Fourth exercise sheet on Relativity and Cosmology II

Summer term 2023

Release: Thu, May $4^{\text {th }}$

Submit: Thu, May 11 ${ }^{\text {th }}$

Discuss: Thu, May $25^{\text {th }}$

Exercise 43 (15 credit points): Differential forms

43.1 Consider a n-dimensional manifold with a metric. Let $\left\{\omega^{i}\right\}$ be an orthonormal co-basis of 1-forms, and let ω be the preferred volume form $\omega=\omega^{1} \wedge \omega^{2} \wedge \ldots \wedge \omega^{n}$.
Show that, in an arbitrary coordinate system $\left\{x^{k}\right\}$, the following holds:

$$
\begin{equation*}
\omega=\sqrt{|g|} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n} \tag{1}
\end{equation*}
$$

where g denotes the determinant of the metric, whose components $g_{i j}$ are given in these coordinates.
43.2 The contraction of a p-form ω (with components $\omega_{i j \ldots k}$) with a vector v (with components v^{i}) is given by $[\omega(v)]_{j \ldots k}=\omega_{i j \ldots k} v^{i}$. Consider the n-form $\omega=d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n}$.
Show that, with a given vector field v, the following holds:

$$
\begin{equation*}
d[\omega(v)]=v^{i}{ }_{, i} \omega \tag{2}
\end{equation*}
$$

43.3 Define $\left(\operatorname{div}_{\omega} v\right) \omega:=d[\omega(v)]$.

Show that, by using coordinates in which ω has the form $\omega=f d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{n}$, the following holds:

$$
\begin{equation*}
\operatorname{div}_{\omega} v=\frac{1}{f}\left(f v^{i}\right)_{, i} \tag{3}
\end{equation*}
$$

43.4 In three-dimensional Euclidean space, the preferred volume form is given by $\omega=d x \wedge d y \wedge d z$.

Show that, in spherical coordinates, this volume form is given by $\omega=r^{2} \sin \theta d r \wedge d \theta \wedge d \phi$.
Use the result of 43.3 to show that the divergence of a vector field

$$
\begin{equation*}
v=v^{r} \frac{\partial}{\partial r}+v^{\theta} \frac{\partial}{\partial \theta}+v^{\phi} \frac{\partial}{\partial \phi^{\prime}} \tag{4}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\operatorname{div} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v^{\theta}\right)+\frac{\partial v^{\phi}}{\partial \phi} . \tag{5}
\end{equation*}
$$

Exercise 44 (5 credit points + 8 bonus points): Electrodynamics in flat space-time

Differential forms are a convenient tool for field theories, as we will show in this exercise on the example of Maxwell electrodynamics in Minkowski space-time. We know that electromagnetic field strength is given by Faraday antisymmetric tensor $F_{\mu v}$, and the current is given by j^{μ}. In the language of exterior calculus, $F_{\mu \nu}$ are components of the Faraday 2-form F describing an arbitrary electromagnetic field, given by

$$
\begin{equation*}
\mathbf{F}:=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}=-E_{x} d t \wedge d x-E_{y} d t \wedge d y-E_{z} d t \wedge d z+B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y \tag{6}
\end{equation*}
$$

while j^{μ} are components of the current 1 -form \mathbf{j} is given by

$$
\begin{equation*}
\mathbf{j}:=j_{\mu} d x^{\mu}=-\rho d t+j_{x} d x+j_{y} d y+j_{z} d z \tag{7}
\end{equation*}
$$

44.1 The Hodge star operator \star maps p-forms to $(4-p)$-forms. Therefore, 2 -forms are mapped to 2 -forms by this operator. The 2 -form dual to the Faraday 2 -form is the Maxwell 2 -form, defined by $\mathbf{G}:=\star \mathbf{F}$.
The Hodge star operator acts on the 2-form basis as follows

$$
\begin{equation*}
\star\left(d x^{\mu} \wedge d x^{\nu}\right)=\frac{1}{2} \eta^{\mu \alpha} \eta^{\nu \beta} \varepsilon_{\alpha \beta \gamma \delta} d x^{\gamma} \wedge d x^{\delta} \tag{8}
\end{equation*}
$$

where $\eta^{\mu \nu}=\operatorname{diag}(-1,+1,+1,+1)$ is the inverse Minkowski metric and $\varepsilon_{\alpha \beta \gamma \delta}$ totally anti-symmetric Levi-Civita tensor density $\left(\varepsilon_{0123}=+1\right)$. For example,

$$
\begin{equation*}
\star(d t \wedge d x)=-d y \wedge d z, \quad \text { etc. } \tag{9}
\end{equation*}
$$

Show that the Maxwell 2-form is given by

$$
\begin{equation*}
\mathbf{G}=B_{x} d t \wedge d x+B_{y} d t \wedge d y+B_{z} d t \wedge d z+E_{x} d y \wedge d z+E_{y} d z \wedge d x+E_{z} d x \wedge d y \tag{10}
\end{equation*}
$$

Which relation between the components of \mathbf{F} and \mathbf{G} holds?
44.2 Bonus exercise. With these definitions, the Maxwell equations can be written in a compact form: $d \mathbf{F}=0$ and $d \mathbf{G}=4 \pi \star \mathbf{j}$, therefore,
a) Show that the equation $d \mathbf{F}=0$ corresponds to the two homogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{B}=0 \quad \text { and } \quad \vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}=0 \tag{11}
\end{equation*}
$$

b) Calculate $\star \mathbf{j}$ (a 3-form), which is the dual of the current 1-form \mathbf{j}. For that, use the following relations

$$
\begin{equation*}
\star d x^{\mu}=\frac{1}{3!} \eta^{\mu \alpha} \varepsilon_{\alpha \beta \gamma \delta} d x^{\beta} \wedge d x^{\gamma} \wedge d x^{\delta} \tag{12}
\end{equation*}
$$

for example

$$
\begin{equation*}
\star d t=-d x \wedge d y \wedge d z, \quad \text { etc. } \tag{13}
\end{equation*}
$$

c) Then show that the equation $d \mathbf{G}=4 \pi \star \mathbf{j}$ corresponds to the two inhomogeneous Maxwell equations

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho \quad \text { and } \quad \vec{\nabla} \times \vec{B}-\partial_{t} \vec{E}=4 \pi \vec{j} \tag{14}
\end{equation*}
$$

d) What can you do to turn eq. 11) into eq. 14 in the vacuum case?
44.3 Bonus exercise. The exterior derivative is nilpotent, i.e. the relation $d(d \boldsymbol{\omega})=0$ holds for any p-form $\boldsymbol{\omega}$. Choosing $\omega=\star \mathbf{j}$, show that this yields the continuity equation $\partial_{t} \rho-\vec{\nabla} \cdot \vec{j}=0$.
44.4 Bonus exercise. Explain in your own words why a covariant derivative is needed on a curved background, and give special attention to the connection. What is the intuitive interpretation of the connection? Why can it be chosen to be zero in Minkowski space-time?

