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Outline.

Basic concepts (Pre-metric Linear-Local Media).

I Constitutive rel: tensor {χµναβ} and 6×6 {χIJ} form.
I will explain what is the “skewon” in “skewonless”.

I Dispersion rel: a quartic equation in Kµ = (−ω, ki ).
“No birefringence” means the equation is bi-quadratic.

Essential Tools.

I Schuller’s classification of χµναβ (caveat: densities).

I Lämmerzahl/Hehl/Itin birefringence elimination scheme.

Main result and applications.

I Method: Go numerical, take a hint, repeat analytically.

I Constitutive law for skewonless non-birefringent media.

I Impact: Propels new findings, confirms past ones +
Fronts in non-linear media + Inserting skewon.
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Linear local constitutive relation (pre-metric).
The EM fields D and H are related to E and B linearly[

D
H

]
=

[
− ε α

− β µ−1

] [
− E
B

]
;

[D;H] from [−E;B] at the same local space-time point.

Medium response: 6×6 matrix form (engineering).

Get [W I ] = [D;H] from [FJ ] = [−E;B] via 6×6 matrix χIJ :

W I = χI JFJ ,

very compact. Glues up 3 dimensional objects, not covariant.

Medium response: tensor form (covariant, relativity).

4D indices (Greek). Link: W µν = −W νµ ⇒ 6 components.

W I = χIJFJ ⇒ W µν = χµνJFJ ⇒ W µν =
1

2
χµναβFαβ .
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Relate W µν , Fαβ with respective 6 independent entries:

[Fαβ] =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 ,

[W µν ] =


0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

 ,

Important symmetry:

χµναβ = −χνµαβ = −χµνβα,

(E.J. Post, “Formal Structure of Electromagnetics”, 1962).
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Further symmetries: principal + skewon + axion.

I From 6×6 matrix split symmetric and skewon parts:
χIJ ≡ (χIJ + χJI )/2 + (χIJ − χJI )/2= χIJ

Symm + .

I Split: χµναβSymm = χµναβPrincipal + χµναβAxion = [1]χµναβ + [3]χµναβ ,
axion antisymmetric for any pair of 4D indices swapped.

I Thus: χµναβ = [1]χµναβ + [2]χµναβ + [3]χµναβ .

Skewon [2]χµναβ has not been observed.

Finite skewon violates usual ε = ε T , µ = µ T , α = −β T .

Axion [3]χµναβ is rare but possible.

Axion obeys [3]χµναβ ∝ eµναβ ∈ {±1, 0}. In nature:

I Static: de Lange & Raab, J. Opt. A, 2001.

I Waves: Hehl, Obukhov, Rivera & Schmid, PLA, 2008.

Given these considerations the skewon is assumed to vanish.
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Dispersion (Fresnel) relation.

I Quartic in waves’ Kµ=(−ω, ki ), cubic in media’s χαβµν :

f (K) =
1

4
êαβγδ êηθκλχ

αβηθχγµνκχδρσλKµKνKρKσ = 0 ,

Obukhov, Fukui (2000) with Rubilar (2002). Covariant:
Lindell (2005) and Itin (2009). Origin: Tamm (1925).

I Geometric optics used.

Test spacetime ⇒ sharp fronts
and causality. Table-top media ⇒ CW laser light, not a
probe of causality; speed of fronts is c (Milonni, 2002).

I Birefringence is eliminated when f (K) is bi-quadratic:

f (K) ∝ (GαβKαKβ)2 = 0.

Define Gαβ in f (K) as optical metric (Gordon, 1923).

I Example: vacuum, simplest non-birefringent medium

χµναβ0 =
√
− det(gαβ)(µ0/ε0)−

1
2

(
gµαgνβ − gµβgνα

)
.
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Schuller et al. classify skewonless χαβµν (2010).

I χαβµνA ≈χαβµνB strongly equivalent if linked by change of
4D basis. Find typical reps (normal forms) classify all.

I Preview: test normal forms for no-birefringence, test all.

Heuristics of the classification.

No skewon, 6×6 matrix χIJ is symmetric: can diagonalise.
Same diagonal, χIJ

C ∼ χIJ
D . But ∼ as 6×6 matrices, weakly!

I Go refined: form κ αβ
µν = êµνρσχ

ρσαβ/2, valence (2,2).

I Get eigenvalue problem κµν
αβXαβ = 2ηXµν , and solve.

I Classify ηs: Real-Complex? Multiplicities (geom-algeb)?

⇒ Strong (Schuller) classification: Segre types, Jordan form.

For those like me. . .
Schuller provides 23 matrices (6×6 normal forms) that
encode every skewonless medium. Just use them!
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Thank-you.

The classification and pre-metric electromag.

I Schuller et al., medium response Ωµναβ transforms as:

Ωµ′ν′α′β′= Lµ
′
µL

ν′
νL

α′
αL

β′

β Ωµναβ .

Pre-metrically, medium response χµναβ transforms as:

χµ
′ν′α′β′ = | det(Lρ

′
ρ)|−1Lµ′µLν

′
νL

α′
αL

β′

β χ
µναβ .

I Fix: adapted from Schuller. 4D transform 6×6 dets:

| det(ΩI ′J′)|1/6 = | det(Lρ
′
ρ)|+1| det(ΩIJ)|1/6 ,

| det(χI ′J′)| = | det(χIJ)| .

I Factors in red can compensate each other. Reconcile:

χµναβ

| det(χIJ)|1/6
=

Ωµναβ

| det(ΩIJ)|1/6
,

matches pre-metric well; but how about axiomatics?
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Tool: constrains medium for no-birefringence.

I Adapt: Lämmerzahl, Hehl (PRD ’04) + Itin (PRD ’05).

I Pick component q from Kµ. Dispersion relation w.r.t q,

M0q
4 + M1q

3 + M2q
2 + M3q + M4 = 0 ,

coeffs dependent on (−ω, ki ), but not on entry Kν = q.

I Compare w/ biquadratic ⇒ no-birefringence scheme:

Quartic Equation

M0=0 N

M1=0 
&

 M2=M3
2/(4M4)

M4=(4M0M2-M1
2)2/(64M0

3)
&

M3=M1(4M0M2-M1
2)/(8M0

2)

N

Y

Y NY

Non birefringent media All other media

M4=0M4=0
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Thank-you.

Our method: Computer ⇒ “Hint” ⇒ Analytics.

Step 1: computer search of non-birefringent media.

I Input: 23 Schuller matrices (≈ all skewonless media).

I Program: no-birefringence (Lämmerzahl/Hehl/Itin).

I Output: 5 matrices (≈ all skewonless non-biref. media).

“Hint”: matrices hint to one intuitive form of χµναβ.

I 5 matrices: no-birefringence solutions; not intuitive.

I Find one “analytic law” χµναβ re-represents 5 matrices.
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Mathematica R©: 23 matrices in, 5 matrices out.
Lämmerzahl/Hehl/Itin birefringence elimination gives 5 χIJ :


−τ 0 0 σ 0 0
0 −τ 0 0 σ 0
0 0 −τ 0 0 σ
σ 0 0 τ 0 0
0 σ 0 0 τ 0
0 0 σ 0 0 τ




λ5 0 0 λ6 0 0
0 λ3 0 0 λ4 0
0 0 λ1 0 0 λ2
λ6 0 0 λ5 0 0
0 λ4 0 0 λ3 0
0 0 λ2 0 0 λ1




0 0 0 ±λ1 + λ2 0 0
0 −τ 0 0 σ 0
0 0 λ1 0 0 λ2

±λ1 + λ2 0 0 0 0 0
0 σ 0 0 τ 0
0 0 λ2 0 0 λ1




0 0 0 ±λ1 + λ2 0 0
0 λ3 0 0 λ4 0
0 0 λ1 0 λ2

±λ1 + λ2 0 0 0 0 0
0 λ4 0 0 λ3 0
0 0 λ2 0 0 λ1




0 0 0 λ1 0 0
0 0 0 0 λ5 0
0 0 ±(λ3 − λ5) 0 0 λ3
λ3 0 0 ε1 0 0
0 λ5 0 0 0 0
0 0 λ1 0 0 ±(λ3 − λ5)



Full answer, but ugly: decode into analytic law (“Hint”).

I Magneto-electric diagonals → χµναβ has axion αeµναβ .

I “Rectangles”→ χµναβ has bivector terms AµνAαβ.
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“Hint”: analytic χµναβ suggested by 5 matrices.

χµνρσ= | det(G−1
αβ )|

1
2 M

[
(GµρGνσ−GµσGνρ)+sAA

µνAρσ + sÃÃ
µν Ãρσ

]
+αeµνρσ

I Hodge: metric used becomes optical (GαβKαKβ)2 =0.

I Bivector terms: Aαβ, Ãαβ antisymmetric; sA, sÃ signs.

I Preview: Bivector terms vanish if Gαβ signature (3,1).

I Axion term: innocuous, drops from dispersion relation.

I Further stuff: account density and impedance-like M.

Too coarse, skewonless: nonbirefringent + some birefringent.

KILL!
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I Bivector terms: Aαβ, Ãαβ antisymmetric; sA, sÃ signs.

I Preview: Bivector terms vanish if Gαβ signature (3,1).

I Axion term: innocuous, drops from dispersion relation.

I Further stuff: account density and impedance-like M.

Too coarse, skewonless: nonbirefringent + some birefringent.

KILL!
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Refine analytic law, get necessary & sufficient.

Substitute analytic “hint” into dispersion relation f (K):[
(G − sAA · G−1 · A)µνKµKν

][
(G − sÃÃ · G

−1 · Ã)ρσKρKσ
]

−sAsÃ
[
(A · G−1 · Ã)µνKµKν

]2
= 0 .

Birefringent. Become non-birefringent (GαβKαKβ)
2=0 if:

A · G−1 · A · G−1 = a11 , Ã · G−1 · Ã · G−1 = a21 ,

A · G−1 · Ã · G−1 + Ã · G−1 · A · G−1 = 2a31 .

Bivect. Aαβand Ãαβmust be (anti-)selfdual w.r.t Gαβ-Hodge:

Aµν =
sX
2
εµναβG (G−1 · A · G−1)αβ := sX (

∗A)µν ,

Ã
µν

=
sX
2
εµναβG (G−1 · Ã · G−1)αβ := sX (

∗Ã)µν ,

Density eµναβconverted to tensor εµναβG via optical Gαβ. Also:

∗∗A = A , ∗∗Ã = Ã .
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Skewonless media
with no

birefringence.

Outline.

Basics.

Tools.

Method.

Step 1.

Hint.

Step2.

Results.

Impact.

Conclusions.

Beyond.

Thank-you.

Refine analytic law, get necessary & sufficient.
Substitute analytic “hint” into dispersion relation f (K):[

(G − sAA · G−1 · A)µνKµKν
][
(G − sÃÃ · G
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[
(A · G−1 · Ã)µνKµKν
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Skewonless media
with no

birefringence.

Outline.

Basics.

Tools.

Method.

Step 1.

Hint.

Step2.

Results.

Impact.

Conclusions.

Beyond.

Thank-you.

Results: all skewonless non-birefringent χµναβ.

χµνρσ= | det(G−1
αβ )|

1
2 M

[
GµρGνσ−GµσGνρ + sAA

µνAρσ + sÃÃ
µν Ãρσ

]
+ αeµνρσ

A = sX
∗A , Ã = sX

∗Ã ,

When the signature of the optical Gαβ is Lorentzian (3,1).

Both ∗∗A = A (above) and ∗∗A ≡ −A (Nakahara, ’03), hence:

A ≡ 0 , Ã ≡ 0 ,

χµνρσ(3,1) = | det(G−1
αβ )|

1
2M
[
GµρGνσ−GµσGνρ

]
+ αeµνρσ

Non-birefringent + Lorentzian ⇔ Hodge dual + Axion part.
Other signatures: only metamaterials, hyperlens (Jacob ’06).
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Ties together previous literature.

Hehl & Obukhov (2003).

1. EM reciprocity: axionless (tilde) part obeys closure

êIK χ̃
KLêLM χ̃

MJ = −λ2δJI .

2. They further eliminate skewon, setting [2]χIJ = 0.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Lämmerzahl & Hehl (2004).

1. Enforce that there is a unique light-cone.

2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric Gαβ signature (3,1).

(3,1): Hodge + axion ⇒ (GαβKαKβ)=0.

“Note that the vanishing of birefringence equivalent to the
validity of the reciprocity [closure] relation.”
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KLêLM χ̃

MJ = −λ2δJI .

2. They further eliminate skewon, setting [2]χIJ = 0.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Lämmerzahl & Hehl (2004).

1. Enforce that there is a unique light-cone.

2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric Gαβ signature (3,1).

(3,1): Hodge + axion ⇒ (GαβKαKβ)=0.

“Note that the vanishing of birefringence equivalent to the
validity of the reciprocity [closure] relation.”
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Ties together previous literature.

Hehl & Obukhov (2003).

1. EM reciprocity: axionless (tilde) part obeys closure

êIK χ̃
KLêLM χ̃

MJ = −λ2δJI .

2. They further eliminate skewon, setting [2]χIJ = 0.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Lämmerzahl & Hehl (2004).

1. Enforce that there is a unique light-cone.

2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric Gαβ signature (3,1).

(3,1): Hodge + axion ⇒ (GαβKαKβ)=0. CONVERSE?

“Note that the vanishing of birefringence is not equivalent to
the validity of the reciprocity [closure] relation.” (L&H, ’04)
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Ties together previous literature.

Hehl & Obukhov (2003).

1. EM reciprocity: axionless (tilde) part obeys closure

êIK χ̃
KLêLM χ̃

MJ = −λ2δJI .

2. They further eliminate skewon, setting [2]χIJ = 0.

1. and 2. uniquely give Hodge dual [(3,1)-metric] + axion.

Lämmerzahl & Hehl (2004).

1. Enforce that there is a unique light-cone.

2. Hyperbolic propagation: problem is causally posed.

1. and 2. uniquely give optical metric Gαβ signature (3,1).

(3,1): Hodge + axion ⇒ (GαβKαKβ)=0. CONVERSE!

“Note that the vanishing of birefringence IS equivalent to
the validity of the reciprocity [closure] relation.” (F&B, ’11)
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What this work has been cited/used for. . .

Rivera & Schuller, (arXiv:1101.0491).

Quantise skewonless bi-anisotropic W I = χIJFJ . Study
general Casimir effect. Usual Casimir = no birefringence.

Matias Dahl (arXiv:1103.3118).

Confirms the result “(3,1): Hodge + axion ⇒
(GαβKαKβ)=0. CONVERSE!” using Gröbner bases.
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Conclusions.

A. Favaro, L. Bergamin, “The non-birefringent limit of all
linear, skewonless media and its unique light-cone
structure.”, Annalen der Physik, 1-19 (2011).

In this talk. . .

I Reviewed the origin of Schuller’s classification.

I Described Lämmerzahl/Hehl/Itin no-birefringence.

I Covered all non-birefringent skewonless media.

I For signature (3,1), little more than Hodge dual.

I Haven’t talked of other signatures. Please ask!

I Showed how nicely it all fits in the literature.
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Beyond: Non-Linear or with Skewon.

Obukhov & Rubilar (PRD, ’02).

I Discuss very general non-linear Lagrangian (Skewon=0):

L = L(I1, I2) , I1 = FµνF
µν , I2 = Fµν F̃

µν ,

I Return to linear optics if propagating very sharp front.

I For this skewonless medium, no-birefringence if only if

χµνρσOR = | det(G−1αβ )|
1
2M
[
GµρG νσ−GµσG νρ

]
+ αeµνρσ

as per this talk. (Made this statement more explicit).

Skewon: divergence from Hodge dual (Bergamin, ’10).

χµναβ ∝ AµνAαβ + [2]χµναβ is non-birefringent.
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