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Introduction-1-: A brief sketch of the universe

e The universe is homogeneous and isotropic on large scales.
e The matter content of the universe:

« Standard matter
e Dark matter
« Something that accelerates the universe (broadly speaking dark

energy)

» What is dark energy (DE)? No idea. But we know it implies
acceleration in a homogeneous and isotropic universe
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Introduction-2-

* How do we know the universe is accelerating?

o Observational evidence

* How to describe this acceleration from and effective point of
view?

» Dark energy
» Modified gravity

o Other possibilities: Multiverse ...

* Qur ignorance can be encoded on an effective equation of

state
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Introduction-3-

e Equation of state of dark energy is roughly -1
® Room for dark energy with wy < —1 = phantom energy
e In phantom energy models

» Null energy condition is not satisfied
« Energy density is a growing function of the scale factor (in an
expanding Universe like ours)

» May be a big rip singularity in the future

Starobinsky 00, Caldwell 02, Caldwell, Kamionkowski and Weinberg 03
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Introduction 4: Phantom energy with w = constant

Equation of state p = wp, w = const. and w < —1

Energy density grows as a power of the scale factor

Scale factor blows up in a finite future cosmic time

The Hubble rate blows up in a finite cosmic time

The cosmic time derivative of the Hubble rate does it too.

Big rip in the future

It was soon realised that there are more type of future singularities
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Cosmological singularities related to dark energy

o Classification of the cosmological singularities related to dark energy

Big rip singularity

Sudden singularity, big brake singularity, big démarrage singularity

Big freeze singularity

Type IV singularity

Little rip event

Little sibling of the big rip singularity

Kamenshchik 13 (review mainly on type Il sing.)
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Big rip singularity-1-

e For this singularity the null
energy condition is violated.
The scale factor diverges in a
finite time. It is accompanied
with a divergence of the Hubble
rate and the cosmic derivative
of the Hubble rate.

Starobinsky 00, Caldwell 02, Caldwell, Kamionkowski and Weinberg 03
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Big rip singularity-2-

Equation of state p = wp, w = const. and w < —1
w+1)

Energy density p = Aa—3!
Scale factor for a flat FLRW (C = (x2/3)A)

2/(3(w+1))

a(t) = [ag(W+1)/2 + 3(W2+1) C1/2(t — o)

Big rip in the future

o ) 3(w+1)/2
fmax =10 = 30 1)cT72 %
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Sudden singularity

e This singularity occurs at a finite
value of the scale factor and the
Hubble rate. It is accompanied
with a divergence of the cosmic

derivative of the Hubble rate.

Barrow '04
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Big freeze singularity

e This extremal events happens
also at a finite scale factor. The
Hubble rate and its cosmic
derivative blow up at that scale

factor.

BL, Gonzdlez-Diaz and Martin-Moruno 06, 07
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Type IV singularity

e None of the Hubble rate or H
blow up in this case. However,
second and higher derivatives
blow up at a finite value of the

scale factor.

Nojiri, Odintsov and Tsujikawa 05’
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What time of matter can drive those singularities?
Example: Generalised Chaplygin gas

A sudden, big freeze and type IV singularity can emerges on the realm

of a Chaplygin gas

Chaplygin gas: « =1 and A > 0. Kamenshchik et al 01, Bilic et al 01

Generalised Chaplygin gas: P = —A/p*, 0 <a <1land A>0.
Bento et al '02

Morivated initially not only as a dark energy component but also a

dark component playing the role of dark matter and dark energy
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GCG and dark energy related singulaties-1-:

The asymptotic behaviour of a universe filled with each type of a “plain”
GCG; i.e. it doesn't violate the null, strong and weak energy conditions

AB 1+« El P Past Future

(1) no singularity/infinite future

A<O positive 0 < a < amax 0<p< oo dust-like (2) type IV singularity

(3) sudden singularity

B >0 negative amin < a < oo 0<p<oo big freeze singularity dust-like
A>0 (2n)_1 >0 0 < a< amax 0< p<oo dust-like no singularity/infinite future
B <0 (en)~t <o amin < a < oo 0<p< oo big freeze singularity dust-like

® (1) and (3) correspond to —1 < a < —1/2 and 0 < «, respectively.
(2) corresponds to —1/2 < ae < 0, where a cannot be expressed as
a=1/(2p) —1/2, with p a positive integer. If —1/2 < a < 0 and «
can be expressed as a = 1/(2p) — 1/2, with p a positive integer,
there is no past singularity and the universe is born at a finite past.

BL, Gonzilez-Diaz, Martin-Moruno '06, '07
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GCG and dark energy related singulaties-2-:

The asymptotic behaviour of a universe filled with each type of a
phantom GCG

AB 1+« a P Past Future
(1) oo past
A>0 positive amin < a < oo 0<p< AL/ (+e) (2) Type IV singularity asymptotically dS
(3) Sudden singularity
B <0 negative 0 < a< amax AL/ (+e) <p< oo asymptotically dS/oco past big freeze singularity
A<O (2n)71 >0 amin < a < oo 0<p< |A|1/(1+“‘) oo past asymptotically dS
B >0 (2n)_1 <0 0 < a< amax |A|1/(1+”) < p< oo asymptotically dS/oco past big freeze singularity

® (1) and (3) correspond to —1 < a < —1/2 and 0 < «, respectively.
(2) corresponds to —1/2 < av < 0, where « cannot be expressed as
a=1/(2p) —1/2, with p a positive integer. If —1/2 < a < 0 and «
can be expressed as a = 1/(2p) — 1/2, with p a positive integer,
there is no past singularity and the universe is born at a finite past.

BL, Gonzalez-Diaz, Martin-Moruno '06, '07
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Little rip singularity-1-

o For this singularity the null
energy condition is violated.
The scale factor diverges in an

finite time Ctis
accompanied with a divergence
of the Hubble rate and the
cosmic derivative of the Hubble

rate.
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Little rip singularity-2-

e The name of little rip was introduced by Frampton, Ludwick and
Scherrer '11

e This kind of singularity corresponds to a big rip sent towards an
infinite cosmic time

e Examples:

« This kind of singularity can happens in a FLRW universe filled with a
perfect fluid p = —p — Ap'/?
(Nojiri, Odintsov and Tsujikawa 05', Stefangic 05")

» Also presents in some dilatonic brane-world models (BL 05').

o First example was found by Ruzmaikina and Ruzmaiki back in
corresponding to past little rip
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Little sibling of the big rip singularity

e This event is much smoother than the big rip singularity. When the
little sibling of the big rip is reached, the Hubble rate and the scale
factor blow up but the cosmic derivative of the Hubble rate does not.
This abrupt event takes place at an infinite cosmic time where the

scalar curvature explodes.

BL, Errahmani, Martin-Moruno, Ouali, Tavakoli (2014)
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Introduction-1-

o Einstein general relativity (GR) is an extremely successful theory for

nearly a century

* However, it is expected to break down at some point at very high
energies

e GR cannot explain the current acceleration of the universe unless a

dark energy component is considered
e These are some motivations for looking for possible extension of GR

e There have been many proposals for alternative theories of GR as old

as the theory itself

® One of the oldest proposal was due to Eddington
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Introduction-2-

# In Eddington proposal, the connection rather than the metric plays
the fundamental role of the theory

e It is equivalent to GR in vacuum

. does not incorporate matter

® Recently an Eddington-inspired-Born-Infeld theory has been proposed

by Bafiados and Ferreira

Bafiados and Ferreira (2010)
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EiBl theory-1-
Seipi(g,, V) = 2fd4 [\/|g/w+ff ‘—/\\/g’] + Su(g,T, V)

We consider the action under the Palatini formalism, i.e., the
connection I, is not the Levi-Civita connection of the metric g,
This Lagrangian has two well defined limits: (i) when |kR] is very
large, we recover Eddington's theory and (ii) when |kR| is small, we
obtain the Hilbert-Einstein action with an effective cosmological
constant A = (A —1)/k

A solution of the above action can be characterized by two different
Ricci tensors: R, (I") as presented on the action and R, (g)
constructed from the metric g

There are in addition three ways of defining the scalar curvature.
These are: g R, (g), 8" Ru(I) and R(I"). The third one is derived
from the contraction between R, (I') and the metric compatible with
the connection I

M. Bouhmadi-Lépez (UBI-EHU) Dark energy related singularities Bad Honnef, 29-07-2014 24 / 63



EiBl theory-2-

e Gravitational action:
SEIBI ga r \U /d4 |:\/|g#1/ + K | - )‘\/E + Srn(ga r7 w)

e The parameter k has been constrained using observationally for
example from BBN (Casanellas et al 2012, Avelino 2012).

e The model can avoid the Big Bang singularity, for example, in a
radiation dominated universe (Bafados and Ferreira 2012).

® Has been proposed as an alternative scenario to the inflationary
paradigm (Avelino 2012)

» Not everything are nice news about EiBI theory (See for example
Escamilla-Rivera et al 2012).

. This is the main
question, we will address

e It was shown that if the null energy condition is fullfilled then the
apparent null energy condition is also fullfilled (Deslate and Steinhoff
2012).
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EiBIl theory-3-

The physical metric: flat FLRW metric with scale factor a(t)

The auxiliary metric: gy, = —U(t)dt? + a°(t)V(t)dX?

Friedmann eq: H?2 = H?(k, pt, pt, Z—ZZ)

The auxiliary metric: U = U(pt, pt) and V = V(ps, pt).

The conservation of the energy momentum tensor holds.
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EiBl theory-3-: radiation dominated universe

» A radiation dominated universe faces in the past a bounce (x < 0) or
a loitering effect (k > 0); i.e. it avoid the big bang singularity. The
reason behind this is that the energy density is bounded as a
consequence of the modified Friedmann equation.

® The curvature behaviour (a;, a, minimum scale factors for x positive
and negative, respectively)

Curvature
Roo(g) 0 4/k
Ri(g) 0 —4/(3k) 22
& R (&) 0 ~8/
Roo(IN) 1/k 00
Ry(T) —apd;/ —(1/k) a3
h* R, (T) —00 +o0
g* R (T) —4/K —0
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The EiBI scenario filled with CDM and PE
® We consider the EiBl model filled with CDM and a dark energy
component with a constant equation of state w ~ —1.
* In GR a matter component such that w < —1 (and constant) implies
a big rip singularity. Can the EiBI scenario avoid this singularity as
happens with the big bang (with respect to the metric gj,,,)

singularity?
Curvature
Roo(g) —00 —00
Rij(g) +00 +00
8" Ru(g) +00 +00
Roo(r) finite —00
R;;i(I) finite +o0
h* Ry () finite 4/kK
g R(TN) finite +o0

e Notice that EiBI reduce to GR at late-time for a dust filled universe
this is no longer the case for a universe filled with phantom matter.
BL, Chen and Chen 13
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The EiBIl scenario and the big rip-1-

e The cosmic time elapsed from the present time to the Big Rip
singularity time, normalized to the current Hubble parameter; i.e.,

Ho(tsing — to), for different values of

( ) in GR and in

the EiBl theory. We see that such cosmic time remains finite in the
EiBl theory, meaning that the EBig

we assume Q,, = 0.277 and Q,, = 0.728 (WMAP9)

ip singularity is inevitable. Here

€

HO(tsing - tO)(GR)

HO(tsing - tO)(E|B|)

0.02
0.04
0.06
0.08
0.10
0.12
0.14

37.14
18.99
12.74
9.58
7.67
6.40
5.26

37.19
19.04
12.80
9.63
7.73
6.45
531
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The EiBIl scenario and the big rip-2-

e The cosmic time elapsed from the present time to the Big Rip
singularity time, normalized to the current Hubble parameter; i.e.,
Ho(tsing — to), for different values of « ( ) in GR and in
the EiBl theory. We see that such cosmic time remains finite in the
EiBl theory, meaning that the EBig
we assume Q,, = 0.315 and Q,, = 0.690 (Planck)

ip singularity is inevitable. Here

€ HO(tsing = to)(GR) HO(tsing = to)(EiBl)
0.02 38.14 37.19
0.04 19.50 19.55
0.06 13.08 13.13
0.08 9.83 9.89
0.10 7.87 7.93
0.12 6.56 6.61
0.14 5.39 5.44
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What about the other singularities?

H Singularity in GR H EiBI physical metric H EiBI auxiliary metric H
H Big Rip H Big Rip H expanding de-Sitter H
past Sudden past Type IV (0 < o < 2) contracting de-Sitter
(a >0) past Sudden (a > 2)
future Big Freeze future Big Freeze (—3 < o < —1) expanding de-Sitter
(a < —1) future Type IV (a = —3)

future Sudden (a < —3)

past Type IV past Sudden (—2/3 < o < —1/3) past Type IV
(-1<a<0) (1)past Type IV
(a # —n/(n+ 1)) (2)finite past without singularity finite past without singularity
past loitering effect (ap > apin) Big Bang
finite past without singularity finite past without singularity finite past without singularity
(a==n/(n+1))
(-1<a<0)
past loitering effect (ap > amin) Big Bang
H Little Rip H Little Rip H expanding de-Sitter H

BL, Chen and Chen 14
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The geodesic analyses of a Newtonian object in the
EiBl setup-1-

e A spherical Newtonian object with mass M and a test particle
rotating around the object with a physical radius r

e Both of them are embedded in a spherically symmetric FLRW
background

® We will analyse the fate of the bound structure near the singularities
corresponding to the physical metric and the auxiliary metric

® The evolution equation of the physical radius: ¥ = gr — %” + ’;—33
conservation of angular momentum: r2¢ = L

» Near the Big Rip, Little Rip, Big Freeze and the Sudden singularities:
ra2r

e rp=a(t),and nn = rlfr‘j—é

o r(t) = Ain(t) + Aar(t)

Faraoni, Jacques 2007
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The geodesic analyses of a Newtonian object in the
EiBI setup-2-

Figure: We show the behaviour of the effective potential Veff (> = —2V.g) for
future singularities (left figure) and past singularities (right figure). Rmax is finite
for a sudden and big freeze singularities while infinite for a big rip and little rip
singularity. Likewise Ry is finite for a past sudden singularity. On the left figure:
the blue solid curve shows the current bound structure, the brown dashed one the
intermediate future behaviour and the red dotted one the final state. On the right
figure the colors appear in an inverted chronological order, first red dotted, then

brown dashed and finally blue solid, as the singularity takes place-in the past.
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The geodesic analyses of a Newtonian object in the
EiBl setup-3-: Type IV singularity and the geodesic
defined by the auxiliary metric

Near a type IV singularity, all the terms in the evolution equation are
finite

A bound system remains bounded

As for the geodesic equations defined by the auxiliary metric, the
singularities are substituted by a de-Sitter or a type IV

the auxiliary metric and the physical connection have a much
smoother behaviour close to the singularities
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Outline

@ The quantum fate of singularities in a dark-energy dominated
universe
e Example 1: The quantum fate of the big freeze
e Example 2: The quantum fate of type IV singularity
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On the quantum fate of singularities in a
dark-energy dominated universe

Within the framework of quantum geometrodynamics

® It was shown by Dabrowski, Kiefer and Sandhofer 06" that this
kind of singularity can be removed in the context of the
Wheeler de Witt Eq./formalism; i.e. in the framework of
quantum geometrodynamics.

o It was shown by Kamenshchik, Kiefer and Sandhofer 07" the
avoidance of a big brake singularity.

o It was shown by BL, Kiefer, Sandhofer and Vargas Moniz 09’
the avoidance of a big démarrage singularity and a big freeze.

e Type IV singularity are partially removed (BL, Kramer and
Kiefer 2014).
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Outline

@ The quantum fate of singularities in a dark-energy dominated
universe
e Example 1: The quantum fate of the big freeze
Example 2: The quantum fate of type IV singularity
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The big freeze singularity with phantom matter

e The generalized Chaplygin gas
(Kamenshchik et al '01, Bento
etal '02) (0< A, B<O,
B<-1)

P=-A/p =

1

o= (b o)

e Phantom GCG —= P+ p <0

o At apax = ar: The energy _
density p, the Hubble rate H, H
— 00. The pressure P — —o0

e BF singularity in the future
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The BF singularity driven by a phantom scalar field
e Phantom scalar field ¢: py = 14? + V(¢), pp= 3¢%— V(¢)

543H) VI($) =0, V(0)= Vor (Lt + ll8l)
e Identify ¢ and GCG; i.e. py = p, psy = P
Vo= AY48) )2 o = In(a/amax)

8 7 5 4 3 2 4
—=3/2(1+ B)a

BL, Kiefer, Sandhofer, Vargas Moniz, 09
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The big freeze singularity with standard matter

e The generalized Chaplygin gas
(A<0,0< B, < -1)

P = —A/pﬁ =

1
B 1+8
P = (A + a3(1+a))

o At anin = ar: The energy
density p, the Hubble rate H,
the pressure P — oo and
H— —co

e BF singularity in the past
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The BF singularity driven by a standard scalar field

» Standard scalar field ¢: py = %¢2 +V(p), ps= %gbz — V()

_ 28
b+3H V(¢) =0, V(g)=—va(FulL+Bllgl)
e Identify ¢ and GCG; i.e. py =p, pp = P
Vi = |AYA+8) 2 o = In(a/amin)

2 25 3 35

V38|

—~
-~
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The Wheeler-DeWitt equation

» Quantisation of the classical scenario in the quantum
geometrodynamical framework

e The Wheeler-DeWitt equation in quantum cosmology is the
analogous to Schrodinger equation in quantum mechanics.

® The Wheeler-DeWitt equation for the space variables (a,¢)

B2 (k2 B2 H?
7 (eaaz 5

a

) V (o, ¢) + age®* V()W (o, ¢) = 0, a:=1n ()

4o
o Standard scalar field £ = 1, ag = amin
e Phantom scalar field £ = —1, ag = amax

» Notice that in the quantum case ¢ is no longer a function of a

o General remark: the Wheeler-DeWitt equation does not depend on
time (!)
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Decomposing the Wheeler-DeWitt equation

o We use the ansatz

V(a,9) = ela, ¢) Cu(e)
e We require the matter part of the Wheeler-DeWitt equation to satisfy
_Ehja Pk
2 O¢?
® Such a Born—Oppenheimer-type of ansatz was first used in quantum
cosmology in Kiefer 88

+ a8e®*V(¢)pk = Ex(a)pk

® Schrodinger type of equation and in the vicinity the singularity reads

" 2 \/ - 28 _
@k"i' Ck +Va‘¢| 1+p SOk—O

2E, 7 ._ 2V,
h2k1 V - K2

V,, = ae®*V,

where k2 :=

\[”|1+ﬁ|
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Singular potentials-1-

e The matter part of the wave function satisfies
" 2 \/ *fi _
i+ Lk +Va‘¢| B =0
o This equation is formally the same as the radial part of the stationary
Schrodinger equation for an attractive potential of inverse power
_ 28 . -
V ~ r 1+8, where |¢| plays the role of the radial coordinate r, and
the angular momentum vanishes.
e The potential corresponds to a singular potential; i.e. a potential that
approaches (plus or minus) infinity faster than r=2 for r — 0. For an
attractive r—2-potential there exists a transitional case: if the

coupling is more negative than a critical value, the potential is
singular, otherwise regular.
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Singular potentials-2-

® Analytical solutions for polynomial singular potentials are known for
the inverse square, inverse fourth-power, and inverse sixth-power
potentials.
» The inverse square potential is realized for § < —1, where 3 is chosen
such that |1 + j||¢]| is still small

» The inverse fourth-power potential corresponds to f = —2
» The inverse sixth-power potential corresponds to 8 = f%

» We focus on the case § < —1. We thus deal with the case of the
inverse-square potential “;—T‘Z with

-2
V- 2a8ebV, | v/3k|B]

e This case is sufficiently generic to accommodate also the features of
other singular potentials.
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More on the matter part of the wave function
e For the least singular potential, which is realized for 3 < —1, we have
to solve the equation

V, = 2a8e% v,
ﬁk%ﬁ ok =0, V=220 "¢

SOZ + h2

ﬁnlﬁ!] C
2

e The phantom and scalar matter have to obey the same quantum
equation, where the realm of positive energy for the ordinary scalar
field k% > 0 corresponds to the realm of negative energy for the case
of the phantom field, k? < 0

e The general solution is -
oo, ol) = V19l [qu(\/?kW) + chV(\/Ekyqs\)} = m

e There are four cases to distinguish: k can be real or imaginary,
depending on whether the energy entering k? is positive or negative.
Furthermore, v can be real or imaginary, depending on the parameters
B, A, and the value of «
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The gravitational part of the wave function

e The gravitational part of the wave function fulfils

5 <2Ck90k + Ck@k) + (6 Ck + k Ck) ok =0

e The Born—Oppenheimer approximation: ka and Cx@y can be
neglected.

o Cy varies much more rapidly with « than ¢
» Neglect the back reaction of the matter part on the gravitational part
» The change in the matter part does not influence the gravitational part

e The matter part simply contributes its energy through k>

2 )
<”6Ck ¥ k2Ck> ok =0 = Cu(a) = byeiee 4 pye—iita

e Same solution for a phantom or a scalar field.
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The wave function at the singularity

® The singularity occurs in the two models at =0 and o =0
e Fora=0,v:i=1p= % — \~/a:0. There are 3 cases:
o %—\7&:0>0:>1/0 is real and 0 < v < 3
. % — \N/azo < 0 = 1y is imaginary
el Vig=0=1p=0
e The behaviour of the matter part of the wave function will depends
on the value acquired by v
e It can be shown that the matter part of the wave function always

vanishes at ¢ = 0. Notice that we have not used any boundary

condition
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Ex. of the matter part of the wave function at ¢ =0

The matter part of the wave function

ekl 101) = V10 [ (VEKIS]) + Yo (VKI9])|

For this example we restrict to % — Va:o >0ie 0<rv< %

Near the singularity, we can use

J,(2) ~ (;)yl'(1/1+1) vt —1,-2-3...,
Y, (2) ~ f% E)Te).  Rew) >0

Then, the matter part of the wave function vanishes at ¢ =0

It can be shown that this is true for the other two cases
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Gravitational part of the wave function at a =0

* What does it mean that the wave function vanishes at the singularity?
Singularity avoidance but not yet we have to make sure that the
gravitational part of the wave function is bounded at the singularity

o The gravitational part of the wave function

Ck( ) = b€ \c & b2€_l%a

o Note that for k2 < 0, k becomes imaginary and the dependence on «
becomes exponential. In any case, Cx(aw = 0) < 00, so the wave
function remains finite at the respective singularities and we can
safely speak of singularity avoidance.

e Finally, as the wave function vanishes, we can interpret this as a
singularity avoidance.

e What about if we impose some boundary condition?
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A Wise Boundary condition for the wave function-1

® Nobody knows what the correct boundary condition for the quantum
universe are.

e There have been several proposals, most of them using the boundary
condition with the ambition to lead to singularity avoidance

e We impose the BC: The wave function decreases in the classically
forbidden region.

o Why? Because then it is possible to construct wave packets that
follow classical trajectories with turning point in configuration space.

* Namely, one has to require that the wave packet decays in the
classically forbidden region. This allows the interference of wave
packets following the two branches of the classical solution behind the
classical turning point.

® In general, out of solutions to the Wheeler—DeWitt equation which
grow in the classically forbidden region, no wave packet can be
constructed that follows the classical path

Kiefer 88
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A Wise Boundary condition for the wave function-2

* How do we impose this boundary conditions?

2
3/2|11 + Bla

Standard scalar field(p) Phantom scalar field(f)
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Imposing the BC: standard scalar field-1-

e The region a < apj, is a forbidden region = we impose the
boundary condition that the wave function decay there.

e Then, ¥ — 0 as &« — —oo. The total wave function has to vanish
well inside the forbidden region. This happens whenever the matter
(or gravitational part) vanishes while the other part is bounded.

e When o« — —o0, v — % the matter-dependent part reads

lim (o o) = \/f [ex sin(k|@]) — cz cos(kl6)]

» This vanishes for small |¢| if ¢, = 0. Finally, the matter part of the
wave function vanishes if

ex(a[¢l) = /1913 (k|9))

e What about the gravitational part? Is it bounded well inside the
forbidden region?
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Imposing the BC: standard scalar field-2-

e For positive energy, k? > 0, the gravitational part of the wave
function is oscillating and the full solution is given by

a7¢) = Cl\/mt]y(k|¢’) [ble : o4 b2 71706

e For k? < 0, the gravitational part becomes exponential. To ensure
that the boundary condition W — 0 as a« — —o0 is satisfied for the
entire wave function, we have to set by = 0. Thus, for imaginary k
the gravitational part of the wave function decays exponentially for
« — —00 whereas the matter part remains finite = The
gravitational part alone ensures in this way that the wave function
vanishes as &« — —oo. No additional condition arises for k. The full
solution for imaginary (k — ik) is thus

Vila,9) = bae™® [, (ik|9]) + ca Y, (ik[6)]
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Imposing the BC: phantom scalar field

e The region a > apx is a forbidden region = we impose the
boundary condition that the wave function decay there.

e Then, ¥V — 0 as a — co. The total wave function has to vanish well
inside the forbidden region. This happens whenever the matter (or
gravitational part) vanishes while the other part is bounded.

e The physical solutions are
<b1e1T°‘ + b2e_‘7°‘> VIoIKi (Kl4)),
V6 -~
Vi(a,¢) = drexp (—Hka VIeHS (K|g)), k2 <0.

Wk(Oé, (b)
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Outline

@ The quantum fate of singularities in a dark-energy dominated
universe
Example 1: The quantum fate of the big freeze
e Example 2: The quantum fate of type IV singularity

M. Bouhmadi-Lépez (UBI-EHU) Dark energy related singularities Bad Honnef, 29-07-2014 56 / 63



The type IV singularity with phantom matter

e The generalized Chaplygin gas
(0<A B<0,-1/2<p5<0,
B #1/(2p) - 1/2)

P=-A/p =

1

B \T+F
P= (A + ,—,,3(1+ﬂ)>

e Phantom GCG = P+ p <0

o At anin = ar: higher derivative
of H blows up

e Type IV singularity in the past
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The type IV singularity driven by a phantom scalar
field

» Phantom scalar field ¢: pg = %¢2 +V(p), ps= %gbz — V(o)
_ 28
b+3HH VI(9)=0, V(o)== Vo1 (GnlL+8lel)

e Identify ¢ and GCG; i.e. py =p, pp = P

V1= ,41/(1—"_“8)/27 o = In(a/amin)

—
-

3/2(1+ B)a

yvﬁ"w/"l»;(l +8)p

BL, Kiefer, Kramer 14
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The type IV singularity with standard matter

e The generalized Chaplygin gas
(A<0,0< B, -1/28<0)

P=-A/p =

1
B 1+8
P = (A + 33(1+a))

o At anax = ar: Higher derivative
of the Hubble rate blows up

e Type IV singularity in the future
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The BF singularity driven by a standard scalar field

» Standard scalar field ¢: py = %4252 +V(p), ps= %gbz — V(o)

2B
b+3Hd V'(6) =0, V(g)=—Vi(Ful1+Blg])"”
* Identify ¢ and GCG; i.e. py = p, pp = P
Vi = |AYA8) 2 o = In(a/amax)

Expanding phase

(vV3/2)k(1 + B)o
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The quantum analysis of type IV singularity

» We follow a Born-Oppenheimer (BO) approximation

* We can solve exactly the matter part in same cases § — —1/2 and
| = £1: it involves Heun functions.

e The gravitational part can be as well be solved within a WKB
approximation

» Singularity avoidance for type IV singularities occurs only in special
cases. In general, the singularity is not avoided; i.e. only a subset of
the solutions of the Wheeler DeWitt equation vanishes at the
singularity.
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Outline

Example 1: The quantum fate of the big freeze

Example 2: The quantum fate of type IV singularity
© Conclusions
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Conclusions

e In this talk, we have reviewed some of the cosmological singularities
that have appeared on the literature over the last few years,
motivated (initially) from the possible presence of an exotic dark
energy component

e Then we have shown how these singularities could be removed or
appeased either through some modified theories of gravity or within a
quantum approach

e We have chosen the EiBI theories as an example of a modified theory
of gravity

e The Quantum approach has been carried out in the quantum

geometrodynamics setup and within the BO approaches
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