ver. 1.00

Third exercise sheet on Relativity and Cosmology II

Summer term 2023

Release : Thu, Apr 27 th	Submit: Thu, May 4 th	Discuss: Thu, May 11 th
--	----------------------------------	------------------------------------

Exercise 41 (14 points): *Redshift in the Schwarzschild spacetime*

Consider a stationary^{*} observer \mathcal{A} at r = R, $R \ge 2GM$ in the Schwarzschild spacetime of mass M and an observer \mathcal{B} at infinity. The timelike Killing vector shall be denoted by $\xi^{\mu} = (1, 0, 0, 0)$. Furthermore, we define the quantity $V^2 := -\xi_{\mu}\xi^{\mu}$. Observer \mathcal{A} emits energy with frequency ω_R (measured in her/his rest frame) which is measured by observer \mathcal{B} as being ω_{∞} .

- **41.1** Express the four-velocity u^{μ} of observer \mathcal{A} in terms of ξ^{μ} and V and use this to derive the relation between the frequencies ω_R and ω_{∞} .
- **41.2** What does observer \mathcal{B} measure when observer \mathcal{A} reaches the Schwarzschild radius r = 2GM? What does this mean for the redshift?

Exercise 42 (6 points): *Time dilation in the Schwarzschild spacetime*

Show that the proper time $d\tau$ on a circular geodesic in the Schwarzschild geometry of mass *M* obeys the relation:

$$\mathrm{d}\tau = \sqrt{1 - \frac{3GM}{r}} \,\mathrm{d}t \;.$$

Use this to give an estimate for the time dilation of a satellite flying in a low orbit around the Earth.

^{*}A stationary observer is an observer in a stationary spacetime whose 4-velocity u^{μ} is proportional to the given timelike Killing vector.