ver. 1.01

Second exercise sheet on Relativity and Cosmology II

Summer term 2023

Release: Thu, Apr. 20th

Submit: Thu, Apr. 27th

Discuss: Thu, May 4th

In the following exercises, consider the coordinates (t, r, θ, ϕ) . The 2-*dimensional equatorial spatial slice* Σ is defined by t = const., $\theta = \pi/2$, and its induced metric reads $d\sigma_{\Sigma}^2$. Moreover, the Schwarzschild metric in such coordinates reads

$$\mathrm{d}s^2 = -f(r)\,\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\,\mathrm{d}\Omega^2\,, \qquad f(r) \coloneqq 1 - \frac{R_\mathrm{S}}{r}\,, \quad R_\mathrm{S} \coloneqq 2GM\,, \quad \mathrm{d}\Omega^2 \coloneqq \mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2\,.$$

Furthermore, denote the Euclidean metric on \mathbb{R}^n by $d\vec{x}_{\mathbb{R}^n}^2$.

Exercise 38 (10 points): Schwarzschild metric in isotropic coordinates

Consider a coordinate transformation

$$r = \left(1 + \frac{R_{\rm S}}{4\overline{r}}\right)^2 \overline{r}, \qquad t = \overline{t}, \quad \theta = \overline{\theta}, \quad \phi = \overline{\phi}.$$

38.1 Express the Schwarzschild metric in the new cooordinates $(\bar{t}, \bar{r}, \bar{\theta}, \bar{\phi})$, which are called *isotropic*.

38.2 Compare briefly the metric components in old and new coordinates at the event horizon $R_S = 2GM$.

38.3 In the *standard* coordinates, consider a radial range $R_S < r < R$.

Use the *isotropic* coordinates to calculate

- the surface area on the equatorial spatial slice between these radii, and
- the volume of a spherical shell with t = const. within the range.

38.4 Compare your results in **38.3** to the corresponding quantities in the Euclidean space.

Exercise 39 (4 points): Isometric embedding I: the Schwarzschild space

39.1 Consider the cylindrical coordinates (ρ, ψ, z) of \mathbb{R}^3 . Set

$$\left. d\vec{x}_{\mathbb{R}^3}^2 \right|_{z=z(r)} \equiv d\sigma_{\Sigma}^2$$

and integrate the resulting equation (Flamm's paraboloid).

39.2 In the current case, if $d\sigma_{\Sigma}^2 \to d\vec{x}_{\mathbb{R}^2}^2$ as $r \to +\infty$, Σ is called *asymptotically flat*.

Analytically extend the embedding in **39.1**, and show that there can be *two* distinct regions, which are both asymptotically flat (*Einstein and Rosen*).

Hint: Sketching the embedding may help.

Exercise 40 (6 points): *Isometric embedding II: a wormhole*

Consider a spacetime \mathcal{M}_W with the metric

$$\mathrm{d}s^2 = -\,\mathrm{d}t^2 + \mathrm{d}r^2 + \left(b^2 + r^2\right)\mathrm{d}\Omega^2$$

where b is a constant of dimension length.

- **40.1** Argue briefly that the equatorial spatial slice Σ of \mathcal{M}_W is representative for the latter.
- **40.2** Consider the cylindrical coordinates (ρ, ψ, z) of \mathbb{R}^3 . Set

$$\left. \mathbf{d} \vec{x}_{\mathbb{R}^3}^2 \right|_{\rho = \rho(r), z = z(r)} \equiv \mathbf{d} \sigma_{\Sigma}^2$$

and integrate the resulting equation for *z* and ρ .

40.3 Argue briefly that there is a hole-like structure in \mathcal{M}_W .

Hint: Sketching the embedding may help.

Remark. The Einstein tensor of the metric reads

$$G_{\mu\nu} dx^{\mu} dx^{\nu} = \frac{b^2}{\left(b^2 + r^2\right)^2} \left(-dt^2 - dr^2 + \left(b^2 + r^2\right) d\Omega^2\right).$$

If the matter were modelled by an ideal fluid, its energy density would turn out to be negative,

$$\rho = T_{\mu\nu} u^{\mu} u^{\nu} = -\frac{1}{\varkappa} \frac{b^2}{\left(b^2 + r^2\right)^2} < 0.$$

In other words, matter with negative energy density is needed to source this spacetime.

Inversely, one may also ask, if it is possible to have a viable wormhole spacetime sourced by matter with positive energy density. Under precise and additional assumptions, this has been excluded by the so-called *topological censorship theorem*.