$13^{\text {th }}$ exercise sheet on Relativity and Cosmology I
 Winter term 2012/13

Deadline for delivery: Monday, $28^{\text {th }}$ January 2013 at the end of the lecture.

Exercise 32 (20 credit points): Differential forms

32.1 Consider an n-dimensional manifold with a metric. Let $\left\{\omega^{i}\right\}$ be an orthonormal basis of 1-forms, and let ω be the preferred volume form $\omega=\omega^{1} \wedge \omega^{2} \wedge \cdots \wedge \omega^{n}$.
Show that in an arbitrary coordinate system $\left\{x^{k}\right\}$ the following holds:

$$
\omega=\sqrt{|g|} \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n}
$$

where g denotes the determinant of the metric whose components $g_{i j}$ are given in these coordinates.
32.2 The contraction of a p-form ω (with components $\omega_{i j \ldots k}$) with a vector v (with components v^{i}) is given by $[\omega(v)]_{j \ldots k}=\omega_{i j \ldots k} v^{i}$. Consider the n-form $\omega=\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n}$.
Show that with a given vector field v the following holds:

$$
\mathrm{d}[\omega(v)]=v^{i},{ }_{i} \omega
$$

32.3 We define $\left(\operatorname{div}_{\omega} v\right) \omega:=\mathrm{d}[\omega(v)]$.

Show that by using coordinates in which ω has the form $\omega=f \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \cdots \wedge \mathrm{~d} x^{n}$ the following holds:

$$
\operatorname{div}_{\omega} v=\frac{1}{f}\left(f v^{i}\right)_{, i}
$$

32.4 In three-dimensional Euclidean space, the preferred volume form is given by $\omega=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$. Show that in spherical coordinates this volume form is given by $\omega=r^{2} \sin \theta \mathrm{~d} r \wedge \mathrm{~d} \theta \wedge \mathrm{~d} \phi$. Use the result of 32.3 to show that the divergence of a vector field

$$
v=v^{r} \frac{\partial}{\partial r}+v^{\theta} \frac{\partial}{\partial \theta}+v^{\phi} \frac{\partial}{\partial \phi}
$$

is given by

$$
\operatorname{div} v=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v^{r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v^{\theta}\right)+\frac{\partial v^{\phi}}{\partial \phi}
$$

