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The Maxwell equations 1862-1868
Five decisive papers of Maxwell (1831-1879) + his Treatise (see C.W.F.
Everitt, Maxwell, 1975)

1. “On Faraday’s Lines of Force” (1855-1856): Analogies between lines of
force and streamlines in an incompressible fluid, electrotonic function
A, with B = curlA (the latter formula was used earlier also by Gauss)

2. “On Physical Lines of Force” (1861-1862): Molecular vortices and
electric particles, induced electromotive force E = (−)∂A/∂t

3. “On the Elementary Relations of Electrical Quantities” (1863, missing in
his scientific papers): electromagnetic quantities and their physical
dimensions, forces and fluxes

4. “A Dynamical Theory of the Electromagnetic Field” (1865): Provides a
new theoretical framework for the subject; systematic overview given of
all equations, first clear formulation of his system of eqs.

5. “Note on the Electromagnetic Theory of Light” (1868): integral form
without A, four basic theorems provided: MaxwellEqsP2.pdf, later
Murnaghan 1921, Kottler 1922, Cartan 1924, de Rham 1931...

We will provide some spotlights on the subsequent development of these eqs.

In Maxwell: “ A Treatise on Electricity and Magnetism” (2nd edition, 1881) he
gave his electromagnetic field equations their most compact form. Maxwell
Monument in Edinburgh: SchweigertMax1.jpg, SchweigertMax2.jpg
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On the history of Maxwell’s equations of classical electrodynamics

1. In components: Maxwell 1862-1865

2. In quaternions (Hamilton 1843): Maxwell 1873

3. In symbolic vector calculus: Heaviside 1885-1888, Gibbs 1901, Föppl

4. In components (compact): Hertz 1890, ansatz for moving bodies

5. In components à la Maxwell-Hertz + Lorentz transf.: Einstein 1905

6. In symbolic 4d calculus: Minkowski 1907-1908

7. In 4d generally covariant tensor calculus: Einstein 1916

8. In premetric/integral formulation up to ∼ 1960: (Maxwell), Murnaghan,
Kottler, Cartan (formulated in differential forms), van Dantzig,
Schrödinger, Schouten, Truesdell-Toupin, Post

9. In spinor calculus: After Pauli 1927 and Dirac 1928: Weyl, Fock, Infeld
& van der Waerden,..., ⇒ Penrose & Rindler [skip possibly]

10. 4d Clifford algebra formalism (vacuum) Riesz 1958 ⇒ Baylis [skip]

11. In algebraic/discrete formulation in terms of (co)chains ⇒ Bossavit,
Tonti, Zirnbauer

12. 3d and 4d exterior calculus, premetric topological form of Maxwell’s eqs.
⇒ Kiehn, Post; Kovetz, Russer, Lindell, H. & Obukhov; signature of
metric & Lenz rule & sign of energy ⇒ Itin; metamat. Itin & Friedman
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1. In components: Maxwell 1862-1865

See the original of 1865 where for the first time the “Maxwell equations”
appeared systematically ordered: file Maxwell1865 73.pdf, and file
GerhardMaxwell1865004.pdf
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2. In quaternions (Hamilton 1843): Maxwell 1873

• Quaternion
The quaternions are a set of symbols of the form

a|{z}
scalar p.

+ bi+ cj + dk| {z }
vector part

, (1)

where a, b, c, d are real numbers. They multiply using the rules

i2 = j2 = k2 = −1 and ij = k . (2)

They form a non-commutative division algebra.
• Hamilton 1843: The quotient of two vectors is generally a quaternion.
The name vector originates from Hamilton (⇒ Struik), also nabla ∇ (Assyrian
harp)
• Quaternions: the most simple associative number system with more than 2
units (complex number has 2 units)
• Supporters of Hamilton against those of Grassmann (theory of extensions,
exterior product, Grassmann algebra with anticommuting numbers)

• Clifford: Biquaternions: Quaternions the coefficients of which are a system

of complex numbers a+ be, with e2 = ±1 or 0. Clifford algebra.
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• Maxwell’s equations in quaterionic form (Treatise, 2nd edition, 1881, Vol. II,
p. 239–240; S = scalar and V vector part of quaternion) G = velocity, ψ,Ω =
scalar el./mg. pot., eq. numbers 1st column from 1865, 2nd one from 1881

(B1) (A) B = V∇A (S∇A = 0 ⇒ B = ∇A) eq. of mg. induction

(D) (B) E = VGB − Ȧ −∇ψ eq. of el.motive force

(C) F = V CB − e∇ψ −m∇Ω eq. of el.magn. force

(D) B = H + 4πI eq. of magnetization

(C) (E) 4πC = V∇H eq. of el. currents

(F ) [G] K = CE eq. of conductiv. (Ohm)

(E) [F] D =
1

4π
KE eq. of el. displacement

(A) [H] C = K + Ḋ eq. of true currents

(B2) [L] B = µH eq. of ind. magnetiz.

(G) [J] e = S∇D [Coulomb-Gauss law]

m = S∇I

H = −∇Ω

(H) Number of eqs.(A) to (H) = 20 cont. eq. missing here
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3. In symbolic vector calculus: Heaviside 1885/88, Föppl 1894, Gibbs 1901

Heaviside’s ‘duplex system’ of 1888 (see the original Heaviside1888.pdf in
Phil. Mag. Ser. 5, 25: 153, pp. 130–156 (1888)) e,h = impressed fields

B = µH, C = kE, D = (c/4π)E

curl (H − h) = 4πΓ

curl (e − E) = 4πG

Γ = C + Ḋ, G = Ḃ/4π

divB = 0

h
Energy: U =

1

2
ED , T =

1

2
HB/4π , Q = EC ,

W = V (E − e)(H − h)/4π ⇐ Poynting

eΓ + hG = Q+ U̇ + Ṫ + divW

i

The electromagnetic field (H & O):

B

D

E

el
ec

tri
c

H

excitation

m
ag

ne
tic

field strength

2−form
s

1−forms
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• Heaviside + Grassmann + Gibbs ⇒ vector analysis: Hamilton’s vectors,
Grassmann’s exterior product, Gibbs’ dyadics; see also J. Crowe, A History of
Vector Analysis, Dover

• 1872 Erlangen Program of Klein ⇒ group theory + geometry: “Let be given
a manifold and a transformation group in it. Develop the theory of invariants
with respect to this group.” 3d Euclidean group T 3 ⊃× SO(3) ⇒ Poincaré
group (4d translations ⊃× Lorentz) T 4 ⊃× SO(1, 3) [also SL(2, C) and
SO(3, C)] ⇒ diffeomorphism group

• Around 1900: Ricci + Levi-Civita ⇒ absolute differential calculus, tensor
analysis (tensor Voigt 1900) ⇒ Einstein 1916, see history of Karin Reich

• In textbooks, Abraham-Föppl is a leading example (Einstein learned from
Föppl), see original AbrahamFoeppl1904.pdf, 2nd edition

• Recommended textbook: Sommerfeld, Electrodynamics. Lectures on
theoretical physics, Vol. III (1952)

• Bamberg + Sternberg: “...the most suitable framework for geometrical
analysis is the exterior differential calculus of Grassmann and Cartan.”
(topological in constrast to metrical concepts are stressed)
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4. In components (compact): Hertz 1890, ansatz for moving bodies
Hertz’s system in vacuum, see the original Ann. Phys. 1890, [A−1] = velocity;
file Hertz1890a.pdf

A
dL

dt
=
dZ

dy
− dY

dz
A
dX

dt
=
dM

dz
− dN

dy

A
dM

dt
=
dX

dz
− dZ

dx
A
dY

dt
=
dN

dx
− dL

dz

A
dN

dt
=
dY

dx
− dX

dy
A
dZ

dt
=
dL

dy
− dM

dx

dL

dx
+
dM

dy
+
dN

dx
= 0 ,

dX

dx
+
dY

dy
+
dZ

dz
= 0

[H = (L,M,N), E = (X,Y,Z). For the first time we see all 4 Maxwell
vacuum equations together, cf. Darrigol, p.254 et seq.:

A
dH

dt
= −curlE , A

dE

dt
= curlH

divH = 0 , divE = 0

Note: By differentiating with respect to the time t, we find the wave equation

A
d2

H

dt2
= −curl

dE

dt
= − 1

A
curl curl H =

1

A
(∆H − grad divH| {z }

=0

) .
˜
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Hertz (continued): Ansatz for moving bodies by substituting the convective
derivative (of Helmholtz). Let a (electric of magnetic) flux F be given; then,
with the velocity v of the medium (at the time of Hertz d meant ∂),

dF

dt
=⇒ DF

Dt
=
dF

dt
− [∇× (v × F) − v(∇ · F)] .

Substitute this in the l.h.s. of the 2 Maxwell equations containing a time
derivative. Turned out to be unsuccessful, but it brought the electrodynamics
of moving bodies under way ⇒ Einstein 1905.

5. In components à la Maxwell-Hertz + Lorentz transf.: original
Einstein1905.pdf
In the kinematical part of his “On the Electrodynamics of Moving Bodies” he
proves for a standard Lorentz transformation (boost in x-direction)

τ = β(t− vx/c2) ,

ξ = β(x− vt) ,

η = y ,

ζ = z ,

where β = 1/
p

1 − v2/c2.
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Einstein 1905 (continued): He just took the Maxwell-Hertz equations for
vacuum (with switched sign), electric field (X,Y,Z), magnetic field (L,M,N),

1

V

∂X

∂t
=
∂N

∂y
− ∂M

∂z

1

V

∂L

∂t
=
∂Y

∂z
− ∂Z

∂y

1

V

∂Y

∂t
=
∂L

∂z
− ∂N

∂x

1

V

∂M

∂t
=
∂Z

∂x
− ∂X

∂z
1

V

∂Z

∂t
=
∂M

∂x
− ∂L

∂y

1

V

∂N

∂t
=
∂X

∂y
− ∂Y

∂x

Then he referred the electromagnetic process to the coordinate system
above (τ, ξ, η, ζ) and uses the corresponding transformation formulas:

1

V

∂X

∂τ
=
∂β

`
N − v

V
Y

´

∂η
− ∂β

`
M + v

V
Z

´

∂ζ
etc.

Because of the relativity principle, we have

1

V

∂X ′

∂τ
=
∂N ′

∂η
− ∂M ′

∂ζ

1

V

∂L′

∂τ
=
∂Y ′

∂ζ
− ∂Z′

∂η

1

V

∂Y ′

∂τ
=
∂L′

∂ζ
− ∂N ′

∂ξ

1

V

∂M ′

∂τ
=
∂Z′

∂ξ
− ∂X ′

∂ζ

1

V

∂Z′

∂τ
=
∂M ′

∂ξ
− ∂L′

∂η

1

V

∂N ′

∂τ
=
∂X ′

∂η
− ∂Y ′

∂ξ
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Consequently,

X ′ = X , L′ = L ,

Y ′ = β
“
Y − v

V
N

”
, M ′ = β

“
M +

v

V
Z

”
,

Z′ = β
“
Z +

v

V
M

”
, N ′ = β

“
N − v

V
Y

”
,

are the transformation formulas for the components of the electromagnetic
field.

Similar derivations were given (partly earlier) by Poincaré and by Lorentz.

See also the books of von Laue (1911), Silberstein (quaternions! 1914), Pauli

(1921), Einstein (1922),..., Møller (1952),...
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6. In symbolic 4d calculus: Minkowski’s way to: lor f = −s, lor F
∗ = 0

Minkowski introduced fields f and F in Cartesian coordinates x, y, z and with
imaginary time coo. it (c = 1); moreover, x1 := x, x2 := y, x3 := z, x4 := it.
Euclidean metric ds2 = dx2

1 + dx2
2 + dx2

3 + dx2
4 = ghkdxhdxk, with

ghk = diag(1, 1, 1, 1); there is no need to distinguish contravariant (upper)
from covariant (lower) indices. The Maxwell equations in component form:

∂f12
∂x2

+
∂f13
∂x3

+
∂f14
∂x4

= s1 ,

∂f21
∂x1

+
∂f23
∂x3

+
∂f24
∂x4

= s2 ,

∂f31
∂x1

+
∂f32
∂x2

+
∂f34
∂x4

= s3 ,

∂f41
∂x1

+
∂f42
∂x2

+
∂f43
∂x3

= s4 ,

∂F34

∂x2
+
∂F42

∂x3
+
∂F23

∂x4
= 0 ,

∂F43

∂x1
+

∂F14

∂x3
+
∂F31

∂x4
= 0 ,

∂F24

∂x1
+
∂F41

∂x2
+
∂F12

∂x4
= 0 ,

∂F32

∂x1
+
∂F13

∂x2
+
∂F21

∂x3
= 0 .
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Minkowski (cont.): Modern notation and summ. conv. h, k, ... = 1, 2, 3, 4,

∂fhk

∂xk

= sh and
∂Fhk

∂xl

+
∂Fkl

∂xh

+
∂Flh

∂xk

= 0 (or ∂[lFhk] = 0) .

Excitation f and the field strength F (in Maxwell’s nomenclature1)

(fhk) = −(fkh) =

0
BB@

0 Hz −Hy −iDx

−Hz 0 Hx −iDy

Hy −Hx 0 −iDz

iDx iDy iDz 0

1
CCA

(Fhk) = −(Fkh) =

0
BB@

0 Bz −By −iEx

−Bz 0 Bx −iEy

By −Bx 0 −iEz

iEx iEy iEz 0

1
CCA ,

The 4d electric current denoted by sh.

1Minkowski took D=e, H=m; E=E, B=M, that is, for the excitation
f ∼ (e,m) and for the field strength F ∼ (E,M).
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Minkowski (cont.): He introduced the dual of Fhk, namely F ∗

hk := 1
2
ǫ̂hklmFlm,

with the Levi-Civita symbol ǫ̂hklm = ±1, 0 and ǫ̂1234 = +1. Thus,

F ∗ = (F ∗

hk) =

0
BB@

0 −iEz iEy Bx

iEz 0 −iEx By

−iEy iEx 0 Bz

−Bx −By −Bz 0

1
CCA .

Then both Maxwell equations read

∂fhk

∂xk

= sh ,
∂F ∗

hk

∂xk

= 0 .

Subsequently Minkowski developed a 4-dimensional type of Cartesian tensor
calculus with a 4d differential operator called ‘lor’ (abbreviation of Lorentz).
He introduces ordinary (co)vectors (space-time vectors of the 1st kind), like
xh and lorh := ∂

∂xh

, and antisymmetric 2nd rank tensors (space-time vectors
of the 2nd kind), like fhk and Fhk. Then, symbolically he wrote

lor f = −s , lorF ∗ = 0 ( lor and ∗ metric dependent).

Using his Cartesian tensor calculus, Minkowski has shown that these eqs.
are covariant under Poincaré transformations. In vacuum, f ∼ F . Compare
with exterior calculus version with dH = J, dF = 0 and, in vacuum, H ∼ ⋆F .
• Minkowski also discovered 1907 the energy-momentum tensor for the
electromagnetic field: densities of energy/momentum and their fluxes.
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7. In 4d generally covariant tensor calculus: Einstein 1916/1922

The next step occurred immediately after Einstein’s fundamental 1915 paper
on general relativity. Now Einstein was in command of tensor calculus in
arbitrary coordinate systems. By picking suitable variables, he found
(ds2 = gµνdx

µdxν with signature (1,−1,−1,−1), here µ, ν, ... = 0, 1, 2, 3)

∂Fρσ

∂xτ
+
∂Fστ

∂xρ
+
∂Fτρ

∂xσ
= 0 , F

µν =
√−ggµαgνβFαβ ,

∂F
µν

∂xν
= J µ .

The field strength Fρσ is a tensor, the excitation F
µν a tensor density.

Einstein’s identifications, which were only worked out by him for vacuum, read

F =

0
BB@

0 Ex Ey Ez

−Ex 0 Hz −Hy

−Ey −Hz 0 Hx

−Ez Hy −Hx 0

1
CCA , F =

0
BB@

0 −Ex −Ey −Ez

Ex 0 Hz −Hy

Ey −Hz 0 Hx

Ez Hy −Hx 0

1
CCA .

• These Maxwellian eqs. are generally covariant and metric independent.
The gravitational potential only enters the “spacetime relation”—it is the
‘constitutive law’ of the vacuum.
Here no comma goes to semicolon rule “ , → ; ” (MTW) is necessary for eldyn.

For a mathematically precise presentation see Schouten “Tensor Analysis for
Physicists” (Oxford 1951, Dover 1989).
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8. In premetric/integral formulation, in tensor and exterior diff. calculus up to
∼ 1960

Already initiated by Maxwell in his paper 5 (similar in Sommerfeld). Élie
Cartan (1924) as an example. In special relativity:

Ω = Bx[dy dz] +By[dz dx] +Bz[dx dy]

+ Ex[dx dt] + Ey[dy dt] + Ez[dz dt]

Ω = Dx[dy dz] +Dy [dz dx] +Dz[dx dy]

+Hx[dx dt] +Hy[dy dt] +Hz[dz dt]

S = ρ[dx dy dz] − Ix[dy dz dt] − Iy[dz dt dx] − Iz[dx dy dt]

Ω′ = 0 , Ω
′

= −4πS ⇒ S′ = 0

Generalization:
ZZ

Ω = 0 ,

ZZ
Ω = −4π

ZZZ
S ,

where the integral on the right-hand-side extends over any 3-dimensional
volume of spacetime and those on the left-hand-sides over the 2-dimensional
boundary of this volume. Isn’t that a beautiful representation?

Similar versions by Murnaghan, Kottler, van Dantzig, Schrödinger, Schouten,
Truesdell-Toupin, Post

17



9. In spinor calculus: Spinors as semivectors, tensor with rank 1
2
.Weyl

1928–29, Fock 1929, van der Waerden 1929, Schrödinger 1930,
systematically: Infeld & van der Waerden, Sitzungsber. Preuss. Akad. Wiss.
Physik.-Math. Klasse, p. 380 (1933). E.M. Corson, Tensors, Spinors and Rel.
Wave Eqs., 1953. We take as example, Laporte & Uhlenbeck Phys. Rev. 37
(1931) 1380–1397: Group SL(2, C) with transformations

ξ′1 = α11ξ1 + α12ξ2 , ξ′1 = α11ξ1 + α12ξ2 ,

ξ′2 = α21ξ1 + α22ξ2 , ξ′2 = α21ξ1 + α22ξ2 ,

and detα = 1, simple covering group of the proper orthochronous Lorentz
group SO0(1, 3). Fundamental objects are the spinors ak and bṙ; higher order

objects akl, bṙṡ, cṙk, .... Spinor ‘metric’ ǫkl =

„
0 −1
1 0

«
, ǫkl =

„
0 1

−1 0

«
.

Relation between spinors and world vectors:
1

2
(a2̇1 + a1̇2) = A1 = A1 , a2̇1 = A1 + iA2 ,

1

2i
(a2̇1 − a1̇2) = A2 = A2 , a1̇2 = A1 − iA2 ,

1

2
(a1̇1 − a2̇2) = A3 = A3 , a1̇1 = A3 −A4 ,

1

2
(a1̇1 + a2̇2) = A4 = −A4 , −a2̇2 = A3 +A4 .
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In spinors (cont.) Definition of self-dual tensor F ∗

kl := i
2
ǫklαβF

αβ. Introduce
complex electromagnetic field strength (here for vacuum) and find the
Maxwell equation

Gkl := F kl + F ∗kl ,
∂Gkλ

∂xλ
= Sk .

Gkl is an antisymmetric self-dual 2nd rank tensor with 6 independent
components. We can assign to Gkl a symmetric 2nd rank spinor gl̇ṁ with 3
complex components, that is, with 6 independent components. Then we find
Maxwell’s vacuum eqs. in spinor form (field strength g, current s, potential φ):

∂ρ̇
l gρ̇ṁ = 2sṁl , gṙṡ = ∂ṙλφṡ

λ + ∂ṡλφṙ
λ ,

∂ρ̇α∂
ρ̇αφṁl = 2sṁl with Lorenz condition ∂µ̇λ φµ̇λ = 0 .

The covariant version of this ‘Maxwell equation’ is being used for the analysis
of propagating electromagnetic waves in GR. Einstein’s equation can also be
put in spinor form: The curvature tensor becomes a totally symmetric 4th
rank curvature spinor ψmnrs = ψ(mnrs); this uniform formalism facilitates
sometimes the investigations on electromagnetic and gravitational waves.

10. 4d Clifford algebra formalism: consult for vacuum eldyn. the text of Baylis,
e.g.; see also Puska, PIER 32 (2001) 413 for isotropic constitutive relations.
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11. In algebraic/discrete formulation, Tonti’s vers. of 2009, ACE’09 in Rome

Ψ :=

Z

S

D · n dS (electric flux) Φ :=

Z

S

B · n dS (magnetic flux)

E :=

Z

L

E · t dL F :=

Z

L

H · t dL

I :=

Z

S

J · n dS (current) Qc :=

Z

V

ρ dV (charge)

Forget these defs., take the global quantities Ψ,Φ, E, F, I,Qc as
fundamental. Consider instant (of time) I , volume V and its boundary ∂V ;
furthermore, time interval T , surface S and its boundary ∂S. Inner and
outer orientation e:

Ψ
h
I, ∂ eV

i
= Qc

h
I, eV

i
, F

h
T , ∂ eS

i
= +

n
Ψ

h
I
+
, eS

i
− Ψ

h
I
−

, eS
io

+Qf
h
T , eS

i
,

Φ
h

eI, ∂V
i

= 0 , E
h

eT , ∂S
i

= −
n
Φ

h
eI+, S

i
− Φ

h
eI−, S

io
.

F = impulse of magnetomotive force, E = impulse of electromotive force. All
laws refer to the boundaries of the space elements V and S. Compare with

dD = ρ , dH = + Ḋ + j ,

dB = 0 , d E = − Ḃ .

Can be used for computer calculations. Start with global/discrete structures;

don’t discretize the differential Maxwell equations!
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Tonti (2009), see http://www.dica.units.it/perspage/tonti/
The differential formulation requires the field vectors B, E, ρ, J, D, H as 16
point functions, the algebraic formulation requires the global 6 scalar
variables Φ, E , Qc, Qf , Ψ, F as domain variables. Avoiding the field vectors,
we don’t need to perform integrations, better for computational
electromagnetism,

12. 3d and 4d exterior calculus, premetric topological form of Maxwell’s eqs.

Post (Quantum Reprogramming... [1995], p. 105), in our version (Hehl &
Obukhov, Foundations of Classical Eldyn., Boston 2003): Notions of de Rham
1931; for any cycle Z3 with ∂Z3 = 0 and any cycle Z2 with ∂Z2 = 0, we have

I

Z3

J = 0 , fα = (eα⌋F ) ∧ J ,
I

Z2

F = 0 .

1st axiom ⇒ matter and its conserved el. charge. 2nd axiom ⇒ charge +
mechanical force define elmg. field strength. 3rd axiom ⇒ flux of field
strength is sourcefree. Twisted diff. forms J,H ; untwisted F,A
[for twisted forms and generalized Clifford algebras, see Diane Demers
http://felicity.freeshell.org/math/index.htm]

Differential version of electrodynamics:

dJ = 0 , fα = (eα⌋F ) ∧ J , dF = 0,

J = dH , F = dA .
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Premetric/topological formulation (continued)

Because of the existence of (super)conductors, we can measure the
excitation H . Thus, even if H emerges as for the electric current, it is more
than that: It is measurable. This is in clear contrast to the potential A that is
not measurable in class. eldyn. (see, however, the AB-effect).

The physical interpretation of the Maxwell equations can be found via the
(1 + 3)-decomposition (signs embody the Lenz rule)

J =− j ∧ dt + ρ , H =− H∧ dt+ D ,

F = E ∧ dt+B , A = − ϕdt + A ,

Then, by substitutions, the (1 + 3)-decomposition of the Maxwell eqs. read

dH = J

(
dD = ρ (1 constraint eq.) ,

Ḋ = dH− j (3 time evol. eqs.) ,

dF = 0

(
dB = 0 (1 constraint eq.) ,

Ḃ = −dE (3 time evol. eqs.) .

Accordingly, we have 2 × 3 = 6 time evolution equations for the 2 × 6 = 12

variables (D, B, H, E) of the electromagnetic field. Thus the Maxwellian

structure is underdetermined. We need, in addition, a constitutive (or

electromagn. spacetime) relation that expresses the excitation H = (H,D) in

terms of the field strength F = (E,B), i.e., H = H [F ]. In vacuo, H = λ0
⋆F .
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Topological quantum superstructure for Maxwell eqs. (Post, priv. comm.
Feb. 2010) (Z1, Z2, Z3 are 1d, 2d, 3d integration cycles, n, s are integers)

X

Z1

I

Z1

A = n
h

e|{z}
encl. mg. flux

,
X

Z2

I

Z2

H = se|{z}
encl. el. charge

,
X

Z3

I

Z3

A ∧H = ns
h

2|{z}
encl. action

.

Aharonov-Bohm, Gauss-Ampère, Kiehn-Post integrals with absolute
dimensions of action/charge, charge, and action, respectively: macroscopic,
phenomenological, and topological information stored in these integrals.

Let us add our knowledge from quantum theory. We know that all ‘action’ is
quantized with h/2 and all charge is quantized with e. Consequently GA and
KP should be valid universally. In superconductors mg. flux can be quantized.

So far, no information from the constitutive law was fed into AB, GA, KP.

Apply AB, GA, KP to the QHE/QSH effects. Since the charges are
2-dimensionally spread, we have to go to (1+2)-dimensional electrodynamics
with dH = J, dF = 0, and H as twisted 1-form, :

X

Z1

I

Z1

A = n
h

e
,

X

Z1

I

Z1

H = se ,
X

Z2

I

Z2

A ∧H = ns
h

2
.

Now find the topological (metricfree) constitutive relation for the QHE:

J = −σHF (quantized Hall resistance 1/σH).
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We integrate J = −σHF with the help of J = dH and F = dA:

H = −σHA or A = −H/σH .

Now, in this physical case of the QHE in (1+2) dimensions, also the
AB-integral is necessarily quantized.—

• Which system of Maxwell’s equations should be taught to physics and
engineering students? I opt for Sec.11 and Sec.12 in contrast to Jackson,
Landau-Lifshitz,...

I used the original articles mentioned above, for secondary literature, see

◮ E. Whittaker, A History of the Theories of Aether and Electricity, 2
volumes, Humanities Press, NY, 1973 [1951].

◮ C.W.F. Everitt, James Clerk Maxwell, Physicis and Natural Philosopher,
Charles Scibner’s Sons, NY, 1975.

◮ J.L. Heilbron, Electricity in the 17th and 18th Centuries, A Study of
Early Modern Physics, UC Press, Berkeley, 1979.

◮ O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, 2000.

◮ F. Steinle, Explorative Experimente, Ampère, Faraday und die
Ursprünge der Elektrodynamik, Steiner, Stuttgart, 2005.

Soli Deo Gloria.
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