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Given a 4-dimensional manifold M with coframe ϑµ, (dual) frame eµ, metric tensor

g(·, ·), covariant exterior derivative D, and linear connection 1-form on M, namely ωµ
ν =

Lµ
νρ ϑρ, where Lµ

νρ are the components of the linear connection.

To derive the Einstein equation, we assume a Riemannian spacetime (M, g,D), for
which D (Levi-Civita connection) fulfills the to two conditions of vanishing nonmetricity

Qµν := Dgµν = Qµνλ ϑλ = 0 (1)

and of vanishing torsion

Θ
µ := Dϑµ = dϑµ + ωµ

ν ∧ ϑν =
1

2
Tµ

νλ ϑν ∧ ϑλ = 0 ; (2)

this constraint is also called the 1st Cartan structure equation for a Riemannian space.

Moreover, we have the curvature 2-forms

Ω
µ

ν := dωµ
ν + ωµ

α ∧ ωα
ν =

1

2
Rµ

νλρ ϑλ ∧ ϑρ . (3)

We turn now to the Bianchi type identities by differentating successively nonmetricity,

torsion, and curvature, respectively:

DQµν = DDgµν
Ricci lemma

= −Ω
α

µ gαν − Ω
β

ν gµβ = −Ωνµ − Ωµν = −2Ω(µν)
!
= 0 , (4)

DΘ
µ = DDϑµ Ricci lemma

= Ω
µ

ν ∧ ϑν =
1

2
Rµ

[νρσ] ϑρ ∧ ϑσ ∧ ϑν !
= 0 , (5)

DΩ
µ

ν = D “Dωµ
ν
′′ = D (dωµ

ν + ωµ
α ∧ ωα

ν) = d(dωµ
ν + ωµ

α ∧ ωα
ν) (6)

+ωµ
β ∧ (· · · )− ωγ

ν(· · · ) = · · · = 0 ,

where
!
= we refer back to our two postulates (1) or (2), respectively. In components,

Eqs.(4) and (5) can also be written as

R(µν)ρσ = 0 (7)

and

Rµ
[νρσ] = 0 or R[µνρσ] = 0 ; (8)

the last equation follows because of (7). Eq.(5), Ωµ
ν ∧ ϑν = 0, is called the 1st Bianchi

identity and Eq.(6), DΩµ
ν = 0, the 2nd Bianchi identity of a Riemannian space.

The Hodge star operator is a tool for mapping p-forms into (n − p)-forms. Take a

p-form Ψ, decomposing as

Ψ =
1

p!
Ψγ1···γp ϑγ1 ∧ ϑγ2 ∧ · · · ∧ ϑγp

︸ ︷︷ ︸
ϑγ1···γp

, (9)
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where we define ϑγ1···γp := ϑγ1 ∧ ϑγ2 ∧ · · · ∧ ϑγp . Then we can construct a (n− p)-form
by the Hodge dual map ⋆ : Λ

p(M) → Λ
(n−p)(M),

⋆ Ψ :=
1

(n− p)!p!

√
|det gµν| ǫα1α2···αpβ1···βn−p

gα1γ1 · · · gαpγp · Ψγ1···γp ϑβ1 ···βn−p (10)

where ǫα1α2···αpβ1···βn−p
is the totally antisymmetric Levi-Civita symbol with value +1 for

even permutations, −1 for odd permutations, and 0 otherwise. It is a tensor density, and

εα1 ···βn−p
:=

√
|detgµν| ǫα1α2···αpβ1···βn−p

is a unit tensor.

There are 3 important formula for the Hodge star ⋆. For Φ,Ψ ∈ Λp(M),

⋆ Φ ∧ Ψ = ⋆Ψ ∧ Φ , (11)

ϑµ ∧
(
eµ⌋Φ

)
= p Φ , (12)

⋆

(
Φ ∧ ϑµ

)
= eµ⌋ ⋆ Φ . (13)

For the action principle, we need the variation of the ⋆ (since ⋆ depends on ϑµ and

gµν). We assume from now on orthonormal frames, which we can always choose. We take

a formula from the literature (see [1], for example),

(δ · ⋆− ⋆ · δ) φ = δϑα ∧ (eα⌋ ⋆ φ)− ⋆

[
δϑα ∧ (eα⌋φ)

]
. (14)

For the decomposition of arbitrary forms in 4d, it is useful to define the following

ϑ-basis:

1, ϑµ, ϑµν, ϑµνλ, ϑµνλρ , (15)

which are a 0-form, 1-forms, 2-forms, 3-forms, and 4-forms respectively. Some examples

are

• the electromagnetic potential A = Aµ ϑµ = Aidx
i,

• the electromagnetic field strength F = 1
2Fµν ϑµν = 1

2Fijdx
i ∧ dxj = E ∧ dt+ B, and

• the electric current density as the 3-form J = 1
3!Jµνρ ϑµνρ = 1

3!Jijkdx
i ∧ dxj ∧ dxk.

In GR, we have the connection ωµ
ν as 1-form, the curvature Ω

µ
ν as 2-form, and the

energy-momentum density of matter Tµ as (covector-valued) 3-form.

The Maxwell vacuum field equations read

d ⋆F = J , dF = 0 . (16)

They are valid in this form for flat and for curved space, coframe and connection do not

enter these equations; only the (conformal part of) the metric is felt by the Hodge star.

They are diffeomorphism invariant equations that do neither depend on coordinates nor

on frames. Via the Lorentz force density fν = (eµ⌋F)∧J, one finds the energy-momentum

density 3-form as

TMax
µ =

1

2

[
F ∧ (eµ⌋ ⋆F)− ⋆F ∧ (eµ⌋F)

]
. (17)
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Having the ϑ-basis (15), we can introduce the dual ε-basis for forms in 4-dimensional

manifold. We start with the volume n-form:

ε :=
√
|det gµν| ϑ1···n =

1

n!

√
|det gµν| ǫµ1···µn ϑµ1···µn (18)

We now define successively the lower forms

εµ := eµ⌋ε = ⋆ϑµ (3-form) ,

εµν := eν⌋εµ = ⋆ϑµν (2-form) ,

εµνλ := eλ⌋εµν = ⋆ϑµνλ (1-form) ,

εµνλρ := eρ⌋εµνλ = ⋆ϑµνλρ (0-form) ,

(19)

where we recall eµ⌋ϑν = δν
µ. In Riemannian space (Qµν = 0, Θ

µ = 0), we have the

following identities:

Dε = 0, Dεµ = 0, Dεµν = 0, Dεµνλ = 0, Dεµνλρ = 0 . (20)

For the action principle, we need variations of δϑµ, δωµν (not independent in the

Riemannian case!). Rules:

δ(ω1 ∧ ω2) = δω1 ∧ ω2 + ω1 ∧ δω2, (21)

for all ω1 ∈ Λ
p(M), ω2 ∈ Λ

q(M). Notice δ does not change sign across any rank, so it is

even. Furthermore,

[d, δ] = 0, (but not valid for D!) . (22)

The variation of ⋆ is evaluated in (14).

The Lagrangian 4-form for electrodynamics is Lelec ∼ ⋆F ∧ F. The ⋆ is required for

parity reasons. A similar structure is manifest in the Hilbert-Einstein Lagrangian of

general relativity:
VHE ∼ ⋆

(
ϑµ ∧ ϑν

)
∧ Ω

µν = εµν ∧ Ω
µν ,

VHE
(LL)
= −

1

2κ
εµν ∧ Ω

µν .
(23)

Using orthonormal frames, we now vary δϑµ, δωµν (dependent on δϑ due to Levi-Civita

connection of GR). By (21), we have

δVHE = −
1

2κ

[
δεµν ∧ Ω

µν + εµν ∧ δΩ
µν
]
, (24)

where

δεµν = δ ⋆ ϑµν
(14)
= ⋆δϑµν + δϑα ∧

(
eα⌋εµν

)
− ⋆

[
δϑα ∧ (eα⌋ϑµν)

]

= ⋆

(
✘✘✘✘✘δϑµ ∧ ϑν +✘✘✘✘✘ϑµ ∧ δϑν

)
+ δϑα ∧ εµνα − ⋆

[
δϑα ∧

(
✟
✟
✟✟gαµϑν −

✟
✟
✟✟gανϑµ

)]

= δϑα ∧ εµνα .

(25)
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The variation of Ωµν yields

δΩ
µν = dδωµν + (δωµα) ∧ ωα

ν + ωµα ∧ δωα
ν . (26)

We recall that the variation δωµν is tensorial, in contrast to the connection 1-form ωµν.

Thus, we can take its covariant exterior derivative

Dδωµν = dδωµν + ωµ
α ∧ δωαν + ων

α ∧ δωµα . (27)

If we resolve this equation with respect to dδωµν, substitute it in (26), and use the rule

[d, δ] = 0, we find straightforwardly

δΩ
µν = Dδωµν , (28)

We substitute (25) and (28) into (24) and add the matter Lagrangian,

δVtot := δVHE + δVmat = −
1

2κ

[
δϑα ∧ εµνα ∧ Ω

µν + εµν ∧ Dδωµν
]
+ δϑα ∧ Tα (29)

where Tα := δLmat/δϑα denotes the energy-momentum 3-form of matter. Taking into

account (20), this can be rewritten as

δVtot = −
1

2κ

[
δϑα ∧

(
εµνα ∧ Ω

µν − 2κTα

)
+ d

(
εµν ∧ δωµν

)]
(30)

The variational principle requires δVtot = 0 for all δϑα. Since the surface term does not

contribute, we arrive at
1

2
εµνλ ∧ Ω

νλ = κ Tµ. (31)

This is Einstein’s equation in exterior calculus, with the Einstein 3-form Gµ := 1
2εµνλ ∧

Ωνλ. One can also include the cosmological term into (31) by adding Λεµ, with the

cosmological constant Λ ∈ R.

The translation to tensor calculus, one develops the Einstein and the matter energy-

momentum 3-forms with respect to the 3-form basis εν, namely Gµ = G̃µν εν and Tµ =

Tµν εν. In this way one can recover the Einstein equation G̃µν = κ Tµν in tensor calculus.

Incidentally, GR can be generalized to the so-called Einstein-Cartan theory of gravita-

tion (EC) by allowing the occurrence of a nonvanishing torsion, that is, the assumption

(2) will be dropped. Then the variation δωµν becomes independent of δϑµ and the var-

ied matter Lagrangian picks up an additional spin-dependent piece +δωµν ∧Sµν. The

variation of δϑµ is exactly as above; only the new relation Dεµν = Θα ∧ εαµν 6= 0 makes a

difference and provides a new term also in the gravitational Lagrangain, see Kibble [3].
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Sample program for the computer algebra system Reduce with the Ex-

calc package:

Coframe o, frame e, ranks of forms declared by pform, exterior product sign ∧, interior
product sign for a vector with a form | , Riemannian connection 1-form riemannconx = chris1,

curvature 2-form curv2, Einstein 3-form ein3, Hodge star operator #.

% file Sun/ueb2.exi

% Reissner-Nordstrom-deSitter

load excalc$

pform psi=0$

fdomain psi=psi(r)$

coframe o(t) = psi*d t,

o(r) = (1/psi)*d r,

o(theta) = r*d theta,

o(phi) = r*sin(theta)*d phi with

signature(-1,1,1,1)$

frame e$

psi := sqrt(1-2*m/r+k*(q/r)**2+lam*r**2/3)$

riemannconx chris1$

chris1(a,b):=chris1(a,b);

pform curv2(a,b)=2, ein3(a)=3$ antisymmetric curv2$

curv2(a,b):=d chris1(a,b)+ chris1(a,-c)^chris1(c,b);

ein3(a) := (1/2)* #(o(a)^o(b)^o(c)) ^ curv2(-b,-c);

end$

Description of this and other programs in Stauffer et al. [2].
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