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The Measure Problem of Cosmology

The measure problem of cosmology is how to obtain probabilities
of observations from the quantum state of the universe.

This is particularly a problem when eternal inflation leads to a
universe of unbounded size so that there are apparently infinitely
many realizations or occurrences of observations of each of many
different kinds or types, making the ratios ambiguous.

There is also the danger of domination by Boltzmann Brains,
observers produced by thermal and/or vacuum fluctuations.

The measure problem is related to the measurement problem of
quantum theory, how to relate quantum reality to our observations
that appear to be much more classical.

An approach I shall take is to assume that observations are
fundamentally conscious perceptions or sentient experiences (each
perception being all that one is consciously aware of at once).



Probabilities of Observations
I shall take an Everettian view that the wavefunction never
collapses, so in the Heisenberg picture, there is one single fixed
quantum state for the universe (which could be a ‘multiverse’).

I assume that instead of ‘many worlds,’ there are instead many
different actually existing observations (sentient experiences) Ok ,
but that they have different positive measures, µk = µ(Ok), which
are in some sense how much the various observations occur, but
they are not determined by the contents of the observations.

For simplicity, I shall assume that there is a countable discrete set
{Ok} of observations, and that the total measure

∑
k µk is

normalized to unity for each possible complete theory Ti that gives
the normalized measures µk for all possible observations Ok .

Then for a Bayesian analysis, I shall interpret the normalized
measures µk of the observation Ok that each theory Ti gives as
the probability of that observation given the theory, P(Ok |Ti ),
which for one’s observation Ok is the ‘likelihood’ of the theory Ti .



A Bayesian Analysis for the Probabilities of Theories

Consider theories Ti that for each possible observation Ok give a
normalized probability for that observation, P(Ok |Ti ), summing to
one when one sums over all observations Ok for each theory Ti .

If we assign (subjective) prior probabilities P(Ti ) to the theories Ti

(presumably higher for simpler theories, by Occam’s razor) and use
an observation Ok to test the theory, P(Ok |Ti ) is then the
likelihood of the theory, and by Bayes’ theorem we can calculate
the posterior probability of the theory as

P(Ti |Ok) = P(Ti )P(Ok |Ti )∑
j P(Tj )P(Ok |Tj )

.

We would like to get this posterior probability as high as possible
by choosing a simple theory (high prior probability P(Ti )) that
gives a good statistical fit to one’s observation Ok (high likelihood
P(Ok |Ti )).



Trade-Off Between Prior Probabilities and Likelihoods
I Prior probabilities P(Ti ) for theories (intrinsic plausibilities)
I Conditional probabilities P(Ok |Ti ) for observations

(‘likelihoods’ of the theories for a fixed observation)
I Posterior probabilities P(Ti |Ok) ∝ P(Ti )P(Ok |Ti )

Prior probabilities are subjective, usually higher for simpler theories.

The highest prior probability might be for the theory T1 that
nothing concrete (contingent) exists, but then P(Ok |T1) = 0.

T2 might be the theory that all observations exist equally:
P(Ok |T2) = 1/∞ = 0 (modal realism or multiverse pantheism).

At the other extreme would be a maximal-likelihood theory giving
P(Ok |Ti ) = 1 for our observation Oj , but this seems to require a
very complex theory Ti that might be assigned an extremely tiny
prior probability P(Ti ), hence giving a very low posterior P(Ti |Ok).

Thus there is a trade off between prior probabilities and likelihoods,
that is, between intrinsic plausibility and fit to observations.



Sensible Quantum Mechanics or Mindless Sensationalism

The map from the quantum state to the measures of observations
could be nonlinear. However, I assumed a linear relationship in
Sensible Quantum Mechanics (which I have also called Mindless
Sensationalism because it proposes that what is fundamental is not
minds but conscious perceptions, which crudely might be called
‘sensations,’ though they include more of what one is consciously
aware of than what is usually called ‘sensations’):

µ(Ok) = σ[A(Ok)] = expectation value of the operator A(Ok).

Here σ is the quantum state of the universe (a positive linear
functional of quantum operators), and A(Ok) is a nonnegative
‘awareness operator’ corresponding to the observation or sentient
experience (conscious perception) Ok . The quantum state σ
(which could be a pure state, a mixed state given by a density
matrix, or a C*-algebra state) and the awareness operators
{A(Ok)} (along with the linear relationship above and a description
of the contents of each Ok) are all given by the theory Ti .



The Death of the Born Rule

Traditional quantum theory uses Born’s rule with the probability of
the observation Ok being the expectation value of A(Ok) = Pk

that is a projection operator (PjPk = δjkPk , no sum over k)
corresponding to the observation Ok , so

P(Ok |Ti ) = σi [Pk ] = 〈Pk〉i .

Born’s rule works when one knows where the observer is within the
quantum state (e.g., in the quantum state of a single laboratory
rather than of the universe), so that one has definite orthonormal
projection operators. However, Born’s rule does not work in a
universe large enough that there may be identical copies of the
observer at different locations, since then the observer does not
know uniquely the location or what the projection operators are.



Why Does the Born Rule Die?

Suppose there are two identical copies of the observer, at locations
B and C , that can each make the observations O1 and O2 (which
do not reveal the location). Born’s rule would give the probabilities
PB
1 = σ[PB

1 ] and PB
2 = σ[PB

2 ] if the observer knew that it were at
location B with the projection operators there being PB

1 and PB
2 .

Similarly, it would give the probabilities PC
1 = σ[PC

1 ] and
PC
2 = σ[PC

2 ] if the observer knew that it were at location C with
the projection operators there being PC

1 and PC
2 .

However, if the observer is not certain to be at either B or C , and
if PB

1 < PC
1 , then one should have PB

1 < P1 < PC
1 . However, there

is no state-independent projection operator that gives an
expectation value with this property for all possible quantum states.

No matter what the orthonormal projection operators P1 and P2

are, there is an open set of states that gives expectation values that
are not positively weighted means of the observational probabilities
at the two locations. Thus the Born rule fails in cosmology.



Awareness Operators as Integrals of Localized Operators

The failure of the Born rule means that in a theory Ti , the
awareness operators Ai (Ok), whose expectation values in the
quantum state σi of the universe give the probabilities or
normalized measures for the observations or sentient experiences
Ok as P(Ok |Ti ) ≡ µi (Ok) = σi [Ai (Ok)] ≡ 〈Ai (Ok)〉i , cannot be
projection operators.

However, the awareness operators could be weighted sums or
integrals over spacetime of localized projection operators Pi (Ok , x)
at locations denoted schematically by x , say onto brain states there
that would produce the observations or sentient experiences.



The Boltzmann Brain Problem

In local quantum field theory with a definite globally hyperbolic
spacetime, any nonnegative localized operator (such as a localized
projection operator) will have a strictly positive expectation value
in any nonpathological quantum state. Therefore, if such a
nonnegative localized operator is integrated with uniform weight
over a spacetime with infinite 4-volume, it will give an awareness
operator with an infinite expectation value.

If one takes the integral only up to some finite cutoff time tc and
normalizes the resulting awareness operators, then for a universe
that continues forever with a 3-volume bounded below by a
positive value, the integrals will be dominated by times of the same
order of magnitude as the cutoff time. If at late times the
probability per 4-volume drops very low for ordinary observers, then
most of the measure for observations will be contributed by
thermal or vacuum fluctuations, so-called Boltzmann brains. That
is, Boltzmann brains will dominate the measure for observations.



The Problem with Boltzmann Brains
If Boltzmann brains dominate the measure for observations, one
might ask, “So what?” Couldn’t it be that our observations are
those of ordinary observers? Or couldn’t it be that our
observations really are those of Boltzmann brains?

However, since Boltzmann brain observations are produced mainly
by thermal or vacuum fluctuations, it would be expected that only
a very tiny fraction of their measure would be for observations so
ordered as our observations. This very tiny fraction, plus the even
smaller fraction of ordered ordinary observer observations in
comparison with the dominant disordered Boltzmann brain
observations, would be only a very tiny fraction of the measure of
all observations. Thus the normalized probability of one of our
ordered observations (which we would use as the likelihood of the
theory) would be highly diluted and hence much smaller than those
of alternative theories in which Boltzmann brains do not dominate.
If these theories do not have prior probabilities that are too small,
they would dominate the posterior probabilities.



The Problem with Boltzmann Brains, Re-Expressed

In summary, Boltzmann brain domination, which is predicted by
many simple extensions of current theories (e.g., with the
awareness operators or their equivalent being obtained by a
uniform integration over spacetime up to a cutoff that is then
taken to infinity), gives a reductio ad absurdum for such theories,
making their likelihoods very small. Surely there are alternative
theories that avoid Boltzmann brain domination without such a
cost of complexity that their prior probabilities would be decreased
so much as the gain in likelihoods from not having the normalized
probabilities of our ordered observations highly diluted by
disordered Boltzmann brain observations.

The Boltzmann brain problem is analogous to the ultraviolet
catastrophe of late 19th century classical physics: Physicists then
did not believe that an ideal black body in thermal equilibrium
would really emit infinite power, and physicists now do not believe
that Boltzmann brains really dominate observations.



Volume Weighting versus Volume Averaging
The approach that gives ‘awareness operators’ as uniform integrals
over spacetime of localized projection operators (or equivalently
counts all observation occurrences equally, not matter when and
where they occur in a spacetime) gives an especially severe
Boltzmann brain problem in spacetimes with a positive
cosmological constant (as ours seems to have) with the spatial
hypersurfaces having 3-volumes that asymptotically grow
exponentially, as in the k = 1 slicing of the de Sitter spacetime. At
each time, counting the number or measure of observations as
growing with the volume is called ‘volume weighting.’

In 2008 I proposed the alternative of Volume Averaging, which
gives a contribution to the measure for an observation from a
hypersurface that is proportional to the spatial density of the
occurrences of the observation on the hypersurface, rewarding the
spatial frequency of observation occurrences rather than the total
number that would diverge in eternal inflation as the hypersurface
volume is taken to infinity.



What Is Needed Beyond Volume Averaging

Volume Averaging ameliorates the Boltzmann brain problem by not
giving more weight to individual spatial hypersurfaces at very late
times when Boltzmann brains might be expected to dominate.
However, when one integrates over a sequence of hypersurface
with a measure uniform in the element of proper time dt, one gets
a divergence if the time t goes to infinity. One needs some
suppression at late times to avoid this divergence.



Agnesi Weighting with Volume Averaging

In 2010 I proposed Agnesi Weighting, replacing dt by dt/(1 + t2)
where t is measured in Planck units. When Agnesi Weighting is
combined with Volume Averaging and a suitable quantum state
such as my Symmetric-Bounce one, it appears to be statistically
consistent with all observations and seems to give much higher
likelihoods than current measures using the first extreme view that
the measure is just given by the quantum state. It also does not
require the unproven hypothesis that bubble nucleation rates for
new big bangs are higher than Boltzmann brain nucleation rates or
lead to measures dominated by observations of a negative
cosmological constant, as do current measures using the second
extreme view that the probabilities of observations are essentially
independent of the quantum state.

Therefore, for fitting observations, Agnesi Weighting with Volume
Averaging seems to be one of the best measures proposed so far.



Alternatives to Agnesi Weighting

Despite its apparent fit with observations, Agnesi Weighting is
admittedly quite ad hoc, so there is no obvious reason why it
should be right. Its weighting factor favors earlier times or
youngness, but in a fairly weak or light way that does not seem to
be in conflict with observations, so it might be called a Utility
Giving Light Youngness (UGLY) measure.

More recently I have proposed new measures depending on the
Spacetime Average Density (SAD) of observation occurrences
within a proper time t from a big bang or bounce.

One of these is the Maximal Average Density (MAD) measure,
taking the Spacetime Average Density of observation occurrences
up to the time when this SAD is maximized.

Another is the Biased Average Density (BAD) measure, which uses
a weighting of the SAD over time that depends upon the SAD up
to that time in a continuous rather than in a step-function manner.



A SAD Measure



Two Extreme Alternative Views

1. The measure is determined nearly uniquely by the quantum
state (e.g., Hartle, Hawking, Hertog, and/or Srednicki). For
example, they apply the consistent histories or decohering histories
(DH) formalism to the Hartle-Hawking no-boundary wave-function
of the universe (NBWF). They calculate the probabilities of
different observations within each decohering history and then
multiply these by the probabilities of these histories given by the
NBWF. Within each history, they tend to calculate the probability
that a particular observation occurs at least once within it.

2. The measure along with eternal inflation determines the
probabilities of observations essentially independently of the
quantum state (e.g., Bousso, Freivogel, Guth, Linde, and/or
Vilenkin). For example, they look at an apparently
state-independent late-time attractor behavior of eternally inflating
spacetimes and extract probabilities of observations from that,
ignoring any finite number of observations at early times.



Disadvantages of the First Extreme View

For a history with eternal inflation that gives an infinitely large
spacetime, calculating the probability that a particular observation
occurs at least once gives unit probability for the vast range of
observations that have any positive probability density per
spacetime volume of occurring. Therefore, if histories with eternal
inflation dominate the quantum measure from the NBWF, a huge
set of probabilities for different observations will have nearly equal
values (differing only from the contributions of histories without
eternal inflation).

When the probabilities of observations are normalized, the huge
number of observations with nearly equal probabilities will lead to
each observation having an extremely tiny normalized probability,
giving a very low likelihood for any theory of eternal inflation using
this particular measure.



Disadvantages of a Modification of the First Extreme View

If one instead uses a procedure that gives different probabilities for
different observations within each history but still assumes that the
total probability for all the observations within that history is given
purely by the quantum probability for that history, then the bulk of
the total probability for all observations will still come from
histories that make up the bulk of the quantum probability.

It would seem highly coincidental if these histories that dominate
the probabilities tended to have strongly biophilic values for their
effective coupling constants (as opposed to weakly biophilic values
that allow life and observations barely to occur, at very low
densities), so our observations of very strongly biophilic values of
the coupling constants would be unexplained by such theories. In
particular, the probability for observing coupling constants so
strongly biophilic as what we observe would most likely be very
low, giving extremely low likelihoods for such theories.



Disadvantages of the Strongest Version of the Second View

The strongest version of the second extreme view is that the
probabilities of observations are absolutely independent of the
quantum state. This is logically possible, say by having the
probabilities of observations given by the expectation values of the
identity operator multiplied by coefficients that will then be the
probabilities of the observations for any normalized quantum state.

But then our observations of apparent quantum effects would just
be delusions, since the observations would not depend upon the
quantum state at all. It seems to me much more plausible that our
observations appear to depend upon the quantum state because
indeed they do depend upon the quantum state. Surely the set of
our observations, with its measure, could be different if the
quantum state were different.



Disadvantages of the Less-Extreme Second View

A less-extreme version of the second view would be that whether
eternal inflation occurs depends upon the quantum state, but that
if the quantum state is such that eternal inflation does occur, the
probabilities of observations do not depend upon further details of
the quantum state. This is more nearly plausible, but I find it also
a rather implausible view.

If the relative probabilities of observations are given by the
expectation values of positive operators that are not just multiples
of the identity operator, they would generically be changed by
generic changes in the quantum state. That is, it seems very hard
to have the relative probabilities insensitive to generic changes in
the quantum state if these relative probabilities are nontrivial linear
functionals (i.e., not just the expectation values of multiples of the
identity operator) of the quantum state, which to me appears to
be the simplest possibility, though I do not claim to see any logical
necessity against nonlinear functionals for the relative probabilities.



Disadvantages of Current Versions of the Second View

Popular current versions of the second view include the causal
diamond measure, the apparent horizon measure, the fat geodesic
measure, the census taker cutoff, the scale factor time cutoff, the
lightcone time cutoff, and the new lightcone time cutoff, many of
which are equivalent by global-local dualities.

To avoid Boltzmann brain domination, all of these measures
require that all vacua in the landscape have faster decay rates than
their rates for producing Boltzmann brains. This is a very strong
requirement. It may be consistent with the properties of the
superstring landscape, but it may turn out to be false. Therefore,
it is a disadvantage of the measures using the second extreme view
that they seem to require this.

These measures also appear to predict a much higher probability of
predicting a negative cosmological constant than a positive one
such as what we actually observe. This suppresses the probability
of our actual observation and gives these theories lower likelihoods.



Conclusions

There are many partial answers to the measure problem in
cosmology, but none of them so far is completely satisfactory. The
main disadvantage is that they are all rather ad hoc.

Many alternatives that others have proposed seem to lead also to
excessively low probabilities for our observations that include such
things as high order, strongly biophilic values for the effective
coupling constants, and a positive cosmological constant.
Alternatives that avoid Boltzmann brain domination require that
all vacua in the landscape decay faster than Boltzmann brain
production. Measures that I have proposed are also ad hoc but
avoid these problems.

I have now made proposals that are MAD, BAD, and UGLY. I am
still looking for one that is GOOD in a supreme way of giving a
high posterior probability. However, if GOOD were interpreted as
simply meaning Great Ordinary Observer Dominance, one could
say that the MAD, the BAD, and the UGLY are all GOOD.



Another SAD Measure


