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Exercise 49 (15 credit points): Interior solution for spherically symmetric stars

On the fifth sheet, in exercise 45 you have started from the general line element of a spherically symmetric
spacetime,

ds2 = ´ e2a(r,t) dt2 + e2b(r,t) dr2 + r2 dΩ2 , (1)

and solved the Einstein equations for vacuum, resulting in the Schwarzschild spacetime. In this exercise,
consider instead of vacuum a stationary ideal fluid

Tµ
ν = ´ (ρ(r) + p(r)) δ

µ
0 δ0

ν + p(r) δ
µ
ν , (2)

with mass density ρ(r) and pressure p(r).

49.1 Starting from the Einstein tensor for a general spherically symmetric metric derived for exercise 45,
show that the Einstein equations reduce to

e2b(r) =

(
1´

2GM(r)
r

)´1

, with M(r) = M0 + 4π
ż r

0
dr̃ ρ(r̃) r̃2 , (3)

a(r) = ´b(r)´ 4πG
ż 8

r
dr̃ e2b(r̃) r̃ (ρ(r̃) + p(r̃)) . (4)

You do not need to consider G2
2 = 8πG T2

2 and G3
3 = 8πG T3

3. They can be reduced to the Tolman–
Oppenheimer–Volkoff equation, which will be derived below in a different way.

49.2 Show that one can recover the Schwarzschild solution by setting ρ = p = 0. To describe a star in
equilibrium, what value should be chosen for the constant M0, and why?

49.3 Finally, derive the Tolman–Oppenheimer–Volkoff equation from the covariant conservation of the energy-
momentum tensor,

dp
dr

= ´
G
(

M(r) + 4π r3 p(r)
)

r2
(

1´ 2GM(r)
r

) (ρ(r) + p(r)) . (5)

Is it possible to have a pressureless spherically symmetric star in equilibrium?

Exercise 50 (5 credit points): Misner–Sharp mass

A notion of mass useful for spherically symmetric stars is the Misner–Sharp mass. For spacetimes with line
elements of the form

ds2 = γI JdxIdx J + r2 dΩ2 , (6)

where I, J do not run over the angular variables (θ, φ), it is defined as

MMS =
r

2G

(
1´ γI Jr,I r,J

)
. (7)

50.1 Evaluate the Misner–Sharp mass for line elements of the form (1). What values does it take for the
solution from exercise 49 and for the Schwarzschild solution?
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50.2 From the Einstein equations for (1) you computed for exercise 45, show that under the assumption
T00 ě 0 the Misner–Sharp mass is everywhere non-decreasing with r.

Note that due to the possible occurrence of so-called trapped surfaces, this is not sufficient to prove that the
Misner–Sharp mass is always positive. The full proof is much more involved, and also requires a stronger restric-
tion on the energy-momentum tensor.


