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Basics of pre-metric electrodynamics

> Representation of fields as differential forms or tensors. A. Favaro, L.
Bergamin, |.V.
» Energy-momentum tensor (3-form) and field invariants. Lk, YL
Obukhov.
> Assume the medium is local (dispersionless) & linear.

v

Explain principal+skewon+axion split of the medium.
Examples in which closure relations are used
» 4 closure relations: quadratic eqs. constrain medium.

> Electric-magnetic reciprocity leads to closure relation
of special type. There is only one skewon-free electric-
magnetic reciprocal medium: Hodge star metric (3,1).

» More general reciprocity (special-linear) leaves energy-
momentum 3-form invariant. Also leads to a closure rel.

> Invariants obeying H A H = nF A F implies a closure rel.

Solve two closure relations explicitly (invertible medium)
> Invertible media: solve 2 (out of 4) closures. Re-derive.



Electromagnetic fields as differential forms TR

electric-magnetic

Fundamental fields of Electromagnetism as differential forms duality & closure

relations.

J=—doAj+p twisted 3-form, B’ig:rHY.;v
H= doAH+D, twisted 2-form, Obukhov.
F=—-doANE+B, ordinary 2-form. EM fields

Fields {j, p, H, D, E, B} obtained by slicing spacetime X, as

o

02

01

Embedded submanifolds h, are space, o is topological time.
No metric or connection needed: pre-metric electrodynamics.



Electromagnetic fields as antisymmetric tensors
Current density J,3+, field excitation H,g, field strength F,z3:

Japy = Japn1s Hap =Hpap):  Fap = Flap)-

In tensor formalism, the familiar fields {j, p, H, D, E, B} read

Joab = _jab > Jabe = Pabc >
HOa = Haa Hab = Dab;
FOa:_Eaa Fab:Baba

with indices {o, 3,---=10,1,2,3} and {a,b,--- =1,2,3}.

Maxwell's equations: use differential forms or tensors

Note: Maxwell's equations require no metric or connection

dH = J, dF =0,
OaHsn) = Japy OaFm =0
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Pair of antisymmetric indices — Collective label

Example: indices of F,3 and H,z are antisymmetric. Hence,

Fap and H,g have 6 independent entries. Label them as
{[af] = [01],[02], [03],[23], [31],[12]} — {/ =1,2,...,6}.

Thereby, represent H,3 and F,3 as columns with 6 entries

Ho1 Ha Fo1 -k
Ho2 Ho Fo2 —E
Hy - Hos| _ | Hs F = Fos| _ |—Es
Has Do3 Fa3 Bos
Hz, D3y F31 Bs1
| Hhz2 | | D12 | F12 | | Bi2 |

nice separation of electric and magnetic. Summary: pair of

antisymmetric indices — collective label {/,J,...=1,...,6}.
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Minkowski (pre-metric) energy-momentum tensor

Using tensors, Minkowski (pre-metric) energy-momentum:
B 1 Bupo
7; = ZE (Haquo - Fa,quO')~

Using differential forms, energy-momentum transfer is
encoded by means of a twisted covector-valued 3-form

Ta = 31F A (el H) = H A (eal F),

where {e,} is the frame. Space-+time decomposition leads to

%O‘%b B u ‘ Sb
- —Pa *Sab

AR
where u is the energy density, s? is the energy flux density,
pa is momentum density and Sab is momentum flux density.
Similar decomposition found when using differential forms.
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Invariants of the electromagnetic field

A 4-form in spacetime has 1 independent component, it
encodes an invariant. Use H and F to build the invariants

h=FAH=

b =FAF=—2do A(BAE),

h=HAH=

There exists a fourth invariant I = A A J, but leave aside.
Setting one of {/1, h, } to be zero, is a statement about
the configuration of the fields that holds true in any frame.

2do A (H A D).

do A (BAH — EAD),

4-dim. | 3-dim. (pre-metric) | 3-dim. (post-metric)
h=0|iBAH=1EAD |1B-H=1E.D
h=0| BAE=0 B-E=0

b=0| HAD=0 D-H=0

For plane waves, | = h = 3 =0;

but not true in general.
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Local and linear media




Local and linear media

» Given a point p in spacetime, the medium response is
local if H‘p is a function of F‘p only. In other words:

H = k(F), (local constitutive law),

where k is a map from ordinary to twisted 2-forms.
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Local and linear media

» Given a point p in spacetime, the medium response is
local if H‘p is a function of F‘p only. In other words:

H = k(F), (local constitutive law),

where k is a map from ordinary to twisted 2-forms.

» In particular, the medium response is linear whenever:
k(aV1 + bV¥y) = ak(V1) + br(W32), (linear law),
for any 2-forms {W;, W5} and functions {a, b}. Then,
Hog = L "E indi
g = Emaﬂ mr (tensor indices),
Hy =r,F, (6-dim indices).

Clearly, Einstein's summation convention is employed.
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Local an linear media (space+time split)

In terms of {H, D, E, B} the local and linear law is given by:

1
Ha = /BQCEC+ PV

1
Dab = 5/abCEC + -

5

2

d
aabc BCd .

as seen in Lindell's book (IEEE, 2004). More
(1), =

B, =

/I ¢
€ab

Oc

—Koa

Oc

—Kap

)

9

cd .__

O 4p =

fl)achcd ’

specifically:
cd
Koa

cd
Rap -

When /@,J represented as 6 x 6 matrix, one attains that

[ —511 _/812 —513 (/fl)123 (u™ )1 (/fl)ll2
=Bt =B2 =B | ()BT (),
—B3t =B B33 | (W 1)P (wh) (uh)st?
*5,231 *5/232 *5/233 a2323 %33 a2312
—5/311 —5/312 —e5 043123 a3131 0‘3112

L —ehot —5/122 —5/123 041223 a1231 0‘1212
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Example of magneto-electric metamaterial

’ H,
y
9 &

&

@ x
- i
Z o

> Figure: Tretyakov et al., J. Electromagnet Wave, 1998.
» ldea: Kamenetskii, Microw. Opt. Techn. Lett., 1996.

» Medium: Ellipsoidal ferrite inclusions subject to fixed
magnetic Hyp. Each inclusion is fitted with metal strip.

> Magnetic field input = inclusions’ magnetic resonance
= currents in metal strips = an electric field output.
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The "bar conjugate” of the medium response
In preparation for decomposing k, define the "bar conjugate”
1

= WV _ A poy nbuv
Rog = 46(15/)0(/{779 )e )
Note: maﬂ’” and Faaﬁ“" have same domain and co-domain.

I

Now, formulate Fog ” as a coordinate-free operator. Need:
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The "bar conjugate” of the medium response
In preparation for decomposing k, define the "bar conjugate”
1

= uy __ ta poy _nbuv
Rog = 4ea3pg(/£779 )e .
Note: maﬂ’” and Faaﬁ“" have same domain and co-domain.

"” as a coordinate-free operator. Need:

Now, formulate Raﬂ
» The transposed map x': bivectors — twisted bivectors,

1
B:=k'A) stands for B = EKWO‘BA‘“’.
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The "bar conjugate” of the medium response
In preparation for decomposing k, define the "bar conjugate”
1

v N
H:7€

— poy nbuv
Rog 2 )e .

045170("{770

Note: maﬂ’” and Faaﬁ“" have same domain and co-domain.

Now, formulate Raﬂ’“j as a coordinate-free operator. Need:

» The transposed map x': bivectors — twisted bivectors,

1
B:=k'A) stands for B = EKWO‘BA‘“’.

» Poincaré isomorphism <{,: 2-forms — bivector densities,

5 § 1
I':= () stands for [fof .= Eeaﬁxwrw_
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Pre-metric

The "bar conjugate” of the medium response R

electric-magnetic

In preparation for decomposing k, define the "bar conjugate” CE R
relations.
1
— v N lod ] A. Favaro, L.
K/aﬁu = 7604ﬂp0’("£n()p )6,] wv . Bergamin, |.V.
4 Lindell, Y.N.
w U . . Obukhov.
Note: r,4"" and 4" have same domain and co-domain.
Now, formulate & _,"" as a coordinate-free operator. Need: .
af The medium
» The transposed map x': bivectors — twisted bivectors,
1
B:=k'A) stands for B% .= gk PA,
o

» Poincaré isomorphism <{,: 2-forms — bivector densities,

~ ~ ].
[:=Oa(M)  stands for 7 .= 560‘5‘”’FW.
» Poincaré isomorphism <A>2: bivectors — 2-form densities,
o 1

C:=34n(C)  stands for  Cop = iéag,wCW.



The "bar conjugate” of the medium response
In preparation for decomposing k, define the "bar conjugate”

_ 1
K/Oéﬁ'uy = Zﬁaﬂpo—(ﬁn()

A

po’)enﬁuu )

Note: r,4"" and 4" have same domain and co-domain.
Now, formulate Raﬂ’“j as a coordinate-free operator. Need:
» The transposed map x': bivectors — twisted bivectors,

1

B:=k'A) stands for B = EKWO‘BA’“’.

» Poincaré isomorphism <{,: 2-forms — bivector densities,
~ ~ ].
[:=Oa(M)  stands for 7 .= 560‘5‘”’FW.

» Poincaré isomorphism <A>2: bivectors — 2-form densities,
N4 ~ A 1
C:=2(C) stands for  Cup = iéag,wCW.

For > and &y see Greub (1967), Kurz & Heumann (2010).
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The “bar conjugate” (continued)
Bar conjugate is the composition of maps &: :<A>2 okto o,

2-form —> bivector d. —> tw. bivector d. == tw. 2-form

where “tw." means twisted and “d.” means density. Crucial

to note that x and K have the same domain and co-domain.
Caveat: {» and <}, yield opposite density weights, +1 & -1.

Pre-metric
electrodynamics,
electric-magnetic
duality & closure

relations.

A. Favaro, L.

Bergamin, |.V.

Lindell, Y.N.
Obukhov.

The medium



The “bar conjugate” (continued)
Bar conjugate is the composition of maps &: :<A>2 okto o,

2-form —> bivector d. —> tw. bivector d. == tw. 2-form

where “tw." means twisted and “d.” means density. Crucial

to note that x and K have the same domain and co-domain.
Caveat: {» and <}, yield opposite density weights, +1 & -1.

Some properties of the “bar conjugate”:

Pre-metric
electrodynamics,
electric-magnetic
duality & closure

relations.

A. Favaro, L.

Bergamin, |.V.

Lindell, Y.N.
Obukhov.

The medium



The “bar conjugate” (continued)
Bar conjugate is the composition of maps &: :<A>2 okto o,
2-form —> bivector d. —> tw. bivector d. == tw. 2-form

where “tw." means twisted and “d.” means density. Crucial
to note that x and K have the same domain and co-domain.

Caveat: {» and &5 yield opposite density weights, +1 & -1.

Some properties of the “bar conjugate”:

» Given the sum k' =ak1 + bka, where a and b are scalars,

k' = aki + bks.
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The “bar conjugate” (continued)
Bar conjugate is the composition of maps &: :<A>2 okto o,
2-form —> bivector d. —> tw. bivector d. == tw. 2-form

where “tw." means twisted and “d.” means density. Crucial
to note that x and K have the same domain and co-domain.

Caveat: {» and &5 yield opposite density weights, +1 & -1.

Some properties of the “bar conjugate”:

» Given the sum k' =ak1 + bka, where a and b are scalars,

k' = aki + bks.

» The map ik = <A>2 o kt o {» coincides with the original &,

=

=K.
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The “bar conjugate” (continued)
Bar conjugate is the composition of maps R::<A>2 okto o,
OS2 - Kt . o
2-form == bivector d. — tw. bivector d. == tw. 2-form

where “tw." means twisted and “d.” means density. Crucial
to note that x and < have the same domain and co-domain.
Caveat: {» and <}, yield opposite density weights, +1 & -1.

Some properties of the “bar conjugate”:

» Given the sum k' =ak1 + bka, where a and b are scalars,

k' = aki + bks.

» If k' is the composition of two operators (k' = k1 0 k),

K = Koo K1.
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Principal+Skewon+Axion decomposition

Symmetric & Antisymmetric contributions

Split k¥ in a symmetric and an antisymmetric part with
respect to the bar conjugate, k = Mk + (k. In particular,
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Principal+Skewon+Axion decomposition

Symmetric & Antisymmetric contributions

Split k¥ in a symmetric and an antisymmetric part with
respect to the bar conjugate, k = Mk + (k. In particular,

Principal, Skewon and Axion contributions
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Principal+Skewon+Axion decomposition TR

electric-magnetic

Symmetric & Antisymmetric contributions e tons
Split k£ in a symmetric and an antisymmetric part with EuaigtLs
. . ergamin, LLV.
respect to the bar conjugate, k = Pk + (k. In particular, Licl, VY
u oV.

The medium

Principal, Skewon and Axion contributions

a) Split the symmetric piece (Vx in a traceless part and a
trace contribution. Thereby, obtain Vx = (D + B,



Principal+Skewon+Axion decomposition TR

electric-magnetic

Symmetric & Antisymmetric contributions e tons

Split k£ in a symmetric and an antisymmetric part with EuaigtLs
. . ergamin, LLV.

respect to the bar conjugate, k = Pk + (k. In particular, Lindell, Y.N.

Obukhov.

The medium

Principal, Skewon and Axion contributions

a) Split the symmetric piece (Vx in a traceless part and a
trace contribution. Thereby, obtain Vx = (D + B,

b) Then, rename the antisymmetric part x = Pk,



Principal+Skewon+Axion decomposition TR

electric-magnetic

Symmetric & Antisymmetric contributions e tons

Split k£ in a symmetric and an antisymmetric part with EuaigtLs
. . ergamin, LLV.

respect to the bar conjugate, k = Pk + (k. In particular, Lindell, Y.N.

Obukhov.

The medium

Principal, Skewon and Axion contributions

a) Split the symmetric piece (Vx in a traceless part and a
trace contribution. Thereby, obtain Vx = (D + B,

b) Then, rename the antisymmetric part x = Pk,

c) Principal-Skewon-Axion split x = Wk + Qg+ Qg
Mg = 4O, tr[Vk] =0,

) tr[@k] =0,

®r = +0)k, tr[®k] = tr(k).
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Preview: Four closure relations

In solving some electromagnetic problems (examples later),

one encounters the so-called closure relations, restricting «.

Closure relations: Pure and Mixed

» The pure closure relations are:

kok=ttr(kok)ld, and Kok = %tr(/?;ofi)ld.
» The mixed closure relations are:
Kok =ttr(koR)ld, and FKok=itr(Kor)ld.
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Preview: Four closure relations

In solving some electromagnetic problems (examples later),

one encounters the so-called closure relations, restricting «.

Closure relations: Pure and Mixed
» The pure closure relations are:
Kok =itr(kok)ld, and Rok = ttr(ioFk)ld.

» The mixed closure relations are:

Kok = ttr(koR)ld, and FKok=itr(ior)ld.

Crucially, the true scalars in red are allowed to vanish (at
least for the moment), and to take any sign.
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Preview: Four closure relations

In solving some electromagnetic problems (examples later),

one encounters the so-called closure relations, restricting «.

Closure relations: Pure and Mixed

» The pure closure relations are:
_ 1 . = = _1 P
kok =gtr(kor)ld, and FEokR = gtr(iok&)ld.
» The mixed closure relations are:
P | = = —li(mo
kok =gtr(kok)ld, and REor = gtr(ior)ld.

Crucially, the true scalars in red are allowed to vanish (at
least for the moment), and to take any sign. We consider
few physical questions in which closure relations appear.
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Electric-magnetic reciprocity et

electrodynamics,
electric-magnetic

» Given a twisted scalar { # 0, with dimensions of inverse duality & closure

relations.
resistance, define the electric-magnetic reciprocity as: A. Favaro, L.
Bergamin, |.V.
! Lindell, Y.N.
H - HI = +<F = N CE Obukhov.
D' +(B

E' 1 + 1y
/ =F =--H= i
B ¢ — 3D

Reciprocity



Electric-magnetic reciprocity

» Given a twisted scalar { # 0, with dimensions of inverse

resistance, define the electric-magnetic reciprocity as:

H' o wcF_) TCE
D =tk = + (B

E 1 + M
S =F=—ZH= :
B ¢ - D

» Electric-magnetic reciprocity physically crucial because

it leaves the energy-momentum 3-form %, invariant:

Y, =L[F A(ea]H) — H' A(ea] F)]
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Electric-magnetic reciprocity

» Given a twisted scalar { # 0, with dimensions of inverse

resistance, define the electric-magnetic reciprocity as:

H' o wcF_) TCE
D =tk = + (B

E 1 + M
S =F=—ZH= :
B ¢ - D

» Electric-magnetic reciprocity physically crucial because

it leaves the energy-momentum 3-form %, invariant:

Y, =1[F A(ea)H) = H A(ea) F')] = Za.
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Electric-magnetic reciprocity et

electrodynamics,
electric-magnetic

» Given a twisted scalar { # 0, with dimensions of inverse =~ ity & closure
resistance, define the electric-magnetic reciprocity as:

A. Favefro, L.
H' _CE e VAL
= H/ — +<F — Obukhov.
24 +¢B
E' 1 +1iH
B’}_F/__gH:{ ;
B ZD Reciprocity

» Electric-magnetic reciprocity physically crucial because
it leaves the energy-momentum 3-form %, invariant:

Y, =1[F A(ea)H) = H A(ea) F')] = Za.
» Require that medium response has this symmetry too

H =k(F) = (F=kr(-C*H) = F=-("2k(H).



Electric-magnetic reciprocity et

electrodynamics,
electric-magnetic

» Given a twisted scalar { # 0, with dimensions of inverse =~ ity & closure
resistance, define the electric-magnetic reciprocity as:

A. Favefro, L.
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» Electric-magnetic reciprocity physically crucial because
it leaves the energy-momentum 3-form %, invariant:

X, = L[F A (eal H') — H' A (a) F)] = T
» Require that medium response has this symmetry too
H =k(F) = (F=kr(-C*H) = F=-("2k(H).
The constitutive law is still given by H = k(F), whence
F=—("%kok(F)
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» Given a twisted scalar { # 0, with dimensions of inverse =~ ity & closure
resistance, define the electric-magnetic reciprocity as:

A. Favefro, L.
H' _CE e VAL
= H/ — +<F — Obukhov.
24 +¢B
E' 1 +1iH
B’}_F/__gH:{ ;
B ZD Reciprocity

» Electric-magnetic reciprocity physically crucial because
it leaves the energy-momentum 3-form %, invariant:

X, = L[F A (eal H') — H' A (a) F)] = T
» Require that medium response has this symmetry too
H =k(F) = (F=kr(-C*H) = F=-("2k(H).
The constitutive law is still given by H = k(F), whence

F=-C2%0k(F) = kor=—Cd.



Electric-magnetic reciprocity — a closure relation

Pre-metric
electrodynamics,
electric-magnetic
duality & closure

relations.

A. Favaro, L.
Bergamin, |.V.
Lindell, Y.N.
Obukhov.

Reciprocity



Electric-magnetic reciprocity — a closure relation  ecrodyamies
electric-magnetic
duality & closure

» Electric-magnetic reciprocal media obey x o k = —(?Id. relations.
That is, they are solutions of the pure closure relation é\érg::‘?:vlb
Lindell, Y.N.

KoK — %tr(n o K})ld : Obukhov.

under the additional restriction tr(x o k)= —6¢? < 0.

Reciprocity



Electric-magnetic reciprocity — a closure relation

» Electric-magnetic reciprocal media obey x o K = —(?Id.
That is, they are solutions of the pure closure relation

Kok = ¢tr(kok)ld,

under the additional restriction tr(x o k)= —6¢? < 0.

> In the skewon-free case ((2)x = 0), there is only one
electric-magnetic reciprocal medium, the Hodge star:

Fag =7 (—det gne)_%é\aﬁpogp Hg,

with g% = g and det(g"’) < 0. The metric g®% is
derived by imposing conditions, not assumed from start.
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Electric-magnetic reciprocity — a closure relation

» Electric-magnetic reciprocal media obey x o K = —(?Id.
That is, they are solutions of the pure closure relation

Kok = ¢tr(kok)ld,

under the additional restriction tr(x o k)= —6¢? < 0.

> In the skewon-free case ((2)x = 0), there is only one
electric-magnetic reciprocal medium, the Hodge star:

Fag =7 (—det gne)_%é\aﬁpogp Hg,

with g7 = g7 and det(g"’) < 0. The metric g*% is

derived by imposing conditions, not assumed from start.
» See: Peres (1962), Toupin (1965), Schonberg (1971),

Obukhov and Hehl (1999), Rubilar (2002), Dahl (2011).

Pre-metric
electrodynamics,
electric-magnetic
duality & closure

relations.

A. Favaro, L.

Bergamin, |.V.

Lindell, Y.N.
Obukhov.

Reciprocity



Electric-magnetic reciprocity — a closure relation  ecrodyamies
electric-magnetic
duality & closure

» Electric-magnetic reciprocal media obey x o K = —(?Id. relations.
That is, they are solutions of the pure closure relation Q;ﬁ?ﬂ?’ub
Lindell, Y.N.

KoK= %tr(/@ ok)ld, Obukhov.

under the additional restriction tr(x o k)= —6¢? < 0.

> In the skewon-free case ((2)x = 0), there is only one
electric-magnetic reciprocal medium, the Hodge star:

Reciprocity
kM = QY= det g™) 225,08 8"
af g €afpc8 8

with g7 = g7 and det(g"’) < 0. The metric g*% is

derived by imposing conditions, not assumed from start.
» See: Peres (1962), Toupin (1965), Schonberg (1971),

Obukhov and Hehl (1999), Rubilar (2002), Dahl (2011).

» Consider another physical question leading to above
closure relation, but with tr(x o k) entirely arbitrary.
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Consider an arbitrary matrix mapping (H; F) into (H’; F’) as BAgrg::\?:'lk[
hkov.
H1 1Co Co| |H
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m {Coo, C11} twist-free and dimensionless.
m {Co1, Cio} twisted, with [Co1] =[C10] L =[resistance] 2.
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Require 2, is invariant: special linear reciprocity
» Construct: ¥/, = 1 [F' A (ex]H') — H' A (e F')]
» Arbitrary linear rec: express (H', F’) in terms of (H, F).



The special linear SL(2,R) reciprocity
Start from arbitrary linear reciprocity

Consider an arbitrary matrix mapping (H; F) into (H’; F’) as

H
F

H/

| %o Cor
F/

|G G

m {Coo, C11} twist-free and dimensionless.
m {Co1, Cio} twisted, with [Co1] =[C10] L =[resistance] 2.

Require 2, is invariant: special linear reciprocity

» Construct: ¥/, = 1 [F' A (ex]H') — H' A (e F')]

» Arbitrary linear rec: express (H', F’) in terms of (H, F).

» Obtain that Z/a = (CO0C11 - C10C01)Za = (det C)Za.
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The special linear SL(2,R) reciprocity

Start from arbitrary linear reciprocity

Consider an arbitrary matrix mapping (H; F) into (H'; F') as
H
F/

H
F

_ Coo  Co1
Cio Cin

m {Coo, C11} twist-free and dimensionless.
m {Co1, Cio} twisted, with [Co1] =[C10] L =[resistance] 2.

Require 2, is invariant: special linear reciprocity
Construct: ¥/, = 2 [F' A (ea) H') — H' A (ea]F")]
Arbitrary linear rec: express (H', F') in terms of (H, F).
Obtain that Z/a = (CO0C11 - C10C01)Za = (det C)Za.

v

v

v

v

Y, invariant if and only if (det C)=1, i.e. C € SL(2,R).
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The special linear SL(2,R) reciprocity

Start from arbitrary linear reciprocity

Consider an arbitrary matrix mapping (H; F) into (H'; F') as
H
E

H
F

Coo  Co1
Cio Cin

m {Coo, Ci1} twist-free and dimensionless.
m {Co1, Cio} twisted, with [Co1] =[C10] L =[resistance] 2.

Require 2, is invariant: special linear reciprocity
Construct: ¥/, = 2 [F' A (ea) H') — H' A (ea]F")]
Arbitrary linear rec: express (H', F') in terms of (H, F).
Obtain that Z; = (CO0C11 - C10C01)Za = (det C)Za.
Y, invariant if and only if (det C)=1, i.e. C € SL(2,R).

Special linear reciprocity has a physical importance.

v

v

v

v

v
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» Start from H' = k(F’). Express it in terms of original F. relations.
» Achieve equation C10/-€2 + (C11 - Coo)l-ﬂ — Co1ld = 0. B/:rg:x?k/
» Case Cip = 0 leads to trivial results. Assume Cig # 0, Ro i
2 Ci1—Coo e _
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» Start from H' = k(F’). Express it in terms of original F. relations.

» Achieve equation Clol-{2 + (Cll - Coo)l-ﬂ — Co1ld = 0. Birg:x?k/

» Case Cip = 0 leads to trivial results. Assume Cig # 0, Ro i
ﬁ2+<C1110C00>K (COl)ld—O

» Look at first two terms & complete the square. That is,
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» Start from H' = k(F’). Express it in terms of original F. relations.
» Achieve equation Clol-{2 + (C11 - Cog)l-{ — Co1ld = 0. Birg:x?k/
» Case Cip = 0 leads to trivial results. Assume Cig # 0, Ro i

K2 + <C11C—Coo> K — (Co1) Id=0.

10

v

Look at first two terms & complete the square. That is,
add and subtract [(Ci1 — Coo)/2Ci0]?ld, and collect as:

o+ (Sgzse) Id] (=Gl racucal i
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Demand the medium is SL(2,R) reciprocal

>

>

>

Start from H' = k(F’). Express it in terms of original F.

Achieve equation C10/€2 + (Cll — Cog)l-{ — Co1ld = 0.
Case (19 = 0 leads to trivial results. Assume Cig # 0,

K2 + (CnC—Coo) K — (Co1) Id=0.

10

Look at first two terms & complete the square. That is,

add and subtract [(Ci1 — Coo)/2Ci0]?ld, and collect as:

o+ (Sgzse) Id] (=Gl racucal i

On right-hand side, use (det C)= CooC11 — Co1Cio=1,

o () - [357

Similar calculations are found in Lindell's work (self-dual
media, bi-quadratic BQ media, second-order SD media).
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Demand the medium is SL(2,R) reciprocal

>

>

>

Start from H' = k(F’). Express it in terms of original F.
Achieve equation Clol-{2 + (C11 — Cog)l-{ — Co1ld = 0.
Case (19 = 0 leads to trivial results. Assume Cig # 0,

K2 + <C11C—Coo> K — (Co1) Id=0.

10

Look at first two terms & complete the square. That is,
add and subtract [(Ci1 — Coo)/2Ci0]?ld, and collect as:

o+ (Sgzse) Id] (=Gl racucal i

On right-hand side, use (det C)= CooC11 — Co1Cio=1,
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Similar calculations are found in Lindell's work (self-dual
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SL(2,R) reciprocal media obey pure closure rel.
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3
C lations.
11 » « relations.
(\“ 7 A. Favaro, L.
/ / Bergamin, |.V.
tr(x' o r') <0 Lindell, Y.N.
1 Obukhov.
48 -4 -32 -24 16 -08 0.8
tr(k ok') >0 il
Reciprocity
-t

» SL(2,R) reciprocal media obey the pure closure relation
K ok = Ltr(k o k')Id,
provided one introduces a “modified” map x’ such that

(C11+Coo) -

— (C11—Coo)|d and tr(k oK) = 4C2
10

» The factor tr(x’' o k') can take any sign, or even vanish.



Mixed closure relation when invariants 5 = nh clctrodymamies,
electric-magnetic
duality & closure

» Look for medium such that, for every choice of {H, F}, relations.
A. Favaro, L.
I =nb, that is HAH=nFAF, YN,

Obukhov.

In terms of 3-dimensional fields, for every {H,D, E, B},

HAD=-nBANE, (pre-metric),
H-D=-nB-E, (post-metric).

EM invariants

» Consequence: if BA E =0, one has H A D = 0 trivially.

—
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From I3 = nl (V fields) to mixed closure relation.

» Demand H A H =nF A F for every choice of H and F.
Local & linear media: k(F) A k(F)=nF A F for any F.
» “Convert” wedge products in Levi-Civita symbols. Thus,

(GMN/{MIK;NJ)F/ FJ — (77€IJ)F/ FJ ,
for every F;. Grouping the two terms together, achieve
(EMNFLMIK,NJ — neU)F/FJ =0.

» Expression in brackets already symmetric under swap of

indices {/, J}. Moreover, it must hold true for all F;, so
GMN,%M’/{NJ — 776” =0.

Contract by &;; and recall &, = 6[ (Kronecker delta):

A I MNy,. J J - N, J J
(Eirp € )ky” =MoL, = R Ky =101 .
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From I3 = nh (V fields) to mixed closure relation. = eecisdmamies
electric-magnetic
dualtity & clgos:re

relations.

» Demand H A H=nF A F for every choice of H and F. Qrg:;?;?\k[
Local & linear media: xk(F) A k(F)=nF A F for any F. Lindel, ¥.N.

» “Convert” wedge products in Levi-Civita symbols. Thus,
("Nip k) FiIFy = (ne”)FiFy
for every F;. Grouping the two terms together, achieve

(EMNKJMII{NJ - neU)F/FJ =0.

EM invariants

» Expression in brackets already symmetric under swap of
indices {/, J}. Moreover, it must hold true for all F;, so
eMN/iM’/{NJ — 776” =0.
Contract by &;; and recall &, = 6[ (Kronecker delta):
A I _MN - N
(ELikp'e )HNJ = 775Z7 = K ”NJ = 775i-

» Conclude: imposing I3 = nl, for all field configurations,
leads to the mixed closure relation Ko x = %tr(/?; o k)ld.
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(TE) & transverse magnetic (TM) with respect to axis. Obukhov.

» Generalisation of uniaxial TE/TM split available in the
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Other motivations for studying the mixed closures

Generalise the uniaxial TE/TM decomposition

» Uniaxial medium: 3d fields are split in transverse electric
(TE) & transverse magnetic (TM) with respect to axis.

» Generalisation of uniaxial TE/TM split available in the
decomposable media. Info in Lindell and Olyslager
(1998, 2001) or Lindell, Bergamin and Favaro (2012).

» Mixed closure relation plays crucial role in this context.
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Other motivations for studying the mixed closures

Generalise the uniaxial TE/TM decomposition

» Uniaxial medium: 3d fields are split in transverse electric
(TE) & transverse magnetic (TM) with respect to axis.

» Generalisation of uniaxial TE/TM split available in the
decomposable media. Info in Lindell and Olyslager
(1998, 2001) or Lindell, Bergamin and Favaro (2012).

» Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media.
When skewon vanishes, one has x = k. Accordingly, all
closure relations become the same equation, the closure
relation for skewon-free media. To solve it, two methods:
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Other motivations for studying the mixed closures = ecirodynamics

electric-magnetic
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Generalise the uniaxial TE/TM decomposition relations.
. . . . . . A. Favaro, L.
» Uniaxial medium: 3d fields are split in transverse electric i, 1V,
. . . Lindell, Y.N.

(TE) & transverse magnetic (TM) with respect to axis. Obukhov.

» Generalisation of uniaxial TE/TM split available in the
decomposable media. Info in Lindell and Olyslager
(1998, 2001) or Lindell, Bergamin and Favaro (2012).

» Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media. Other motivations
When skewon vanishes, one has x = k. Accordingly, all

closure relations become the same equation, the closure

relation for skewon-free media. To solve it, two methods:

1. Solve pure closure, usually k o ﬁ:%tl’(li o k)ld. Then,
remove skewon. Good: pure closure — physical insight.



Pre-metric

Other motivations for studying the mixed closures = ecirodynamics

electric-magnetic
duality & closure

Generalise the uniaxial TE/TM decomposition relations.
. . . . . . A. Favaro, L.
» Uniaxial medium: 3d fields are split in transverse electric i, 1V,

. . . Lindell, Y.N.

(TE) & transverse magnetic (TM) with respect to axis. Obukhov.

» Generalisation of uniaxial TE/TM split available in the
decomposable media. Info in Lindell and Olyslager
(1998, 2001) or Lindell, Bergamin and Favaro (2012).

» Mixed closure relation plays crucial role in this context.

Preview: the closure relation for skewon-free media. Other motivations
When skewon vanishes, one has x = k. Accordingly, all

closure relations become the same equation, the closure

relation for skewon-free media. To solve it, two methods:

1. Solve pure closure, usually k o ﬁ:%tl’(li o k)ld. Then,
remove skewon. Good: pure closure — physical insight.

2. Solve a mixed closure relation. Then, remove skewon.
Good: mixed closures easier to solve. They are useful.
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Closure relations and their properties

Closure relations at a glance
1

Pure: kok=ttr(kok)ld, and Rok = ttr(Rok)ld.

Mixed: rkof& = ttr(ko&)ld, and For = ttr(Ror)ld.

Two identities and a property of closure relations
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Closure relations and their properties

Closure relations at a glance

Pure: kok=ttr(kok)ld, and Rok = ttr(Rok)ld.

1

Mixed: rkof& = ttr(ko&)ld, and For = ttr(Ror)ld.

Two identities and a property of closure relations

» The identity tr(k o k) = tr(k o k) true for arbitrary .
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Closure relations and their properties

Closure relations at a glance

o=

Pure: rkok=ttr(kok)ld, and Rok =

Mixed: rkof& = ttr(ko&)ld, and For = ttr(Ror)ld.
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Closure relations at a glance " reations,
- - — — A. Favaro, L.
Pure: rkok=ttr(kor)ld, and Rok = gtr(Rok)ld. Bergamin, LV.
Lindell, Y.N.
Mixed: Kok = %tr(ﬁ; ok)ld, and Rok = %tr(/% or)ld. Obukhov.

Two identities and a property of closure relations

» The identity tr(k o k) = tr(k o k) true for arbitrary .
» The identity tr(k o k) = tr(k o k) true for arbitrary .

» If k is a solution of one closure relation, the respective
factor in red vanishes if and only if det(x) = 0. In fact,

Closure relations

,io,«;:%tr(,k;on)ld, = ‘tr(ﬁoﬁ)’=6’det(’£)‘%a
Rok=Lltr(RoR)ld, = |tr(RoR) = 6|det(x)[3,
K,OI_{:%U’(I{OR)ld, = \tr(lﬁol_‘i)|:6|det(”)‘%a
Rok=1ttr(Ror)ld, = [tr(Ro k)| =6|det()]3.
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Closure relations and their properties (continued)  ecdnomics
electric-magnetic
dualtity & clgos:re

relations.

Pure closure relations
A. Favaro, L.
. Bergamin, |.V.
> If: k obeys one pure closure relation; Lindell, Y.N.

— . g . Obukhov.
Then: & satisfies the other pure closure relation.

» If: k obeys one pure closure relation;
Then: k satisfies the other pure closure relation.
So: the pure closures have the same solution set.

Mixed closure relations
Closure relations

> If: k obeys one mixed closure relation;
Then: & satisfies the other mixed closure relation.

» If: x obeys one mixed closure relation & « is invertible.
Then: k satisfies the other mixed closure relation.
So: the mixed closures have the same set of invertible
solutions. (Not all solutions with det(x)=0 are shared.)



Kok = ¢tr(kork)ld
K K

is a solution | is a solution

N R 71N

v ¢ N v
K K

is a solution | is a solution

Rok = ¢tr(RoR)ld

PURE

Links between closure relations

Kok = ttr(koR)ld
K K
is a solution | is a solution
N R 71 A\
o o
N th
¢ 5
= =
|5} 5]
o] o]
VA
K K
is a solution | is a solution

Rok =tr(kok)ld
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» Non-covariant (3-dim.) derivation of all invertible roots

of mixed closures: Lindell, Bergamin and Favaro (2012).
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Find all invertible roots of mixed closure relation.
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If det(x)#0, the mixed closures have same solution set.
Hence, it is only necessary to solve one mixed closure.
Choose to find invertible roots of < o k = %tr(/% o k)ld,
say. Assume tr(% o k) is positive or negative, but not 0.
In what follows: all invertible solutions of the mixed
closure relations are calculated — in a covariant way.
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of mixed closures: Lindell, Bergamin and Favaro (2012).
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» If det(x)#0, the mixed closures have same solution set. e
Hence, it is only necessary to solve one mixed closure. A\ e, 1L
. . . — - B in, 1.V.
» Choose to find invertible roots of Ko Kk = %tr(ﬁ o k)ld, Cindell, Y.,

say. Assume tr(% o k) is positive or negative, but not 0. Obukhov.

> In what follows: all invertible solutions of the mixed
closure relations are calculated — in a covariant way.

» Non-covariant (3-dim.) derivation of all invertible roots
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of mixed closures

In particular, P,” is arbitrary [1] tensor of full rank.
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Find all invertible roots of mixed closure relation.  eectrodynamics
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» If det(x)#0, the mixed closures have same solution set. e
Hence, it is only necessary to solve one mixed closure. A\ e, 1L
. . . — - B in, 1.V.
» Choose to find invertible roots of Ko Kk = %tr(ﬁ o k)ld, Cindell, Y.,

say. Assume tr(% o k) is positive or negative, but not 0. Obukhov.

» In what follows: all invertible solutions of the mixed

closure relations are calculated — in a covariant way.
» Non-covariant (3-dim.) derivation of all invertible roots

of mixed closures: Lindell, Bergamin and Favaro (2012).
> Invertible roots of mixed closures: P-media & Q-media.

Preview: P-media and Q-media
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B P-media have constitutive law Kag 2YP[a PB] . Invrtible solutions

In particular, P,” is arbitrary [1] tensor of full rank.

m Dispersion equation of P-media trivially zero (~ axion).
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» If det(k)#£0, the mixed closures have same solution set. fslipito i
Hence, it is only necessary to solve one mixed closure. A\ e, 1L

. . . — — B in, V.

» Choose to find invertible roots of Ko Kk = %tr(ﬁ o k)ld, Cindell, Y.,

say. Assume tr(% o k) is positive or negative, but not 0. Obukhov.

» In what follows: all invertible solutions of the mixed
closure relations are calculated — in a covariant way.
» Non-covariant (3-dim.) derivation of all invertible roots
of mixed closures: Lindell, Bergamin and Favaro (2012).
> Invertible roots of mixed closures: P-media & Q-media.
Preview: P-media and Q-media
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B P-media have constitutive law Kag 2YP[a PB] . Invrtible solutions
In particular, P,” is arbitrary [1] tensor of full rank.
m Dispersion equation of P-media trivially zero (~ axion).
m Q-media have constitutive law HQBW:%QQMQ”“QU”.
In particular, Q%P is arbitrary [%] tensor of full rank.



Pre-metric

Find all invertible roots of mixed closure relation.  eectrodynamics

electric-magnetic

» If det(k)#£0, the mixed closures have same solution set. fslipito i
Hence, it is only necessary to solve one mixed closure. A\ e, 1L

. . . — — B in, V.

» Choose to find invertible roots of Ko Kk = %tr(ﬁ o k)ld, Cindell, Y.,

say. Assume tr(% o k) is positive or negative, but not 0. Obukhov.

> In what follows: all invertible solutions of the mixed
closure relations are calculated — in a covariant way.

» Non-covariant (3-dim.) derivation of all invertible roots
of mixed closures: Lindell, Bergamin and Favaro (2012).

> Invertible roots of mixed closures: P-media & @Q-media.

Preview: P-media and Q-media
m P-media have constitutive law £, " = 2YP[a“PB]”. Inerible soluions
In particular, P,” is arbitrary [1] tensor of full rank.
m Dispersion equation of P-media trivially zero (~ axion).
m Q-media have constitutive law HQBW:%QQMQ”“QU”.
In particular, Q%P is arbitrary [%] tensor of full rank.

m (Q-media are non-birefringent (~ Hodge star, vacuum).
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Find all invertible roots of mixed closure relations  ecusimmis
electric-magnetic
duality & closure

Choose to solve ko k = %tr(/% o k)ld. In components, write: e
A. Favaro, L.
1 1 s 0 1 Bergamin, |.V.
1g PO, M 1g YO\ nbpo . KV _ Lz pv Lindell, Y.N.
2Map Hpo =3 aﬁ'y‘s(ﬁﬂe )e Kpo = 6tr(l€ °© ﬁ)éaﬁ Obukhov.
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Find all invertible roots of mixed closure relations

Choose to solve kKo k = %tr(/% o k)ld. In components, write:

1= po g
7k Kpa

_ 1. Y6\ _nd [ e v
af - §6a575(/€7]0 )Gn pO—RPU - gtl’(/ﬁ; o ﬁ)(saﬁ
First step: contract expression through by %e”aﬁ, to obtain

1 _nbpo AT o 1y (= ATy
7€ 7Kg Ko’ = etr(k o k)e ™.
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Find all invertible roots of mixed closure relations  eecrodymm

electrodynamics,

electric-magnetic

duality & closure
relations.

Choose to solve kKo k = %tr(/% o k)ld. In components, write:

A. Favaro, L.
1 1 s 0 1 Bergamin, |.V.
1= po py _ 1a Y nbpo pvo 1 = 1324 Lindell, Y.N.
2kag Fpo =3 aﬁvé(ﬁng )e Kpo' = 6“(’{5 o ’i)(saﬁ Obukhov.

First step: contract expression through by %e”aﬁ, to obtain

1 _nbpo AT o 1y (= ATy
7€ 7Kg Ko’ = etr(k o k)e ™.

Hence, multiply both sides by the Levi-Civita symbol €,3,s,

1~ nbpo AT py 1y (= ATuv 2
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Find all invertible roots of mixed closure relations  eeciedmn

electrodynamics,

electric-magnetic

duality & closure
relations.

Choose to solve kKo k = %tr(/% o k)ld. In components, write:

A. Favaro, L.
1 1 s 0 1 Bergamin, |.V.
1= po py _ 1a Y nbpo pvo 1 = 1324 Lindell, Y.N.
2kag Fpo =3 aﬁfyé(’%g )e Kpo' = 6tr(’<'7 o ’i)(saﬁ Obukhov.
First step:

contract expression through by %e”aﬁ, to obtain

1 _nbpo AT o 1y (= ATy
7€ 7Kg Ko’ = etr(k o k)e ™.

Hence, multiply both sides by the Levi-Civita symbol €,3,s,

1~ nbpo AT py 1y (= ATuv 2
= = = @) .

4 eaﬂ'y(se Klﬁa K/po- 6tr(Kl Kl)e 60{676 Invertible solutions
of mixed closures

Using generalised Kronecker delta 52%’,’%:%5756’76”", yields

1 cnbpo AT 22 ATuv 2
D00pysting Koo' = gtr(R o K)e T Eqpys.



Invertible roots of mixed closures (continued) Crodynam

electrodynamics,
electric-magnetic

1 enfpo 1 _ " dualityKlaclosure
ZééﬁpA,JKWGAT”PUMV — gtr(/{ o) K’)EATMVGQB’)’(S' relations.
. . . . L. L. A. Favaro, L.
The indices in blue and red are made implicit by defining the =i, L
twisted bivector-valued 2-form x#¥, and the 4-form density €: Obukhov.
v._ 1 KV (9o
KM= kg (0 A 98),
~._ 12 1)
€ 1= gr€apys (VA 98N A 90).
where {9%} is the co-frame. Indeed, by means of xk"” and ¢,
(KN A KM) = Lr(R o k)eMHVe
Implement 6-dimensional indices {/, J, ...}, obtain equation & micd comrer

(kA KT) = ttr(R o k)ee,

Represent €/ as a 6 x 6 matrix formed of four 3 x 3 blocks:
m The diagonal blocks are null matrices Q33.

m The off-diagonal blocks are unit matrices I3x3.



Invertible roots of mixed closures (continued) e

electric-magnetic

dualtity & clgos:re
relations.

1 O I
(K]I/\ /iJ) = *tr(/_ﬂ o /‘”i) 3x3 3x3 € A. Favaro, L.
6 ]I @ ’ Bergamin, .V
3x3 3x3 Lindell, Y.N.
Obukhov.

The diagonal of the matrix € is all formed of zeroes, and so
kKA =0, K2 AK? =0, KAKS=0,
k*ARY =0, K> AK? =0, KOAKE =0,

i.e. the twisted 2-forms {x#} = {k01, K02 k03 k23 k31 K12}
must be simple (V = a A j).

Invertible solutions
of mixed closures
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The diagonal of the matrix € is all formed of zeroes, and so

kKA =0, K2 AK? =0, KIAKS =

/€4/\:‘£4:O, 55/\/£5:O, /16/\,%6:0,

i.e. the twisted 2-forms {x#} = {k01, K02 k03 k23 k31 K12}
must be simple (V = a A 3). In fact, a closer analysis of the
equation to solve indicates that there are 2 alternative cases

Invertible solutions
of mixed closures

) {{nm, k92, k%) are simple and all share the same 1-form,

{K23, k3 K12} are simple and pairwise share a different 1-form,

) {K%, k92 K93} are simple and pairwise share a different 1-form,
{K%3, k3, k'2} are simple and all share the same 1-form.
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The diagonal of the matrix € is all formed of zeroes, and so

kKA =0, K2 AK? =0, KIAKS =

/€4/\:‘£4:O, 55/\/£5:O, /16/\,%6:0,

i.e. the twisted 2-forms {x#} = {k01, K02 k03 k23 k31 K12}
must be simple (V = a A /3). In fact, a closer analysis of the
equation to solve indicates that there are 2 alternative cases

Invertible solutions
of mixed closures

) {{nm, k92, k%) are simple and all share the same 1-form,

{K23, k3 K12} are simple and pairwise share a different 1-form,

) {K%, k92 K93} are simple and pairwise share a different 1-form,
{K%3, k3, k'2} are simple and all share the same 1-form.
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The cases A) & B) respectively correspond to the structures — duality & closure

relations.

uo__ n v A. Favaro, L.

K =Yrnlt Ar y Bergamin, V.
i N u y Lindell, Y.N.

K — xoz(q A q ) , Obukhov.

where {7®} is a basis of the space of 1-forms, and {q“} is a
basis of the space of vectors.
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Invertible roots of mixed closures (continued)
The cases A) & B) respectively correspond to the structures

K =Yat Ar?
K = X$2(q" N GY)

where {7®} is a basis of the space of 1-forms, and {q“} is a
basis of the space of vectors. Expand in arbitrary (co-)frame:

P = Pa’BUO‘ , = K 3“‘” =2YP

[e%

Kp v
[a PB] ’
qﬁ — Qo‘ﬂea 7 = K BW = Xuppe QM Q.

«

All invertible roots of the mixed closure relations are either
P-media or @-media.
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Invertible roots of mixed closures (continued)
The cases A) & B) respectively correspond to the structures

kW =Yat ATV,
K = X$2(q" N GY)

where {7®} is a basis of the space of 1-forms, and {q“} is a
basis of the space of vectors. Expand in arbitrary (co-)frame:

7TB = Pa’B’Ua , = /ﬁfuﬁl“/ = 2YP[O[/1 Pﬁ]l/ )

qﬁ — Qo‘ﬁea 7 = ﬁaﬂ“’/ = Xuppe QM Q.

All invertible roots of the mixed closure relations are either
P-media or @-media. These two constitutive laws satisfy the
mixed closure relations, with right-hand side given by (resp.):

» tr(K o k) = tr(k o &) = Y?(det P). Consistently with the
above, (det P) can take any sign, but it cannot vanish.
» tr(k o k) = tr(k o ) =X2(det Q). Consistently with the
above, (det Q) can take any sign, but it cannot vanish.
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The closure relation for skewon-free media

» When there is no skewon, one has that kK = k.
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» All closure relations become one and the same equation,
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» Know all invertible solutions of mixed closure relations.
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» Know all invertible solutions of mixed closure relations.
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» All closure relations become one and the same equation,
namely, the closure relation for skewon-free media.

A useful idea. ..

» Know all invertible solutions of mixed closure relations.
» Remove the skewon from P-media and Q-media. ..

» This solves the closure relation for skewon-free media,
in the case det(x) # 0. All invertible roots are found.
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The closure relation for skewon-free media

» When there is no skewon, one has that kK = k.
> If k is skewon-free, Kok =Kok =Kok = K 0 K.

» All closure relations become one and the same equation,
namely, the closure relation for skewon-free media.

A useful idea. ..

» Know all invertible solutions of mixed closure relations.
» Remove the skewon from P-media and Q-media. ..

» This solves the closure relation for skewon-free media,
in the case det(x) # 0. All invertible roots are found.

» The root with tr(k o k) =tr(k o k) =tr(k o k) =tr(k o k)
negative is (3,1) Hodge star (Hehl & Obukhov, 1999).
Here, this statement is re-derived in an alternative way.
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The closure relation for skewon-free media

» When there is no skewon, one has that kK = k.
> If k is skewon-free, Kok =Kok =Kok = K 0 K.

» All closure relations become one and the same equation,
namely, the closure relation for skewon-free media.

A useful idea. ..

» Know all invertible solutions of mixed closure relations.
» Remove the skewon from P-media and Q-media. ..

» This solves the closure relation for skewon-free media,
in the case det(x) # 0. All invertible roots are found.

» The root with tr(k o k) =tr(k o k) =tr(k o k) =tr(k o k)
negative is (3,1) Hodge star (Hehl & Obukhov, 1999).
Here, this statement is re-derived in an alternative way.

» The roots with tr(k o k)=tr(Ro k) =tr(k o k) =tr(Rk o k)
being positive are an original contribution of this work.
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Invertible solutions to the closure with no skewon.

» Solutions of the P-medium type:

P-medium P(,,B Defining property det P
Kog = Y261 P.” = L8] | 84 is the identity tensor | L* >0
. 3 =YYy | P =10 WL =00 0 =0 | 14 >0
Ko = 2YMP LIy | P = MU | U = =8 M* >0
tr(k o Ii) =tr(k o k) =tr(rk o k) =tr(ik o k) = Y?(det P).

» Solutions of the Q-medium type
([5] Q8 is symmetric, while [al Qob s antisymmetric):

Constitutive relation det @
Kog = Q1| detF1Q|~ [N 5pe1QPEIQ7  Signature(F1Q) = (3,1) | <0
Ko = Q7 (det [1Q) 22,5, 91 QPE1Q7  Signature(1Q) = (2,2) | >0
Kog = Q7 (det 1Q)~ %gud LL1QPHE1Q7  Signature(l1Q) = (4,0) | >0
/faﬁ“” =T"1(det [a] Q)*%gadm[al Qrulal @ov >0
tr(k o k) =tr(R o &) =tr(k o K) =tr(k o k) = X2(det Q).

Hodge star based on metric of signature (3,1) easily picked
out. More in general, analyse first 3 entries Q-medium table.
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Hodge star, analyse various signatures
Ko = Q1| det ! Q|—%gaﬂpa[51 Qrrlslgov

» Signature(*1Q) = (3,1): Fresnel surface is spherical.
= Q> 0: vacuum or medium with scalar positive ¢, p.
= Q < 0: medium with scalar negative €, p.

» Signature(*1Q) = (4,0): Have only evanescent waves.
= Q > 0: metal, plasma, metamaterial (metal rods array).
= < 0: Metamaterial formed by an array of split rings.

» Signature(I1Q) = (2,2): Fresnel surface hyperboloid.
= Q> 0: exploited in hyperlens proposed by Jacob, 2006.
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Conclusions

¢ Introduced four closure relations (2 pure, 2 mixed).
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o A pure closure relation with tr(k o k) < 0 is found by
requiring that medium is electric-magnetic reciprocal.
No skewon: unique solution is Hodge star metric (3,1).
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requiring that medium is electric-magnetic reciprocal.
No skewon: unique solution is Hodge star metric (3,1).

o Alike the electric-megnetic subcase, the special linear
reciprocity leaves ¥, invariant. SL(2,R) reciprocal
media obey pure closure rel. with arbitrary tr(x’ o k).

Pre-metric
electrodynamics,
electric-magnetic
duality & closure

relations.

A. Favaro, L.

Bergamin, |.V.

Lindell, Y.N.
Obukhov.

Conclusions



Conclusions

¢ Introduced four closure relations (2 pure, 2 mixed).

o A pure closure relation with tr(k o k) < 0 is found by
requiring that medium is electric-magnetic reciprocal.
No skewon: unique solution is Hodge star metric (3,1).
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¢ Require that constitutive law gives rise to I3 = 1l for
any field configuration. Mixed closure relation emerges.
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¢ Introduced four closure relations (2 pure, 2 mixed). relations.
o A pure closure relation with tr(k o k) < 0 is found by Brporer &
requiring that medium is electric-magnetic reciprocal. it Yl

Obukhov.
No skewon: unique solution is Hodge star metric (3,1).

o Alike the electric-megnetic subcase, the special linear
reciprocity leaves ¥, invariant. SL(2,R) reciprocal
media obey pure closure rel. with arbitrary tr(x’ o k).

¢ Require that constitutive law gives rise to I3 = 1l for
any field configuration. Mixed closure relation emerges.

o Mixed closures easier to solve than pure ones. Yet, pure
and mixed merge into the same equation, if no skewon.

¢ Found all invertible solutions to the mixed closures.
Such solutions are the P-media and Q-media only.

Conclusions

o Remove the skewon P-media and Q-media. Obtain all
invertible solutions to the skewon-free closure relation.

¢ Retrieved result concerning Hodge dual, metric (3,1).
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