Sixth exercise sheet on Relativity and Cosmology II

Summer term 2021

Release: Mon, May 31 ${ }^{\text {st }}$
Submit: Mon, Jun. $7^{\text {th }}$ on ILIAS
Discuss: Thu, Jun. $10^{\text {th }}$

Exercise 46 (6 credit points): Kruskal-Szekeres coordinates
46.1 Derive the line element of the Schwarzschild metric in Kruskal-Szekeres coordinates as given in the lecture

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{32(G M)^{3}}{r} \mathrm{e}^{-r / 2 G M}\left(-\mathrm{d} T^{2}+\mathrm{d} X^{2}\right)+r^{2} \mathrm{~d} \Omega^{2} \tag{1}
\end{equation*}
$$

For this purpose, introduce a tortoise radial coordinate (for $r>2 G M$) as follows

$$
\begin{equation*}
r_{*}=r+2 G M \ln \left(\frac{r}{2 G M}-1\right) \tag{2}
\end{equation*}
$$

Then perform the coordinate transformation:

$$
\begin{equation*}
X=\exp \left(\frac{r_{*}}{4 G M}\right) \cosh \left(\frac{t}{4 G M}\right), \quad T=\exp \left(\frac{r_{*}}{4 G M}\right) \sinh \left(\frac{t}{4 G M}\right) \tag{3}
\end{equation*}
$$

46.2 In the previous semester you have seen a similar transformation to a line element which had nothing to do with the Schwarzschild solution. Find this line element and the corresponding diagram, and compare it with the Schwarzschild metric in Kruskal-Szekeres coordinates in eq. (2).

Exercise 47 (5 credit points): Another set of coordinates for the Schwarzschild spacetime

Construct a coordinate system for the Schwarzschild metric that is singularity-free at the event horizon by transforming the Schwarzschild time t according to

$$
\begin{equation*}
t \rightarrow T=t+f(r) \tag{4}
\end{equation*}
$$

Determine $f(r)$ by imposing that the prefactor of $d r^{2}$ is equal to +1 in the transformed line element. Write out the transformed line element. Is it still static? Which parts of the Kruskal diagram are covered by these coordinates?

Exercise 48 (9 credit points): Penrose diagrams

48.1 Express the line element for Minkowski spacetime in terms of spherical coordinates (t, r, θ, ϕ). Then perform a coordinate transformation

$$
\begin{equation*}
u=t-r, \quad v=t+r . \tag{5}
\end{equation*}
$$

Write out the transformed line element. How can one interpret the coordinates u and v ?
48.2 Perform another coordinate transformation $(u, v) \mapsto\left(u^{\prime}, v^{\prime}\right)$ according to

$$
\begin{equation*}
u^{\prime}=\arctan (u)=: t^{\prime}-r^{\prime}, \quad v^{\prime}=\arctan (v)=: t^{\prime}+r^{\prime} \tag{6}
\end{equation*}
$$

Draw a $\left(t^{\prime}, r^{\prime}\right)$ diagram and hatch the area covered by these coordinates. Then draw a radial light ray in this diagram that goes from infinity (in the original coordinates) to $r=0$ and back to infinity.
In a second $\left(t^{\prime}, r^{\prime}\right)$ diagram, sketch the areas $t=$ const. and $r=$ const.
48.3 Calculate the line element in the primed coordinates and show that it is conformal to the line element

$$
\begin{equation*}
\mathrm{d} \bar{s}^{2}=-4\left(\mathrm{~d} t^{\prime 2}-\mathrm{d} r^{\prime 2}\right)+\sin ^{2}\left(2 r^{\prime}\right) \mathrm{d} \Omega^{2} \tag{7}
\end{equation*}
$$

