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Part 1. The local and linear electromagnetic response

I How to represent local linear media in 3D and in 4D.

I How to decompose electromagnetic response via index
symmetries: principal part, skewon part and axion part.

I Geometrical optics as described by Fresnel (dispersion)
equation. What is a medium with no Fresnel equation?

Part 2. Jump (boundary) conditions useful in engineering

I In addition to primary electromagnetic jump conditions
at interface, have jump conditions useful in engineering.

I “PEMC” jump conditions → twist polarisers. “DB” →
radar invisibility. Linked to media with no Fresnel eq. . .

Part 3. All local linear media with no Fresnel equation?

I We present strong evidence that there exist only three
types of materials that give rise to no Fresnel equation.
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Part 1: Local & linear electromagnetic response

I Field excitation is Gαβ = (D i ,Hj). Field strength is
Fαβ = (−Ei ,B

j). Greek indices range 0 to 3. Latin
indices range 1 to 3. We use Einstein summation conv.

I Local & linear electromagnetic response (medium): field
excitation (D i ,Hj) at point p in space and time related
linearly to field strength (−Ei ,B

j) at the same point p.

I Space+time (3D): local & linear material or vacuum is

Da = ε0ε
abEb + Z−10 αa

bB
b,

Ha = Z−10 β b
a Eb + µ−10 µ−1ab B

b,

εab called permittivity, µ−1ab called impermeability,
αa

b and β b
a called magneto-electric terms. But note,

we make use of relative quantities. Also, Z0 =(µ0/ε0)
1
2 .

I Covariant (4D): Gαβ = 1
2χ

αβµνFµν . Now, decompose. . .
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Principal-skewon-axion irreducible decomposition

I Split medium: principal part, skewon part, axion part.

χαβµν = (1)χαβµν +(2)χαβµν +(3)χαβµν .
36 = 20 ⊕ 15 ⊕ 1 .

(1)χαβµν is symmetric under [αβ]↔ [µν] and traceless.
(2)χαβµν is antisymmetric under [αβ]↔ [µν]. Moreover,
(3)χαβµν is the trace w.r.t. the Levi-Civita symbol ε̂αβµν .

I Finite axion part observed in nature (Hehl et al. 2008).
Finite skewon not yet, but magnetic groups identified
(Dmitriev 1998). Know one route to find a violation of

εab = εba, µ−1ab = µ−1ba , αa
b = −β a

b .
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Electromag. waves: Fresnel (dispersion) equation

Medium: εab =diag(ε1, ε2, ε3), µ−1ab =δab and αa
b =β a

b =0.
Taken from: Schaefer (1932).
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Electromag. waves: Fresnel (dispersion) equation

I qα = (−ω, ki ) is 4-dimensional wave-covector. Given
propagation direction, what is inverse phase velocity
ki/ω of electromagnetic waves? Solve Fresnel equation:

G(q)= ε̂αα1α2α3 ε̂ββ1β2β3χ
αα1ββ1χα2ρβ2σχα3τβ3υqρqσqτqυ =0.

I G(q) quartic in qα. Find all response tensors χαβµν s.t.

� G(q) = two coinciding quadratics = no-birefringence.
Solved for zero skewon: Favaro+Bergamin (2011), Dahl
(2012). Using: Lämmerzahl+Hehl (2004), Itin (2005).

� G(q) = two distinct quadratics = uniaxial generalised.
Solved for zero skewon, Lorentz signature: Dahl (2013).
Using: Lindell+Wallén (2004), Schuller et al. (2010).

� G(q) = zero for all possible qα = no Fresnel equation.
This talk and “PIER”. Earlier: Hehl+Obukhov (2003).

I Dahl: find χαβµν for each possible factorisation of G(q).
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Part 2: jump conditions. Fundamental/additional

I Interface: have following jump (boundary) conditions,

εabcnb[Ec ] = 0, i.e. ~n × [~E ] = 0,

εabcnb[Hc ] = 0, i.e. ~n × [~H] = 0,

na[Da] = 0, i.e. ~n · [~D] = 0,

na[Ba] = 0, i.e. ~n · [~B] = 0.

[ · ]=value in one region minus value in other region as
interface approached. na =surface normal (surf. 1-form).

I Above, “fundamental” jump conditions: obtained from
Maxwell’s equations, thus valid for any two materials.
Considered dielectrics and static interface, for simplicity.

I There exist “additional” jump conditions: fulfilled for
specific choices of materials. Hence, not fundamental.

I Examples: perfect electromagnetic conductor (PEMC)
and “DB” jump conditions. Have useful applications. . .
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Perfect electromagnetic conductor (PEMC) jump condition
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See: Lindell &
Sihvola (2005).
Further details:
ask during Q&A.

I At interface with vacuum, given by

εabcnb(Hc + αEc) = 0,

i.e. ~n × (~H + α~E ) = 0.

The jump operator [ · ] is not used.

I Obtain such PEMC jump condition
with a pure-axion medium. In 4D,

χαβµν = αεαβµν .

εαβµν is Levi-Civita symbol. In 3D,

Da = αBa, Ha = −αEa.

I Reflected light fully cross-polarised.
Can build device: twist polariser.

I Can realise PEMC condition with
metamaterial layer at interface.
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Conclusions

Perfect electromagnetic conductor (PEMC) jump condition

A pure-axion medium has no Fresnel equation.
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Conclusions

The “DB” jump conditions and radar invisibility

Target: a sphere

I The DB jump conditions at interface with vacuum are:

naD
a = 0, naB

a = 0.

I DB conditions at surface of highly symmetric object give
invisibility to the monostatic radar (Lindell et al. 2009).
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Conclusions

Skewon-axion media and DB jump conditions

I All skewon-axion media, (1)χαβµν =0, can be written as:

χαβµν = εαβρ[µ/Sρ
ν] − εµνρ[α/Sρ

β] + αεαβµν = 15⊕ 1,

with /Sρ
ρ = 0 & square brackets denoting antisymmetry.

I Nieves and Pal (1989): isotropic skewon-axion medium,

Da = (−s + α)Ba, Ha = (−s − α)Ea.

Link to general 4D law via /Sα
β =(s/2)diag(−3, 1, 1, 1).

See Hehl and Obukhov (2003) for a detailed treatment.

I Isotropic skewon-axion medium → DB jump conditions.

Skewon-axion media have no Fresnel equation.
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Conclusions

P-media and DB jump conditions
I P-medium constructed by straightforward P-roduct, as:

χαβµν = Y εαβρσP µ
ρ P ν

σ .

I As a specific example, consider uniaxial P-medium. Set:

P β
α = (ψ − P⊥)uαu

β + p‖uαn
β

+ π‖nαu
β + (P‖ − P⊥)nαn

β + P⊥δ
β
α.

uα is the medium 4-velocity and nα is the preferred axis:

uαu
α = −1, uαn

α = 0, nαn
α = +1.

(To make example “premetric”, need extra quantities.)

I Uniaxial P-medium as formulated in its rest frame, 3D:

Da = ε⊥ε
abcnbEc + α‖n

anbB
b + α⊥(δab − nanb)Bb,

Ha = µ−1⊥ ε̂abcn
bBc + β‖nan

bEb + β⊥(δba − nan
b)Eb.
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Conclusions

P-media and DB jump conditions (continued)

I Skewon: permittivity & permeability “solenoidal”. Aside,

ε⊥ = Y π‖P⊥, µ−1⊥ = −Yp‖P⊥,
α‖ = YP2

⊥, β‖ = −YψP‖ − Yp‖π‖,

α⊥= YP‖P⊥, β⊥= −YψP⊥.

I If na is orthogonal to interface, uniaxial P-medium gives
DB conditions. Even if it has a non-zero principal part.

All P-media have no Fresnel equation.

I P-media in detail: Lindell, Bergamin & Favaro (2011).

I Above, seen that technologically useful PEMC and DB
jump conditions are closely related to media with no
Fresnel eq. Identify all materials with this property!
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Conclusions

P-media and DB jump conditions (continued)
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Conclusions

All local linear media with no Fresnel equation?

We found strong evidence that there exist three types of
local linear materials whose Fresnel equation is satisfied for
every wave-covector, G(q)=0 for all qα =(−ω, ki ). Namely,

1. bivector⊗ bivector + bivector⊗ bivector + axion part,

χαβµν = AαβBµν + CαβDµν + αεαβµν ;

2. skewon part + axion part [a.k.a. skewon-axion media],

χαβµν =
(
εαβρ[µ/Sρ

ν] − εµνρ[α/Sρ
β]
)

+ αεαβµν ;

3. every P-medium + axion part [a.k.a. P-axion media],

χαβµν =
(
εαβρσP µ

ρ P ν
σ

)
+ αεαβµν .

Our derivation has some weak points [Lindell and Favaro,
Prog. Electromagn. Res. B, vol. 51, pp. 269–289, 2013].
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Conclusions

All media with no Fresnel? It is likely, because. . .
I Argument below suggests we have found all local linear

materials whose Fresnel equation is satisfied identically.

I Represent the medium tensor in an alternative way, as
κ µν
αβ = 1

2 ε̂αβρσχ
ρσµν . Inverse of this linear map is κ−1.

I A response tensor κ of full-rank and its inverse κ−1

have the same Fresnel equation, see Dahl (2012).

I Hence, if a medium tensor κ of full-rank has no Fresnel
equation, its inverse κ−1 has no Fresnel equation too.

I But, taking inverse yields no new classes of materials:

material κ inverse κ−1

bivector pairs + axion bivector pairs + axion

skewon-axion specific P-axion

specific P-axion skewon-axion

general P-axion general P-axion
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Conclusions

a) At an interface with vacuum. . . PEMC jump condition:
build a twist polariser. DB: achieve invisibility to radar.

b) PEMC jump condition: from pure-axion medium. DB:
from e.g. isotropic skewon-axion or uniaxial P-medium

c) These are all media with no Fresnel equation. Study
local linear materials s.t. G(q)=0 is satisfied for all qα.

d) Likely that all materials with no Fresnel are of 3 types:
bivector pairs plus axion, skewon-axion and P-axion.

e) In support of this finding, taking the inverse does not
produce new classes of local linear media ∼ completeness.
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Thank-you!
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