ver. 1.0

Sixth exercise sheet on Relativity and Cosmology I

Winter term 2018/19

Release: Mon, Nov. 26th Submit: Mon, Dec. 3rd in lecture Discuss: Thu, Dec. 6th

Exercise 17 (7 points): Covariant derivative I: Metricity and torsion

An affine connection $\widetilde{\nabla}$, also known as a covariant derivative $\widetilde{\nabla}_i$, can be defined by its connection coefficients $\widetilde{\Gamma}^i{}_{kj}$, which transform in the same way as the Christoffel symbols. The covariant derivative of a tensor $A^i{}_j$ is then

$$\widetilde{\nabla}_i A^j_k := \partial_i A^j_k + \widetilde{\Gamma}^j_{il} A^l_k - \widetilde{\Gamma}^l_{ik} A^j_l.$$

 $\widetilde{
abla}$ can be characterised by its *non-metricity* and *torsion*, defined as

$$Q_{ijk}(\widetilde{\nabla}) := -\widetilde{\nabla}_i g_{jk}, \qquad T^i{}_{jk}(\widetilde{\nabla}) := 2 \, \widetilde{\Gamma}^i{}_{[jk]} \equiv \widetilde{\Gamma}^i{}_{jk} - \widetilde{\Gamma}^i{}_{kj}.$$

- **17.1** Let T^{\cdots} be a (q, p)-tensor. Argue that $\widetilde{\nabla}_i T^{\cdots}$ is a (q, p+1)-tensor. Are Q_{ijk} and T^i_{jk} tensors?
- **17.2** Let ∇ be the *Levi-Civita connection* in (pesudo-)Riemannian space, whose coefficients are given by the *Christoffel symbols of the second kind* $\Gamma^i{}_{kj}$. Show that the metric is *covariantly constant*, i.e. $\nabla_k g_{ij} = -Q_{kij}(\nabla) \equiv 0$, $\nabla_k g^{ij} \equiv 0$; furthermore, show that $T^i{}_{jk}(\nabla) \equiv 0$.
- **17.3** Let the non-metricity and torsion of $\widetilde{\nabla}$ be zero. Show that $\widetilde{\nabla}$ is necessarily Levi-Civita.

Exercise 18 (7 points): *Derivative of a determinant*

Let $g = \det g_{ij}$ be the metric determinant, d the dimension of the manifold; $\tilde{\epsilon}^{ij...m}$ and $\varepsilon_{ij...m}$ the *Levi-Civita* symbols, taking values +1 (or -1) for even (or odd) permutations of the indices, denoted in the lecture as $\varepsilon(ij...m)$.

18.1 From the definition of g, argue that

$$g = \frac{1}{d!} \tilde{\epsilon}^{ik...m} \tilde{\epsilon}^{jl...n} g_{ij} g_{kl} \dots g_{mn}, \qquad \frac{1}{g} = \frac{1}{d!} \epsilon_{ik...m} \epsilon_{jl...n} g^{ij} g^{kl} \dots g^{mn},$$

which implies $\widetilde{\epsilon}^{ij\ldots k}$ ($\underline{\epsilon}_{ij\ldots k}$) is a tensor density of weight +1 (-1).

18.2 Express g_{ij} (and g^{ij}) in terms of d, g, $\varepsilon_{ij...k}$ (or $\tilde{\epsilon}^{ij...k}$) and g^{ij} (or g_{ij}). Show that the determinant variation can be given by

$$\delta g = +gg^{ij}\,\delta g_{ij} = -gg_{ij}\,\delta g^{ij}.$$

18.3 Express $\partial g/\partial x^i$ in terms of g and the Christoffel symbols.

Exercise 19 (6 points): Covariant derivative II: Vector densities

19.1 Let V^i be a vector field and $\tilde{V}^i := \sqrt{|g|} V^i$ be the corresponding vector density of weight 1. Show that

$$abla_i \, V^i = rac{1}{\sqrt{|g|}} \, \partial_i \! \! \left(\sqrt{|g|} \, V^i
ight)$$
 , and $abla_i \, \widetilde{V}^i = \partial_i \, \widetilde{V}^i$.

- **19.2** The Laplace–Beltrami operator for a scalar field ϕ is given by $\Box \phi := \nabla^i \nabla_i \phi$.
 - Rewrite $\Box \phi$ such that the result only contains *partial* derivatives, instead of covariant derivatives.
 - As an example, calculate the operator in spherical coordinates of a 3-dimensional Euclidean space.