108
E

−419

432

f

f1
+

2933

864
R+

221

288
∆ ln f1

)
− Eµν

(
403

96
Eµν +

2987

288
Rµν
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Ĝ − 43

60
R̂µνR̂

µν − 1

40
R̂2 +

1

6
R̂V̂2 −

1

2

(
V̂2

)2

+ U−1
0

[
13

3
R̂ V̂ +

1

3
R̂ (∂µϕ̂∂

µϕ̂) + 2
(
V̂1

)2

+ 2 V̂2 (∂µϕ̂∂
µϕ̂)

]
− U−2

0

[
5 V̂ 2 + V̂ (∂µϕ̂∂

µϕ̂) +
5

4
(∂µϕ̂∂

µϕ̂)2

]}

One-loop divergences for f(R) gravity, (Eµν = f−1
1 δSf/δgµν , E = gµνEµν)

[Ruf and CS (2018a)]

Γ f1
∣∣div

=
1

32π2ε

∫
d4x g1/2

[
−71

60
G − 609

80
RµνR

µν +
1

3

f

f2
− 115

288

(
f

f1

)2

− 1

18

(
f1

f2

)2

− 15

64

f

f1
R+

3919

1440
R2 +

15

64
R∆ ln f1 + E

(
55

108
E

−419

432

f

f1
+

2933

864
R+

221

288
∆ ln f1

)
− Eµν

(
403

96
Eµν +

2987

288
Rµν

)]
18



Off-shell dependence and observables in cosmology

Comparison: off-shell quantum parametrization dependence
[Ruf and CS (2018b)]

Γ f1
∣∣div − Γ EF

1

∣∣div
=

1

32π2ε

∫
d4x g1/2Eµν

[
−3

4
Eµν − 1

36
Rµν

+

(
91

108
E +

53

54
R− 421

216

f

f1
− 1

18

f1

f2
− 26

9
∆ ln f1

)
gµν
]
6= 0

On-shell (Eµν = E = 0) the equivalence is restored Γ f1
∣∣div − Γ EF

1

∣∣div
= 0

Similar result for quantum equivalence between Jordan and Einstein frame
[Kamenshchik and CS (2014)], [Kamenshchik and CS (2015)]

Beta functions are derived from off-shell divergences: running couplings inherit
parametrization (and gauge) dependence in näıve RG improvement

Manifest gauge and parametrization independent observables in cosmology?
Geometric (“unique”) effective action?
[Vilkovisky (1984)], [DeWitt 1985)],[Kamenshchik and CS (2014)], [Kamenshchik and CS (2015)], [Moss

(2014)], [Bounakis and Moss (2018)]
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Conclusions

Non-minimal coupling allows to unify particle physics and early cosmology

Higgs inflation is economical (no additional particles) and predictive

Gravity+SM might be perturbative QFT up to Planck scale

Tighter experimental bounds on Mt and r are crucial:

1.) Vacuum (in)stability very sensitive to value of the top mass Mt

2.) Detection of primordial gravitational waves would fix tensor-to-scalar ratio r

Need for unambiguous quantum observables in cosmology
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