University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer

www.thp.uni-koeln.de/gravitation/courses/rci12.html

7th exercise sheet on Relativity and Cosmology I

Winter term 2012/13

Deadline for delivery: Thursday, 29th November 2012 during the exercise class.

Exercise 19 (10 credit points): Algebraic properties of the curvature tensor

The first algebraic identity of the curvature tensor,

$$R_{\mu\nu\kappa\lambda} = -R_{\mu\nu\lambda\kappa}$$
 or $R_{\mu\nu(\kappa\lambda)} = 0$,

reflects the fact that the latter two indices of the curvature tensor can be associated with a surface element (*bi-vector*), which is always antisymmetric. This antisymmetry can be seen directly from the definition and also holds for arbitrary asymmetric connections.

The second algebraic identity,

$$R_{\mu
u\kappa\lambda} = -R_{
u\mu\kappa\lambda} \quad ext{or} \quad R_{(\mu
u)\kappa\lambda} = 0$$
 ,

can be verified rather quickly in the case of a symmetric connection (i. e. Christoffel symbol), but also holds in more general cases like in a *Riemann–Cartan space*, in which also torsion appears in addition to curvature. Can you give an illustrative interpretation of the second algebraic identity?

19.1 The third algebraic identity is a particularity of Riemannian space. Show that in the case that the connection is given by the Christoffel symbol, the following relation holds:

$$R^{\mu}_{[\nu\kappa\lambda]} = 0$$

- **19.2** How many independent components does the curvature tensor have in *Riemann–Cartan space*, i. e. if one only considers the first and second algebraic identity? How can curvature be represented by a matrix in this case?
- **19.3** Show the following equivalence relation for an arbitrary tensor of rank 4:

$$\begin{cases} R_{\mu\nu(\kappa\lambda)} &= 0 \\ R_{(\mu\nu)\kappa\lambda} &= 0 \\ R_{\mu[\nu\kappa\lambda]} &= 0 \end{cases} \end{cases} \iff \begin{cases} R_{\mu\nu(\kappa\lambda)} &= 0 \\ R_{(\mu\nu)\kappa\lambda} &= 0 \\ R_{\mu\nu\kappa\lambda} &= R_{\kappa\lambda\mu\nu} \\ R_{[\mu\nu\kappa\lambda]} &= 0 \end{cases}$$

Make yourself aware of the consistency by counting the number of conditional equations.

Hint: One example of how to prove this is by using the following formula, which holds for an arbitrary tensor *T* of rank 4 that obeys the first and second algebraic identity:

$$T_{\mu\nu\kappa\lambda} - T_{\kappa\lambda\mu\nu} = \frac{3}{2} \left(T_{\nu[\lambda\kappa\mu]} + T_{\kappa[\lambda\nu\mu]} + T_{\lambda[\nu\kappa\mu]} + T_{\mu[\kappa\lambda\nu]} \right)$$

Exercise 20 (10 credit points): *Geodesic deviation equation*

Consider two adjacent geodesics ("freely falling particles") with paths $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$. $\xi^{\mu}(\tau)$ is considered to be "small" in the sense that terms of quadratic and higher order can be neglected.

Show that

$$rac{\mathrm{D}^2\xi^\mu}{\mathrm{D}\,\tau^2}=R^\mu_{\phantom\mu
u\kappa\lambda}\,u^
u\,u^\kappa\,\xi^\lambda$$
 ,

where $u^{\mu} = dx^{\mu}/d\tau$.

Hints: At first, formulate the geodesic equations for $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$, then take the difference and expand up to the first order in $\xi^{\mu}(\tau)$; the result is an equation that contains $d^{2}\xi^{\mu}/d\tau^{2}$. Afterwards compute the general expression for $D^{2}\xi^{\mu}/D\tau^{2}$ and replace the term $d^{2}\xi^{\mu}/d\tau^{2}$ appearing therein by means of the equation found before.