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Basic concepts (Pre-metric Linear-Local Media).

» Constitutive rel: tensor {x***} and 6x6 {x"} form.
I will explain what is the “skewon” in “skewonless”.

» Dispersion rel: a quartic equation in K, = (—w, k;).
“No birefringence” means the equation is bi-quadratic.

Essential Tools.

» Schuller's classification of x**®# (caveat: densities).

» Lammerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

> Method: Go numerical, take a hint, repeat analytically.
» Constitutive law for skewonless non-birefringent media.

» Impact: Propels new findings, confirms past ones +
Fronts in non-linear media + Inserting skewon.
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Relate WH¥, F.,3 with respective 6 independent entries:

0 & -5 -E
BB 0 By -B
Fasl=\g, By 0 B |-
E5 B, -B1 0

0 D D, D
D1 0 Hy —H,
—Dy —H; 0 H |’
—-Ds H, —-H, 0

Basics.

W) =

Important symmetry:

praf vuafS _ uvBa
- - )

X -X -X

(E.J. Post, “Formal Structure of Electromagnetics”, 1962).
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Given these considerations the skewon is assumed to vanish.
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» Geometric optics used. Test spacetime = sharp fronts
and causality. Table-top media = CW laser light, not a
probe of causality; speed of fronts is ¢ (Milonni, 2002).

» Birefringence is eliminated when f(K) is bi-quadratic:
f(K) o (G’ K,Kz)? = 0.

Define G*# in f(K) as optical metric (Gordon, 1923).

» Example: vacuum, simplest non-birefringent medium

_1
Xguaﬁ — det(gag)(uo/éo) 5 (guagz/ﬁ _ guﬁgua) )
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birefringence.

> XO‘BW XO‘B‘“’ strongly equivalent if linked by change of
4D basis. Find typical reps (normal forms) classify all.

> Preview: test normal forms for no-birefringence, test all.  Tooks.

Heuristics of the classification.

No skewon, 6x6 matrix X J'is symmetric: can diagonalise.

Same diagonal, Xc ~ XD But ~ as 6x6 matrices, weakly!
» Go refined: form r," of _ éu,,pgxp"aﬁ/z valence (2,2).
» Get eigenvalue problem RW"‘BXQ‘S = 21X, and solve.
» Classify ns: Real-Complex? Multiplicities (geom-algeb)?

= Strong (Schuller) classification: Segre types, Jordan form.
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The classification and pre-metric electromag.

» Schuller et al., medium response Q" transforms as:

M/V/alﬁl_ Nl Vool 5/ MVOZE
Q = 1417, L% L5, Qrrel

Pre-metrically, medium response x*** transforms as:

Xuxy/oélﬁ/ _ ’det(Lp;))‘flLN;;Ly;La;Lﬂé X;u/ocﬁ )

» Fix: adapted from Schuller. 4D transform 6x6 dets:
| det(Q"Y)/® = | det(L7,)[ | det(Q)[M/°
| det(x"”")| = | det(x")] -
» Factors in red can compensate each other. Reconcile:
X/waﬁ Quvap
| det(x/)[1/6 | det(QU)[1/0 "

matches pre-metric well; but how about axiomatics?
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Step 1: computer search of non-birefringent media.

» Input: 23 Schuller matrices (= all skewonless media).

» Program: no-birefringence (Lammerzahl/Hehl/Itin).

» Output: 5 matrices (= all skewonless non-biref. media).

“Hint”: matrices hint to one intuitive form of /.

» 5 matrices: no-birefringence solutions; not intuitive.

» Find one “analytic law" x**®? re-represents 5 matrices.

» Trade-off: the analytic law is too coarse; covers 5
matrices, but some birefringent solutions too. Refine!

Step 2: Refine the analytic law, get symbolic result.

» Non-birefringent = optical metric + (bivectors, axion).
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Full answer, but ugly: decode into analytic law (“Hint").

» Magneto-electric diagonals — x***? has axion ae**#,

» “Rectangles’ — "8 has bivector terms A" A%
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When the signature of the optical G*#is Lorentzian (3,1).
Both **A = A (above) and **A = —A (Nakahara, '03), hence: Results.

A=0, A=0,

X = 14et(GDEM[G 6"~ G 6] + et

Non-birefringent + Lorentzian < Hodge dual + Axion part.
Other signatures: only metamaterials, hyperlens (Jacob '06).
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Hehl & Obukhov (2003).

1. EM reciprocity: axionless (tilde) part obeys closure
e tem™ = 1761
2. They further eliminate skewon, setting 2" = 0.

1. and 2. uniquely give Hodge dual [(3,1)-metric|] + axion.
Lammerzahl & Hehl (2004).
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Ties together previous literature. i o
Hehl & Obukhov (2003).

1. EM reciprocity: axionless (tilde) part obeys closure

A o~KLa  ~MJ J
EIKX eLmXxX T = 07 .

2. They further eliminate skewon, setting 2" = 0.
1. and 2. uniquely give Hodge dual [ -metric] + axion.

Lammerzahl & Hehl (2004). —

1. Enforce that there is a unique light-cone.
2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric G*? signature (3,1).
(3,1): Hodge + axion = (G**K,Kz3)=0. CONVERSE!

“Note that the vanishing of birefringence IS equivalent to
the validity of the reciprocity [closure] relation.” (F&B, '11)
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What this work has been cited/used for. .. i

birefringence.

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic W/ = x”F,. Study
general Casimir effect. Usual Casimir = no birefringence.

Matias Dahl (arXiv:1103.3118).

Confirms the result “(3,1): Hodge + axion =
(GY’K,Kz)=0. CONVERSE!" using Grobner bases.

Impact.
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Conclusions. with no

birefringence.

A. Favaro, L. Bergamin, “The non-birefringent limit of all
linear, skewonless media and its unique light-cone
structure.”, Annalen der Physik, 1-19 (2011).

In this talk. . .

> Reviewed the origin of Schuller's classification.

v

Described Lammerzahl/Hehl/Itin no-birefringence.

v

Covered all non-birefringent skewonless media.

Conclusions.

v

For signature (3,1), little more than Hodge dual.

v

Haven't talked of other signatures. Please ask!

v

Showed how nicely it all fits in the literature.



Beyond: Non-Linear or with Skewon. i

birefringence.

Obukhov & Rubilar (PRD, '02).

» Discuss very general non-linear Lagrangian (Skewon=0):
L=1L(h,b), h=F,F" b = F,Em

» Return to linear optics if propagating very sharp front.
> For this skewonless medium, no-birefringence if only if

X = |det(G 1) MG G*7— G G™] + e

Beyond.

as per this talk. (Made this statement more explicit).

Skewon: divergence from Hodge dual (Bergamin, '10).
X" oP o A A 4 lyivaB s non-birefringent.



Skewonless media
with no
birefringence.

Thank-you!

Thank-you.
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