University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer

4th exercise sheet on Relativity and Cosmology I

Winter term 2012/13

Deadline for delivery: Thursday, 8th November 2012 during the exercise class together with exercises **6**, **8.2** and **8.3** from the **3rd** exercise sheet.

Exercise 10 (6 credit points): Motion in the gravitational field

The equation of motion for a test particle in a gravitational field is given by

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\kappa} \dot{x}^{\nu} \dot{x}^{\kappa} = 0, \qquad (1)$$

where $\dot{x}^{\mu} = dx^{\mu}/d\tau$, τ is the proper time and $\Gamma^{\mu}_{\nu\kappa} = \frac{1}{2} g^{\mu\sigma} (\partial_{\kappa} g_{\sigma\nu} + \partial_{\nu} g_{\sigma\kappa} - \partial_{\sigma} g_{\nu\kappa})$.

- **10.1** Repeat briefly the derivation of (1) from the variational principle $\delta \int d\tau = 0$ as presented in the lecture. Why can the derivation not be used for photons?
- **10.2** Derive (1) from the alternative variational principle

$$\delta \int g_{\mu
u} \, \dot{x}^{\mu} \dot{x}^{
u} \, \mathrm{d}\lambda \equiv \delta \int \mathcal{K} \, \mathrm{d}\lambda = 0$$
 ,

where λ is an affine parameter and $\dot{x}^{\mu} = dx^{\mu}/d\lambda$. Show that this derivation also holds for photons and determine \mathcal{K} for the solution of (1).

Exercise 11 (6 credit points): Christoffel symbols

Derive the transformation properties of the Christoffel symbols

$$\Gamma_{\mu\nu\lambda} = \frac{1}{2} \left(g_{\mu\nu,\lambda} + g_{\lambda\mu,\nu} - g_{\nu\lambda,\mu} \right)$$

under a coordinate transformation $x^{\mu} \rightarrow x'^{\mu}(x^{\alpha})$.

(The result shows that the Christoffel symbols do not form a tensor.)