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1. Introduction.

Prettylong storyof varying constants theories:

Hermann Weyl(1919): electron radius/its gravitational radius∼ 1040

Arthur Eddington(1935) discussed:

1) proton-to-electron mass1/β = mp/me ∼ 1840

2) an inverse of fine structure constant1/α = (hc)/(2πe2) ∼ 137

3) electromagnetic to gravitational force between a protonand an electron

e2/(4πǫ0Gmemp) ∼ 1040

4) introduced “Eddington number”Nedd ∼ 1080

P.A.M. Dirac(1937) interesting remarks about the relations between atomic

and cosmological quantities: IfG ∝ H(t) = (da/dt)/a, thena(t) ∝ t1/3

andG(t) ∝ 1/t - fundamental constants must evolve in time.

Nice conclusion: electromagnetic force is strong comparedto gravitational

since the universe is “old” i.e.Fe/Fp ∝ (e2/memp)t ∝ t !!!
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2. Varying constants theories.

First fully quantitative framework:Brans-Dickescalar-tensor gravity (1961)

The gravitational constantG is associated with an average gravitational potential

(scalar field)φ surrounding a given particle:

< φ >= GM/(c/H0) ∝ 1/G = 1.35× 1028g/cm. Thescalar field gives the

strength of gravity

G =
1

16πΦ
(1)

With the action

S =

∫

d4x
√−g

(

ΦR − ω

Φ
∂µΦ∂

µΦ+ Λ+ Lm

)

(2)

it relates to low-energy-effectivesuperstringtheory forω = −1

String coupling constant (running)gs = exp (φ/2) changes in time withφ - the

dilatonandΦ = exp (−φ).
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varying constants theories

Varying speed of light theories(VSL): Albrecht & Magueijo model (AM model)

(1999)(Barrow 1999; Magueijo 2003):

c4 = ψ(xµ) (3)

and so the action is

S =

∫

d4x
√−g

[

ψ(R + 2Λ)

16πG
+ Lm + Lψ

]

(4)

AM modelbreaks Lorentz invariance(relativity principle and light principle) -

preferred frame (cosmological or CMB) in which the field is minimally coupled to

gravity.

Solves basic problems of standard cosmology: horizon problem and flatness

problem.

Ansatz: Friedmann withρ = ρ0a
−3γ , c(t) = c0a

n - solution if

n ≤ (1/2)(2− 3γ).
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varying constants theories

Magueijo covariant(conformally) andlocally invariantmodel (2000, 2001):

ψ = ln

(

c

c0

)

or c = c0e
ψ , (5)

with the action

S =

∫

d4x
√−g

[

c40e
αψ(R + 2Λ + Lψ)

16πG
+ eβψLm

]

, (6)

with

Lψ = κ(ψ)∇µψ∇µψ . (7)

Further assumption:α− β = 4.

Interesting subcases:

α = 4; β = 0 - Brans-Dicke withφBD = e4ψ/G andκ(ψ) = 16ωBD(φBD).

α = 0; β = −4 - minimal VSL theory.
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varying constants theories

Varying fine structure constantα (or chargee = e0ǫ(x
µ) theories (Webb et al.

1999, Sandvik 2002)

S =

∫

d4x
√−g

(

ψR− ω

2
∂µψ∂

µψ − 1

4
fµνf

µνe−2ψ + Lm

)

(8)

with ψ = ln ǫ andfµν = ǫFµν .

Assume linear expansioneψ = 1− 8πGζ(ψ − ψ0) = 1−∆α/α with the

constraint on the local equivalence principle violence| ζ |≤ 10−3. The relation to

dark energy is:

γ = w + 1 =
(8πG dψ

d ln a )
2

Ωψ
(9)

(e.g. Vielzeuf and Martins 2012 - see further)
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Observational constraints:

|(dG/dt)/G| < 9 · 10−13/year - from primordial nucleosynthesis (Accetta

et al. 1990);

|(dG/dt)/G| < 1.6 · 10−12/year - from helioseismology (Guenther et al.

1998);

|(dG/dt)/G| < (4± 9) · 10−13/year - from lunar laser ranging (LLR)

(Williams et al. 1996);

∆α/α = (3.85± 5.65) · 10−8 - from Oklo phenomenon (Shlyakhter 1976,

Petrov et al. 2006);

∆α/α = (−8± 16) · 10−7 - from meteorite dating (long-lived beta decays)

(Olive et al. 2003);

∆α/α = (−0.5± 1.3) · 10−5 - from quasar absorption spectra with

redshifts2.33 < z < 3.08 (Murphy et al. 2001);

∆β/β = (5.7± 3.8) · 10−5 (β = me/mp) - from quasar absorption spectra

(Ivanchik et al. 2005).
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2. Exotic singularities in Friedmann cosmology

Standard Einstein-Friedmann equations aretwo equations for three unknown

functionsof timea(t), p(t), ̺(t)

̺ =
3

8πG

(

ȧ2

a2
+
Kc2

a2

)

, (10)

p = − c2

8πG

(

2
ä

a
+
ȧ2

a2
+
Kc2

a2

)

, (11)

are usually solved byadding an equation of state(OES), e.g., of a barotropic type:

p(t) = w̺(t) → a(t) ∝ t
2

3(w+1) , (12)

and the conservation equation is fulfilled. However, manipulating the equation of

state (or just dropping it) allows toenrich the possible ways for the Friedmann

universe to evolve – non-standard (non-Big-Bang) singularities appearwhich

may violate: N(ull) E(nergy) C(ondition)̺ + p ≥ 0, W(eak) E(nergy) C(ondition)

̺+ p ≥ 0, ρ ≥ 0, D(ominant) E(nergy) C(ondition)| p |≤ ̺, ̺ ≥ 0.Varying constants universes, singularities, and quantum cosmology – p. 9/63



“Exotic” singularities

An example isa Big-Rip(BR - type I):̺, p→ ∞ for a→ ∞ due to phantom

w < −1 matter (which does not obey cosmic no-hair theorem)

| w + 1 |= −(w + 1) > 0 , (13)

soa(t) = t−2/3|w+1| and̺ ∝ a3|w+1| . (It took R. Caldwell 3 years to publish
the paper in PLB originally submitted to PRL.)
Another example isa Sudden Future Singularity(SFS - type II) (Barrow 2004,

Nojiri et al. 2005) which assumes an ansatz for the scale factor instead of EOS:

a(t) = as

[

δ + (1− δ)

(

t

ts

)m

− δ

(

1− t

ts

)n]

. (14)

whereas ≡ a(ts) = const. andδ,m, n = const. If1 < n < 2 , then one has an

acceleration̈a→ −∞ (“car-drag races”) and so the pressure singularityp→ ∞
at t = ts and the DEC is violated. SFSs commonly appear in LQC (Cailletau et

al., 2008).
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singularities

Another example isa Finite Scale Factor - FSFSsingularity (type III)

characterized by (Nojiri, Odintsov, Tsujikawa 2005):

a = as = const.,̺ , ȧs → ∞, |p|, äs → ∞
which can be obtained by applying the scale factor as given previously for SFS,

but with the range of parametern changed from1 < n < 2 onto

0 < n < 1

Type IV singularity is when (Nojiri, Odintsov, Tsujikawa 2005):

a = as = const.,̺ → 0, p→ 0, ṗ,
...
a, Ḧ → ∞ etc.

and so it has thedivergence of the barotropic indexw(t) → ∞ (p(t) = w(t)̺(t)).

And what is more – they arenot necessarily “singularities” in the sense of

geodesic incompleteness.
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Nature of singularities.

SFS and FSFS (and some other) do not exhibit geodesic incompleteness - simply

geodesicsdo not feelthem since geodesic equations are not singular for

as = a(ts) = const. (Fernandez-Jambrina, Lazkoz PRD 74, 064030 (2006))

(

dt

dτ

)2

= A+
P 2 +KL2

a2(t)
, (15)

dr

dτ
=

P1cosφ+ P2 sinφ

a2(t)

√

1−Kr2 , (16)

dφ

dτ
=

L

a2(t)r2
. (17)

Geodesic deviation equation (tidal forces)

D2nα

dλ2
+Rαβγδu

βnγuδ = 0 , (18)

do feel SFSsince att = ts we have the Riemann tensorRαβγδ → ∞.
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Strength of singularities.

Tipler’s (Phys. Lett. A64, 8 (1977)) definition (of a strong singularity):

Iij(τ) =
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′|Riajbuaub|

diverges on the approach to a singularity atτ = τs

i.e. an extended object iscrushed to zero volume(represented by three

linearly independent, vorticity-free geodesic deviationvectors atp parallely

transported along causal geodesicl) at the singularity by infinite tidal forces

Królak’s (CQG 3, 267 (1988)) definition (of a strong singularity):

Iij(τ) =
∫ τ

0
dτ ′|Riajbuaub|

diverges on the approach to a singularity atτ = τs

i.e. theexpansionof every future-directed congruence of null (timelike)

geodesics emanating from pointp and containingl becomes negative

somewhere onl

For null geodesics one replaces Riemann by the Ricci tensor components.
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Strength - extended objects through singularities.

Fernandez-Jambrina (PRD 82, 124004 (2010)) usedPuiseux seriesexpansion

a(t) = c0+(ts−t)η0+c1(ts−t)η1+c2(ts−t)η2+. . . η0 < η1 < . . . c0 > 0

(19)

to checkthe strengthof exotic singularities (T - Tipler; K - Królak)

Balcerzak and MPD (2006) consideredclassical Polyakov strings

S = −T
2

∫

dτdσηabgµν∂aX
µ∂bX

ν (20)

with an invariant sizeS(τ) = 2πa(η(τ))R(τ) (circular ansatz with radiusR)

falling into exotic singularities to show that they are:infinitely stretchedS → ∞
at Big-Ripwhile for SFS and FSFSthe scale factoris finite atη-time so thatthe

invariant string size is also finite.

This means strings arenot destroyedat these weak singularities.
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The evolution through a singularity - averaging approach.

A.K. Raychaudhuri (PRL 80, 654 (1998)) proposed that one mayaverage physical

and kinematical scalarsover the whole open spacetime (provided they vanish

rapidly at spatial and temporal infinity) as follows

< χ >= lim
xa→∞

∫ ∫ ∫ ∫ xa

−xa χ
√−gd4x

∫ ∫ ∫ ∫ xa

−xa

√−gd4x
(21)

By an open model it is meant that the ratio of the 3-volume hypersurfaces to a

4-volume of spacetime vanishes, i.e.,

∫ ∫ ∫
√

|3 g |d3x
∫ ∫ ∫ ∫ √−gd4x = 0. (22)

His idea was to tight thevanishingof the average< χ > with thesingularity

avoidancein cosmology.
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Spacetime averaging - density and pressure.

For the pressure, the energy density, and the average acceleration we have (MPD

2011)

< p >= − lim
t0→0
t1→∞

∫ t1
t0
a3

(

2 äa + ȧ2

a2

)

dt
∫ t1
t0
a3dt

(23)

and

< ̺ >= lim
t0→0
t1→∞

3
∫ t1
t0
a3

(

ȧ2

a2

)

dt
∫ t1
t0
a3dt

. (24)

< θ̇ >= lim
t0→0
t1→∞

3
∫ t1
t0
a3

(

ä
a − ȧ2

a2

)

dt
∫ t1
t0
a3dt

. (25)
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SFS universe through an exotic singularity.

One is able to constructa hybrid modelwhich allows Big-Bang, SFS, and finally

Big-Crunch given by:

aL(t) = as

[

δ +

(

1 +
t

tB

)m

(1− δ)− δ

(

− t

tB

)n]

(26)

with tB < 0 - the Big-Bang time, andt = 0 and SFS time;

aR(t) = as

[

δ +

(

1− t

tC

)m

(1− δ)− δ

(

t

tC

)n]

(27)

with tC > 0 - the Big-Crunch time. In the high pressure regimet→ 0 these are

approximated by

aL ≈ as

[

1 +
m

tB
(1− δ) t

]

, (28)

aR ≈ as

[

1− m

tC
(1− δ) t

]

. (29)
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Subtle differences between singularities.

BB singularities - all the energy conditions fulfilled,averages vanish

(despite original claim of Raychaudhuri)

BR singularities - no EC fulfilled,averages blow up

SFS - only dominant energy violated,averages finite

It seems that BR isstrongersingularity that BB, BC on the ground of

averaging.

SFS isweaker, but FSF does not seem so.

This seems to be another measure for the strength of singularities.
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List of singularities (still not yet full ...).

Type 0 - Big-Bang (Big-Crunch)a→ 0, p→ ∞, ̺→ ∞
Type I - Big-Ripa(ts) → ∞ (ts <∞), p→ ∞, ̺→ ∞ (Caldwell 2002)

Type II - Sudden Future (includes Big Boost and Big-Brake)a(ts) = const.,

̺ = const.,p→ ∞ (Barrow 2004)

Type IIg - Generalized Sudden Futurea(ts)= const.,̺ = const.,p =const.,
...
a → ∞ etc.,w <∞ (Barrow 2004)

Type III - Finite Scale Factor (also Big-Freeze)a(ts) = const.,̺ → ∞,

p→ ∞ (NOT 2005, Denkiewicz 2012)

Type IV - Big Separation:a(ts)= const.,p = ̺ = 0, w → ∞,
...
a → ∞ etc.

(NOT 2005) (and generalizationsp = ̺ =const. Yurov 2010)

Type V -w-singularitya(ts)= const.,p = ̺ = 0, w → ∞ (MPD,

Denkiewicz 2009) (and generalizationsp =const. Yurov 2010)

More subtleties: Little-Ripa(ts) → ∞, ̺(ts) → ∞ (ts → ∞) and

Pseudo-Rip̺ (ts) <∞ (ts → ∞) (Frampton et al. 2011, 2012)
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Classification of singularities in Friedmann cosmology.

Type Name t sing. a(ts) ̺(ts) p(ts) ṗ(ts) etc. w(ts) T K

0 Big-Bang (BB) 0 0 ∞ ∞ ∞ finite strong strong

I Big-Rip (BR) ts ∞ ∞ ∞ ∞ finite strong strong

Il Little-Rip (LR) ∞ ∞ ∞ ∞ ∞ finite strong strong

Ip Pseudo-Rip (PR) ∞ ∞ finite finite finite finite weak weak

II Sudden Future (SFS) ts as ̺s ∞ ∞ finite weak weak

IIg Gen. Sudden Future (GSFS) ts as ̺s ps ∞ finite weak weak

III Finite Scale Factor (FSFS) ts as ∞ ∞ ∞ finite weak strong

IV Big-Separation (BS) ts as 0 0 ∞ ∞ weak weak

V w-singularity (w) ts as 0 0 0 ∞ weak weak
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Non-standard singularities relation to dark energy.

SFS - supernovae only(MPD et al. 2007): distance modulusµL = m−M for

the CC model (H0 = 72kms−1Mpc−1, Ωm0 = 0.26, ΩΛ0 = 0.74) (dashed curve)

and SFS model (m = 2/3 = 0.6666, n = 1.9999, δ = −0.471, y0 = 0.99936 -

SFS in 8.7 mln years) (solid curve). Open circles - ‘Gold’ data; filled circles -

SNLS data. Varying constants universes, singularities, and quantum cosmology – p. 21/63



CMB shift parameter.

CMB shift parameter is:

R =
l′TT1

lTT1

(30)

where

lTT1 – the temperature perturbation CMB spectrum multipole of thefirst acoustic

peakin SFS model

l′TT1 – the multipole of a reference flat standard Cold Dark Matter model.

One usually uses a rescaled shift parameter (y = t/ts):

R =
H0a0
c

√

Ωm0rdec =
√

Ωm0a
′(y)

∫ y0

ydec

dy

a(y)
=

√

Ωm0

∫ zdec

0

dz

E(z)
, (31)

and WMAP data givesR = 1.70± 0.03 (Wang et al. 2006).
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Baryon acoustic oscillations.

This can be done by measuring the transverse extend of an object (using the

angular diameter distancedA = l/∆θ, wherel is the linear size of an object) and

the line-of-sight extend (using the redshift distance

∆x = c∆t/a(t) = cts∆y/a(y)) (see e.g. Nesseris et al. 2006). As a result one

defines thevolume distanceas

D3
V = d2A∆x , (32)

so that one has

DV =

[

(
∫ y0

y1

ctsdy

a(y)

)2 (
cts∆y

a(y)

)

]
1
3

=

[

(

c

a0H0

∫ z

0

dz

E(z)

)2 (
c

a0H0

∆z

E(z)

)

]
1
3

. (33)

Eisenstein et al. (2005) gaveDV (∆z = zBAO = 0.35) = 1370± 64 Mpc (an

acoustic peak for 46748 luminous red galaxies (LRG) selected from the SDSS.
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Baryon acoustic oscillations - dimensionless parameter A.

For SFS models it is more convenient to use adimensionless quantityA which is

obtained multiplyingDV by
√
Ωm0/(ctszBAO) or by

√
Ωm0(a0H0)/(czBAO) to

get

A =
√

Ωm0a
′(y0)

[

a(yBAO)

a′(yBAO)a(y0)

]
1
3
[

1

zBAO

∫ y0

yBAO

dy

a(y)

]
2
3

(34)

or

A =
√

Ωm0E(zBAO)
−1/3

[

1

zBAO

∫ z1

0

dz

E(z)

]2/3

(35)

It should have the value (Eisenstein et al. 2005)

A = 0.469
( n

0.98

)−0.35

± 0.017 , (36)

wheren is the spectral index (now taken about∼ 0.96).
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SFS: supernovae, CMB, BAO (Denkiewicz et al. 2012)

Fits if m ≈ 0.72, w = −0.082 (slightly negative pressure); possibly≈ tens of mln

years in future

Varying constants universes, singularities, and quantum cosmology – p. 25/63



FSFS: supernovae, CMB, BAO (Denkiewicz 2012)

m = 2/3 (dust) matter allowed in the past; FSFSmay happenin 2 · 109 years in future (stronger, and

closer to big-bang sincea =const, and big-bang hasa = 0). Keresztes, et al. (2009, 2010) found

similar value for theBig-Brake modelwhich is a subcase of SFS model(p = A/̺)Varying constants universes, singularities, and quantum cosmology – p. 26/63



SFS, FSFS - redshift drift test of dark energy models.

Redshift drift (Sandage 1962)- the idea is to collect data from two light cones

separated by 10-20 years to look for a change in redshift of a source as a function

of time.

There is a relation between the times of emission of light by the sourceτe and

τe +∆τe and times of their observation atτo andτo +∆τo:

∫ τo

τe

dτ

a(τ)
=

∫ τo+∆τo

τe+∆τe

dτ

a(τ)
, (37)

which for small∆τe and∆τo reads as∆τea(τe)
= ∆τo

a(τo)
.

Varying constants universes, singularities, and quantum cosmology – p. 27/63



Redshift drift in exotic singularity models.

The redshift drift is defined as

∆z = ze − z0 =
a(t0 +∆t0)

a(te +∆te)
− a(t0)

a(te)
, (38)

which can be expanded in series and to first order in∆t as

∆z =
a(t0) + ȧ(t0)∆t0
a(te) + ȧ(te)∆te

− a(t0)

a(te)

≈ a(t0)

a(te)

[

ȧ(t0)

a(t0)
∆t0 −

ȧ(te)

a(te)
∆te

]

. (39)

Using above relations we have

∆z = ∆t0 [H0(1 + z)−H(t(z))] = (1 + z)
∆v

c
, (40)

where∆v is the velocity shift andH(t(z)) is given in a standard way.
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Redshift drift for SFS, FSF (Denkiewicz, MPD, Martins, Vielzeuf, 2014).

LCDM, SFS 3
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SFS3, FSFS1, FSFS3 canmimicΛCDM

SFS1, FSFS4 differ fromΛCDM significantly

SFS2, FSFS2 - dust Friedmann model

H0 = 67.3 km/s/Mpc andΩm0 = 0.315 (Planck 2013).
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redshift drift - parameters

m δ n t0/ts

SFS 1 2/3 −0.43 1.9999 0.99

SFS 2 2/3 0.0 1.9999 0.99

SFS 3 0.749 −0.45 1.99 0.77

FSFS 1 0.56 0.42 0.8 0.96

FSFS 2 2/3 0.0 0.7 0.79

FSFS 3 2/3 0.24 0.7 0.96

FSFS 4 1.15 7.5 0.81 0.51

RD planned to be measuredby ELT-HIRES high-resolution ultra-stable

spectrograph for the E-ELT (European Extermely Large Telescope) - Lyman-α

forest. Also SKA (Square Kilometre Array), CHIME (The Canadian Hydrogen

Intensity Mapping Experiment). Plus DECIGO/BBO - grav. wave related

measurements.
Varying constants universes, singularities, and quantum cosmology – p. 30/63



4. Dynamical scalar field framework and varyingα.

We assume that theemergence of exotic singularities SFS and FSFS encoded in

the behaviour of the scale factor (5) is due to a dynamical fieldΦ which at the

same time is responsible for the variation of the fine structure constantα (Webb et

al. 1999, Sandvik 2002) given by the Lagrangian (Nunes & Lidsey 2004)

S =

∫

d4x
√−g

(

− 1

2κ2
R +

ω

2
∂µΦ∂

µΦ− V (Φ)− 1

4
BF (Φ)FµνF

µν

)

, (41)

whereκ2 = 8πG/c4 andBF (Φ) = α0/α(Φ). To a good approximation (small

redshift) we may assume a linearized gauge kinetic function

BF (Φ) = 1− ξκ(Φ− Φ0) , (42)

whereξ parametrizes the couplingbetween the scalar field and the

electromagnetic sector. The evolution ofα can be written as

∆α

α
≡ α− α0

α0
= B−1

F (Φ)− 1 = ξκ(Φ− Φ0) . (43)
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Dynamical scalar field ...

The energy density is split from dust matter and the scalar field density as follows

ρ = ρΦ + ρm , ρm = Ωmρ0

(a0
a

)3

(44)

In terms of density parameters

ρ =
3H2

0

8πG

[

Ωm

(a0
a

)3

+ΩΦ

]

(45)

so that

ΩΦ = 1− Ωm0
H2

0

H2

(a0
a

)3

= 1− Ωm. (46)

The barotropic index of the canonical scalar fieldΦ is defined aswΦ = pΦ/ρΦ,

wherepΦ = ±(1/2)Φ̇2 − V (Φ) andρΦ = ±(1/2)Φ̇2 + V (Φ) ("-" sign for

phantom). The effective barotropic index of the equation ofstate isweff = p/ρ,

andp = pΦ.
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Dynamical scalar field andα.

Using±Φ̇2 = pΦ + ρΦ and changing the derivative with respect to time into the

derivative with respect to logarithm of the scale factor i.e. that

(...)′ ≡ d/d ln a = H−1d/dt we have

wΦ + 1 = ± Φ̇2

ρΦ
= ± (κΦ′)2

3ΩΦ
, (47)

whereΩΦ if the fraction of the universe’s energy in the scalar field component

ΩΦ =
ρΦ

ρΦ + ρm
=

ρΦa
3

ρ0Ωm0 + ρΦa3
. (48)

The equation of the fieldΦ can be integrated with respect to the scale factor by

changing variables (dz/(1 + z) = da/a)

∆α

α
(z) = ±ξ

∫ z

0

√

3ΩΦ(ẑ) | (1 + w(ẑ)) | dẑ

(1 + ẑ)
. (49)
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Dynamical scalar field - redshift

Since we mimic the SFS/FSFS scale factor (14) by the scalar field, then we define

the redshift as

1 + z =
a(t0)

a(t1)
=
δ + (1− δ)

(

t0
ts

)m

− δ
(

1− t0
ts

)n

δ + (1− δ)
(

t1
ts

)m

− δ
(

1− t1
ts

)n , (50)

and the Hubble function as

H(t(z)) =
1

ts

m(1− δ)
(

t
ts

)m−1

+ δn
(

1− t
ts

)n−1

δ + (1− δ)
(

t
ts

)m

− δ
(

1− t
ts

)n , (51)
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Varying α as dark energy (MPD, Denkiewicz, Martins, Vielzeuf 2014).

Now we use theselected by the previous tests(SnIa, BAO, CMB shift parameter,

redshift drift) dark energy models with SFS/FSFS singularities (see table above) to

check if they can bemimickedby the dynamical scalar field varyingα framework.

First we check the evolution of the Hubble functionH(z) for SFS1,2,3 (left) and

FSFS1,2,3 (right) models. SFS2 and FSFS2 (dust models) are ruled out but other

models can mimicΛCDM.
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Measuring variation of α.

We use the data given by Webb et al. (PRL 107, 191101 (2011)) (Keck and VLT)

as well as other specific measurements ofα given in the table below (in parts per

million):

Object z ∆α/α Spectrograph Ref.

HE0515−4414 1.15 −0.1± 1.8 UVES Molaro et al. (2008)

HE0515−4414 1.15 0.5± 2.4 HARPS/UVES Chand et al. (2006)

HE0001−2340 1.58 −1.5± 2.6 UVES Agafonowa et al. (2011)

HE2217−2818 1.69 1.3± 2.6 UVES–LP Molaro et al. (2013)

Q1101−264 1.84 5.7± 2.7 UVES Molaro et al. (2008)

UVES - Ultraviolet and Visual Echelle Telescope

HARPS - High Accuracy Radial velocity Planet Searcher

LP - Large Program measurement

Varying constants universes, singularities, and quantum cosmology – p. 36/63



Atomic clock Rosenband bound atz = 0

Rosenband (2008) measurement gives the following bound atz = 0

(

α̇

α

)

0

= (−1.6± 2.3)× 10−17yr−1 . (52)

which by using (49) can be transformed onto the bound for the scalar field

couplingξ:
∣

∣

∣

∣

α̇

α

∣

∣

∣

∣

0

= |ξ|H0

√

3ΩΦ0 | 1 + wΦ0 | , (53)

which translates forH0 = (67.4± 1.4) km.s−1Mpc−1 Planck value) into the

conservative (3σ) bound

|ξ|
√

3ΩΦ0 | 1 + wΦ0 | < 10−6, (54)
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Bounds on the couplingξ from atomic clocks

Maximum allowed variation ofα in the redshift range0 ≤ z ≤ 5:

Model ΩΦ0 wΦ0 |ξ|max × 106 z|αmax
|∆α/α|max × 106

SFS1 0.685 −1.06 2.76 1.4 1.47

SFS2 0.685 0.0 0.70 5.0 1.79

SFS3 0.685 −0.92 2.42 2.6 0.80

FSFS1 0.685 −3.49 0.44 0.2 0.08

FSFS2 0.685 0.0 0.70 5.0 1.79

FSFS3 0.685 −3.68 0.43 0.2 0.06

Important notice: large negative values ofwΦ0 lead tovery tightbound on the

couplingξ and extremely small variations ofα (100 times smaller than needed to

explain Webb’s et al. (2011) data and also difficult to reach by future generation

telescopes).
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Atomic clock Rosenband (2008) bound atz = 0

Then we have below the present-day drift rate ofα as a function of the couplingξ,

for the SFS1,2,3 models under consideration, compared to the one-sigma

Rosenband bound:
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α(z) variation (Webb’s data); black rectangle - sensitivity of E-ELT
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χ2 test of SFS models
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Webb’s Keck data (top left), Webb’s VLT data (top middle), Webb’s full dataset

(top right) and the data from the Table (5 measurements)(bottom)

No minimum ofχ2 - couplingξ incompatiblewith z = 0 atomic clock bound (3σ)
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Redshift drift for VSL models.

In varying speed of light theories one has (Balcerzak, MPD 2014)

∆z

∆t0
=

∆z

∆t0
(z, n) = H0(1 + z)−H(z)(1 + z)n , (55)

or in terms of standard definitions of density parametersΩ (for k = 0) we have

∆z

∆t0
= H0

[

1 + z − (1 + z)n
√

Ωm0(1 + z)3 + ΩΛ

]

= H0

[

1 + z −
√

Ωm0(1 + z)3+2n +ΩΛ(1 + z)2n
]

(56)
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Redshift drift for VSL models.
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Observationally,n ∼ −10−5 < 0 (Murphy et al. 2007, King et al. 2012). Error

bars due to Quercellini et al. 2012. For|n| < 0.045 one cannot distinguish

between VSL andΛCDM models.
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5. Varying constants removing or changing singularities.

It has been shown thatquantum effects(e.g. Houndjo 1008.0664; Houndjo

et al. 1203.6084) maychange the strengthof exotic singularities (e.g. SFS

can be changed into either FSF or BR or BC).

The application of quantum cosmology (cf. M. Bouhmadi-Lopez talk about

type I-IV singularities) may remove classical singularities in the quantum

sense.

EiBl theory also removes the singularities (Bouhmadi-Lopez et al. 2014)

Varying constants cosmologies have been applied tosolve standard

cosmology problemssuch as the horizon and flatness problem (e.g.

Albrecht, Magueijo 1999; Barrow 1999).

Here we can apply varying constants toremove or change the nature of
singularities in cosmology.
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varying constants versus cosmic singularities.

Einstein-Friedmann equations generalize invarying speed of light (VSL)theories

andvarying gravitational constant Gtheories to (̺ - mass density;ε = ̺c2(t) -

energy density inJm−3 = Nm−2 = kgm−1s−2)

̺(t) =
3

8πG(t)

(

ȧ2

a2
+
kc2(t)

a2

)

, (57)

p(t) = − c2(t)

8πG(t)

(

2
ä

a
+
ȧ2

a2
+
kc2(t)

a2

)

, (58)

and the energy-momentum “conservation law” is

˙̺(t) + 3
ȧ

a

(

̺(t) +
p(t)

c2(t)

)

= −̺(t) Ġ(t)
G(t)

+ 3
kc(t)ċ(t)

4πGa2
. (59)
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General form of the scale factor.

We use a general form of the scale factor (MPD, K. Marosek, JCAP 02 (2013),

012), whichadmits big-bang, big-rip, sudden future, finite scale factor and
w-singularities and reads as

a(t) = as

(

t

ts

)m

exp

(

1− t

ts

)n

, (60)

with the constantsts, as,m, n. Fork = 0 we have

̺(t) =
3

8πG(t)

[

m

t
− n

ts

(

1− t

ts

)n−1
]2

, (61)

p(t) = − c2(t)

8πG(t)

[

m(3m− 2)

t2
− 6

mn

tts

(

1− t

ts

)n−1

(62)

+ 3
n2

t2s

(

1− t

ts

)2(n−1)

+ 2
n(n− 1)

t2s

(

1− t

ts

)n−2
]

.
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The scale factor - parametrization.

Form < 0 we havea big-rip singularity - a→ ∞, ̺→ ∞, p→ ∞ at t = 0;

For1 < n < 2 we havea sudden future singularity (SFS) which appears at

t = ts (a = as, ̺ = const.,p→ ∞);

For0 < n < 1 we havea (stronger) finite scale factor singularity(FSF) at

t = ts (a = as, ̺→ ∞, p→ ∞).

In fact, for1 < n < 2 only the last term in the pressure of the type(1− t/ts)
n−2

blows-up, while for0 < n < 1 two more terms(1− t/ts)
n−1 and

(1− t/ts)
2(n−1) do.
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Removing singularities by varying constants

One bears in mind the scale factor (60), the energy density (61) and pressure (62)

Regularizing a Big-Bang singularity by varyingG:

If

G(t) ∝ 1

t2
(63)

which is a faster decrease than in Dirac’s LNHG ∝ 1/t, but influences less the

temperature of the Earth constraint (Teller 1948).

Both divergence in̺ andp are removed, thoughat the expense of having the

"singularity" of strong gravitational couplingG→ ∞ at t→ 0.

In the Dirac’s case, only the̺singularity can be removed.
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removing singularities by varying constants: SFS

Regularizing an SFS singularity by varyingc:
If

c(t) = c0

(

1− t

ts

)

p
2

, (64)

then

p(t) = − c20
8πG

[

m(3m− 2)

t2

(

1− t

ts

)p

− 6
mn

tts

(

1− t

ts

)p+n−1

+ 3
n2

t2s

(

1− t

ts

)p+2n−2

+ 2
n(n− 1)

t2s

(

1− t

ts

)p+n−2
]

.

and the singularity of pressure isremoved providedp > 2− n, (1 < n < 2).
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removing singularities by varying constants: SFS.

Physical consequence:light eventually stopsat the singularity. Same happens in

loop quantum cosmology (LQC) where it is called theanti-newtonian limit

c = c0
√

1− ̺/̺c → 0 for ̺→ ̺c with ̺c being the critical density (Cailettau et

al. 2012). Thelow-energy limit̺≪ ̺0 gives the standard limitc→ c0.

It also appears naturally inMagueijo model((Magueijo, PRD 63, 043502 (2001)))

in which black holes are not reachable since thelight stops at the horizon(despite

they possess Schwarzschild singularity). An observer cannot reach this surface

even in his finite proper time.

Strangely, both optionsc = 0 andc = ∞ are possible in Magueijo model.
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removing singularities by varying constants: SFS

Removing an SFS singularity by varyingG:
If we assume that

G(t) = G0

(

1− t

ts

)−r

, (65)

(r = const.,G0 = const.) which changes (61) and (62) to

̺(t) =
3

8πG0

[

m2

t2

(

1− t

ts

)r

− 2mn

tts

(

1− t

ts

)r+n−1

+
n2

t2s

(

1− t

ts

)r+2n−2
]

, (66)

p(t) = − c2

8πG0

[

m(3m− 2)

t2

(

1− t

ts

)r

− 6
mn

tts

(

1− t

ts

)r+n−1

+ 3
n2

t2s

(

1− t

ts

)r+2n−2

+ 2
n(n− 1)

t2s

(

1− t

ts

)r+n−2
]

. (67)
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removing or changing singularities by varying constants: SFS

From (66) and (67) it follows that an SFS singularity(1 < n < 2) is regularized

by varying gravitational constant when

r > 2− n , (68)

and an FSF singularity(0 < 1 < n) is regularizedwhen

r > 1− n . (69)

On the other hand, assuming that we have an SFS singularity and that

−1 < r < 0 , (70)

we get that varyingG may change an SFS singularity onto a stronger FSF
singularity when

0 < r + n < 1 . (71)
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Subtleties:

In order to regularize an SFS or an FSF singularity by varyingc(t), the

light should slow and eventually stop propagatingat a singularity.

Similar effects were found in loop quantum cosmology (LQC) as well as in

VSL for Schwarzschild horizon (Magueijo 2001) - speed of light is either

zero or infinity atr = rs. An observer cannot reach this surface even in his

finite proper time.

To regularize an SFS, FSF by varying gravitational constantG(t) - the
strength of gravity has to become infiniteat a singularity. On the one

hand, it is quite reasonable because of the requirement toovercome an
infinite (anti-)tidal forces at the singularity, but on the other hand, it makes

another singularity -a singularity of strong coupling for a physical field

such asG ∝ 1/Φ. Such problems were already dealt with in superstring

and brane cosmology where both the curvature singularity and a strong

coupling singularity appeared (choice of coupling, quantum corrections).
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6. Varying constants quantum cosmology.

K. Leszczýnska, A. Balcerzak, MPD - in progress (cf. also R. Garattini and M.

Sakellariadou 2014)

We consider quantum cosmology of VSL and VG theories with theansätze:

c(t) = c0a
n(t) , G(t) = G0a

q(t) . (72)

The integration of the conservation law and using the barotropic equation of state

p = (γ − 1)ρ, γ = const. gives

̺ =
M

G0a3γ+q
(73)

+
c20

4πG0

[

3kn

2n+ 3γ − 2
a2(n−1)−q − λ( q2 − n)

2n+ 3γ
a2n−q

]

.

Substituting this into the Friedmann equation one has

ȧ2a3γ−2 − 8πM

3
+ U(a) = 0 , (74)

Varying constants universes, singularities, and quantum cosmology – p. 54/63



Varying constants quantum cosmology.

where

U(a) = −
(

k(2− 3γ)c20
2n+ 3γ − 2

+
Λ(3γ + q)c20a

2

3(2n+ 3γ)

)

a2n+3γ−2 (75)

The potential (75) has the one zero ata = 0 and another at

a0 =

√

3k(3γ − 2)(2n+ 3γ)

Λ(3γ + q)(2n+ 3γ − 2)
(76)

provided it is real. In some cases it has the shape to allow quantum mechanical

tunnelingfrom a = 0 to a = a0. In the limit of constantG one recovers the result

of Szydlowski and Krawiec (PRD, 2003) and A. Yurov and V. Yurov (0812.4738)
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Varying constants quantum cosmology.

Two physically interesting cases of tunneling can be studied: first, when we have

radiation matter (γ = 4/3) and dust matter (γ = 1), positive curvaturek = +1

and positive cosmological constantΛ > 0. Second, when we have the network of

red domain walls (γ = 1/3), negative curvaturek = −1 and positive

cosmological constant (similar case forc =const,Λ < 0 was considered by MPD

and Larsen (PRD, 1985) and recently by Mithani and Vilenkin (JCAP, 2012) and

Graham et al. 1109.0282)

In WKB approximation the probability of tunneling the universe “from nothing”

(a = 0) to a Friedmann geometry witha = a0 (e.g. for the model with radiation)

reads as

P ≃ exp

(

− c0
~

√

2πk

n+ 1

Γ( 3+n2 )

Γ(3 + n
2 )

an+3
0

)

(77)
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Varying constants quantum cosmology.
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Varying constants quantum cosmology.
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Varying constants quantum cosmology.

The probability of tunneling islargefor both thelarge values of the

cosmological termand thelarge values of the speed of light(n > 0, large,

c = c0a
n).

The probability of tunneling for the universe with dust issmallerthan with

radiation when the speed of light diminishesn < 0 or slightly increases

(n > 0, small) while it is larger if the speed of light increases strongly

(n > 0, large) with some dividing value ofn between both regimes which

depends onΛ.
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Varying constants quantum cosmology.

An interesting ansatz for the speed of light evolution (Buchalter

astro-ph/0403202) is:

c(t) = ȧ(t) = H(t)a(t) (78)

which replaces the Friedmann equation into:

ȧ2

a2
(1 + k)− Λ

3
ȧ2 =

8πG(t)

3
̺ (79)

There are interesting classical solutions (which are not standard) and also

quantization is different due to a different form of the kinetic term.
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7. Results and conclusions

Currently one is able todifferentiate quite a number of “exotic”
cosmological singularitieswith completely different properties - despite

many of them are geodesically complete, they still lead to ablow-up of
physical quantitiessuch as scale factor, energy density, pressure, physical

fields etc.

Some of these singularitiesmay serve as dark energy. SFS (type II) may
even appear in near future (8.7 Myr)while FSFS (type III) in more

distant future (2 Gyr). Theycan be fitted to a combined SnIa, CMB, BAO

data and can mimicΛCDM model for redshift drift effect for specific

choice of the parameters.

The “exotic” cosmological singularities can be influenced by varying
constants. It is possible toremove or changethe type of these singularities

with full physical consequences of this. However, we may face new
”singularity” in a physical field responsible for the variability of constants

but this is what happens in other physical theories (e.g. superstring) too.
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Results and conclusions contd.

Studies of the dynamical scalar fieldΦ coupling to electromagnetic field

which is responsible for thevariation of the fine structure constantα
based on observational data show that FSFS (type III) dark energy models

cannot be relatedto variation ofα (they are too small, even to be detected)

SFS (type III) dark energy models (SFS1, SFS3)allow larger variationsof

α, but the values of the couplingξ to fit the data fromα variation are still in

more than three-sigma tensionswith the local atomic clock bounds.

However, non-monotonic redshift dependence of some SFS models may

allow to find the range of parameters which will be tested by the new

high-resolution spectrographsto give a definite answer if varyingα models

can serve dark energy.

Quantum cosmology can be applied to discuss the influence of variability of

physical constants onto the probability of creation of the universe. In

particular, large values of the speed of light (n > 0) increase the probability

of tunneling.
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