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Effective theoy

Powerful way to check whether physical predictions are
meaningful and generic.

Not just “quantum corrections.” Effective equations contain
information about interacting vacuum (or other relevant) states.

Quantum cosmology:

→ No clear ground state. Class of relevant states?

→ Symmetries important. For instance, higher-curvature
effective action expected for quantum gravity.

Assumes classical space-time structure.
(Anomaly problem.)

→ Problem of time. Effective equations of motion?

References: arXiv:1209.3403, arXiv:1404.1018
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Canonical effective theory: Starting point

Ehrenfest equations

d〈x̂〉
dt

=
〈p̂〉
m

d〈p̂〉
dt

= −〈V ′(x̂)〉 = −V ′(〈x̂〉)− 1

2
V ′′′(〈x̂〉)(∆x)2 + · · ·

Fluctuation dynamical: d(∆x)2/dt = 2Cxp/m proportional to

covariance.

Infinitely many coupled ordinary differential equations for
expectation values and moments

〈(x̂− 〈x̂〉)a(p̂− 〈p̂〉)b〉symm

Need to know some dynamical state properties to compute

quantum corrections −1
2V

′′′(〈x̂〉)(∆x)2 + · · ·.
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Effective phase space

Parameterize state by expectation values 〈q̂〉 and 〈p̂〉 of basic
operators and moments

Ga,n = 〈(q̂ − 〈q̂〉)a(p̂− 〈p̂〉)n−a〉symm

Commutator of operators determines Poisson bracket of
moments.

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉

i~

Hamiltonian evolution for 〈q̂〉, 〈p̂〉 and Ga,n generated by

〈Ĥ〉(〈q̂〉, 〈p̂〉, Ga,n) = 〈H(〈q̂〉+ (q̂ − 〈q̂〉), 〈p̂〉+ (p̂− 〈p̂〉))〉

= H(〈q̂〉, 〈p̂〉) +
∞∑

n=2

n∑

a=0

1

a!b!

∂nH(〈q̂〉, 〈p̂〉)
∂〈q̂〉a∂〈p̂〉n−a

Ga,n
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Equations of motion

Anharmonic oscillator V (q) = 1
2mω2q2 + U(q):

q̇ =
p

m

ṗ = −mω2q − U ′(q)−
∑

n

1

n!

(
~

mω

)n/2

U (n+1)(q)G̃0,n

˙̃Ga,n = −aωG̃a−1,n + (n− a)ωG̃a+1,n − a
U ′′(q)

mω
G̃a−1,n

+

√
~aU ′′′(q)

2(mω)
3

2

G̃a−1,n−1G̃0,2 +
~aU

′′′′

(q)

3!(mω)2
G̃a−1,n−1G̃0,3

−a

2

(√
~U ′′′(q)

(mω)
3

2

G̃a−1,n+1 +
~U

′′′′

(q)

3(mω)2
G̃a−1,n+2

)
+ · · ·

∞ly many coupled equations for ∞ly many variables.

Effective quantum cosmology – p. 5



Low-energy effective action

To second adiabatic order, as second order equation of motion:
(
m+ ~U ′′′(q)2

32m2ω5(1+U′′(q)

mω2 )
5
2

)
q̈

+
~q̇2

(

4mω2U ′′′(q)U ′′′′(q)
(

1+U′′(q)

mω2

)

−5U ′′′(q)3
)

128m3ω7(1+U′′(q)

mω2 )
7
2

+mω2q + U ′(q) + ~U ′′′(q)

4mω(1+U′′(q)

mω2 )
1
2
= 0 .

as it results from

Γeff [q(t)] =

∫
dt

(
1

2

(
m+

~U ′′′(q)2

25m2 (ω2 +m−1U ′′(q))
5

2

)
q̇2

−1

2
mω2q2 − U(q)− ~ω

2

(
1 +

U ′′(q)

mω2

) 1

2

)
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Higher time derivatives

Higher adiabatic order: [with S Brahma, E Nelson: arXiv:1208.1242]

q̈ = −ω2q − U ′(q)/m

− ~

2m2ω
U ′′′(q)

(
f(q, q̇) + f1(q, q̇)q̈ + f2(q)q̈

2 + f3(q, q̇) ˙̈q + f4(q)¨̈q
)

+ · · ·

where

f = 1
2

(
1 + U ′′(q)

mω2

)
−1/2

+ U ′′′′(q)q̇2

16mω4

(
1 + U ′′(q)

mω2

)
−5/2

−5(U ′′′(q))2q̇2

64m2ω6

(
1 + U ′′(q)

mω2

)
−7/2

− U ′′′′′′(q)q̇4

64mω6

(
1 + U ′′(q)

mω2

)
−7/2

+21(U ′′′′(q))2q̇4

256m2ω8

(
1 + U ′′(q)

mω2

)
−9/2

+ 7U ′′′′′(q)U ′′′(q)q̇4

64m2ω8

(
1 + U ′′(q)

mω2

)
−9/2

−231U ′′′′(q)(U ′′′(q))2q̇4

512m3ω10

(
1+ U ′′(q)

mω2

)
−11/2

+ 1155(U ′′′(q))4q̇4

4096m4ω12

(
1+ U ′′(q)

mω2

)
−13/2
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Effective theories and states

→ Low-energy effective action: Local.

Adiabatic expansion assumes slowly-varying Ga,n.
Analogous to derivative expansion in time.

Can solve Ġa,n = · · · for Ga,n(〈q̂〉, 〈p̂〉) and insert in 〈 ˙̂p〉 = · · ·

→ Initial values used for Ġa,n equations specify state used to
expand around. Sensitive to class of states considered.

Adiabaticity near harmonic or free vacuum,
but may not be consistent for more general systems.

→ Expansion in ~ more general. Semiclassical: Ga,n∼O(~n/2).

Gives finitely many equations to each order: Independent
quantum degrees of freedom Ga,n coupled to 〈q̂〉 and 〈p̂〉.
“Auxiliary” degrees of freedom for non-local effective action.
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Effective canonical quantum gravity

Higher time derivatives expected from curvature invariants.

Minisuperspace models of quantum cosmology:
One time translation generator, Hamiltonian constraint.

Canonical quantum gravity: Operators for Hamiltonian and
diffeomorphism constraint with first-class off-shell algebra.

Quantum version of hypersurface
deformations in space-time:

N1

w

N2

N2

N1

{D[wa
1 ],D[wa

2 ]} = −D[Lw2
wa
1 ]

{H[N ],D[wa]} = −H[wa∇aN ]

{H[N1],H[N2]} = D[hab(N1∇bN2 −N2∇bN1)]
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Background versus quantum gravity

Cosmological (and other) phenomenology:

→ Metric and matter perturbations on a background.
General covariance implies gauge transformations of
modes.

→ May fix the gauge. Field theory on a background.

Gauge transformations and dynamics generated by the same
constraints D and H.

→ Quantum gravity: Dynamics and gauge transformations for
modes, potentially quantum corrected.

→ Quantum field theory on a background: Quantize only the
dynamics of modes, after gauge fixing or other method to
eliminate classical coordinate freedom.

May lead to different outcomes.

Effective quantum cosmology – p. 10



Effective constraints

.5Α0 Α0-.5Α0-Α0

Α

.5Α0

Α0

-.5Α0

-Α0

pΑ

Dynamics by effective Hamiltonian 〈Ĥ〉(〈·〉, Ga,n)

or effective constraints 〈p̂olĈ〉(〈·〉, Ga,n),

p̂ol polynomial in Ô − 〈Ô〉
for all basic operators Ô.

−→ Moments of
physical states:
Implement constraints,
require real observables.

−→ Local time:
Change internal time
by gauge transformation.

−→ Extension to field theory
in progress.
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Anomaly problem

[with S. Brahma: arXiv:1407.4444]

Systems with several classical constraints, [ĈI , ĈJ ] = f̂K
IJ ĈK :

Effective constraints CI,pol = 〈p̂olĈI〉 ≈ 0.

{〈p̂olAĈI〉, 〈p̂olBĈJ 〉} = −i~−1〈[p̂olAĈI , p̂olBĈJ ]〉 first class if

[ĈI , ĈJ ] first class.

Classical structure functions fK
IJ (xi) fully determine structure

functions of CI,1 with p̂ol = 1:

{CI,1, CJ,1} = 〈f̂K
IJ ĈK〉 = fK

IJ (〈x̂i〉)CK,1+
∑

j

∂fK
IJ (〈x̂i〉)
∂〈x̂j〉

CK,xj
+· · ·

(Expand 〈f̂K
IJ ĈK〉 = 〈fK

IJ (〈x̂i〉+ (x̂i − 〈x̂i〉))ĈK〉 with

fK
IJ (〈x̂i〉+ (x̂i − 〈x̂i〉)) = fK

IJ (〈x̂i〉) + · · ·.)
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Hypersurface deformations

→ Effective algebra

{H[N1],H[N2]} = D[hab(N1∇bN2 −N2∇bN1)] + · · ·

if classical constraint algebra represented without

modifications (f̂K
IJ = fK

IJ (x̂i)).

Suggests higher-curvature effective actions.

→ Difficult to obtain first-class [ĈI , ĈJ ] for gravity.

Some results in loop quantum gravity,

but with modifications/regularizations: f̂K
IJ 6= fK

IJ (x̂i).

Modified constraint algebra.
Modified hypersurface deformations.
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Holonomy modification

Higher-curvature corrections

8πG

3
ρ = H2(1 +O(ℓ2H2)) +O(ℓ2Ḣ2) + · · ·

Loop quantum cosmology:

8πG

3
ρ =

sin(ℓH̄)2

ℓ2
= H2

(
1 +O(ℓ2H2)

)

Effective Friedmann equation (ρQG = 3/(8πGℓ2))

H2 =
8πG

3
ρ

(
1− ρ

ρQG

)
+ · · ·

Part of covariant theory?
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Holonomies and space-time

[Reyes; Barrau, Cailleteau, Grain, Mielczarek]

H2 −→ f(H) anomaly-free if constraint algebra deformed to

{H[N1],H[N2]} = D[βhab(N1∇bN2 −N2∇bN1)]

with

β(H) =
1

2

d2f(H)

dH2

Example: β(H) = cos(2ℓH) for f(H) = ℓ−2 sin2(ℓH).

→ Well-defined and consistent canonical effective theory.

But no classical or Riemannian space-time
(unless field redefinition).

→ Signature change: β(H) < 0 around maximum of f(H).
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Space-time structure

Poisson bracket

{H[N1],H[N2]} = D[βhab(N1∇bN2 −N2∇bN1)]

with β 6= 1 implies that H[N ] generates gauge transformations of

hab different from standard coordinate transformations.

In some cases, canonical transformations can be used to absorb

β in h̃ab := βhab. [Tibrewala: arXiv:1311.1297]

Poisson brackets with structure functions can be interpreted as
Lie algebroid. [Blohmann, Barbosa Fernandes, Weinstein: arXiv:1003.2857]

Brackets with β 6= 1 related to β = 1 by Lie algebroid morphism,
as long as β is positive. [with F. D’Ambrosio]

Not isomorphic if β changes sign.
Signature change as new space(-time) structure.
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Tricomi problem

−∂2u

∂t2
+ β(H)∆u = 0: Characteristic C connected to arc A.

C

A

Need future data: no deterministic evolution.
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Conclusions I

Effective framework of loop quantum gravity being developed.

→ Minisuperspace-based loop quantum cosmology does not
appear viable.

Motivation for minisuperspace models:
Hopefully “close” to full theory.

Possibility of signature change: Exact homogeneity does
not reliably capture quantum space-time structure.

→ Useful for Wheeler–DeWitt quantum cosmology.

Or general scenarios of loop quantum cosmology at lower
density, with inhomogeneity.

Significant difference between quantum-gravity models and
quantized fields on a background.
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Conclusions II

Recall that {〈p̂olAĈI〉, 〈p̂olBĈJ〉} first class if [ĈI , ĈJ ] first class.

Off-shell statement.
Independent of solutions to constraints or physical Hilbert space.

Reliable conclusions from effective constraint algebra possible,
even if truncation to some ~-order provides poor approximation
of dynamics.

Poor control on complete set of quantum corrections in loop
quantum cosmology. (Higher-curvature terms?)

Nevertheless, effective constraints indicate the form of
space(-time) structure realized.
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