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Exercise 55 (20 credit points): Derivation of the Friedmann equations in Cartan calculus

The aim of this exercise is to derive the Friedmann equations using the Cartan formalism.
We start with the Robertson-Walker line element in coordinates that is given by:
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Remember that in terms of the pseudo-orthogonal coframe basis {ﬂi}, i=0,...,3, the metric takes the form
ds? = ;0@ = -0'@° +9' @' + P @¥* + @ 9°. (2)

The Latin letters are used for anholonomic frame indices, whereas Greek letters are used for holonomic
coordinate indices.

55.1 Write out the components of a suitable coframe basis. For convenience, use the definition w = v/1 — kr2.
55.2 Calculate the exterior derivatives d®'. Insert these into the first Cartan structure equation
dd' +w'j At =0 ©)
to determine the 1-form-valued components ' j of the connection.

55.3 Calculate the curvature 2-forms )/ j by using the second Cartan structure equation
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and read off the anholonomic components R jki of the Riemann curvature tensor.
Intermediate result: The non-vanishing anholonomic components of the Riemann curvature tensor read
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55.4 Determine the anholonomic components of the Ricci tensor R;; = R%;; as well as the Ricci scalar
R =7 Rjj. Note that for the contraction of anholonomic indices the Minkowski metric has to be used.

55.5 Calculate the mixed components of the Einstein tensor in the holonomic coordinate basis
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55.6 Use the energy—momentum tensor of an ideal fluid with energy density p and pressure p given by

{TMy} = diag(—p(t), p(t), p(t), p(t)) 8)

to write out the Einstein equations G#, = 8nG T#,, which are called Friedmann equations in this case.
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