University of Cologne Institute for Theoretical Physics Prof. Dr. Claus Kiefer Manuel Krämer

www.thp.uni-koeln.de/gravitation/courses/rci12.html

8th exercise sheet on Relativity and Cosmology I

Winter term 2012/13

Deadline for delivery: Thursday, 6th December 2012 during the exercise class.

Exercise 21 (6 credit points): Integration

Let *f* be a strictly positive smooth function on [0, a) with f(a) = f'(0) = 0 and $f'(a) = -\infty$. By means of this function, we define a surface of revolution A via

$$z^2 = [f(r)]^2$$
, $r^2 = x^2 + y^2$.

Determine the metric g_{ij} which is induced by the line element $ds^2 = dr^2 + r^2 d\phi^2 + dz^2$ on this surface. Calculate the corresponding Ricci scalar and show by explicit calculation that the integral

$$\int_{\mathcal{A}} \sqrt{g} R \, \mathrm{d}^2 x$$

does not depend on the choice of the function f.

Exercise 22 (14 credit points): *Killing vector fields*

- **22.1** Show that the Killing equation $\nabla_{(\mu} v_{\nu)} = 0$ can also be written as $\mathcal{L}_v g_{\mu\nu} = 0$. What does this mean from a physical point of view?
- **22.2** Give a proof for the following integrability condition for a Killing vector field v^{μ} :

$$v_{\lambda;\kappa\nu} = - v_{\mu} R^{\mu}{}_{\nu\lambda\kappa}.$$

- **22.3** Consider a timelike Killing vector field ξ^{μ} . Show that there is a coordinate system in which the metric does not depend on time, i.e. $\frac{\partial g_{\mu\nu}}{\partial t} = 0$ holds.
- **22.4** Find all Killing vector fields for the Minkowski space-time.
- **22.5** Let $u^{\mu} = dx^{\mu}/d\tau$ be the tangent vector of a geodesic, i. e. $u^{\nu} \nabla_{\nu} u^{\mu} = 0$, and let ξ^{μ} be a Killing vector field. Show that $u_{\mu} \xi^{\mu}$ is constant along the geodesic. Use these conserved quantities to illustrate the physical meaning of the Killing vector fields from part **22.4**.
- **22.6** Let $T^{\mu\nu}$ be a symmetric tensor field with vanishing divergence, i. e. $\nabla_{\mu} T^{\mu\nu} = 0$, and let ξ^{μ} be a Killing vector field. Calculate $(\xi^{\mu} T_{\mu}^{\nu})_{;\nu}$.

The result is of great importance for the construction of conserved integral quantities.