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1. Momentum current
1.1 (Force) stress σab in continuum mechanics

Classical body: gas, fluid, solid (elastic, plastic, viscous,...). Turn to
measurable quantities:

I Stress: Pascal, Euler, Navier, Cauchy,...stress tensor of 2nd rank,
σab, a,b,c,...=1,2,3, phys. dimension f /l2 → pascal (Pa=N/m2),
df a = σa

b dA
b, force df a on the area element dAb, σab is

asymmetric by definition. Exterior calculus σa = 1
2σ

a
bcdx

b ∧ dxc ,
σa

(bc) ≡ 0. Bach parentheses (ij) := 1
2{i + j}, [ij ] := 1

2{i − j}.
I Classical equilibrium conditions: ∂b σa

b = Fa , σ[ab] = 0 .

I Displacement gradient: ∂aub. Strain εab = 1
2

(
def.
gab −

undef.
gab

)
= ∂(aub)

I Linear elasticity, Hooke’s law:

σab = cabcd ε
cd , c[ab]cd = cab[cd ] = 0 ; cabcd

reversible
= ccdab

Irreducible decomp. under GL(3,R) : cabcd︸︷︷︸
21

= (1)cabcd︸ ︷︷ ︸
15

+ (2)cabcd︸ ︷︷ ︸
6

(2)cabcd = 0 is called Cauchy relations (special case, cf. Itin & H.)

I Measurable quantities: stress σab, strain εab, elastic constants cabcd
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1.2 Maxwell’s stress tensor
Max
σ ab in electrodynamics

• Another theory of electricity, which I prefer, denies action at a distance
and attributes electric action to tensions and pressures in an all-pervading
medium, these stresses being the same in kind with those familiar to
engineers, and the medium being identical with that in which light is
supposed to be propagated. James Clerk Maxwell (1870)

Max
σab= DaEb + HaBb −

1

2
(D · E + H · B)gab , in vacuo,

Max
σ[ab]= 0

Exterior calculus: vector triad eα, interior product c, exterior product ∧
Max
σa :=

1

2

[
(eacE ) ∧ D − (eacD) ∧ E + (eacH) ∧ B − (eacB) ∧H

]
.

• Physical dimension of stress: [stress]=[mom.︸ ︷︷ ︸
mv

flux︸︷︷︸
v

density︸ ︷︷ ︸
1/`3

]= mv2

`3 = f
`2

Lorentz’ interpretation of the stress tensor as momentum flux density.
Light pressure as measured by Lebedew (1901), see Ashkin (1972) who
moves small particles by laser light pressure.

Minkowski (1908) defines an asymmetric electromagnetic stress tensor
(versus Abraham), see below; see the review paper of Yuri Obukhov,
Annalen der Physik (2008)
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1.3 Energy-momentum tensor Tij in electrodyn. and classical field theory

I In SR, coordinates x i , with i , j , k , ... = 0, 1, 2, 3, the stress
Max
σab has

to go along with momentum density, energy density, and energy
flux density. The discovery in 4d of the energy-momentum tensor
by Minkowski (1908):

(Ti
k) ∼

(
energy d. energy flux d.
mom. d. mom. flux d.

)
Max∼

(
u sa

pa
Max
σab

)
, ∂Ti

k = fi .

In a M4, we can decompose Tij irreducible w.r.t. the Lorentz group:

Tij = 6Tij + T[ij] +
1

4
gijTk

k

16 = 9 (sym.tracefree)⊕ 6(antisym.) ⊕ 1 (trace) ,

I In electrodyn. in vacuo, only
Max

6Tij survives (9 comps.); it is massless,
Max

Tk
k= 0, and carries helicity, but no (Lorentz) spin, i.e.,

Max

T[ij]= 0. In
matter, the Minkowksi energy-mom. tensor is asymm. (!), Abraham
defined an alternative symm. one, Minkowski’s result is consistent
(see von Laue), as shown in the review of Obukhov (2008).
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I Classical ideal (perfect, Euler) fluid of GR (ρ = mass/energy
density, p = pressure, ui = velocity of fluid):

Tij = (ρ+ p)uiuj − pgij , T[ij] = 0 , Tk
k = ρ− 3p .

I Where took Einstein the symmetry T[ij] = 0 of the
energy-momentum tensor from? Einstein (The Meaning of
Relativity, 1922, p.50) discussed the symmetry of the
energy-momentum tensor of Maxwell’s theory in vacuum.
Subsequently, he argued: “We can hardly avoid making the
assumption that in all other cases, also, the space distribution of
energy is given by a symmetrical tensor, Tµν , ...” This is hardly a
convincing argument if one recalls that the Maxwell field is massless
and is of a “bosonic” type.
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1.4 Action and canonical energy-momentum

I SR, Lorentz metric gij
∗
= oij := diag(+−−−), Cart, coords. x i ,

i , j , k , ... = 0, 1, 2, 3; matter field Ψ, could be a scalar, Weyl, Dirac,
Maxwell, Proca, Rarita-Schwinger, Fierz-Pauli field etc.). Isolated
material system with 1st order action (see Landau-Lifshitz, Corson):

Wmat :=
1

c

∫
dΩL(Ψ, ∂Ψ).

I Invariance under 4 transl.: x
′i = x i + ai . Noether theorem,

∂kTi
k = 0 , Ti

k︸︷︷︸
4×4

:= Lδki −
∂L
∂∂kΨ

∂iΨ , if
δL
δΨ

= 0

canonical energy-momentum tensor of type ( 1
1 ), Noether energy-

momentum (or momentum current density), since asymmetric, 16
indep. comps., Whittaker: Minkowski’s most important discovery.
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[1.5 Translation and energy-momentum, premetric considserations,
translation gauge theory

I Minkowski space is an affine space (“a vector space that lost its
origin.”) Weyl stressed this in his Space, Time, Matter as well as
Kopczyński & Trautman in their textbook, see also Giulini, loc.cit..
Translations have nothing to do with a metric, i.e., the distance
concept. Translations are premetric. Flat affine space (diff.
manifold with a flat linear connection Γα

β): Translations act
therein. Thus, translation invariance plus Noether yield ∂kTi

k = 0.
Gauging of the translations has a teleparallelism as a consequence.

I Transl. gauge theory is premetric. Transl. potential coframe ϑα,
field strength torsion, Tα = Dϑα, curv. vanishes Rα

β := dΓα
β

−Γα
γ ∧ Γγ

β = 0 . Excitation or field momentum Hα ∼ ∂V /∂Tα,
Hα = χαβ(g)Tβ . Energy-momentum 3-form (premetric) Σα,
energy-mom. tensor Tα

β = �(ϑβ ∧ Σα). In analogy to electrodyn.:

grav

Σα=
1

2

[
Tβ ∧ (eαcHβ)− Hβ ∧ (eαcTβ)

]
, prem. field eq. DHα−

grav

Σα =
mat

Σα ,

see Itin, Obukhov, Boos, H. 2018 (in eldyn. dH = J, linear). If a
Lorentz metric is assumed, which enters the const. law
Hα = χαβ(g)Tβ , we find the teleparallel equivalent GR|| of GR.]
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2. Spin current
2.1 Torque stress τab

c in continuum mechanics

I Voigt 1887, σ[ab] 6= 0 −→ Σab (9 indep. comps.), on the surfaces
of the Cauchy tetraeder, besides forces, there also act (spin)
moment stresses dmab = τabcdA

c , with m(ab) = τ(ab)c = 0 (9 indep.
comps., torque or couple stresses), on its volume also volume
moments. Equilibrium of forces (3) and moments (3):

∂cΣa
c = Fa , ∂cτab

c + Σ[ab] = Mab [M(ab) = 0] .

It is a question to the material considered whether the stress is
asymmetric. The classical body of continuum mechanics carry a
symmetric stress, but not a spin fluid, e.g.

I E. & F. Cosserat 1908: They work out a classical field theory for
continua with displacement ua and rotation ωab = −ωba and with
force stress and moment stress: deformation (9) and contortion (9),

βab = ∇aub − ωab , κabc = ∇aωbc ; Σab ∼ βab, τabc ∼ κabc .

I Cosserat 1d beams, 2d shells, 3d biaxial molecular fluids, spin fluids,
liquid crystals, micomorphic media −→ media with microstructure,
see Capriz, Springer 1989.
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I Macroscopic spin effects: Barnett, Einstein-de Haas

I → Elie Cartan 1922-24, inspired by the ideas of the Cosserats,
developed an extension of GR to a theory with asymmetric
energy-momentum tensors and spin: forerunner of EC-theory:
curvature ∼ κ·momentum, torsion ∼ κ· spin

I Continuum theory of dislocations: Kazuo Kondo 1952, Bilby et al.
1956, Kröner & Seeger 1956..., see Kröner in Sommerfeld, Vol.2
(1964): (edge and screw) dislocation density αab ∼ torsion, closure
failure of infinitesimal parallelograms, 3d Riemann-Cartan space
with torsion T c

ab = −Tba
c and vanishing curvature Rabc

d = 0

I Kröner (1960) introduced moment stresses in the continuum theory
of dislocations: τab

c ∼ Tab
c , similar to a 3d-version of the

Einstein-Cartan theory. Plausibility considerations on the
subsequent 2 pages:
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2.2 Asymm. stress Σab in superfluid Helium-3 in the A-phase

I Superfluid 3He in the A-phase, is as spin fluid. Take the angular
momentum law, see Vollhardt & Wölfle, The Superfluid Phases of
Helium 3, Dover 2013: The antisym. piece of stress reads (p.427):

εi jkΠjk︸ ︷︷ ︸
∼εabcTbc

= −(
∂

∂t
+ vn ·∇)(t0li ) +∇jBj i − ∇j︸︷︷︸

∼∇b

{ ~
2m

gs,j li︸ ︷︷ ︸
∼pbεacdscd

+[̂l× T
∂s

∂(∇j l̂)
]i} (1)

vn = velocity of normal fluid, t0 = modulus of intrinsic angular
momentum t = t0̂l, li = preferred direction of A-phase order
parameter, s = entropy density, T = temperature, gs = momentum
density of superfluid component; this is an irrefutable proof that
asymmetric stress tensors exist in nature
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2.3 Spin angular momentum tensor Sij
k and the Dirac field

I Invariance under 3+3 infinitesimal Lorentz transformations:
x

′i = x i + ωijxj , with ω(ij) = 0, yields, via the Noether theorem and
δL/δΨ = 0, angular-momentum conservation,

∂k
(
Sij

k︸︷︷︸
spin

+ x[iTj]
k︸ ︷︷ ︸

orb. angular mom.

)
= 0 , Sij

k︸︷︷︸
6×4

:= − ∂L
∂∂kΨ

fij︸︷︷︸
Lor. gen.

Ψ = −Sji
k .

The canonical (Noether) spin Sij
k , the spin current density, is a

tensor of type ( 1
2 ), plays a role in the interpretation of the

Einstein-de Haas effect (1915). Components:

(Sij
k) ∼

(
energy-dipole-moment d. energy-dipole-moment flux d.

spin density spin flux density

)
I We differentiate in the angular momentum law:

∂kSij
k − T[ij] = 0 .

Now it can be generalized to contorted and curved spacetimes.
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I If Sij
k = 0, then T[ij] = 0, that is, the energy-momentum tensor is

symmetric, but not necessarily vice versa.

I The irreducible decomposition, with the axial vector piece
AXSijk := S[ijk] and the vector piece VECSij

k := 2
3S[i|`

`δk|j], reads:

Sij
k = TENSij

k + VECSij
k + AXSij

k ,

24 = 16 ⊕ 4 ⊕ 4 ,

I Point particle ansatz for a class. spin fluid of the convective type:

Ti
j︸︷︷︸

mom. curr. d.

= pi︸︷︷︸
mom. d.

u j︸︷︷︸
velocity

and Sij
k︸︷︷︸

spin curr. d.

= sij︸︷︷︸
spin d.

uk︸︷︷︸
velocity

= −Sji
k .

The momentum density pi is no longer proportional to the velocity.
Usually, the constraint siju

j = 0 is assumed.
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Dirac field in exterior calculus for illustration. Its Lagrangian reads,

LD =
i

2
(Ψ?γ ∧ DΨ + DΨ ∧ ?γΨ) + ?mΨΨ ,

with γ := γαϑ
α and γ(αγβ) = oαβ14. The 3-forms of the canonical

momentum and spin current densities are (Dα := eαcD, here c denotes
the interior product sign):

Tα=
i

2
(Ψ ?γ ∧ DαΨ + DαΨ ∧ ?γΨ) , Sαβ=

1

4
ϑα ∧ ϑβ ∧Ψγγ5Ψ .

In Ricci calculus Sαβγ = S[αβγ] = 1
4εαβγδΨγ5γ

δΨ. Thus, the spin

current is totally antisymmetric,
D

Sijk= AX
D

Sijk . Accordingly, we can
introduce the spin flux vector

S i :=
1

3!
εijklSjkl ∼ (spin flux density 1 comp., spin density 3 comps.) .

Because of the equivalence principle, the inertial currents Tα and Sαβ

are, at the same time, the gravitational currents of the classical Dirac
field. In general, fermionic fields generate asymmetric energy-momentum
tensors.
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2.4 Non-uniqueness of the momentum and spin currents

The Noether currents Tα
i and Sαβ

i are only determined up to gradients.
If we add gradients to Tα

i and Sαβ
i , we call it a relocalization of mom.

and spin, see Hehl ROMP 1976 and Kirsch, Ryder, H. arXiv 2001:

Lemma 1: The canonical or Noether currents fulfill the conservation laws

Di Tα
i = 0 , Di Sαβ

i − 2T[αβ] = 0

(here Ryder’s conventions). Then the relocalized currents

T̂α
i (X ) = Tα

i − DjXα
ij ,

Ŝαβ
i (X ,Y ) = Sαβ

i − 2X[αβ]
i − DjYαβ

ij ,

satisfy the analog. cons. laws: Di T̂α
i = 0 and Di Ŝαβ

i − 2T̂[αβ] = 0.

The superpotentials Xα
ij(x) = −Xαji and Yαβ

ij(x) = −Yβαij = −Yαβ ji

represent 24 + 36 arbitrary functions.
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Lemma 2: The total energy-momentum and total angular momentum

Pα :
∗
=

∫
Ht

Tα
i dSi , Jαβ :

∗
=

∫
Ht

(Sαβ
i + 2x[αTβ]

i ) dSi ,

are invariant under relocalization,

P̂α
∗
= Pα −

∫
∂Ht

Xα
ij daij Ĵαβ

∗
= Jαβ −

∫
∂Ht

(
2x[α Xβ]

ij + Yαβ
ij
)
daij ,

provided the superpotentials Xα
ij and Yαβ

ij approach zero at spacelike

asymptotic infinity sufficiently fast. Here Ht denotes a spacelike

hypersurface in Minkowski space with 3-volume element dSi and ∂Ht its

2-dimensional boundary with area element daij = −daji . Orthonormal

frames are used throughout.
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Belinfante currents as example

The most straightforward approach to a relocalization is to put both,
Ŝαβ

i = 0 and Yαβ
ij = 0. Then we find the Belinfante currents (1939)

tα
i :=

B

Tα
i (

B

X ) and
B

Sαβ
i = 0 = Sαβ

i − 2
B

X [αβ]
i

or
B

Xα
ij =

1

2

(
Sα

ij −Sij
α + Sj

α
i
)
.

We collect our results with respect to the Belinfante relocalization in

Di tα
i = 0 , t[αβ] = 0 , tα

i = Tα
i − 1

2
Dj

(
Sα

ij −Sij
α + Sj

α
i
)
.

This relocalization can be understood as one which kills the Belinfante
spin current, i.e., the relocalized total angular momentum under this
condition reduces to its orbital part alone, see also Rosenfeld 1940.

Since the canonical spin of the Dirac field is totally antisymmetric, it
follows immediately that the Belinfante current tα

i for a Dirac electron is
the symmetric part of the canonical current Tα

i ,

tαβ = T(αβ) , (2)

with tαβ = eiβ tα
i and Tαβ = eiβ Tα

i .
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Gordon decomposition of the currents of the Dirac field

I Gordon (1928) decomposed the Dirac current Ψγ iΨ into a
convective and a polarization part. An analogous procedure can be
applied to the inertial currents. It yields, for m 6= 0, the
gravitational moment densities of the Dirac field of the translation
and of the Lorentz type, respectively:

Mα
ij =

i

4m

[
ΨσijDαΨ− DαΨσijΨ

]
, Mαβ

ij =
1

8m
Ψ(σijσαβ+σαβσ

ij)Ψ .

Universally valid procedure, has also been applied to the
energy-momentum and spin currents of fields with spin 1, 3

2 , and 2.

I The gravitational moment densities, in the sense of the
relocalization of Lemma 1, correspond to the choices

Xα
ij = Mα

ij + 2δ[i
αM

·j]k
k , Yαβ

ij = Mαβ
ij .

Accordingly, for the relocalized currents we eventually find

G

Tα
i = δiα

G

L −
1

2m

(
D iΨDαΨ + DαΨD iΨ

)
G

Sαβ
i =

1

4mi

[(
D iΨ

)
σαβΨ−Ψσαβ

(
D iΨ

)]
.
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The Gordon Lagrangian reads

G

L :=
1

2m

[
(DαΨ)DαΨ−m2ΨΨ

]
. (3)

In summary, for the Gordon type momentum and spin currents, we have

Di

G

Tα
i = 0 ,

G

T[αβ]= 0 , Di

G

Sαβ
i = 0 . (4)

This seems to be the only way one can derive a relativistic spin density

which is automatically conserved by itself. The Belinfante momentum tα
i

is also symmetric and the spin is conserved. However, in the Belinfante

case the relocalized spin vanishes, i.e., the statement is trivial.
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3. Currents of matter and gravitational theory

I Hilbert (1915); Weyl: Only the possibility of varying the metric in a
Riemannian space leads to the true definition of the energy (in the
context of GR): Hitij := 2δLmat/δg

ij

I Sciama-Kibble (1961): Only the possibility of varying the Lorentz
connection in a Riemann-Cartan space leads to the true definition
of spin: SKSαβ

i = δLmat/δΓi
αβ

3.1 Metric momentum current → general relativity (GR)

I How can we choose amongst the multitude of the relocalized
energy-mom. tensors and spin tensors? Energy and spin distribution
of matter (but not of gravity!) are observable quantities, at least in
the classical domain. There must exist physically correct and
unique energy-mom. and spin tensors in nature.

I Already in 1915, Hilbert defined the dynamic energy-momentum as

Hitij := 2δLmat(g ,Ψ ,
{}
∇ Ψ)/δg ij ;

g ij (or its reciprocal gkl) is the gravitational potential in GR. The
matter Lagrangian is supposed to be minimally coupled to g ij , in
accordance with the equivalence principle.
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The Hilbert definition is analogous to the relation from elasticity theory
stress ∼ δ(elastic energy)/δ(strain). Recall that strain is defined as
εab := 1

2

(
defg ab − undefg ab

)
. Even the factor 2 is reflected in the Hilbert

formula.

Rosenfeld (1940), via the Noether theorem, has shown that the
Belinfante tensor Beltij , derived within SR, coincides with the Hilbert
tensor Hitij of GR. Thus, the Belinfante-Rosenfeld-Iskraut recipe yields

Lemma 3: In the framework of GR, the Hilbert energy-momentum tensor

Hitij = Beltij = Tij −∇k

(
Sij

k −Sj
k
i + Sk .

ij

)
= Hitji ,

localizes the energy-momentum distribution correctly; here (Ti
j ,Sij

k) are
the canonical Noether currents. The spin tensor attached to Hitij
vanishes.
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3.2 Canonical momentum and spin currents → Einstein-Cartan
(EC) and Poincaré gauge theory (PG)

I Gauging of the Poincaré group: gauge potentials orthonormal
coframe ϑα = ei

αdx i (4×4) and the Lorentz connection
Γαβ = Γi

αβdx i = −Γβα (4×6). The spacetime arena of the
emerging Poincaré gauge theory of gravity (PG) is a
Riemann-Cartan space with Cartan’s torsion (4×6) and with
Riemann-Cartan curvature (6×6) as gauge field strength,
respectively:

Tij
α := ∇[iej]

α, Rij
αβ := “∇”[iΓj]

αβ (or Tα = Dϑα, Rαβ = “D”Γαβ).

I The energy-momentum and angular momentum laws generalize to
∗
∇k Ti

k = Tik
`︸︷︷︸

torsion

T`
k + Rik

lm︸ ︷︷ ︸
curvature

Slm
k ,

∗
∇k Sij

k − T[ij] = 0 ;

here
∗
∇k := ∇k +Tk`

`. GR is the subcase for Sij
k = 0. The material

currents are defined by variations with respect to the potentials:

SKTα
i =

δLmat(e, Γ,Ψ ,
Γ

D Ψ)

δeiα
, SKSαβ

i =
δLmat(e, Γ,Ψ ,

Γ

D Ψ)

δΓi
αβ

.
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This Sciama-Kibble definition of the spin (1961) is only possible in the
Riemann-Cartan spacetime of PG. It is analogous to the relation
moment stress ∼ δ(elastic energy)/δ(contortion) in a Cosserat type
medium, the contortion being a “rotational strain”.

The Lagrange-Noether machinery as applied to the minimally coupled
action function yields,

SKTα
i = Tα

i , SKSαβ
i = Sαβ

i .

The dynamically defined energy-momentum and spin currents à la
Sciama-Kibble coincide with the canonical Noether currents.

Lemma 4: Within PG, the energy-momentum and the spin of matter are
distributed in accordance with the canonical Noether currents Tα

i and
Sαβ

i , respectively.

This is in marked contrast to the doctrine in the context of GR.

Express the canon. energy-mom. tensor in terms of the Hilbert one,

SKTα
i = Tα

i = Hitα
i+
∗
∇k (Sα

ik −Sik
α + Sk i

α ) , SKSαβ
i = Sαβ

i .

The new Rosenfeld formula reverses its original meaning in GR!
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I These results on the correct distribution of material
energy-momentum and spin in the framework of PG are are
independent of a specific choice of the gravitational Lagrangian.
However, if we choose the RC curvature scalar as a gravitational
Lagrangian, we arrive at the Einstein-Cartan(-Sciama-Kibble)
theory of gravitation (EC), which is a viable theory of gravity
competing with GR.

I The way we treated the the spin current, one can also treat the
dilation and the shear current. They are related to the GL(4,R)
and to possible violations of the Lorentz invariance...

Soli Deo Gloria.
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