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FOUR LECTURES ON POINCARE GAUGE FIELD THEORY"

Friedrich W. Hehl

Institute for Theoretical Physics

University of Cologne, W. Germanyt

and

Center for Particle Theory and Center for Theoretical

Physics, The University of Texas at Austin*
Austin, Texas 78712

ABSTRACT

The Poincar£ (inhomogeneous Lorentz) group underlies special

relativity. In these lectures a consistent formalism is developed

allowing an appropriate gauging of the Poincare group. The physi

cal laws are formulated in terms of points, orthonormal tetrad

frames, and components of the matter fields with respect to these

frames. The laws are postulated to be gauge invariant under local

Poincare transformations. This implies the existence of 4 transla-

tional gauge potentials £a ("gravitons") and 6 Lorentz gauge poten

tials Ta$ ("rotons") and the coupling of the momentum current and
the spin current of matter to these potentials, respectively. In

this way one is led to a Riemann-Cartan spacetime carrying torsion

and curvature, richer in structure than the spacetime of general

relativity. The Riemann-Cartan spacetime is controlled by the two

general gauge field equations (3.44) and (3.45), in which material
momentum and spin act as sources. The general framework of the

*Given at the 6th Course of the International School of Cosmology

and Gravitation on "Spin, Torsion, Rotation, and Supergravity

held at Erice, Italy, May 1979.

tPermanent address.

^Supported in part by DOE contract DE-AS05-76ER-3992 and by NSF

grant PHY-7826592.
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theory is summarized in a table in Section 3.6. - Options for

picking a gauge field lagrangian are discussed (teleparallelism,

ECSK). We propose a lagrangian quadratic in torsion and curva

ture governing the propagation of gravitons and rotons. A sup

pression of the rotons leads back to general relativity.
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LECTURE 1: GENERAL BACKGROUND

1.1 Particle Physics and Gravity

The recent development in particle physics seems to lead to

the following overall picture: the fundamental constituents of

matter are spin-pne-half fermions, namely quarks and leptons, and

their interactions are mediated by gauge bosons coupled to the

appropriate conserved or partially conserved currents of the

fermions. Strong, electromagnetic, and weak interactions can be

understood in this way and the question arises, whether the gravi

tational interaction can be formulated in a similar manner, too.

These lectures are dedicated to this problem.

General relativity is the most satisfactory gravitational

theory so far. It applies to macroscopic tangible matter and to

electromagnetic fields. The axiomatics of general relativity makes

it clear that the notions of massive test particles^ and of massless

scalar "photons11 underlie the riemannian picture of spacetime.

Accordingly, test particles, devoid of any attribute other than

mass-energy, trace the geodesies of the supposed riemannian geometry

of spacetime. This highly successful conception of massive test

particles and "photons" originated from classical particle mechanics

and from the geometrical optics1 limit of electrodynamics, respec

tively. It is indispensable in the general relativity theory of

1915 (GR).

Is it plausible to extrapolate riemannian geometry to micro-

physics? Or shouldn't we rather base the spacetime geometry on the

supposedly more fundamental fermionic building blocks of matter?

1.2 Local Validity of Special Relativity and Quantum Mechanics

At least locally and in a suitable reference frame, special

relativity and quantum mechanics withstood all experimental tests

up to the highest energies available till now. Consequently we

have to describe an isolated particle according to the rules of

special relativity and quantum mechanics: Its state is associated

with a unitary representation of the Poincare (inhomogeneous

Lorentz) group. It is characterized by its mass m and by its spin

s. The universal applicability of the mass-spin classification

scheme to all known particles establishes the Poincare group as

an unalterable element in any approach to spacetime physics.

Let us assume then at first the doctrine of special relativ

ity. Spacetime is represented by a 4-dimensional differentiable

manifold X^ the points of which are labelled by coordinates x^.

*To be more precise: massive, structureless, spherical symmetric,

non-rotating, and neutral test particles... .
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On the X, a metric is given, and we require the vanishing of the
riemannian curvature. Then we arrive at a Minkowski spacetime M4.
We introduce at each point an orthonormal frame of four vectors

(tetrad frame)

= e 9.
•a 1

with = diag.(-4++) (1.1)

Here ruft is the Minkowski metric* We have the dual frame (co-frame)

ea = e!adx1 and find e^ e.g = Og.

In the framework of the Poincare gauge field theory (PG) to
be developed further down, the field of anholonomic tetrad frames
e (xk) is to be considered an "irreducible" or primitive concept.

We" imagine spacetime to be populated with observers. Each observer
is equipped with all the measuring apparatuses used in special
relativity, in particular with a length and an orientation standard
allowing him to measure spatial and temporal distances and relative
orientations, respectively. Such local observers are "presented
by the tetrad field e^* > . Clearly this notion of anholonomic

observers" that lies at the foundations of the PG,1 is alien to
GR as we saw above. It seems necessary, however, in order to
accommodate, at least at a local level, the experimentally well
established "Poincare behavior" of matter, in particular its

spinorial behavior.

1.3 Matter and Gauge Fields

After this general remark, let us come back to special rela
tivity In the M4 the global Poincare group with its 10 infini

tesimal parameters (4 translations and 6 Lorentz-rotations) is the
group of motions. Matter, as mentioned, is associated with unitary
representations of the Poincare group. The internal properties of
matter, the flavors and colors, will be neglected in our presenta
tion since we are only concerned with its spacetime behavior.

Accordingly, matter can be described by fields * (xk) which refer
to the tetrad e^x1*) and transform as Poincare spinor-tensors,

*The anholonomic (tetrad or Lorentz) indices a,3,Y"' as well as
the holonomic (coordinate or world) indicesi,j,1c •• run from 0
to 3, respectively. For the notation and the conventions compare

ril In the present article the object of anholonomity U-^ is
defined with a factor 2, however. GR = general relativity of
1915, PG = Poincare gauge (field theory), P = Poincare.

tDuring the Erice school I distributed Kerlick's translation of
Cartan's original article.2 It should be clear therefrom that
it is Cartan who introduced this point of view.
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respectively. Thereby, technically speaking, the ^(x^) a priori

carry only _anholonomic spinor and tensor indices, which we'll

suppress for convenience.

We will restrict ourselves to classical field theory, i.e. the

fields i|j(xk) are unquantized c-number fields. Quantization will
have to be postponed to later investigations.

The covariant derivative of a matter field reads

(1.2)

where the fag are the appropriate constant matrices of the Lorentz

generators acting on ijj(xk). Their commutation relations are given
by

(1.3)

The connection coefficients F^01", being referred to orthonormal
tetrads on an M^, can be expressed in terms of the object of

anholonomity ^±\a according to

with

and

2 2

•a a

(1.4)

(1.5)

We can read off from (1.4) the antisymmetry of the connection

coefficients,

r-a6 E _r-6a ^ (1>6)

i.e. neighboring tetrads are, apart from their relative displace

ment, only rotated with respect to each other. Furthermore we

define and D = eJaD^. For the mathematics in

volved we refer mainly to ref. [3], see also [4].

By definition, a field possessing originally a holonomic

index, cannot be a matter field. In particular, as it will turn

out, gauge potentials like the gravitational potentials e^a and

F!a" (see Section 2.4) or the electromagnetic potential A., emerge

with holonomic indices as covariant vectors and do not represent

matter fields." The division of physical fields into matter fields

'^Technically speaking gauge potentials are always one-forms with

values in some Lie-algebra, see 0fRaifeartaigh,^
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ip(x ) and gauge potentials like e^a, F^0*, Ai is natural and un

avoidable in any gauge approach (other than supergravity). In our

gauge-theoretical set-up, the gauge potentials and the associated

fields will all be presented by holonomic totally antisynunetric

covariant tensors (forms) or the corresponding antisymmetric con-

travariant tensor densities. Hence there is no need of a covariant

derivative for holonomic indices and we require that the D^ acts

only on anholonomic indices, i.e.

Dr.e., = 3r.e., + F
[1 j] [1 J [i Y

Y
(1.7)

for example."""

We have seen that Poincare matter is labelled by mass and spin.

It is mainly this reason, why the description of matter by means of

a field should be superior to a particle description: The spin

behavior of matter can be better simulated in a field theoretical

picture. Additionally, already in GR, and in any gauge approach

to gravity, too, gravitation is represented by a field. Hence

the coherence of the theoretical model to be developed would

equally suggest a field-theoretical description of matter. After

all, even in GR matter dust is represented hydrodynamically, i.e.

field-theoretically. As a consequence, together with the notion

of a particle, the notion of a path, so central in GR, will loose

its fundamental meaning in a gauge approach to gravity. Opera

tionally the linear connection will then have to be seen in a

totally different context as compared to GR.t Only in a macro
scopic limit will we recover the conventional path concept again.

1.4 Global Inertial Frames in the and Action Function of Matter

If we cover the M^ with cartesian coordinates and orient all

tetrads parallely to the corresponding coordinate lines, then we

tOur D^-operator (see [1]) corresponds to the exterior covariant

derivative of ref. [4].

fin GR the holonomic connection ?^k (the Christoffel) is expressible
in terms of - the metric and has, accordingly, no independent status.

In the equation for the geodesies it represents a field strength

acting on test particles. In PG it is the janholonomic F^a" which

enters as a fundamental variable. It turns out to be the rota

tional gauge potential. For its measurement we need a Dirac spin,

see Section 3.3.



FOUR LECTURES ON POINCARE GAUGE FIELD THEORY 11

find trivially for the tetrad coefficients

e;a £ 6a (ej * 6j)
i i * p p

(1.8)

i.e., in the Ma we can build up global frames of reference, inertial

ones, of course. With respect to these frames, the linear connec

tion vanishes and we have for the corresponding connection

coefficients

2 o

We will use these frames for the time being.

(1.9)

The lagrangian of the matter field will be assumed to be of

first order L = L[r). • ,Y"*"- *' »^(x) ,3 .^(x) ] . The action function

reads

d4x (1.10)

where Y1 denotes the Dirac matrices, e.g. The invariance of (1.10)
under global Poincare transformations yields momentum and angular

momentum conservation, i.e., we find a conserved momentum current

(energy-momentum tensor) and a conserved angular momentum current.

1.5 Gauging the Poincare Group and Gravity

Now the gauge idea sets in. Global or rigid Poincare invari

ance is of questionable value. From a field-theoretical point of

view, as first pointed out by Weyl^ and Yang and Mills, and applied

to gravity by Utiyama,8 Sciama,9 and Kibble,10 it is unreasonable
to execute at each point of spacetime the same rigid transformation.

Moreover, what we know experimentally, is the existence of min-

kowskian metrics all over. How these metrics are oriented with

respect to each other, is far less well known, or, in other words,

local Poincare invariance is really what is observed. Spacetime

is composed of minkowskian granules, and we have to find out their

relative displacements and orientations with respect to each other.

Consequently we substitute the (4 + 6) infinitesimal parameters

of a Poincare transformation by (4 + 6) spacetime-dependent functions

and see what we can do in order to save the invariance of the action

function under these extended, so-called local Poincare transforma

tions. (We have to introduce (4+6) compensating vectorial gauge

potentials, see Lecture 2.)

This brings us back to gravity. According to the equivalence

principle, there exists in GR in a freely falling coordinate frame
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the concept of the local validity of special relativity, too.

Hence we see right away that gauging the Poincare group must be

related to gravitational theory. This is also evident from the

fact that, by introducing local Poincare invariance, the conserva

tion of the momentum current is at disposition, inter alia. Never

theless, the gauge-theoretical exploitation of the idea of a local

Minkowski structure leads to a more general spacetime geometry,

namely to a Riemann-Cartan or U^ geometry, which seems to be at

conflict with Einstein's result of a riemannian geometry. The

difference arises because Einstein, in the course of heuristically

deriving GR, treats material particles as described in holonomic

coordinate systems, whereas we treat matter fields which are

referred to anholonomic tetrads.

These lectures cover the basic features of the Poincare gauge

field theory ("Poincare gauge,11 abbreviated PG) . Our outlook is

strictly phenomenological, hopefully in the best sense of the word.

For a list of earlier work we refer to the review article. The

articles of Ne'eman,11 Trautman,12 and Hehl, Nitsch, and von der

Heyde13 in the Einstein Commemorative Volume together with infor

mations from the lectures and seminars given here in Erice by

Ne'eman,14 Trautman,15 Nitsch,16 Rumpf,17 W. Szczyrba,18
Schweizer,19 Yasskin,20 and by ourselves, should give a fairly

complete coverage of the subject. But one should also consult

Tunyak,21 who wrote a whole series of most interesting articles,
the Festschrift for Ivanenko,22 where earlier references of Ivanenko
and associates can be traced back, and Zuo et al.

LECTURE 2: GEOMETRY OF SPACETIME

We have now an option. We can either start with an M4 and

substitute the parameters in the P(oincare)-transformation of the

matter fields by spacetime dependent functions and work out how to

compensate the invariance violating terms in the action function:

this was carried through in ref. [1], where it was shown in detail
how one arrives at a U4 geometry with torsion and curvature. Or,

following von der Heyde,24'25 we can alternatively postulate a
local P-structure everywhere on an X4, derive therefrom in partic-

ular the transformation properties of the gauge potentials, and
can subsequently recover the global P-invariance in the context

of an M4 as a special case. Both procedures lead to the same

results. We shall follow here the latter one.
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2,1 Orthonormal Tetrad Frames and Metric Compatible Connection

On an X^ let there be given a sufficiently differentiable

field of tetrad frames ^(x^). Additionally, we assume the exis—

tence of a Minkowski metric Tlag. Consequently, like in (1.1), we

can choose the tetrad to be orthonormal, furthermore we can deter-

mine e^a, e!a, and e : = det e!a. The relative position of an event

with respect to the origin of a tetrad frame is given by

dxa = e^a dx^ and the corresponding distance by ds = (nagdxadx") '

Let also be given a local Standard of orientation, Then,

starting from a tetrad frame j^(x ), we are able to construct, at

a point infinitesimally nearby, a parallelly oriented tetrad

" e^(xk + dxk) = e^ixh + dxir^ß(xk)eß(xk) , (2.1)

provided the connection coefficients T^* are given.

The metric, and thereby the length Standard, are demanded to

be defined globally, i.e. lengths and angles must stay the same

under parallel transport:

e^(xk + dxk) -^(x1" + dxk) = e^x*) • e^x*) = r^ . (2.2)

Upon Substitution of (2.1) into (2.2), we find a metric compatible

connection

The (16 + 24) independent quantities (e^ ,r£ap) will be the

variables of our the

the holonomic metric

variables of our theory. The anholonomic metric naß is a constant,

^Observe that r*a^ now represents an independent variable, it is
no longer of the type as given in eq. (1.4). P-gauge invariance

requires the existence of an independent rotational potential,

see ref. [1].

tlnstead of e^a, we could also use e^g as independent variable .

This would complicate computations, however. We know from electro-

dynamics that the gauge potential is a covariant vector (one-form)

as is the rotational potential r^a^. Then e!06, as a covariant

vector, is expected to be more suitable as a gauge potential than

eJß, and exactly this shows up in explicit calculations.
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•a *ß

gij : = ei ej naß <2-4>

a convenient abbreviation with no independent Status.

The total arrangement of all tetrads with respect to each other

in terms of their relative positions and relative orientations makes

up the geometry of spacetime. Locally we can only recognize a

Special relativistic structure. If the global arrangement of the

tetrads with respect to position and orientation is integrable,

i.e. path-independent, then we have an Ma, otherwise a non-

minkowskian spacetime, namely a U4 or Riemann-Cartan spacetime.

2.2 Local P-Transformation of the Matter Field

We base our considerations on an active Interpretation of the

P-transformation. We imagine that the tetrad field and the coordi-

nate System are kept fixed, whereas the matter field is "trans-

ported." A matter field ip(xk) , being translated from xk to xk + £k,

where £ are the 4 infinitesimal parameters of translations and

£' = ^u^£ , has to keep its orientation fixed and, accordingly, the

generator of translations is that of a parallel transport,* i.e.
it is the covariant derivative Operator

K) ^K ^ *a3 (2.5)

It acts only on anholonomic indices, see the analogous discussion

in Section 1.3. This transformation of a translational type dis-

tinguishes the PG from gauge theories for internal symmetries,

since the matter field is shifted to a different point in spacetime,

The Lorentz-rotations (6 infinitesimal parameters üda$) are of
the Standard, Special relativistic type. Hence the local P-trans-

formation II of a field reads (see Figure 1) :

(Ity)(x) = (l-£Y(x)D + ooaß(x)fga)iKx) . (2.6)

Here again, the fga are the matrices of the Lorentz generators

obeying (1.3). Of course, setting up a gauge theory, the (4 + 6)

infinitesimal flparametersM (£Y,oo ) are spacetime dependent func-
tions. A matter field distribution ip(x), such is our postulate,

*For this reason, Ne'eman's title of his article reads: f!Gravity

is the gauge theory of the parallel-transport modification of the

Poincare group.11
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Fig. 1. An infinitesimal active local Poincare transformation of

a matter field: The field ^(x1 - e1) is first parallelly

displaced over the infinitesimal vector e1 = ej e'',
r\i (D Y "1

rotated by the angle w , and then compared with ip(x ) .

after the application of a local P-transformation IT, i.e.

ip(x) -> (Till;) (x) , is equivalent in all its measurable properties to

the original distribution iJj(x) .

2.3 Commutation Relations, Torsion, and Curvature

The translation generators D and the rotation generators fga

fulfill commutation relations which we will derive now. The com

mutation relations for the fga with themselves are given by the

special relativistic formula (1.3). For rotations and translations

we start with the relation fa3Di = D±fag, which is valid since Di

doesn't carry a tetrad index. Let us remind ourselves that the

fag, as operators, act on everything to their rights. Trans-

^ we find e^yf^D^ = Dyfag, i.e.,vecting with ^ , yfag

\[aD3]
(2.7)
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This formula is strictly analogous to its special relativistic

pendant.

Finally, let us consider the translations under themselves.

By explicit application of (2.5), we find

tvv -FijaV > <2-8)
where

is the curvature tensor (rotation field strength). Now D^ = e!aDa,

substitute it into (2.8) and define the torsion tensor (translation

field strength),

f!!01: = 2Dr.e*a= 2(9r.e- a + rr:|:ae|' M . (2.10)

Then finally, collecting all relevant commutation relations, we

have

[f o,f o] = Tl r fOlX " Hrr f0l • (2.13)
ag' y6 y[a 3]6 '6[a $]y

For vanishing torsion and curvature we recover the commutation

relations of global P-transformations. Local P-transformations, in

contrast to the corresponding structures in gauge theories of inter

nal symmetries, obey different commutation relations, in particular

the algebra of the translations doesn't close in general. Observe,

however, that it does close for vanishing curvature, i.e. in a

spacetime with teleparallelism (see Section 2.7). In introducing

our translation generators, we already stressed their unique fea

tures. This is now manifest in (2.11). Note also that the "mixing

term11 2F r * IAaeIi1 between translational and rotational potentials

in the'definition (2.10) of the translation field is due to the

existence of orbital angular momentum.

In deriving (2.11), we find in torsion and curvature the

tensors which covariantly characterize the possibly different

arrangement of tetrads in comparison with that in special relativ

ity. Torsion and curvature measure the non-minkowskian behavior

of the tetrad arrangement. In (2.11) they relate to the translation

and rotation generators, respectively. Consequently torsion repre

sents the translation field strength and curvature the rotation

field strength.
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The only non-trivial Jacobi identity,

[Da,[Dg,Dy]] + [Dg,[DY,Da]] + [Dy,[Da,D3]] = 0 , (2.14)

leads, after substitution of (2.11), some algebra and using (2.44),

to the two sets of Bianchi identities

2.4 Local P-Transformation of the Gauge Potentials

Let us now come back to our postulate of local P-invariance.

A matter field distribution actively P-transformed, ip(x) -> (Ity) (x) ,

should be equivalent to ty(x) . How can it happen that a local

observer doesn't see a difference in the field configuration after

applying the P-transformation? The local P-transformation will

induce not only a variation of i|^(x) , but also correct the values

of the tetrad coefficients e^a and the connection coefficients F^ ^

such that a difference doesn't show up. In other words, the local

P-transformation adjusts suitably the relative position and the

relative orientation of the tetrads as determined by the corre

sponding coefficients (e^a,T^a^). Thereby the P-transformation

of the gauge potentials is a consequence of the local P-structure

of spacetime.

Consider a matter field distribution ip(x), in particular its

values at x and at a nearby point x + E, . See Figure 2 where the

matter field is symbolized by a vector. The relative position of

iJ;(x+O and iJj(x) is determined by £a, their relative orientation

by Ca2 = C^l, the angle between (1 + £aDa)i|;(x) and i|j(x) • By a

rotation -Ca3 of (1 + S^ipCx) , we get (fii|0 (x) = (1 + ^a - ^£&a)x
ip(x), which is, of course, parallel to i|/(x) . The transformation

n has the same structure as a P-transformation.x

Now P-transform ip(x) and iJ;(x + 5)- Then (Ity) (x) must stay

parallel to ip(x), i.e. it is required to transform as a P-spinor-

tensor. Furthermore (II^)(x + 5) and (IIip) (x) , the P-transforms of

*It is not a P-transformation, since we consider the untransformed

matter field distribution.
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Figo 2. A matter field distribution near x

the fields \Jj(x an(i x) , can be again related by a transfor

mation of the type ft, i.e. there emerge new £a and Ca which are

the P-transforms of the old ones. Consequently, J)^ as well as

fag^ transform as P-spinor-tensors, i.e. if, according to (2.6)

ip ->■ IIip, then

Dip-^IlDip, (2.17)

f n^ + nf..olp . (2.18)

This implies, via the commutation relations (2.11), that

torsion F*g^ and curvature F^g^ are also P-tensors, an information

which will turn out to be useful in constructing invariant gauge

field Lagrangians.

Now we have

6Da) = (Da (2.19)

and, because II deviates only infinitesimally from unity,
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6Da = [IT'Da] • (2.20)

Analogously we find

6fag = [II'fae] • (2.21)

Substitution of n from (2.6) into (2.20), (2.21) and using the

commutation relations (2.ll)-(2.13), yields, respectively,

6Da = -[£YW + [^W
(2.22)

"aS - ~^\-W + ^W - ° • (2-23)
The coordinates are kept fixed during the active P-transformation.

Then, using (2.5) and (2.23), we get

or

A comparison with (2.22) and remembering 6(e* e!a) = 0, yields the
j • j -1 . * J
desired relations

6e;« . _D.£« + u-%;y . eTF»a t (226)

«r;°6 • -»/ - Ev:* . (2.27)

From gauge theories of internal groups we are just not used

to the non-local terms carrying the gauge field strengths; this

is again an outflow of the specific behavior of the translations.

*It might be interesting to note that, in 3 dimensions, these

relations represent essentially the two deformation tensors of a

so-called Cosserat continuum as expressed in terms of their trans

lation fields ea and rotation fields U)a . Those analogies sug
gested to us at first the existence of formulas of the type (2.26),

(2.27). They were first proposed in ref. [1], cf. also refs.

[27], [28].



i i '

on ;]■

F.W. HEHL W
. \-'\

Otherwise, the first terms on the right hand sides of (2.26), (2.27), V

namely -D±ea and -D±a)aB, are standard. They express the non- '|
homogeneous transformation behavior of the potentials under local j?
P-gauge transformations, respectively, and it is because of this ^1
fact that the names translation and rotation gauge potential are !'!

justified. The term (ajyaeJY) in (2.26) shows that the tetrad, the if

translation potential, behaves as a vector under rotations. This jj;.i

leads us to expect, as indeed will turn out to be true, that e!a, [&!

in contrast to the rotation potential r!0^, should carry intrinsic !'"?.-
spin. 1 '|;_;

'v
Having a U^ with torsion and curvature we know that besides |j

local P-invariance, we have additionally invariance under general $

coordinate transformations. In fact, this coordinate invariance %

is also a consequence of our formalism (see [1]). Starting with a .|

U4, one can alternatively develop a "gauge" formalism with coordi- '-|

nate invariance and local Lorentz invariance as applied to tetrads

as ingredients. The only difference is, however, that with our

procedure we recover in the limiting case of an MZf exactly the

well-known global P-transformations of special relativity (see

eq. (2.60)) including the corresponding conservation laws (see

eqs. (3.12), (3.13)), whereas otherwise the global gauge limit

in this sense is lost: We have only to remember that in special

relativity energy-momentum conservation is not a consequence of

coordinate invariance, but rather of invariance under translations.*

£3
*Such an alternative formalism was presented by Dr. Schweizer in

his highly interesting seminar talk.19 His tetrad loses its fi
position as a potential, since it transforms homogeneously under p

coordinate transformations. Furthermore, having got rid of the ^'}
M^-limit as discussed above, one has to be very careful about • jl

what to define as local Lorentz-invariance. Schweizer defines .'j
strong as well as weak local Lorentz-invariance. However, the k
former notion lacks geometrical significance altogether. Whereas '\
we agree with Schweizer that there is nothing mysterious about ,'i
the local P-gauge approach and that one can readily rewrite it £

in terms of coordinate and Lorentz-invariance (cf. [1], Sect. -

IV. C. 3) and with the help of Lie-derivatives (cf. [29]), we hold !.' ;
that in our formulation there is a completely satisfactory place U
for the translation gauge (see also [30,26,31,32]). Hence we '}
leave it to others Mto gauge the translation group more ?4

attractively. . ." •?
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I
§K 2.5 Closure of the Local F-:

MSffi".v

t2

IS

I
I.

Having discussed so far how the matter field tKx) and fh*
gauge potentials ej° and F^ transform under 1q P_transfoma_

tions, we would now like to show once more the intrin.i I t-
and usefulness of the local P-formalism developed so far."""sha
compute the commutator of two successive P-transformations J ft]"
We will find out that it yields a third local P-transformation E

the infinitesimal parameters (!«>») of which depend in a
way on the parameters (ea ka®) and rl°

1 2 ' ^
mations II and JI, respectively.x

I Take the connection as an example. We have

c 1

• =^^_- =T. -D.co -£e f
1 ii i y6

Int^ ^ ?6rm We haVS purP°sely written the curvature in its
totally anholonomic form. Then it is a P-tensor, as we saw in the

laSt section- Applying now II, we have to keep in mind that 8 acts
,| with respect to the transformed tetrad coefficients I'.6 : = L'.6
i M 1*1

Jj ^aRS aS Wlth reSpeCt tO the transformed connection coefficients
ri . Consequently we have

Now we will evaluate the different terms in (2.29) By
differentiation and by use of (2.28) we find

:.3O)

Let us turn to the last term in (2.29). If we apply (2.26) it
reads in the appropriate order: ^-^), it

f *The P^°°f was first g^en by Nester.29 Ne'eman and Takasugi33
| generalized it to supergravity including the ghost regime.
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(2.31)

~i Ly6

In (2.31) there occurs the P-transform of the anholonomic curvature.

Like any P-tensor, it transforms according to (2.6):

Now we substitute first (2.32) into (2.31). The resulting

equation together with (2.28) and (2.30) are then substituted into

(2.29). After some reordering we find:

+

(2.33)

I am not happy myself with all those indices. Anybody is

invited to look for a simpler proof. But the main thing is done.
The right-hand-side of (2.33) depends only on the untransformed
geometrical quantities and on the parameters. By exchanging the
one's and the two's wherever they appear, we get the reversed

order of the transformations:

nnr'a6 = (2.33) with X " 2 . <2-34>
i 2 + 1

Subtracting (2.34) from (2.33) yields the commutator [II,II]ria .

After some heavy algebra and application of the 2nd Bianchi

identity in its anholonomic form,

•• uv "6 • -uv (2.35)

we find indeed a transformation ni\a3 of the form (2.28) with the
following parameters:
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(2.36)

a ay ay
(2.37)

It is straightforward to show that the corresponding formulae

for [II,ft] as applied to the matter field and the tetrad lead to the
same parameters (2.36), (2.37). These results are natural general

izations of the corresponding commutator in an My. One can take

(2.36), (2.37) as the ultimate justification for attributing a

fundamental significance to the notion of a local P-transformation.

2.6 Local Kinematical Inertial Frames

As we have seen in (1.8), (1.9), in an M^ we can always

trivialize the gauge potentials globally. Since spacetime looks

minkowskian from a local point of view, it should be possible to

trivialize the gauge potentials in a U^ locally, i.e.,

•a k k

= g 6

xk = xkl £ o
o

(2.38)

The proof runs as follows: We rotate the tetrads according to

*ct *ct • 6
e'. = An e. . This induces a transformation of the connection,

namely the finite version of (2.27) for e^ = 0:

a 6

3-A

a 1 Y
(2.39)

By a suitable choice of the rotation, we want these transformed

connection coefficients to vanish. We put (2.39) provisionally

equal to zero, solve for ^-jAg0^ an(^ find

9.A
i 3

A^ r
Y iB

x = x

o

(2.40)

For prescribed T.^ at x = x , we can always solve this first

order linear differential equation, which concludes the first part

of the proof. Then we adjust the holonomic coordinates. The

connection F!a^ = 0, being a coordinate vector, stays zero, whereas

the tetrad transforms as follows: eT^a = (9x /3xfi)e^a. For a
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transformation of the type xfl = 6^ ej^ + const we find indeed
f-a * *<x , * y

e i = 6i> q.e.d.

What is the physical meaning of these trivial gauge frames

existing all over spacetime? Evidently they represent in a Riemann-

Cartan spacetime what was in EinsteinTs theory the freely falling

non-rotating elevator. For these considerations it is vital, how

ever, that from our gauge theoretical point of view the potentials

(eia>^i ) are l°cally measurable, whereas torsion and curvature,

as derivatives of the potentials, are only to be measured in a non

local way. For a local observer the world looks minkowskian. If

he wants to determine, e.g., whether his world embodies torsion,

he has to communicate with his neighbors thereby implying non-

locality. This example shows that in the PG the question whether

spacetime carries torsion or not (or curvature or not) is not a

question one should ask one local observer.^

It is to be expected that non-local quantities like torsion

and curvature, in analogy to Maxwell's theory and GR, are governed

by field equations. In other words, whether, for instance, the

world is riemannian or not, should in the framework of the PG not

be imposed ad hoc but rather left as a question to dynamics.

We call the frames (2.38) !llocal kinematical inertial frames11

in order to distinguish them from the local "dynamical11 inertial

frames in Einstein's GR. In the PG the notion of inertia refers

to translation and rotation, or to mass and spin. A coordinate

frame j^ of GR has to fulfill the differential constraint

^ija(_9) = 0, see eq. (1.5). Hence a tetrad frame, which is un

constrained, can move more freely and is, as compared to the

coordinate frame, a more local object. Accordingly, the notion

of inertia in the PG is more local than that in GR. This is no

surprise, since a test particle of GR carries a mass m which is a

quantity won by integration over an extended energy-momentum

distribution. The matter field ijj(x) , however, the object of con

sideration in the PG, is clearly a more localized being.

A natural extension of the Einstein equivalence principle to

the PG would then be to postulate that in the frames (2.38) (these

*The proof was first given by von der Heyde,^^ see also Meyer.

tPractically speaking, such non-local measurements may very well

be made by one observer only. Remember that, in the context of

GR, the Weber cylinder is also a non-local device for sensing

curvature, i.e. the cylinder is too extended for an Einstein

elevator.
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are our new Melevatorsft) special relativity is valid locally.

Consequently the special-relativistic matter lagrangian L in (1.10)

should in a Ua be a lagrangian density % which couples to spacetime

according to

X = ^[iM^e'V^3] £ LOM^) , (2.41)

i.e. in the local kinematical inertial frames everything looks

special relativistic. Observe that derivatives of (e^a,r^aP) are

excluded by our "local equivalence principle.!! Strictly this dis

cussion belongs into Lecture 3. But the geometry is so suggestive

to physical applications that we cannot resist the temptation to

present the local equivalence principle already in the context of

spacetime geometry.

Naturally, as argued above, the local equivalence principle

is not to be applied to directly observable objects like mass

points, but rather to the more abstract notion of a lagrangian.

In a field theory there seems to be no other reasonable option.

And we have seen that the fermionic nature of the building blocks

of matter require a field description, at least on a c-number

level. Accordingly (2.41) appears to be the natural extension of

Einstein's equivalence principle to the PG.

2.7 Riemann-Cartan Spacetime Seen Anholonomically and Holonomically

We have started our geometrical game with the (e^a,r!a^)

We would now like to provide some machinery for translating this

anholonomic formalism into the holonomic formalism commonly more

known at least under relativists. Let us first collect some useful

formulae for the anholonomic regime. The determinant e : = det e^a

is a scalar density, furthermore, by some algebra we get Dj_e = 9-j_e.

' If we apply the Leibniz rule and the definitions (2.5) and (2.10),

we find successively (F^ : = F* **Y)

D.tee1 ) = eF , (2.42)
i -a a

34
*This principle was formulated by von der Heyde, see also von

der Heyde and Hehl.36 In his seminar Dr. Rumpf17 has given a
careful and beautiful analysis of the equivalence principle in

a Riemann-Cartan spacetime. In particular the importance of his

proof how to distinguish the macroscopically indistinguishable

teleparallelism and Riemann spacetimes (see our Section 3.3)

should be stressed.
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D[a(eV-y]
The last formula was convenient for rewriting the 2nd Bianchi

identity (2.16), which was first given in a completely anholonomic
form. Eq. (2.43), defining the "modified torsion tensor11 on its

right hand side, will be used in the context of the field equations
to be derived in Section 4.4.

Now, according to (2.1), dx1^0^ is the relative rotation

encountered by a tetrad ^ in going from xk to xk + dxk. From this
we can calculate that the relative rotation of the respective

coordinate frame ^ = e^ is dx1^0^ + 3^)^. In a

holonomic coordinate system, the parallel transport is thus given
by

where h represents the generator of coordinate transformations for
tensor fields and

r r + 9

This relation translates the anholonomic into the holonomic con

nection. Observe that for a connection the conversion of holonomic

to anholonomic indices and vice versa is markedly different from

the simple transvection rule as applied to tensors. The holonomic

components of the covariant derivative of a tensor A are given with

respect to its anholonomic components by

V.A. = e. • • e n • • D A . (247")

The concept of parallelism with respect to a coordinate frame,

as defined in (2.46), is by construction locally identical with

minkowskian parallelism, as is measured in a local tetrad. In a

similar way, the local minkowskian length and angle measurements

define the metric in a coordinate frame:

g..(xk): =e:a(xk)ej;e(xk)na6 . (2.48)

From the antisymmetry Tt0^ = -T'±®a of the anholonomic connec

tion and from (2.47) results again D^ g = o, a relation which we
used already earlier, and
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Vi§jk = 0 , (2.49)

the so-called metric postulate of spacetime physics.

If we resolve (2.49) with respect to T^*- , we get

1 • *k 1 «k 1 k

± p.. - f F- • + T F •• (2.50)
2 ij 2 j-i 2 -ij

and, taking (2.46) into account, the corresponding relation for

the anholonomic connection:

} /2 '
(2.51)

We have introduced here the Christoffel symbol ■( . . r, the holonomic

components of the torsion tensor, ^ '

(2>52)

and the object of anholonomity

1 j^;:Y ; ^7: ^a^.e!/ . (2.53)
i ij [i]l

fi:Y:= e
a3 -a j j

Expressing the holonomic components of the curvature tensor in

terms of F^ yields

, ^f^r-r:-,:5- + rr:,-^r,: *m] . (2,54)
ijk { [ ]k [i|m |j]k J

Finally, taking the antisymmetric part of (2.46) or using the

definition of torsion (2.10), we get

F;:a = ^::a - 2er:6r: 1:a , (2.55)

a formula which will play a key role in discussing macroscopic

gravity: the object of anholonomity mediates between torsion and

the anholonomic connection.

Eq. (2.50) shows that instead of the potentials (e^a,r^a^)
we can use holonomically the set (gi.,S^jk), the geometry is always
a Riemann-Cartan one, only the mode of description is different.

In the anholonomic description e^a enters the definition of torsion

F^*a, hence we should not use F^a as an independent variable in

place of r*a^. The anholonomic formalism is superior in a gauge
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Fig. 3. The Riemann-Cartan spacetime U4 and its limiting cases

T4 = teleparallelism, V4 = Riemann, M4 = Minkowski.

approach, because (et01.]^) are supposed to be directly measurable
and have an interpretation as potentials and the corresponding

transformation behavior, whereas the holonomic set (g±i,S''.k) is
a tensorial one. J 1J

If we put curvature to zero, we get a spacetime with tele
parallelism T4, a U4 for vanishing torsion is a Riemann spacetime
V4, see Figure 3.

Perhaps surprisingly, as regards to their physical degrees of
freedom, the T4 and the V4 are in some sense similar to each other.

In a T4 the curvature vanishes, i.e. the parallel transfer is

integrable. Then we can always pick preferred tetrad frames such
that the connection vanishes globally:

T4 : [ei 5ii = UJ J [Fi:j = "ij^»F±j^ E °J • (2.56)

In these^special anholonomic coordinates we are only left with the

tetrad e[a as variable. In a V4 the torsion vanishes, i.e.,

according to (2.51), the connection can be expressed exclusively
in terms of the (orthonormal) tetrads:
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V

ij
[*<r E o,f44

(2.57)

Again nothing but tetrads are left. In other words, in a T^ as

well as in a V^ the gauge variables left over are the tetrad

coefficients alone. We have to keep this in mind in discussing

macroscopic gravity.

2.8 Global P-Transformation and the M4

In an appropriate P-gauge approach one should recover the

global P-transformation provided the U^ degenerates to an M4. In

an M4, because of (2.56), we can introduce a global tetrad system

such that Fta^ = 0. Furthermore the torsion vanishes, F^ =

29r.e!-|a = 0, i.e. the orthonormal tetrads, in the system with

p^aP = 0, represent holonomic frames of the cartesian coordinates.

This means that the conditions (2.38) are now valid on a global,

level. If one only allows for P-transformations linking two such

coordinate systems, then the potentials don't change under P-trans-

formations and (2.26), (2.27) yield

a u*y n

i =

- 0

(2.58)

or

a 0a 0#a y
e = £ + a) xl

00 =00

(2.59)

with the constants £a and 0)a . Substitution into (2.6) leads to
the global P-transformation of the matter field

a. . ap, . . F ,,.,., ) ^ (2.60)

(2.61)

In terms of the MP-transformed" coordinates

v Y ^*Y a ^x! ' = xT - 0) Tx - £ ,



30 F.W. HEHL

it can be recast into the perhaps more familiar form

[0a(3 1
1 + 03 fn \\b(x) . (9 &r)\

$aj y ^ z. o z;

Thus, in an M^, the local P-transformation degenerates into the

global P-transformation, as it is supposed to do.

We have found in this lecture that spacetime ought to be

described by a Riemann-Cartan geometry, the geometrical gauge

variables being the potentials (e^a,r!_a|3). The main results are,
amongst other things, collected in the table of Section 3.6.

LECTURE 3: COUPLING OF MATTER TO SPACETIME AND THE TWO GENERAL

GAUGE FIELD EQUATIONS

3.1 Matter Lagrangian in a Ua

In the last lecture we concentrated on working out the geometry

of spacetime. But already in (2.41) we saw how to extend reasonably

the Einstein equivalence principle to the Mlocal equivalence prin-

ciplen applicable to the PG. Hence we postulate the action function

of matter as coupled to the geometry of spacetime to read

W =
m

Observe that the local Minkowski metric nag, the Dirac matrices

Ya*** etc., since referred to the tetrads, maintain their special-
relativistic values in (3.1).

In a local kinematical inertial frame (2.38), the potentials

(eia>ria ) can be made trivial and, in the case of vanishing torsion
and curvature, this can be done even globally, and then we fall

back to the special-relativistic action function (1.10) we started

with.

The lagrangian in (3.1) is of first order by assumption, i.e.

only first derivatives of i|;(x) enter. If we would allow for higher

derivatives, we could not be sure of how to couple to (e-a,r?a^):

the higher derivatives would presumably "feel" not only the poten

tials, but also the non-local quantities torsion and curvature.

In such a case the gauge field strengths themselves would couple

to iJj(x) and thereby break the separation between matter and gauge

field lagrangian. Then we would lose the special-relativistic

limit seemingly necessary for executing a successful P-gauge approach.
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Our postulate (3.1) applies to matter fields ip(x). These

fields are anholonomic objects by definition. Gauge potentials of

internal symmetries, like the electromagnetic potential Aj_(x),

emerging as holonomic covariant vectors (one-forms), must not

couple to (e^a,r!a^). Otherwise gauge invariance, in the case of

A. the U(l)-invariance, would be violated. This implies that gauge

bosons other than the (e^a,r^a^)-set, and in particular the photon

field A., will be treated as P-scalars. Because of the natural

division of physical fields into matter fields and gauge potentials

(see Section 1.3), we cannot see any disharmony in exempting the

internal gauge bosons from the coupling to the (e^a,r^a^)

Besides the matter field ijj(x), the (4 + 6) P-gauge potentials

are new independent variables in (3.1). By means of the action

principle we can derive the matter field equation. Varying (3.1)

with respect to iJj(x) yields"*"

SI/6^ = 0 . (3.2)

In our subsequent considerations we'll always assume that (3.2) is

fulfilled.

3.2 Noether Identities of the Matter Lagrangian: Identification

of Currents and Conservation Laws

The material action function (3.1) is a P-scalar by construc

tion. Consequently it is invariant under active local P-transfor

mations II(x) . The next step will then consist in exploiting this

invariance property of the action function according to the Noether

procedure.

Let us call the field variables in (3.1) collectively

Q £ (ip,e*a,r*a^) . Then the P-invariance demands

*There are opposing views, however, see Hojman, Rosenbaum, Ryan,

and Shepley.3?>38 T^e tlapIon concept is a possibility to cir

cumvent our arguments, even if not a very natural one, as it seems

to us. According to Ni,^ the tlaplon theories are excluded by
experiment. See also Mukku and Sayed.

tThe variational derivative of a function f = f (ij;, 3^, 3^^, • • •)

is defined by

, . n 3f _ ■
i k 33 3 \p33.^ i k 33. 3, \

1 IK.
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: = Jd4xX(nQ,3j.nQ) - J d4xX(Q,3iQ) E 0 , (3.3)

where lift is the volume translated by an amount £a(x) . By the chain

rule and by the Gauss law we calculate

ft

i6Q 63iQ
3ft

A

ft

3£
6Q = 0 (3.4)

Since this expression is valid for an arbitrary volume fi, the

integrand itself has to vanish. Furthermore we can substitute

8. ■+ D.£ in (3.4), since the expression in the parenthesis carries

no anholonomic indices:

e±l 3X
6Q = 0 (3.5)

The identity (3.5) is valid quite generally for any lagrangian

Z(Q,3-jQ). We will need it later-on also for discussing the

properties of the gauge field lagrangian.

Going back to (3.1), we find using (3.2),

"X oP*a(3 , _ f a i f ,
—-p: oT. + D. e e X +

6e

— oe. +
•a 1

L tttt

33
E 0 (3.6)

Now we substitute the P-variations (2.26), (2.27), (2.6) of

(e^a,T^a^) and of i|j, respectively, into (3.6):

6e
•a

+ D.
l

a i 3i

or .iJj
D + 03 fo
Y 3a

E 0 (3.7)

We differentiate the last bracket and order according to the

independent quantities Dj_£a, D-^oo0^, ea, U) , the coefficients of

which have to vanish separately. This yields the (10 + 40)

identities
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<■■ -

eTa6 * " 6r-ag " "33^ W ' (3'9)

[• i I • • R • "i •• Rv • • I

eEa J 5 Fai <V + Fai "By ' <3'10

Our considerations are valid for any U4, especially for an Ma.

In an M^ in the global coordinates (1.8), (1.9), the equations

(3.10), (3.11) degenerate to the special-relativistic momentum and

angular momentum conservation laws, respectively:

Va3Y - E[a3] = ° ' (3

Consequently Eg1 is the canonical momentum current, linked via

(3.8) to the translational potential eJa, and t'q1 is the canonical

spin current, linked via (3.9) to the rotational potential T^a^.

Moreover, (3.10), (3.11) are recognized as the momentum and

angular momentum conservation laws in a Ua.

It comes to no surprise that in a U^ the volume-force densities

of the Lorentz type F^"(eEg*) and F^^(eTn*i), respectively,

appear on the right hand side of the momentum conservation law.

The analog of the latter force is known in GR as the Matthisson

force acting on a spinning particle,' and because of the similar

couplings of translations and rotations, the force F^"(eZ^1) is

to be expected, too. The left hand side of (3.10) contains second

derivatives of the matter field ip(x). It is because of this "non-

locality11 that the local equivalence principle doesn't apply on

this level. Hence the volume forces just discussed, do not violate

the local equivalence principle.

*In [41] we compared in some detail the standing of the Matthisson

force in GR with that in the U^-framework. Clearly the Matthisson

force emerges much more natural in the PG.
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One further observation in the context of the Noether

identities (3.8), (3.9) is of importance. Because of

o.y rvw 9 (D1 \\)) ~p

the connection must only show up in the lagrangian in terms of D-i|j.

Similarly, e^a can only enter as e = det e!a and in transvecting

D^\) according to the Substitution (cf. (1.10))

dJ>) -+ eK^ejDi) = XOMJ>,e) , (3.15)
1 vJC JL UC

.16)

because then

91 = 3X 9e ( dl °KU^J = eE-i

de. 3e. p de.
11 i

q.e.d. Therefore the so-called minimal coupling (3.15) is a

consequence of (2.41), (3.1) and of local P-invariance. It is

derived from the local equivalence principle.

The main results of the kinematical considerations of Sections

3.1 and 3.2 are again collected in the table of Section 3.6.

3.3 The Degenerate Case of Macroscopic (Scalar) Matter

From GR we know that the equations of motion for a test

particle moving in a given field are derived by integrating the

momentum conservation law. This will be similar in the PG. How-

ever, one has to take into account the angular momentum conservation

law additionally.

A test particle in GR, as a macroscopic body, will consist of

many elementary particles. Hence in order to derive its properties

from those of the elementary particles, one has, in the sense of a

statistical description, to average over the ensemble of particles

constituting the test body.

Mass is of a monopole type and adds up, whereas spin is of a

dipole type and normally tends to be averaged out (unless some force

aligns the spins like in ferromagnets or in certain superfluids).

*There have been several attempts to develop non-minimal coupling

procedures, see Cho, for instance.
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Accordingly, macroscopic matter, and in particular the test particles

of GR, will carry a finite energy-momentum whereas the spin is

averaged out, i.e. ^^g1^0- Consequently, because of the macro

scopic analog of (3.11), the macroscopic energy-momentum tensor

eT^1 = ( eZ^1) turns out to be Symmetrie, as we are used to it in

GR. What effect will this averaging have on the momentum conser-

vation law (3.10)? Provided the curvature doesn't depend algebra-

ically on the spin, the Matthisson force is averaged out and we

expect the macroscopic analog of (3.10) to look like

These arguments are, of course, not rigorous. But we feel justi-

fied in modelling macroscopic matter by a scalar, i.e. a spinless

field $(x). And for a scalar field $(x) our derivations will

become rigorous. We lose thereby the Information that macroscopic

matter basically is built up from fermions and should keep this in

mind in case we run into difficulties.

Let us then consider a U^-spacetime with only scalar matter

present.* The lagrangian of the scalar field $(x) reads

3a*,e) . (3.18)

If we denote the momentum current by o 1, we find via (3.9), (3.11)

t'o1 = 0 and arAlOl = 0. Thus (3

and only one type of volume-force density is left.

Because of the symmetry of aap, the term ~r**^Cfg^ contained

in the volume force density vanishes identically and we find

or, after some algebra,

AK1

'cCompare for these considerations always the lecture of Nitsch

and the diploma thesis of Meyer and references given there.

16
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i.e. the rotational potential ri p drops out from the momentum law

of a scalar field altogether. The covariant derivative in (3.21)

is understood with respect to the Christoffel symbol. We stress

that the volume force of (3.19) is no longer manifest, it got

"absorbed." Consequently a scalar field $(x) is not sensitive to

the connection F^06^. It is perhaps remarkable that this property

of $(x) is a result of the Noether identities as applied to an

arbitrary scalar matter lagrangian, i.e. we need no information

about the gauge field part of the lagrangian in order to arrive at

(3.20) and (3.21), respectively. It is a universal property of

any scalar matter field embedded in a general Ua.

For the Maxwell potential k^9 which is treated in the PG as a

scalar (-valued one-form), all these considerations apply mutatis

mutandi. It should be understood, however, that spinning matter,

say Dirac matter, couples to T^a^, and in this case there is no

ambiguity left as to whether we live in a Va, a T^ or in a general

U4. Therefore a Dirac electron can be used as a probe for measuring

the rotational potential* T^.

Let us conclude with some plausibility considerations: In

our model universe filled only with scalar matter, $(x) does not

feel r!aß, as we saw. Hence one should expect that it doesn't

produce it either, or, in other words, the "scalar11 universe should

obey a teleparallelism geometry T^ with the rigid F^a" = 0 con-

straint, since then, according to (2.56), we could make r!a^ vanish

globally. Because of the equivalence of (3.19), (3.20), and (3.21),

scalar matter would move along geodesics of the attached Va, never-

theless. If one took care that the field equations of the T4 were

appropriately chosen, one could produce a T^-theory which is, for

scalar matter, indistinguishable from GR.

To similar conclusions leads the following argument: Suppose

there existed only scalar matter. Then there is no point in gauging

the rotations since $(x) is insensitive to it. Repeating all con-

siderations of Lecture 2, yields immediately a T4 as the spacetime .

appropriate for a translational gauge theory, in consistence with

the arguments as given above.

*The equations of motion of a Dirac electron in a U^, and in

particular its precession in such a spacetime, were studied in

detail by Rumpf. ' For earlier references see [1]. Recent work

includes Hojman, ^ Balachandran et al., ^ and the extensive

studies of Yasskin and Stoeger.20>^5>^
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Summing up: scalar (macroscopic) matter is uncoupled from

the rotational potential F^aß, as proven in (3.20), and is expected
to span a T^-spacetime.

3.4 General Gauge Field Lagrangian and its Noether Identities

In order to build up the total action function of matter plus

field, one has to add to the matter lagrangian in (3.1) a gauge

field lagrangian V representing the effect of the free gauge field.

We will assume, in analogy to the matter lagrangian, that the gauge

field lagrangian is of first order in the gauge potentials:

VK2 'naß' i ' i ' Vi 'dk i

The quantities K^,l<2##* denote some universal coupling constants

to be specified later and for parity reasons we assume that 1/ must

not depend on the Levi-Civitä symbol £ ^ . Then the gauge field

equations, in analogy to MaxwellTs theory, will turn out to be of

second order in the potentials in general.

Applying the Noether identity (3.5) to (3.22) yields"

6e; + 6r: + D .Lv + xhe. +Khr:\ = o,
6e!a x 6r!aß x J^ a i aß i J '

i i (3.23)

where we have introduced the field momenta^*

-U ^ "iJ JL (3.24)
S3 ;a aß 39>

3 i J

*The identities of this section and of Section 3.2 can be also
18

found in the paper of W. Szczyrba.

tln spite of current practice in theoretical physics, it should be

stressed that even in microphysical vacuum electrodynamics it is

advisable to introduce the "induction" tensor density ^^ as an
independent concept amenable to direct operational Interpretation

(see Post^7). One is in good Company then (Maxwell). For a
lfpracticalM application of such ideas see the discussion preceding

eq. (4.55). Recent work of Rund^8 seems to indicate that also
in Yang-Mills theories such a distinction between induction and

field could be useful.
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canonically conjugated to the potentials e'±a and T'.a&, respectively,
Substitute (2.26), (2.27) into (3.23) and get

{^ ;V V) ^ (/ £p

Again we have to differentiate the bracket. This time, how-

ever, we find second derivatives of the translation and rotation

Parameters, namely, collecting these terms,

(3.26)

+ I3fiJF;:.a£Y+?c..ij ...ayß .
2 a ijy aß ijy '

where we have used (2.8). Since there are no other second deriva

tive terms in (3.25) but the ones which show up in (3.26), the

coefficients of D^D^e01 and D^D.xU)0^ in (3.26) have to vanish

identically, i.e.

or

(3.28)

(j i) (j i)

Accordingly, the derivatives 9^e^a and 9.r!a^ can only enter 1/ in

the form 3 r . e^ -. ^ and 3 r . rT^ -. ^^, i.e. in the form present in torsion

and curvature. Algebraically one cannot conötruct out of r"aß a

tensor piece for \J because of (2.38). Hence, using (3.24), we have

JC'iJ = 2 -^— , K'^i = 2 —^ (3.29)
a "d aß ar-"aß

3Fji 3Fji
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or

«3.30)

Eq. (3.29) shows that ' (ft^3 ^ß1^) a^e both tensor densities, a
fact which was not obvious in their definition (3.24).

After (2.18) we saw already that (F^ßYjF'g'Y0) are P-tensors.

Consequently (3.30) can be simplified and the most general first

order gauge field lagrangian reads

•Y F"Tf
,ß 'aß

It is remarkable that the potentials don't appear explicitly in V.

Let us now collect the coefficients of the (D-£a,D .0)aß)-terms

in (3.25). The calculation yields

+ £ (3.32)
<> *ol ja a
öe. J

i

and

——— E -D Kmm±3 + e**1 (3 33")
•aß j aß aß \~>*~>~>j

i

with

£a ' " e-al/ " Faj ^y " Faj ™y& (3'34)
and

(3.35)

respectively. Of course, the quantities (3.34), (3.35) are well-

behaved tensor densities.

The Interpretation of (3.35) is obvious. Because of (3.24)

we find

£aß = ^[a^] = ^TTTß e|k|a] = ^77 fßaek ' (3'36)
i k i k

A comparison with (3.9) shows that (3.36) represents the canonical

spin current of the translational gauge potential e^a. Analogously,
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(3.34) has the structure and the dimension of a canonical momentum

current of both potentials (e^a,r^a"), as is evidenced by a compari-

son with (3.8).

We don't need the identities resulting from the (ea,(joa^)-terms,
since they will become trivial consequences of the field equations

(3.44), (3.45) as substituted into the conservation laws (3.10),

(3.11).

3.5 Gauge Field Equations

The total action function of the interacting matter and gauge

fields reads

(3.37)

•a r-a3 rv #a ,. P*aßl
,e. ,i. , 3, e. ,3, F.
li k i k i J

Local P-invariance implies two things, inter alia: It yields, as

applied to X, the minimal coupling prescription (3.15), and it

leads, as applied to (/, to the gauge field lagrangian (3.31) as

the most general one allowed. Consequently we have

W =

(3.38)

3 'Fa3 JJ •

The independent variables are

]\) = matter field , (e. ,F. ) = gauge potentials . (3.39)

The action principle requires

6, e rW = 0 . (3.40)

We find successively

^Independent Variation of tetrad and connection is usually and

mistakenly called MPalatini Variation." In order to give people

who only cite Palatini's famous paper a chance to really read it,

an English translation is provided in this volume on my Suggestion,

Sure enough, this service will not change habits.
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(3.41)

see (3.2), and

61/ 6t

61/

l

61

(3.42)

(3.43)

By (3.8), (3.9) the right hand sides of (3.42), (3.43) are identified

as material momentum and spin currents, respectively. Their left

hand sides can be rewritten using the tensorial decompositions

(3.32), (3.33). Therefore we get the following two gauge field
equations:

(3.44)

(3.45)

We call these equations Ist (or translational) field equation and

2nd (or rotational) field equation, respectively, and we remind

ourselves of the following formulae relevant for the field

equations, see (3.29), (3.34), (3.35):

et
= 2

3F.
•a

= 2
31/

(3.46)

a «a aj y

• •! -u> • • i

: (3.47)

(3.48)

In general, without specifying a definite field lagrangian l/,

the field momenta ^"^ and ^g1-3 are of first order in their

corresponding potentials e^a and r!a|3, i.e. (3.44) and (3.45) are

generally second order field equations for e^a and T!a^,
respectively:

(3.49)
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Furthermore the currents E^1 and T^g1 couple to the potentials e^a

and r^a^, respectively. Clearly then the field equations are of

the Yang-Mills type (cf. eq. (12a) in [7]), as expected in faith-

fully executing the gauge idea.

There is the fundamental difference, however. The universality

of the P-group induces the existence of the tensorial currents

(e^jG^n1) of the gauge potentials themselves. In other words,

in the PG it is not only the material currents C6^1^6^^1) which

produce the fields, but rather the sum of the material and the

gauge currents (eE^1 + ^^» eTa3"L + ^ß1) »• this sum bein§ a tensor
density again.

Taking into account (3.36) and the discussion following it, it

is obvious that e^1 is the momentum current (energy-momentum density)

and b^d1 the spin current (spin angular momentum density) of the

gauge fields. Whereas both gauge potentials carry momentum, as is

evident from (3.47), only the translational potential e^a gives

rise to a tensorial spin, as one would expect, according to (2.26),

(2.27), from the behavior of the (e^a,r^)-set under local
rotations.

Hence the rotational potential as a quasi-intrinsic gauge

potential has vanishing dynamical spin in the sense of the PG, and

this fact goes well together with the vanishing dynamical spin of

the Maxwell field Ai.

Within the objective of finding a genuine gauge field theory

of the P-group, the structure put forward so far, materializing in

particular in the two general field equations' (3.44), (3.45), seems

*As a by-product of our investigations, we found the energy-

momentum tensor E^1 of the gravitational field. Hence the tetrad

(or rather T^-) people who searched for this quantity for quite a

long time, were not all that wrong, as will become clear from the

lecture of Nitsch.1^ As we will see in Section 4.4, for a 1/ linear
in curvature, e^1 turns out to be just the Einstein tensor of the

Ua, for a quadratic lagrangian e^- is of the type of a contracted

Bel-Robinson tensor (see [49]) or, to speak in electrodynamical

terms, of the type of Minkowski's energy-momentum tensor.

"f*ln words we could summarize the structure of the field equations

as follows: gauge covariant divergence of field momentum = (gauge

+ material) current. In a pure Yang-Mills theory, just omit the

phrase Mgauge -K!l
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to us final. The picking of a suitable field lagrangian, which is

the last step in establishing a physical theory, is where the real

disputation sets in (see Lecture 4).

To our knowledge there exist only the following objections
against the PG:

The description of matter in terms of classical fields is

illegitimate. This is a valid objection which can be met

by quantizing the theory.

The PG is too Special, it needs grading, i.e. instead of a

PG we should rather have a graded PG. Then we end up with

supergravity in a space with supertorsion and supercurvature

(see [14,50,51]). Up to now, it is not clear whether this

step is really compulsory.

The PG is too Special, it needs the extension to the gauge

theory of the 4-dimensional real affine group GA(4,R)

(metric-affine theory). There are in fact a couple of

independent indications pointing in this direction. There-

fore we developed a tensorial [52] and a spinorial [53-55]

version of such a theory. What is basically happening is

that the 2nd field equation (3.45) loses its antisymmetry

in aß, i.e. new intrinsic material currents (dilation plus

shear) which, together with spin, constitute the hyper-

momentum current, couple to the newly emerging gauge

Potential T^(a^ .

The PG is too Special, it needs the extension to a GA(4,R)-

gauge and it needs grading as well ([5 6] and refs. therein).

May be.

Any of these objections, however, doesn't make a thorough

investigation into the PG futile, it is rather a prerequisite for

a better understanding of the extended frameworks.



3,6 The Structure of Poincare Gauge Field Theory Summarized

H

O

O

1

infinitesimal generator

gauge potential

gauge field strength

Bianchi identity

material current

conservation law

field momentum

field equation

ECSK choice

our choice

DtiF

a

/\ •

D.E
i a

a

translation

D 4
a

•a
e. tetrad

F^"a torsion

• *a - • • -a

J iv J [ JL J K. J

= 6l/6e[a

ai 3 ai ßy

= 23l//9F^a

ja a a

first (translational)

a

a

= 0

fn'-i fi -ilv"! 2
= eF^ +2elVJ| /£

fa£

Fi

Fij

D[iFjk

fa31 =

Difäß1

Käß±J

second

aß

rotation

! 6

connection

curvature

~ 2[a3] = °
- 23i//3Fj::aß

aß aß

(rotational)

i i 2

= eF1<] n/<
••aß

phase

q

Ai

[iFjk

J1 = 6

i

inhom.

change U(l)

1 Charge

0

23l/Max/3Fji

-J1

Maxwell

for vacuum

(The caret I|/Sfl means that the quantity be multiplied by e = det e^a. The momentum current of the

field is denoted by e^*, see (3.47), the spin current by ^ß1 ' =^>[ßa]i-) Ttie Riemann-Cartan
geometry is dictated by a proper application of the gauge idea to the Poincare group. To require at

that stage a constraint like F^a = 0 (teleparallelism) or F^a = 0 (riemannian geometry) would

seem without foundation. Provided one takes a first-order lagrangian of the type <£(ip, 9^,e,F) +

+ l/(e,F,9e,3F), the coupling of matter to geometry and the two gauge field equations are inequivo-

cally fixed and we find 1/ =

Tl

X
m



FOUR LECTURES ON POINCARE GAUGE FIELD THEORY 45

LECTURE 4: PICKING A GAUGE FIELD LAGRANGIAN

Let us now try to find a suitable gauge field lagrangian in

order to make out of our PG-framework a realistic physical theory.

4.1 Hypothesis of Quasi-Linearity

The leading terms of our field equations are

V&13 - Tä$* ■ <4-2>
In general the field momenta will depend on the same variables as

1/:

£iJ ^ij(j , (4.3)

• (4'4)

The translational momentum, being a third-rank tensor, cannot

depend on the derivatives of the connection (^ßFiVY ), because this

expression is of even rank. Furthermore, algebraic expressions of

r£T never make up a tensor. Hence we have

Similarly we find for the rotational momentum

12) • (4-6)
This time, both curvature and torsion are allowed, the torsion

must appear at least as a square, however.

In order to narrow down the possible choices of a gauge field

lagrangian, we will assume quasi-linearity of the field equations

as a working hypothesis. This means that the second derivatives

in (4.1), (4.2) must only occur linearly. To our knowledge, any

successful field theory developed so far in physics obeys this

principle.* As a consequence the derivatives of (ekY,F£Y ) in

*Instead of the quasi-linearity hypothesis one would prefer having

theorems of the Lovelock type available, see Aldersley^' and

references given there.
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(4.5), (4.6) can only occur linearly or, in other words, (4.5) and
(4.6) are linear in torsion and curvature, respectively. For the
translational momentum we have

(4.7)

Out of riyö and e£T we cannot construct a third rank tensor, i.e.

g has to vanish. Accordingly we find

a

aß

(4.9)

where lint and linc denote tensor densities being linear and homo-

geneous in torsion and curvature, respectively. The possibility

of having the curvature-independent term h in (4.9) is again a

feature particular to the PG.

We note that the hypothesis of quasi-linearity constrains the

choice of the "constitutive laws11 (4.8), (4.9) and of the corre-

sponding gauge field lagrangian appreciably. The lagrangian l/, as

a result of (3.46) and of (4.8), (4.9), is at most quadratic in

torsion and curvature (compare (3.31)):

2 2
1/ ~ e(const + torsion + curvature + curvature ) . (4.10)

By the definition of the momenta, we recognize the following cor

respondence between (4.10) and (4.8), (4.9):

const ■> 5C ^ = 0 , Jf"*1-] = 0 , (4 11)

2

torsion + lint , (4.12)

curvature -*- h , (4.13)

2

curvature -> lin . (4.14)

The correspondence (4.11) can be easily understood. For

vanishing field momenta we find (-const)ef = E"^ and x"g^ = 0.

Clearly then this term in 1/ is of the type of a cosmological-

constant-term in GR, i.e. 1/ = e x const doesnft make up an own

theory, it can only Supplement another lagrangian.
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In regard to (4.13) we remind ourselves that in a U4 we have
the identities

••aß •• aß _ «-[aß]

F F F (4

Hence, apart from a sign difference, there is only one way to con-

tract the curvature tensor to a scalar:

*■■ - •b«wb --wir • <«
Hence the term linear in curvature in (4.10) is just proportional

to the curvature scalar F.

Since we chose units such that h = c = 1, the dimension of 1/

has to be (length)"^:

[1/] = £~4 • (4.17)

Furthermore we have

L;a| = i , [r;afEl - n-]

and

ii ~~ ' ii ' " ' (.4.19;

Accordingly a more definitive form of (4.10) reads (/
\4•20)

1/ ~ e H -z (torsion) H (curv.scalar) H (curvature)
2

2
L

Lo l
L L- L

with [L] = [L] = [L] = Ä, [k] = 1. Of course, any number of

additional dimensionless coupling constants are allowed in (4.20).
1 /?

If we put L = yL, L = L, .L = x L, then (4.20) gets slightly

rewritten and we have

(4.21)

1/ - e —y-\—r- {(torsion) +— (curv. scalar) }+— (curvature)/ ' r\ l, \UULüiULiy I

with

[L] = l , [u] - [x] = [K] = 1 . (4.22)

Therefore (4.8), (4.9) finally read
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with (4

[dx] = [d2] = ••• = [fx] = [f2] = ... = i . (4.25)

Provided we don't only keep the curvature-square piece in the

lagrangian (4.21) alone, which leads to a non-viable theory,* we

need one fundamental length, three primary dimensionless constants

y (scaling the cosmological constant), x (fixing the relative weight
between torsion-square and curvature scalar), k (a measure of the

"rotonlf coupling), and a number of secondary dimensionless constants
d^, d2*-# and f^, f2### .

We have discussed in this section, how powerful the quasi-

linearity hypothesis really is. It doesn't leave too much of a

choice for the gauge field lagrangian.

4,2 Gravitons and Rotons

We shall take the quasi-linearity for granted. Then, according

to (4,23), (4,24), the leading derivatives of the field momenta

in general are

3£±J - L"28e , (4.26)

^31J ~ K"l9r • (4-27)
Substitute (4.26), (4.27) into the field equations (3.44), (3.45)

and get the seherne:

99e + ••• - L2E , ]
(4.28)

93r + ••• - kt . I

Let us just for visualization tentatively take the simplest toy

theory possible for describing such a behavior, patterned after

Maxwell's theory,

*;iJ - L-2F«a . (4.29)

*...to the Stephenson-Kilmister-Yang ansatz, see [58] and references

given there.
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i.e.

Then we have for both potentials "kinetic energy" - terms in (4.31).

Observe that the index positions in (4.29), (4.30) are chosen in

such a way that in (4.31) only pure Squares appear of each torsion

or curvature component, respectively. This is really the simplest

choice.

Clearly then, the PG-framework in its general form allows for

two types of propagating gauge bosons: gravitons e^a ("weak Einstein

gravity") and rotons rt^C'strong Yang-Mills gravity").* These and
only these two types of interactions are allowed and emerge quite

naturally from our phenomenological analysis of the P-group. We

postulate that both types of P-gauge bosons exist in nature.-^

From our experience with GR we know that the fundamental length

L of (4.22) in the PG has to be identified with the Planck length

£ (K = relativistic gravitational constant)

L = l = (K)X/Z * 10 JZ cm , (4.32)

whereas we have no information so far on the magnitude of the

dimensionless constant k coupling the rotons to material spin.

Gravitons, as we are assured by GR exist, but the rotons need

experimental verification. As gauge particles of the Lorentz

(rotation-) group S0(3,l), they have much in common with, say,

SU(2)-gauge bosons. They can be understood as arising from a

quasi-internal symmetry S0(3,l). It is tempting then to relate

the rotons to strong interaction properties of matter. However,

it is not clear up to now, how one could manage to exempt the

leptons from roton interactions. One should also keep in mind

*The f-g-theory of gravity of Zumino, Isham, Salam, and Strathdee

(for the references see [58]) appears more fabricated as compared

to the PG. The term "strong gravity'1 we borrowed from these

authors. There should be no danger that our rotons be mixed up

with those of liquid helium. Previously we called them "tordions"

[36,1], see also Hamamoto [59], but this gives the wrong impression

as if the rotons were directly related to torsion. With the trans-

lation potential e^_a there is associated a set of 4 vector-bosons
of dynamical spin 1. It would be most appropriate to call these

quanta MtranslatonsM since the graviton is really a spin-2 object.
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that the rotons, because of the close link between e^a and r"a^,

have specific properties not shared by SU(2)-gauge bosons, their

propagation equation, the second field equation, carries an effec-
— *? &

tive mass-term ~Kl F, for example.

Before studying the roton properties in detail, one has to

come up with a definitive field lagrangian.

4.3 Suppression of Rotons I: Teleparallelism

Since the rotons haven't been observed so far, one could try

to suppress them. Let us look how such a mechanism works.

By inspection of (4.1), (4.2) and of (4.23), (4.24) we recog-

nize that the second derivatives of TyJ& enter the 2nd field equation
by means of the rotational momentum (4.24), or rather by means of

the linc-term of it. Hence there exist two possibilities of getting

I rid of the rotons: drop ^g1^ altogether or drop only its linc-

f piece. WeTll explore the first possibility in this section, the
jl second one in Section 4.4.
t

I
I Let us put

Then the field equations (3.44), (3.45) read

ja •<* aj y a

!

= eTaß •

(4.34)

(inconsistent)

(4.35)

For vanishing material spin T^g1 = 0, however, the tetrad spin

J^ß1 would vanish, too, and therefore force the tetrads out of

business. We were left with the term -e^al/ = e^ai related to the
cosmological constant, see (4.11). Hence this recipe is not

successful.

But it is obvious that eq. (4.34) is of the desired type,

because it is a second-order field equation in e£T. We know from

(4.23) that ^1^ can only be linear and homogeneous in F^£^.

*Some attempts to relate torsion to weak interaction, were recently

criticized by DeSabbata and Gasperini.^°
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Additionally one can accommodate the Planck length in the constitu-

tive law (4.23). Consequently, the most general linear relation

as substituted in (4.34), would be just an einsteinian type of field

equation provided the constants d^, d2, and do were appropriated

fixed.

Our goal was to suppress the rotons. In (2.56) and (2.57) we

saw that we can get rid of an independent connection in a T^ as well

as in a V^. In view of (4.36) the choice of a V4 would kill the

whole lagrangian. Therefore we have to turn to a T4 and we postulate

the lagrangian

(4.37)

with X^g1^ as a lagrangian multiplier, i.e. we have imposed onto

(4.36) and onto our U^-spacetime the additional requirement of

vanishing curvature. The translational momentum jC,^ is still

given by (4.36), but the rotational momentum, against our original

intention, surfaces again:

To insist on a vanishing ^ß"^ turns out to be not possible in the
end, but the result of our insistence is the interesting tele-

parallelism lagrangian (4.37).

The field equations of (4.37) read (see [35])

- - . -- X = e£#1 , (4.39)
ja-aajy a '

f ••ii 2l !„ •• i --i
DjKß /2M -K[ßa] = eTaß ' (4'40)

F . P = 0 . (4.41)

One should compare these equations with the inconsistent set (4.34),
T

(4.35). Observe that in (4.39) the term in 1/ carrying the lagrangian

multiplier vanishes on substituting (4.41), i.e. from the point of

view of the Ist field equation, its value is irrelevant.
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We imposed a T4-constraint onto spacetime by the lagrangian

multiplier term in (A.37). In a T4 the T'±^ are made trivial.

Therefore, for consistency, we cannot allow spinning matter (other

than as test particles) in such a T4; spin is coupled to the T'^,

after all. Accordingly, we take macroscopic matter with vanishing

spin T^g1 = 0. Then (4.40) is of no further interest, the multiplier
just balances the tetrad spin. We end up with the "tetrad field
equation" in a teleparallelism spacetime T4

ea
a

(4.42)

(4.43)

with as given by (4.36)

As shown in teleparallelism theory,* there exists a one-
parameter family of teleparallelism lagrangians all leading to the

Schwarzschild solution including the Birkhoff theorem and all in
coincidence with GR up to 4th post-newtonian order:

'!-* d9 = X - 1 , (4.44)

We saw already in Section 3.3 that the equations of motion for

macroscopic matter in a T4 coincide with those in GR. For all

practical purposes this whole class of teleparallelism theories

(4.44) is indistinguishable from GR. The choice X = 0 leads to a
locally rotation-invariant theory which is exactly equivalent to
GR.

let us sum up: In suppressing rotons we found a class of

viable teleparallelism theories for macroscopic gravity (4.42),

(4.43) with (4.36), (4.44). According to (4.37), they derive from
a torsion-square lagrangian supplemented by a multiplier term in

order to enforce a T4-spacetime. The condition X = 0 yields a

theory indistinguishable from GR.

4.4 Suppression of Rotons II; The ECSK-Choice

This route is somewhat smoother and instead of finding a T4

we are finally led to a V4. As we have seen, there exists the

*Nitsch16 and references given there, compare also Hayashi and
Shirafuji,61 Liebscher,62 Meyer,35 Miller,63 and Nitsch and Hehl.64
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Option of only dropping the curvature piece of (4.24). This

leads to the ansatz (we put x = 1):

A look at the field equations (3.44), (3.45) convinces us that we

are not in need of a non-vanishing translational momentum now:

^±j =0 . (4.46)

With (4.46) the field equations reduce to

F .y0JCxJ1 - e V = eZ X , (4.47)
a

Substitution of (4.45) and using (2.43) yields

1 • • i i • • v 2 • • "i

2Faß +e-[aFß]Y = ÄTaß • <4

These are the field equations of the Einstein-Cartan-Sciama-Kibble

(ECSK)-theory of gravity derivable from the lagrangian

The ECSK-theory has a small additional contact interaction as

*Sciama, who was the first to derive the field equations (4.49),

(4.50), judges this theory from today's point of view as follows

(private communication): "The idea that spin gives rise to torsion

should not be regarded as an ad hoc modification of general rela-

tivity. On the contrary, it has a deep group theoretical and

geometric basis. If history had been reversed and the spin of the

electron discovered before 1915, I have little doubt that Einstein

would have wanted to include torsion in his original formulation

of general relativity. On the other hand, the numerical differ-

ences which arise are normally very small, so that the advantages

of including torsion are entirely theoretical.11
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compared to GR. For vanishing matter spin we recover GR. Hence

in this framework we got rid of an independent T^a$ in a V/ space-
time in consistency with (2.57).

Observe that something stränge happened in (4.49), (4.50):

The rotation field strength F^a^ is controlled by the translation
current (momentum) , the translation field strength F^a by the

rotation current (spin). It is like putting "ChangTs cap on Li's

head."23

Linked with this intertwining of translation and rotation is

a fact which originally led Cartan to consider such a type of theory:

In the ECSK-theory the contracted Bianchi identities (2.15), (2.16)

are, upon Substitution of the field equations (4.49), (4.50),

identical to the conservation laws (3.10), (3.11), for details see

[1]. From a gauge-theoretical point of view this is a pure coinci-

dence. Probably this fact is a distinguishing feature of the ECSK-

theory as compared to other theories in the PG-framework.

Consequently a second and perhaps more satisfactory procedure

for suppressing rotons consists in picking a field lagrangian pro

portional to the l^-curvature scalar.

4.5 Propagating Gravitons and Rotons

After so much suppression it is time to liberate the rotons.

How could we achieve this goal? By just giving them enough kinetic

energy ~[(3e) + (9F)Z] in order to enable them to get away.

Let us take recourse to our toy theory (4.29), (4.30), (4.31).

The lagrangian (4.31) carries kinetic energy of both potentials,

and the gravitational constant, or rather the Planck length, appears,

too. But the game with the teleparallelism theories made us wiser.

The first term on the right hand side of (4.31) would be inconsistent

with macroscopic gravity, as can be seen from (4.37) with (4.44).

We know nothing about the curvature-square term, hence we donft

touch it and stick with the simplest choice. Consequently the

ansatz

C eUu + l)F +(Al)F + 2e[i F^Yl/£2 (4.52)
a L 2 ••(* a -a • ■ •y]

*A certain correspondence between the ECSK-theory and GR was

beautifully worked out by Nester.65 pOr a recent analysis of the

ECSK-theory see Stelle and West.66*67
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or, by Eulerfs theorem for homogeneous functions, the corresponding

field lagrangian,

a

. (4.54)

would appear to be the simplest choice which encompasses macroscopic

gravity in some limit.

Consider the f!constitutive assumption11 (4.52). In analogy with

Maxwellfs theory one would like to have the metric appearing only

in the "translational permeability" ( ) and not in the (X - l)-term

in the bracket: F^jj, = g£m8n°eM5en^Fok • For harmony one would

then like to cancel this term by putting X = 1. This is our choice.

Substitute X = 1 into (4.52) and use (2.43). Then our translational

momentum can be put into a very neat form:

•^ + 2e[l I
a i ••a «a

(4.55)

o iy jv _ f m n 1 /02
= 2e eJ a D ee r e -, /£

ma n[ • [y #v]J

There is another choice which is distinguished by some property.

This is the choice ä la Einstein X = 0, since X = 0 leads, if one

enforces a T/,, to a locally rotation-invariant theory, as was re-

marked on in Section 4.3. Apart from these two possibilities,

there doesn't exist to our knowledge any other preferred choice

of X.

*After the proposal2^>58 of t^e lagrangian with X = 1, Rumpf68
worked out an analysis of the lagrangian in terms of differential

forms and formulated a set of guiding principles yielding the

(X = l)-choice. It was also clear from his work that this choice

is the most natural one obeying (4.44) from a gauge-theoretical

point of view. Recently Wallner,69 in a most interesting paper,
advocated the use of X = 0.
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Before we substantiate our choice by some deeper-lying ideas,

let us look back to our streamlined toy theory (4.54) cum (4.52),

(4.53) and compare it with the general quasi-linear structure

(4.21) cum (4.23), (4.24):

Since we want propagating rotons, the curvature-square term in

(4.21) is indispensable, i.e. K is finite. We could accommodate

more dimensionless constants by looking for the most general linear

expression linc in (4.24). Furthermore, if we neglect the cosrao-

logical term, then there is only to decide of how to put gravitons

into the theory, either by means of the torsion-square term or by

means of the curvature scalar (or with both together). Now, curva-

ture is already taken by the roton interaction in the quadratic

curvature-term, i.e. the rotons should be suppressed in the limit

of vanishing curvature (then the rotons1 kinetic energy is zero).

In other words, curvature is no longer at our disposal and the

torsion-square piece has to play the role of the gravitons1 kinetic

energy. And we know from teleparallelism that it can do so. Since

we don't need the curvature scalar any longer, we drop it and put

^=00^ even if that is not necessarily implied by the arguments

given. It seems consistent with this picture that theories in a

Ua with (curvature scalar) + (curvature) don't seem to have a

decent newtonian limit.

Collecting all these arguments, we see that the gauge field

lagrangian (4.54) has a very plausible structure both from the

point of view of allowing rotons to propagate and of being con

sistent with macroscopic gravity in an enforced T^-limit.

4.6 The Gordon Decomposition Argument

The strongest argument in favor of the choice with X = 1 [24,

58,13,25] comes from other quarters, however. Take the lagrangian

X of a Dirac field i|;(x) and couple it minimally to a U4 according

to the prescription (3.15). Compute the generalized Dirac equation

according to (3.2) and the momentum and spin currents according to

(3.8) and (3.9), respectively.77 We find

lm± = i ^/D ty + h.c. , (4.56)

Tißi-I^lfa3* + h-c- • (4'57)

^Theories of this type have been investigated by Anandan,70»/1

Fairchild,7^ Mansouri and Chang, ^ Neville, ^»'^ Ramaswamy and

Yasskin,7^ Tunyak, ^ and others.
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(i = imaginary unit, h.c. = hermitian conjugate, ip = Dirac adJoint)

Execute a Gordon decomposition of both currents and find (we

. will give here the results for an M4, they can be readily general-

ized to a U4):

conv

i

~*i _ ym± g

a a

conv

t*#1= t"*1+3 M + M1
otp aß j • »aß • [aß]

The convective currents are of the usual Schrödinger type

conv

., . . conv
• i 1 i— i

conv

with

conv - _ 9__

X • = -y~ [(9 ip) 9 ip - m ijaJj] . (4.62)

In analogy with the Dirac-Maxwell theory (i.e. with Dirac plus

U(l)-gauge, whereas we have Dirac plus PG) in (4.58), (4.59) there

emerge the translational and the rotational gravitational moments

of the electron field

M : = — ]bf 3 Jb (4.63)
••a m T a

and

„ij 1 T^Ji,: , /, £,n
M ^ : = — dir f *,ip , (4.64)

• -aß m r aßr

respectively. We stress that these two new expressions for the

gravitational moments of the electron are measurable in principle.

Hence there is a way to decide, whether it makes physical sense to

Gordon-decompose the momentum and the spin currents of the electron

field.

If we introduce the polarization currents

pol conv pol conv

•i *i ^#i • *i • •! • *i
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then we have

pol

C=;
pol

finally

3. M1:i +
3 [_ * *C

2e
•a •

[aß]

•yJ

. i
+ e

•

9

• •

[ß a]v

(4.66)

. (4.67)

Observe that the last two terms in (4.67) are required by angular

momentum conservation (3.13).

Up to now we just carried through some special-relativistic

Dirac algebra. Let us now turn to our field equations (3.44),

(3.45) and linearize them:

C ~ *$?* ' (4-68)

T*:1 ~ 3.5C*;ij +?Cr';ii . (4.69)
aß j aß [aß]

A comparison with (4.66), (4.67) will reveal immediately a simi-

larity in structure. Read off the working hypothesis: The trans-

lational and rotational field strengths couple in an analogous way

to the canonical currents, as the respective gravitational moments

to the polarization currents. Consequently we get

Properly adjusting the dimensions, leads straightaway to the field

lagrangian of our choice

without all the involved reasonings used earlier.

(4.72)

*According to Wallner,°9 one can reformulate the Gordon decomposi-
tion such that one arrives at the choice X = 0. We are not able

to understand his arguments, however.
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The most remarkable achievement of the working hypothesis as

formulated above is the following: Without having ever talked

about gravity, one arrives at a lagrangian which, in the enforced

T^-limit, yields the Schwarzschild solution, the newtonian approxi-

mation, etc. Some consequences of (4.72), like a "confinement"

Potential in a weak field approximation, have been worked out
C Q 1O

already. J But since we are running out of space and time, we

shall discuss these matters elsewhere.
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