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Exercise 1: Actions for general relativity

In a D-dimensional Lorentzian manifold (M, gw), consider the I'2- and Einstein—Hilbert actions [1]
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where s := 871G, § = det gy, 'y is the Christoffel symbol, and R the Ricci scalar.

1. Find the difference between Sp2 and Sgp.
2. Argue that applying the Hamilton’s principle to Sy leads to the Einstein field equations.

3. Sp2 is not general invariant. Does it affect the classical dynamics?

Remark. Sr» was proposed by Einstein [2]. For a historical discussion of Sgy, see [3, 4].

Exercise 2: Boundary integral in Einstein—Hilbert action

The Einstein-Hilbert action contains second derivatives, which could break the Hamilton’s principle, that
only works for Lagrangians containing at most first derivatives [5, sec. 1.1]. Adding a boundary integral fixes
this problem [6, sec. 1.1.1], which we study here following [7].

Consider variation of Sgy in eq. (2) in a region V < M, where the boundary JV is smooth; for simplicity, it
is also space-like, namely a tangential vector of ¢V is always space-like.

1. We know that 22c8Sgy = Sv db x4/ —§ Guv dgh¥ + 25¢ I, where Gy is the Einstein tensor. Use the gener-
alised Stokes’ theorem to argue that

Z%I[gyv] = ‘[}V dD_lx\/%nH (gpv 5]"”‘00 — gl”/ EFPPV) , 3)

where 1" is a normal vector field, n¥n, = —1; h = det hij, hij is the induced metric on 0V in the internal
holonomic basis, which we do not need here.

Be aware that in the external holonomic basis, the induced metric reads hy,, = gy + nyny, where nt is
the tangential vector of 0V, n¥n, = —1.

2. The final goal in this exercise is to separate V&g and g in the integrand in eq. (3). Here is how
Padmanabhan proceeded.

Show that eq. (3) can be transformed to

2 I[g] = LV P 1xv/i {(on" + g omy), — 5(2n) + iy 08} )

Note that én* = §(¢"'ny) = §¢"" ny + gh" dny # g dny!
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3. JV is a hypersurface, which will be studied in a later exercise. The result will show that
(ont + ¢ dny ), = (dn" 4 g dny) |, + nunfny,y 58, (5)

where | is the induced covariant derivative on 0V. Use eq. (5) and show that

25 I[gy] = f o xy/i {(on" + " smy) ), = 8(2n1) + (mu + munPru) 881} ©6)
oV
4. Define (a la [6, eq. (4.45)])
Kyy =ty +nynfny,, K:=g"Kyy. (7)
Be aware of the following properties
x 1 /=
Ky =Ky, n'Kyy =0, K=nly; MNh= ~3 hhyy SHHY. (8)

Use eq. (8) and show that
2] = f a1/ 5 4 g 8my)), — 22 85GHY — f xR (Khy — Kyy) 8B, (9)
oV v

Schy = 1 J delx\/%K. (10)
> Joy

There might be some sign problems here. Please help me to correct them!

Remark 1. The variation of § was left as Exercise 18 in Relativity I WS1819.

Remark 2. In eq. (9), the third integral vanishes if 5g""|,,, = 0 (more precisely, 5h*" = 0 is sufficient; n" can
be arbitrary); the first integral can be pushed to the boundary of 0V, i.e. 3*V, which deserves further study
(e.g. [8] and the references therein) but can be ignored here. The second term is what we use to cancel the
second derivatives in Sgy and is usually called the Gibbons—Hawking—York term.

Exercise 3: Fierz—Pauli action in vacuum

The Fierz-Pauli action [9] (Might be wrong in sign!)

1
Sgp [f;ﬂ/] = @ JM de {WWVPUWAK [fptr,/\ (szv,y - fvu,K) - fw,A (Zpr,y - fp;t,K)] } (11)
can be derived by expanding the metric around the flat one

Suv = M + 8y, 58uv = fuv (12)
and expanding an action for the Einstein field equations to the second order.

1. For Sp2 in eq. (1), argue that the zeroth and first order terms in the expansion vanishes, and
1
Sra [ + fw] = 5 fM 47 {’7”V<5Fppv 8Ty = 81 ug 8T py) + O((fw)3) } : (13)

2. Argue that expanding Sgp gives the same result as in eq. (13), up to boundary terms.

3. Use Riemannian normal coordinates to argue that

1
FMVP = 577#/\ (f/\v,p _fvp,?\ ‘|“pr,1/) + O((f;w)z) for Suv = Huv Jrfyv- (14)

4. Insert eq. (14) into eq. (13) and show that
Sra o+ fi) = St ] + | 4PxO((fw)?). 5

5. Does eq. (11) reproduces [6, eq. (2.20)]?
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Remark. By applying the Hamilton’s principle, Sgp leads to the linearised Einstein equations, which was
left as Exercise 33 in Relativity I WS1819. However, I do not find an easy way to write down an
action given those equations.
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