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Motivation or “what if..."?

field equations of General Relativity, Einstein (1915)

discovery of spin, Pauli (1924); Uhlenbeck & Goudsmit (1925)
relativistic description of spin, Dirac (1928)

gauge theories: Weyl (1918, 1929, 1950), Yang—Mills (1954)

gravity as gauge theory: Utiyama (1956), Sciama (1960), Kibble (1961)

History:

“Newton successfully wrote apple = moon, but you cannot write apple = neutron.”
— J. L. Synge

The Dirac equation, minimally coupled to gravity:
iy, (0 +iM)V+m¥ =0
Problem: the frame field has to be put into General Relativity by hand.

What if spin had been discovered before General Relativity?
Would Einstein have applied the equivalence principle to a neutron instead?



Physical interpretation of the frame field

The frame field eju supplies us with orthonormal basis vectors on the curved space:
(necessary for spinor representation —» it is a field of fundamental importance)
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Physical interpretation of the frame field

Think about the frame field displayed in a random coordinate space: it rotates!

Is there a gauge principle involved?



Example: a brief description of U(1) gauge theory

Consider a complex field ¢ under a global U(1) transformation ¢ ed withaeR:

| A

U(1)

Py

If the theory is invariant under this transformation, we call U(1) a rigid symmetry.




Example: a brief description of U(1) gauge theory

Now carry out a local transformation ¢ — () g

local U(1) >

o ﬂ

Due to x-dependence, any dynamical theory is not invariant anymore.

How do we rescue this? We need a gauge potential Al



Example: a brief description of U(1) gauge theory

The gauge potential restores gauge invariance by d — d + e A:
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local U(1)
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What have we gained? We can construct a Lagrangian for A using F := dA:

L :=F AxF+jAA yields electrodynamics with conserved current j




Towards a gauge theory of gravity

We saw: to describe electrodynamics as a gauge theory, we have to

1. forget about electrodynamics (!)

2. carry out a gauge procedure with a suitable group, here: U(1)

3. obtain electrodynamics for free from gauge curvature Lagrangian
To describe gravity as a gauge theory, we first have to forget about gravity.

What remains if we do that?

special relativity,
and fields propagating on flat Minkowski space

Note the difference: symmetries in external space, not in internal space.



Symmetries of Minkowski space

Translational invariance: four parameters

conserved energy momentum

Rotational invariance: Six parameters

conserved spin-angular momentum

Total symmetry group: the Poincaré group P(1,3)=T'3xS0(1,3)



Poincaré gauge theory of gravity

After applying the gauge procedure, there are two gauge fields:

= the coframe V" = e*dx'  which is essentially the frame field
translational invariance, four parameters
field strength: torsion

source for torsion: spin-angular momentum

= the Lorentz connection I',,,, an additional gauge potential
rotational invariance, six parameters
field strength: curvature

source for curvature: energy-momentum

These gauge potentials can be used to define a viable theory of gravity

(Einstein—Cartan theory in a spacetime with curvature and torsion).

We fall back to General Relativity for vanishing torsion.



Conclusions & Outlook

Yes, it is possible to formulate gravity as a gauge theory.

In Poincaré gauge theory, the frame field €, is the gauge potential of translations,

and it is accompanied by the Lorentz connection I, as the rotational potential

Gauge approach helpful for quantization?

see also: Loop Quantum Gravity (but vanishing torsion)
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