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THE GRAVITATIONAL FIELD

GENERAL RELATIVITY: background independence! 

FIELDS ⟷ GAUGE SYMMETRIES

U(1) 
SU(2)
SU(3)

SL(2,C)l

GRAVITY AS AN INTERACTING GAUGE FIELD
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IN THIS TALK

GAUGES IN  
GENERAL RELATIVITY

LOOP  
QUANTUM GRAVITY

- diffeos 
- Lorentz{ - graph/lattice 

- group variables{

GAUGE VARIABLES are the handle for the possible interactions of  a system



GAUGE 
invariant or not?
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GAUGE SYMMETRIES

 
■  Local Yang-Mills gauge transformations  
■  Local Lorentz transformations  
■  Diffeomorphism gauge transformations 

DIRAC 
    A system is gauge invariant  
      if  evolution is under-determined. 

DETERMINISM 
Classical physics is deterministic  
→  consider only gauge invariant quantities  
                        as “PHYSICAL”

t

ϕ

t̂

~ϕ(t)
ϕ(t)

Rovelli, Why gauge? 2013

Francesca Vidotto


Francesca Vidotto
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SYMMETRIES: GUIDE OR REDUNDANCY?

REDUNDANCY

Arkani-Hamed, Cachazo, Kaplan (’10): gauge is just a complication! 

AdS/CFT: physics coded on the asymptotic boundary 

… 

GAUGE INVARIANCE: INTERPRETATION, NOT COUPLING

We interpret a physical system in terms of  its gauge invariant objects 

Necessity of  coupling the system via non-gauge-invariant variables! 

COUPLING GAUGE SYSTEM

  EM: 

  Gravity:

: EFFECTIVENESS OF GAUGE UNEXPLAINED!

F = dA L =  ̄(�µAµ) 

gµ⌫ L =
p
ggµ⌫T

µ⌫

Gauge-invariant coupling from gauge-variant variables 

Rovelli, Why gauge? 2013
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ROVELLI’S SPACE FLEET

L1 =
1

2

N�1X

n=1

(ẋn�1 � ẋn)
2L1 =

1

2

N�1X

n=1

(ẏn�1 � ẏn)
2

Lint =
1

2
(ẏ1 � ẋN )2

M-1 relative distances

EXTRA DOF: more gauge-inv observables than in the single systems

an = xn+1 � xn n = 1, ..., n� 1

 
Gauge invariant observables:  
N-1 relative distances

Rovelli, Why gauge? 2013
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GAUGE AND RELATIONALITY

RELATIONALITY  
The observables of  a system are not its gauge-dependent quantities  
but rather the relation between them:  

                     In fact, we always deal with subsystems. 
HOLISM 
The observables of  the coupled system are more than the sum of  individual ones. 
Gauge-dependent variables contain information about how to couple systems. 

MEASUREMENT  VS  PREDICTIONS  
Gauge variables are what we measure but we cannot predict (Partial Observables). 
A couple of  gauge variables is gauge invariant and it allows predictions. 

These insights applies directly to General relativity and Quantum Mechanics.  
To carry the space fleet analogy for Yang-Mills theory requires some care!  (The, 2013)

Dirac observables are always relational

Rovelli, Why gauge? 2013
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Examples 

Time 

General Relativity 

Yang-mills Field
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GENERAL RELATIVITY

BACKGROUND INDEPENDENCE 
Bodies are only localized with respect to one another.  
Bodies includes all dynamical objects, also the gravitational field.  
Spacetime is built up by contiguity relations:  
                           the fact of  being “next to one another”. 

GRAVITY AS A GAUGE THEORY  
The proper time over a world line is a partial observable. 
Only if  I have a second clock I can make predictions. 

COUPLING TO A MATERIAL REFERENCE SYSTEM  
The components of  the gravitational field with respect to the directions defined 
by the matter system are gauge-invariant quantities of  the coupled system;  
but they are gauge-dependent quantities of  the gravitational field,  
measured with respect to a given external frame. 

VANISHING HAMILTONIAN 
Project on the physical space ignoring the partial observables,  
                                                                               that are non-gauge-invariant.
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BOUNDARY FORMALISM

Time is pure gauge, the Hamiltonian constraint determine time evolution 
Gauge-constraint for the internal gauge 

Democratisation of  gauges: they all determine dynamical constraints 
among partial observables measured at the boundaries of  a process.

Oeckl, 2003

(qn, pn, t)

(q0n, p
0
n, t

0)

✓n

✓0n

These constraints code the full content of  a dynamical theory: 
Yang-Mills constraint determines variable change  
wrt a change of  the internal boundary frame.  
Diff constraint determines variable change  
wrt a change in the location of  the spatial boundary reference frame.  
Hamiltonian constraint dertermines collective variable change  
wrt a change in the temporal location of  the boundary (time of  measurement) 

Indeterminacy ⟷ arbitrariness of  the frame choice. 

Dynamics is the study of  relations between partial observables  
that are gauge-dependent quantities of  a system to which we can couple an apparatus.
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LOOP QUANTUM GRAVITY

(H,A,W)          defines a background independent quantum field theory 

⇥
Li
a, L

j
b

⇤
= i�ab⇤

2⇥ijk L
k
a

And God said 
 

and there was
SPACETIME

(H,A,W)

H� = L2[SU(2)L/SU(2)N ]
Hilbert Space:                                         

Operator Algebra:

Wv = (PSL(2,C) � Y� �v)(1I)
Transition Amplitude:
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Loop Quantum Gravity  
Kinematics
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                                                SU(2) generators  
            gravitational field operator (tetrad)             

QUANTUM GEOMETRY

⌅Ll = {Li
l}, i = 1, 2, 3

Gll� = �Ll · �Ll�
X

l2n

Gll0 = 0

l

Gll�

l�

Al

Gauge invariant operator                                 with 

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897)

  Abstract graphs:  Γ={N,L}           

  Group variables:                                                                      

  Graph Hilbert space:  

  The space         admits a basis     

  Gauge invariant operator                                 with 

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897) 

         “Holonomy of  the Ashtekar-Barbero connection along the link” 

                                                SU(2) generators  
            gravitational field operator (tetrad) 

~Ll 2 su(2)

hl 2 SU(2){
H� = L2[SU(2)L/SU(2)N ]

H� |�, j`, vni

Gll� = �Ll · �Ll�
X

l2n

Gll0 = 0

⌅Ll = {Li
l}, i = 1, 2, 3

hl

Francesca VidottoLoop Quantum Gravity

HILBERT SPACE & OPERATOR ALGEBRA

l

Gll�

l�

Al

ls(l)

t(l)

  
•

•

••

• •

•
•

•

vn

jl
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REPRESENTING GEOMETRIES

    Composite operators:  

     Area:                                     

     Volume:                                           

     Angle:  

    Geometry is quantized: DISCRETE:  eigenvalues are discrete 
FUZZY:  the operators do not commute 
quantum superposition (coherent states)

A� =
�

l��

⇥
Li

lL
i
l.

VR =
�

n�R

Vn, V 2
n =

2
9

|�ijkLi
lL

j
l�L

k
l”|.

Li
lL

i
l0

`P =

r
h̄G
c3 ⇠ 10�35 m

“Without a deep revision of  classical notions it seems hardly 
possible to extend the quantum theory of  gravity also to 
[the short-distance] domain.”        Matvei Bronstein

 Lorentz invariance is compatible with quantum discreteness!  
                                                         (do not confuse with classical discreteness)  
     Same as the angular momentum: the discrete spectrum does not break the rotational symmetry. 
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          “Holonomy of  the Ashtekar-Barbero connection along the link” 

                                                SU(2) generators  
            gravitational field operator (tetrad)             

QUANTUM GEOMETRY

4D

3D
2D

1D

Extrinsic Curvature 

Intrinsic Curvature

⌅Ll = {Li
l}, i = 1, 2, 3

hl

Gll� = �Ll · �Ll�
X

l2n

Gll0 = 0

l

Gll�

l�

Al

Gauge invariant operator                                 with 

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897)

  Abstract graphs:  Γ={N,L}           

  Group variables:                                                                      

  Graph Hilbert space:  

  The space         admits a basis     

  Gauge invariant operator                                 with 

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897) 

         “Holonomy of  the Ashtekar-Barbero connection along the link” 

                                                SU(2) generators  
            gravitational field operator (tetrad) 

~Ll 2 su(2)

hl 2 SU(2){
H� = L2[SU(2)L/SU(2)N ]

H� |�, j`, vni

Gll� = �Ll · �Ll�
X

l2n

Gll0 = 0

⌅Ll = {Li
l}, i = 1, 2, 3

hl
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HILBERT SPACE & OPERATOR ALGEBRA

l

Gll�

l�

Al

ls(l)

t(l)

  
•

•

••

• •

•
•

•

vn

jl



  Abstract graphs:  Γ={N,L}           

  Group variables:                                                                      

  Graph Hilbert space:  

  The space         admits a basis   

~Ll 2 su(2)

hl 2 SU(2){
H� = L2[SU(2)L/SU(2)N ]

H� |�, j`, vni
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HILBERT SPACE

ls(l)

t(l)

  
•

•

••

• •

•
•

•

vn

jl

Restrict the states to a fixed graph with a finite number N of nodes.  
This defines an approximated kinematics of  the universe,  
inhomogeneous but truncated at a finite number of  cells. 

The graph captures the large scale d.o.f. obtained averaging the metric  
over the faces of  a cellular decomposition formed by N cells.

The full theory can be regarded as an expansion for growing N.  
For instance FRW cosmology corresponds to the lower order where there is only  
a regular cellular decomposition: the only d.o.f. is given by the volume. 

Different graphs can be useful to model different physical situations.

•    •
•       •

•
•      •
•      •

•      •

•

...•      •
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L L(β)

Lorentz invariance and quantum discreteness are compatible

=> Geometry is quantum geometry

L L(β)

Lorentz invariance and quantum discreteness are compatible

=> Geometry is quantum geometry

Geometry is a quantum geometry!  
A boost do not change the spectrum 
of  geometrical quantities, only their 
probability to be measured. 

QUANTUM DISCRETENESS IS COMPATIBLE WITH LORENTZ INVARIANCE

Classical discreteness breaks Lorentz invariance. Quantum discreteness does not!  

Example:  ROTATIONAL INVARIANCE 

Classical: a vector with only  
discrete components breaks SO(3). 

Quantum: quantum vector with  
discrete eigenvalues is compatible with  
a SO(3) invariant theory.



Francesca VidottoLoop Quantum Gravity

All physical QFT are constructed via a truncation of  the d.o.f.   (cfr: particles in QED, lattice in QCD) 

All physical calculation are performed within a truncation. 

The limit in which all d.o.f. is then recovered is pretty different in QED and QCD:

+ +   ....

→ →  ....

Lattice site = small region of  space = excitations of  the gravitational field = quanta of  space = quanta of  the field

CONVERGENCE BETWEEN QED & QCD PICTURES

QUANTUM GRAVITY Diff  invariance !   [Rovelli, Ditt-invariance, 2011]   

The lattice is not on spacetime, it is spacetime!             Lattice = Feynaman diagram !!!



LPlanck ⌧ L ⌧
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On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli
Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which

remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical

interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-

able q 2 C, and lagrangian L(q, q̇). Given an initial con-

figuration q at time t and a final configuration q
0
at time

t
0
, let qq,t,q0,t0 : ! C be a solution of the equations of

motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t
0
) = q

0
. Assume

for the moment this exists and is unique. The Hamilton

function is the function on (C ⇥ )
2
defined by

S(q, t, q
0
, t

0
) =

Z
t
0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the

equation of motion determined by given initial and final

data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has

remarkable properties and is a powerful tool that remains

meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the

system and |qi the eigenstates of its q observables. The

transition amplitude

W (q, t, q
0
, t

0
) = hq0|e� i

~H(t
0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-

mulation, it can be written as

W (q, t, q
0
, t

0
) =

Z
q(t

0
)=q

0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇)

. (3)

In the limit in which ~ can be considered small, this can

be evaluated by a saddle point approximation, and gives

W (q, t, q
0
, t

0
) ⇠ e

i
~S(q,t,q

0
,t

0
)
. (4)

That is, the classical limit of the quantum theory can be

obtained by reading out the Hamilton function from the

quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q
0
, t

0
) = S(q, t, q

0
, t

0
). (5)

The functional integral in (3) can be defined either by

perturbation theory around a gaussian integral, or as a

limit of multiple integrals. Let us focus on the second def-

inition, useful in non-perturbative theories such as lattice

QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-

tion of the lagrangian. The multiple integral

WN (q, t, q
0
, t

0
) =

Z
dqn

µ(qn)
e

i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t
0�t)/N ⌘

na, and the boundary data are q0 = q and qN = q
0
, has

two distinct limits. The continuous limit

lim
N!1

WN (q, t, q
0
, t

0
) = W (q, t, q

0
, t

0
) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q
0
, t

0
) = SN (q, t, q

0
, t

0
). (8)

gives the Hamilton function of the classical dis-

cretized system, namely the value of the actionP
N

n=1
aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-

tremizes this action at given boundary data. The dis-

cretization is good if the classical theory is recovered as

the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q
0
, t

0
) = S(q, t, q

0
, t

0
). (9)

Summarizing:
C
o
n
ti
n
u
o
u
s

li
m

it
��
��

��
��

��
��

��
��
!

Exact quantum gravity

transition amplitudes

W (hl)

~!0���!
General relativity

Hamilton function

S(q)

C
!

1
��
��
!

�
!

1
��
��
!

LQG

transition amplitudes

WC(hl)

~!0���!
Regge

Hamilton function

S�(lib
)

Classical limit�����������������������!

TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-

ingful in di↵eomorphism invariant systems and o↵ers an

excellent conceptual tool for dealing with background in-

dependent physics. To see this, let’s first consider its gen-

eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about

background independence. The system considered above

STRUCTURE OF THE THEORY

No critical point  
No infinite renormalization 
Physical scale: Planck length

Viability of  the expansion:  
first radiative corrections are logarithmic  (Riello’12) 

Regime of  validity of  the expansion:
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LIMIT ℏ⟶0

→

DISCRETE  

FUZZY  

PROBABILISTIC

NO DISCRETENESS  

NO FUZZYNESS  

A CLASSICAL FIELD

・
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LIMIT ℏ⟶0

→

DISCRETE  

FUZZY  

PROBABILISTIC

NO DISCRETENESS  

NO FUZZYNESS  

A CLASSICAL FIELD
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Loop Quantum Gravity  
Dynamics
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THE THEORY

(H,A,W)          defines a background independent quantum field theory 

⇥
Li
a, L

j
b

⇤
= i�ab⇤

2⇥ijk L
k
a

And God said 
 

and there was
SPACETIME

(H,A,W)

H� = L2[SU(2)L/SU(2)N ]
Hilbert Space:                                         

Operator Algebra:

Wv = (PSL(2,C) � Y� �v)(1I)
Transition Amplitude:
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SL(2,C) ! SU(2)

Boundary                                     and 
gauge s.t. tetrads are diagonal

Ki =
1

�
eo ^ eiBoi = Li = eo ^ eiBij =

A =

Z

R
eo ^ ei =

Z

R
�Ki =

Z

R
Li

ni = (1, 0, 0, 0)

S[e,�] =

Z
B[e] ^ F [�] B = (e ^ e)⇤ +

1

�
(e ^ e)Action where

A REMINDER OF THE CLASSICAL THEORY

Simplicity constraint

Variables                             and ! = !adx
a 2 sl(2,C)e = eadx

a 2 R(1,3)

Lorentzian area

~K = �~L
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NO HIDDEN DOF

~K + �~L = 0

Spinfoam dynamics = constrained BF theory ⇥, B = (e ^ e)⇤ +
1

�
(e ^ e)

P 0

P

z

t

Constantly accelerated observer:

generators of  boosts 

generator of  proper time evolutionE = aKz

Kz

Jacobson ‘95: if                             holds, then  
for any point and any observer  
the Einstein’s equations follow. 

dE = a dA

Frodden-Gosh-Perez ‘11: dE = a dA

black hole
= dS

T T

8⇡G = 1

simplicity constraint + Lorentz invariance + general covariance = GR
[Baez-Bunn ‘15 , Chirco,-Haggard,-Riello,-Rovelli, ‘14]



Francesca VidottoLoop Quantum Gravity

LIMIT ℏ⟶0

→

DISCRETE  

FUZZY  

PROBABILISTIC

NO DISCRETENESS  

NO FUZZYNESS  

A CLASSICAL FIELD
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FEYNMAN GRAPH SPINFOAM
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SL(2,C) ! SU(2)

Boundary                                     and 
gauge s.t. tetrads are diagonal

Ki =
1

�
eo ^ eiBoi = Li = eo ^ eiBij =

A =

Z

R
eo ^ ei =

Z

R
�Ki =

Z

R
Li

ni = (1, 0, 0, 0)

S[e,�] =

Z
B[e] ^ F [�] B = (e ^ e)⇤ +

1

�
(e ^ e)Action where

A REMINDER OF THE CLASSICAL THEORY

Simplicity constraint

Variables                             and ! = !adx
a 2 sl(2,C)e = eadx

a 2 R(1,3)

Lorentzian area

~K = �~L



Francesca VidottoLoop Quantum Gravity

DYNAMICS

W(�) =
�

�

⇥

f

djf

⇥

v

Wv

�  “spinfoam”: two-complex with faces     and edges      
                       colored with spins and intertwiners,  
                                  bounded by    �

rep rep SU(2) SL(2, C)

dj = 2j + 1

Wv = (PSL(2,C) � Y� �v)(1I)

Y� : Hj ⌅�⇤ Hj ⇥ H(p=�(j+1), k=j).

f e

Wv

 σ :  spinfoam
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SPINFOAM AMPLITUDES

www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf 

• •

•

•

•

Superposition principle 

Locality: vertex amplitude 

Lorentz covariance 

Unitary irreducible representations 

Simplicity constraint 

Classical limit: GR

P (�) = |�W |�⇥|2

Amplitude associated to a state     of  a boundary of  a 4d region �

Probability amplitude

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov ’08]
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BOUNDARY FORMALISM

Spacetime region

Boundary

A = W ( )

Boundary state

Amplitude of the process

 =  in ⌦  out

Spacetime is a process, a state is what happens at its boundary.

QUANTUM MECHANICS

Process 
State 

 
 

← Locality → 

GENERAL RELATIVITY

Spacetime region 
Boundary, space region
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SPINFOAM AMPLITUDES

P (�) = |�W |�⇥|2

Superposition principle 

Locality: vertex amplitude 

Lorentz covariance 

Unitary irreducible representations 

Simplicity constraint 

Classical limit: GR

Amplitude associated to a state     of  a boundary of  a 4d region �

Probability amplitude

�W |⇥⇥ =
�

�

W (�)

W (�) �
�

v

Wv.

Wv = (PSL(2,C) � Y� �v)(1I)

boundary graph

3d boundary

4d

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov ’08]

Barrett, Dowall, Fairbain, Gomes, Hellmann,  Alesci...’09

~K = �~L

a spin network history
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FROM QUANTUM TO CLASSICAL

FROM QUANTUM TO CLASSICAL  
The classical limit is ℏ⟶ 0 , the limit for ∞ quanta is relevant for the continuous limit 
No thermodynamical limit is needed at that stage. 

EMERGENCE OF SPACETIME IS STANDARD CLASSICAL EMERGENCE  
just as the electromagnetic field emerges from photons 

SPACETIME IN THE QUANTUM REGIME IS MADE OF QUANTA  
■ there is no classical spacetime in the quantum regime 
■ same as in Q.E.D. where there are photons 

SPACETIME IN THE QUANTUM REGIME IS A QUANTUM PROCESS  
■ states are defined by the continuity relations between quanta 
■ a spinfoam is a quantum interaction, but also a spacetime region
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CONCLUSIONS

REALITY NOT MADE BY GAUGE-INVARIANT QUANTITIES ONLY  
gauge-variant quantities are not a mathematical redundancy: systems couple via gauge-dependent quantities  
gauge variables are components of  relational observables which depend on more than a single component 

LOOP QUANTUM GRAVITY

GRAPHS are a natural diff  invariant structures 
no Lorentz invariance breaking 

      lattice site = small region of  space = excitations of  the gravitational field = quanta of  space = quanta of  the field 

KINEMATICS is based on group variables and gauge invariant states 
discrete fuzzy geometry

LORENTZIAN DYNAMICS obtained quantizing the simplicity constrain 
it maps the SU(2) boundary states into the Lorentzian bulk

GAUGES IN  
GENERAL RELATIVITY

LOOP  
QUANTUM GRAVITY

- diffeos 
- Lorentz{ - graph/lattice 

- group variables{
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Gauge is ubiquitous. 
It is not unphysical redundancy of our mathematics. It reveals the relational 

structure of our world.


