University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer

www.thp.uni-koeln.de/gravitation/courses/rci12.html

2nd exercise sheet on Relativity and Cosmology I

Winter term 2012/13

Deadline for delivery: Thursday, 25th October 2012 during the first exercise class.

Exercise 4 (12 credit points): Addition of velocities

Consider a mass point moving with velocity \vec{w}' with respect to the inertial system \mathcal{I}' .

What is its velocity \vec{u} with respect to an inertial system \mathcal{I} if \mathcal{I}' moves with velocity \vec{v} against \mathcal{I} ? (Set c=1.) Show that the result can be written as

$$ec{u} = rac{ec{v} + ec{w}_{\parallel}' + rac{ec{w}_{\perp}'}{\gamma}}{1 + ec{v}\,ec{w}'}$$
 ,

where $\vec{w}'_{\scriptscriptstyle \parallel}$ and $\vec{w}'_{\scriptscriptstyle \perp}$ denote the parallel and orthogonal components of \vec{w}' with respect to \vec{v} , respectively.

Discuss the special cases $\vec{v} \parallel \vec{w}'$ and $\vec{v} \perp \vec{w}'$.

Show that

$$\vec{u}^2 = 1 - \frac{\left(1 - \vec{w}'^2\right)\left(1 - \vec{v}^2\right)}{\left(1 + \vec{v}\,\vec{w}'\right)^2} \le 1$$

and discuss the limiting case $|\vec{w}'| \to 1$.

Exercise 5 (8 credit points): Aberration

Consider an inertial system \mathcal{I}' that moves with velocity \vec{v} against an inertial system \mathcal{I} . Consider a ray of light which arrives in \mathcal{I} at an angle θ with respect to \vec{v} .

Under which angle θ' does this light ray arrive in \mathcal{I}' ? Show that this relation can be written in the form

$$\tan\!\left(\frac{\theta}{2}\right) = \sqrt{\frac{1+v}{1-v}}\,\tan\!\left(\frac{\theta'}{2}\right)$$

Hint: Use the law for the addition of velocities from exercise 4.