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1. Momentum current

1.1 (Force) stress o, in continuum mechanics

Classical body: gas, fluid, solid (elastic, plastic, viscous,...). Turn to
measurable quantities:

>

Stress: Pascal, Euler, Navier, Cauchy,...stress tensor of 2nd rank,
Oab, a,b,c,...=1,2,3, phys. dimension f//?> — pascal (Pa=N/m?),
df? = o2, dAb, force df? on the area element dA?, o, is
asymmetric by definition. Exterior calculus 0 = Z62,cdx® A dx€,
0 (be) = 0. Bach parentheses (ij) := ${i +j}, [ij] := 3{i — j}.
Classical equilibrium conditions: 0 0.” = F,, o5 = 0.

. . . f. f.
Displacement gradient: d,up. Strain g, = % (Ef,b - ”Eii ) = O(aUp)
Linear elasticity, Hooke's law:

cd reversible
Oab = Cabed €, Clabled = Cabled] = 05 Cabed = Cedab
Irreducible decomp. under GL(3, R) : Caped = M aped + D caped
~—~— —— N——
21 15 6
)¢ peq = 0'is called Cauchy relations (special case, cf. Itin & H.)

stress o,p, Strain e,p, elastic constants Cipey
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Max

1.2 Maxwell's stress tensor o 5 in electrodynamics

e Another theory of electricity, which | prefer, denies action at a distance
and attributes electric action to tensions and pressures in an all-pervading
medium, these stresses being the same in kind with those familiar to
engineers, and the medium being identical with that in which light is

supposed to be propagated. James Clerk Maxwell (1870)
Max 1 . Max
0ap= D,Ep + H;Bp — E(D -E+H- B)gab7 IN Vacuo, O[ap)= 0
Exterior calculus: vector triad e, interior product |, exterior product A
Max 1
os= 5 [(ea)E)AD — (ea|D)NE + (ea]H) A B — (ea] B) AH].
e Physical dimension of stress: [stress|=[mom. flux density]= n%z = (LQ

mv v 1/63
Lorentz’ interpretation of the stress tensor as .
Light pressure as measured by Lebedew (1901), see Ashkin (1972) who

moves small particles by laser light pressure.

Minkowski (1908) defines an asymmetric electromagnetic stress tensor
(versus Abraham), see below; see the review paper of Yuri Obukhov,
Annalen der Physik (2008)
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AbstoBung gleicher und Anziehung entgegengesetzter gleicher Punkt-
1adungen, beschrieben durch die in der Symmetrieebene ibertragenen

Maxwellschen Spannungen (Recker- Sauten)

F. Gronuald, F.W. Hehl

current in 4-dimensional spacetime: The 3-dimensional

(spasslike) hypersurface element carries  distribution of momenta.
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1.3 Energy-momentum tensor T;; in electrodyn. and classical field theory

» In SR, coordinates x’, with i,j, k,... = 0,1, 2,3, the stress ?IA;; has
to go along with momentum density, energy density, and energy
flux density. The discovery in 4d of the energy-momentum tensor
by Minkowski (1908):

Sa
(T) ~ <energy d. energy flux d.) Max <“ Max) otk —f.

mom. d.  mom. flux d. P2 Oab

In a My, we can decompose Tj; irreducible w.r.t. the Lorentz group:

1
T = Zij T+ e
16 = 9(sym.tracefree) @ 6(antisym.) & 1(trace),
Max
» In electrodyn. in vacuo, only Zj; survives (9 comps.); it is ,
Max Max
T k=0, and carries , but no (Lorentz) spin, i.e., L= 0. In

matter, the Minkowksi energy-mom. tensor is asymm. (!), Abraham
defined an alternative symm. one, Minkowski's result is consistent
(see von Laue), as shown in the review of Obukhov (2008).
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» Classical ideal (perfect, Euler) fluid of GR (p = mass/energy
density, p = pressure, u; = velocity of fluid):

Tj=(p+puiv; —pgi, T =0, T =p-3p.

» Where took Einstein the

from? Einstein (The Meaning of
Relativity, 1922, p.50) discussed the symmetry of the
energy-momentum tensor of Maxwell’s theory in vacuum.
Subsequently, he argued: “We can hardly avoid making the
assumption that in all other cases, also, the space distribution of
energy is given by a symmetrical tensor, T,,, ..." This is hardly a
convincing argument if one recalls that the Maxwell field is massless
and is of a “bosonic” type.
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1.4 Action and canonical energy-momentum

» SR, Lorentz metric gj = ojj := diag(+ — ——), Cart, coords. x!,
ij,k,...=0,1,2,3; matter field W, could be a scalar, Weyl, Dirac,
Maxwell, Proca, Rarita-Schwinger, Fierz-Pauli field etc.). Isolated
material system with 1st order action (see Landau-Lifshitz, Corson):

Wipar := %/dQE(\U,a\I}).

. /s ) .
» Invariance under 4 transl.: x ' = x' + a'. Noether theorem,

oL oL
-.k - ko psk . i -
OkTi 0, E,/J L6; 88k\lla'w’ if U 0

4x4

canonical energy-momentum tensor of type (1), Noether energy-
momentum (or momentum current density), since asymmetric, 16
indep. comps., Whittaker: Minkowski's most important discovery.
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[1.5 Translation and energy-momentum, premetric considserations,
translation gauge theory

> Minkowski space is an affine space (“a vector space that lost its
origin.”) Weyl stressed this in his Space, Time, Matter as well as
Kopczyniski & Trautman in their textbook, see also Giulini, loc.cit..
Translations have nothing to do with a metric, i.e., the distance
concept. Translations are . Flat affine space (diff.
manifold with a flat linear connection I',”): Translations act
therein. Thus, translation invariance plus Noether yield 0,T;* = 0.
Gauging of the translations has a teleparallelism as a consequence.

» Transl. gauge theory is premetric. Transl. potential coframe <,
field strength torsion, T = D9, curv. vanishes R,” := dI',?
—TN I'75 = 0. Excitation or field momentum H, ~ 9V /OT*,
Ho = Xaps(g) T”. Energy-momentum 3-form (premetric) ¥,
energy-mom. tensor T,° = °(¥% A L,). In analogy to electrodyn.:

grav 1 grav mat

o= [TP A(ealHs) = Hs A (ea| T7)] , prem. field eq. | DHo— Yo =%,

see Itin, Obukhov, Boos, H. 2018 (in eldyn. dH = J, linear). If a
is assumed, which enters the const. law
Ho = Xap(g) TP, we find the teleparallel equivalent GRj of GR.]
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2. Spin current

2.1 Torque stress 7,5, in continuum mechanics

> Voigt 1887, 07ap) #0 — X5 (9 indep. comps.), on the surfaces
of the Cauchy tetraeder, besides forces, there also act (spin)
moment stresses dmap = Tapc A, With m(apy = T(ap)c = 0 (9 indep.
comps., torque or couple stresses), on its volume also volume
moments. Equilibrium of forces (3) and moments (3):

O0cX, = Fa,  OcTap” + Z[ab] = Map [M(ab) = 0] .

It is a question to the material considered whether the stress is
asymmetric. The classical body of continuum mechanics carry a
symmetric stress, but not a spin fluid, e.g.

» E. & F. Cosserat 1908: They work out a classical field theory for
continua with displacement u, and rotation w,, = —wp, and with
force stress and moment stress: (9) and (9),

ﬂab = vaub — Waby, Rabc = vawbc; Zab ~ Bab» Tabc ™~ Kabc-

» Cosserat 1d beams, 2d shells, 3d biaxial molecular fluids, spin fluids,
liquid crystals, micomorphic media — media with microstructure,
see Capriz, Springer 1989.
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F. Gronuald, F.W. Hehl

Force: Arrow symbolizing the force 1-form f = fa dz°®.
Hyperforce: Two opposite arrows displaced with respect to each other and
he = h3ydz® with hey = lim Az® fy. Only after a

symbolizing a hyperforce 1-form
— 0 and fy — 00, the double force becomes

suitable limiting transition with Az®

the hyperforce A%,
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Schematic view on a two-dimensional Cosserat continuum: Unde-
nitial state.

Homogeneous Cosserat rotation wi2 of the “particles” of a Cosserat
continuum caused by the antisymmetric piece of the stress $j1)

Conventional homogeneous strain 11 of a Cosserat continuum: Dis-
anges of the “particles” caused by force stress 11

Conventional rotation ;7 of the “particles’
uum caused by an inhomogeneous strain.
Homogencous contortion ;12 of a Cosserat continuum: Ori
s of the “particles” caused by spin moment stress 721"

" of a Cosserat contin-
ientation
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Macroscopic spin effects: Barnett, Einstein-de Haas

» — Elie Cartan 1922-24, inspired by the ideas of the Cosserats,

developed an extension of GR to a theory with asymmetric
energy-momentum tensors and spin: forerunner of EC-theory:
curvature ~ k- momentum, torsion ~ k-spin

Continuum theory of dislocations: Kazuo Kondo 1952, Bilby et al.
1956, Kroner & Seeger 1956..., see Kroner in Sommerfeld, Vol.2
(1964): (edge and screw) dislocation density a,p ~ torsion, closure
failure of infinitesimal parallelograms, 3d Riemann-Cartan space
with torsion TS, = — T, and vanishing curvature Rapc? =0

Kroner (1960) introduced moment stresses in the continuum theory
of dislocations: 7,5 ~ T4, similar to a 3d-version of the
Einstein-Cartan theory. Plausibility considerations on the
subsequent 2 pages:
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NYE curvature (contortion) of a crystal lattice. No macroscopic elastic strain is involved
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= i Couples as re-
(‘L\Kvo\ner) sponse to dislocations,
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Contortion and Moment Stress

Let us look at figure 3 in order to understand that a Riemannian
space V; is too special to describe all types of deformations occuring

G D
G F D o
X C . :)

%

~— Deformation of the crystal by edge dislocations of the a3;' type alters
the relative orientation of the crystal structure. Thereby the vector in z.-direction,
parallelly displaced along the x,-axis, will rotate : there occurs a closure failure
of the infinitesimal parallelgram. The crystal’s deformation will be maintained
by the moment stress t3;'. The mean distances of the lattice points have not
h d, hence no pic strain and stress are produced.
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2.2 Asymm. stress ¥ . in superfluid Helium-3 in the A-phase

» Superfluid 3He in the A-phase, is as spin fluid. Take the angular
momentum law, see Vollhardt & Wolfle, The Superfluid Phases of
Helium 3, Dover 2013: The antisym. piece of stress reads (p.427):

) ds
€M = (5, + v V)(t0h) + VB = V { g i< T =11}
W—: b , 8(V |)
Neabci < ~V prﬁacdSCd

vn = velocity of normal fluid, t = modulus of intrinsic angular
momentum t = tol, /; = preferred direction of A-phase order
parameter, s = entropy density, T = temperature, g = momentum
density of superfluid component; this is an irrefutable proof that
asymmetric stress tensors exist in nature
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2.3 Spin angular momentum tensor GUk and the Dirac field

» Invariance under 3+3 infinitesimal Lorentz transformations:
X = x" + whx;, with w) = 0, yields, via the Noether theorem and
0L/0W = 0, angular-momentum conservation,

oL
(G + X% )=0, GU"::—%—G f; V=-G;k.
~—~— N—— ~~ k ~~
spin orb. angular mom. 6x4 Lor. gen.

The canonical (Noether) spin GU", the spin current density, is a
tensor of type (), plays a role in the interpretation of the
Einstein-de Haas effect (1915). Components:

P energy-dipole-moment d. energy-dipole-moment flux d.
(6;°) ~ . . . .
spin density spin flux density

» We differentiate in the angular momentum law:

K& — T =0].

Now it can be generalized to contorted and curved spacetimes.
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> If &K =0, then %) = 0, that is, the energy-momentum tensor is
symmetric, but not necessarily vice versa.

» The irreducible decomposition, with the axial vector piece
AXGijk := S[jq and the vector piece VECG ;¥ := %6[,-‘/6"}], reads:

k TEN k VEC k AX k
G,’j G,‘j + G,‘j + G,’j ,
24 = 16 &) 4 D 4,

» Point particle ansatz for a class. spin fluid of the convective type:

(i','J = p; ut and G/jk = §j uk = —6J';k.
—~ ~ v ~~ v
mom. curr. d. mom. d. velocity spin curr. d. spin d. velocity

The momentum density p; is no longer proportional to the velocity.
Usually, the constraint s,/ = 0 is assumed.
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Dirac field in exterior calculus for illustration. Its Lagrangian reads,
Ip= é(w A DV + DV A W) + *mUW |

with 7 1= 7,9* and (473) = 0apla. The 3-forms of the canonical
momentum and spin current densities are (D, := e, | D, here | denotes
the interior product sign):

. - . B
za:é(\uw ADW+DWA W), Gas=70a AVs A6V

In Ricci calculus Gopy = Sapy) = %Eaﬁ.ﬂsW’}g’yﬁw. Thus, the spin

D
current is totally antisymmetric, Gjjx= AXG;jk. Accordingly, we can
introduce the spin flux vector

) 1 .
S = ge”k’@-k’ ~  (spin flux density 1 comp., spin density 3 comps.).

Because of the equivalence principle, the inertial currents ¥, and &,
are, at the same time, the gravitational currents of the classical Dirac
field. In general,
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2.4 Non-uniqueness of the momentum and spin currents

The Noether currents T’ and S5’ are only determined up to gradients.
B y

If we add gradients to T’ and G,5', we call it a relocalization of mom.
and spin, see Hehl ROMP 1976 and Kirsch, Ryder, H. arXiv 2001:

Lemma 1: The canonical or Noether currents fulfill the conservation laws

DiTa =0, DiGup —2%pup =0
(here Ryder's conventions). Then the relocalized currents
(X)) = T —DX.T,
Gog'(X,Y) = Sap’— 2Xap — D;Yap"
satisfy the analog. cons. laws: D; %, =0 and D; &,5" — 2‘3[,15] =0.

The Xa’j(x) = —X,/" and YaBij(X) _ 7y5aij — 7y0‘ﬁji
represent 24 + 36 arbitrary functions.
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Lemma 2: The total energy-momentum and total angular momentum

Po:= | %,7dS;, Jup :é/(c«saﬁf+2x[aiﬁ]f)ds,,
H; H;

are invariant under relocalization,

P, =P, —/ XoTday  Jup = Jup —/ (2310 X7 + Yap?) day,
OHy H,

provided the superpotentials X, and Y,z approach zero at spacelike

asymptotic infinity sufficiently fast. Here H; denotes a spacelike

hypersurface in Minkowski space with 3-volume element dS; and OH, its

2-dimensional boundary with area element da; = —daj;. Orthonormal

frames are used throughout.
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Belinfante currents as example

'I:he most straightforward approach to a relocalization is to put both,
Sap' =0 and Y,sY = 0. Then we find the Belinfante currents (1939)

. . B . . B .
ta' ' =%a'(X)  and Gap' =0=645 —2 X[ag)'
or 5 )
onij = 5 (6alj - Gija + 6jai) .
We collect our results with respect to the Belinfante relocalization in
Dit,)=0, tap] =0, t.' =%, — §Dj (GQU —Gua+(‘5/al> .

This relocalization can be understood as one which kills the Belinfante
spin current, i.e., the relocalized total angular momentum under this
condition reduces to its orbital part alone, see also Rosenfeld 1940.

Since the canonical spin of the Dirac field is totally antisymmetric, it
follows immediately that the Belinfante current t,’ for a Dirac electron is
the symmetric part of the canonical current ',

tap = Z(ap) (2)

with tap = €ig tai and Taﬁ = e€ip fai.
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Gordon decomposition of the currents of the Dirac field

» Gordon (1928) decomposed the Dirac current W~V into a
convective and a polarization part. An analogous procedure can be
applied to the inertial currents. It yields, for m # 0, the

of the Dirac field of the

and of the type, respectively:
. ; . . . 1 . .
Mo = 2= [oTD¥ = DaVo™ W], Mas¥ = = W(0T00s+0aso?)V.
Universally valid procedure, has also been applied to the

energy-momentum and spin currents of fields with spin 1, % and 2.

» The gravitational moment densities, in the sense of the
relocalization of Lemma 1, correspond to the choices

Xol = Mo 4260 MP* Y50 = Mg
Accordingly, for the relocalized currents we eventually find
G . . G 1 — .
Ta' =06, L —=— (D'VDV + D, VD'V)
2m
G 1

Gap' = i [(D'W) 0apV¥ — Vo,g (D'V)] .
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The Gordon Lagrangian reads

G

L (D W) DV — m*WV] . (3)

1
" 2m
In summary, for the Gordon type momentum and spin currents, we have
G G G
D;%,' =0, Fag=0, Di&ap' =0. (4)

This seems to be the only way one can derive a relativistic spin density
which is automatically conserved by itself. The Belinfante momentum t,
is also symmetric and the spin is conserved. However, in the Belinfante

case the relocalized spin vanishes, i.e., the statement is trivial.
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3. Currents of matter and gravitational theory

> Hilbert (1915); Weyl: Only the possibility of varying the metric in a
Riemannian space leads to the true definition of the energy (in the
context of GR): Hit;; := 26€,.../dg’

> (1961): Only the possibility of varying the Lorentz
connection in a Riemann-Cartan space leads to the true definition
of : SRS, 5" = 6Lmar /0T 2P

3.1 Metric momentum current — general relativity (GR)

» How can we choose amongst the multitude of the relocalized
energy-mom. tensors and spin tensors? Energy and spin distribution
of matter (but not of gravity!) are observable quantities, at least in
the classical domain. There must exist physically correct and
unique energy-mom. and spin tensors in nature.

> Already in 1915, Hilbert defined the dynamic energy-momentum as

. {} ..
Hig :=26Lma(g, V.,V W) /og7;

gV (or its reciprocal gy ) is the gravitational potential in GR. The
matter Lagrangian is supposed to be minimally coupled to g¥, in

accordance with the equivalence principle.
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The Hilbert definition is analogous to the relation from elasticity theory
stress ~ d(elastic energy)/d(strain). Recall that strain is defined as

gb = 1 (defgab _ undefgab) Fyen the factor 2 is reflected in the Hilbert
formula.

Rosenfeld (1940), via the Noether theorem, has shown that the
Belinfante tensor Belt;;, derived within SR, coincides with the Hilbert
tensor Hit,_'j of GR. Thus, the Belinfante-Rosenfeld-Iskraut recipe yields

Lemma 3: In the framework of GR, the Hilbert energy-momentum tensor

Hlt,’j _ Beltij — TIJ o Vk(gijk . 6J_k’_ + 6ku) _ Hltji;
localizes the energy-momentum distribution correctly; here (T/,& ;%) are
the canonical Noether currents. The spin tensor attached to Hit;
vanishes.
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3.2 Canonical momentum and spin currents — Einstein-Cartan
(EC) and Poincaré gauge theory (PG)

» Gauging of the Poincaré group: gauge potentials orthonormal
coframe ¥* = ;%dx’ (4x4) and the Lorentz connection
ref =r;*Pdx’ = —IP~ (4x6). The spacetime arena of the
emerging Poincaré gauge theory of gravity (PG) is a
Riemann-Cartan space with Cartan's torsion (4x6) and with
Riemann-Cartan curvature (6x6) as gauge field strength,
respectively:

T = V™, R ="V ;[3**  (or T* = D¥*, R*P = "D"T°P).

» The energy-momentum and angular momentum laws generalize to

il k 0k Im k l k

V&= Ty "+ Ru™ Gy, Vi 6" =% =0;
~— ——
torsion curvature

*
here Vi:= Vi + Tie’. GRis the subcase for G = 0. The material
currents are defined by variations with respect to the potentials:

r
6£mat(ev r7 w 9 D \U)
5F,~C‘f5

r
6£mat(e7 r7 \U 9 D \U)
oe™

SK i SK i
sal = 5 Gaﬁl =
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This Sciama-Kibble definition of the spin (1961) is only possible in the
Riemann-Cartan spacetime of PG. It is analogous to the relation
moment stress ~ §(elastic energy)/d(contortion) in a Cosserat type
medium, the contortion being a “rotational strain”.

The Lagrange-Noether machinery as applied to the minimally coupled
action function yields,

SK(IQI' _ rzai , SKGaﬁi _ Gaﬁi )

The dynamically defined energy-momentum and spin currents a la
Sciama-Kibble coincide with the canonical Noether currents.

Lemma 4: Within PG, the energy-momentum and the spin of matter are
distributed in accordance with the canonical Noether currents ' and
S,p', respectively.

Express the canon. energy-mom. tensor in terms of the Hilbert one,

SK:IaI' — ‘Iai — Hitai+ %k (6aik _ Gika + Gkai), SKGaﬁi — Gaﬁi X

The new Rosenfeld formula reverses its original meaning.in GR!
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» These results on the correct distribution of material
energy-momentum and spin in the framework of PG are are
independent of a specific choice of the gravitational Lagrangian.
However, if we choose the RC curvature scalar as a gravitational
Lagrangian, we arrive at the Einstein-Cartan(-Sciama-Kibble)
theory of gravitation (EC), which is a viable theory of gravity
competing with GR.

» The way we treated the the spin current, one can also treat the
dilation and the shear current. They are related to the GL(4, R)
and to possible violations of the Lorentz invariance...

Soli Deo Gloria.
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