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Introduction

Evidence for the existence of the cosmological singularity
observational cosmology:
the Universe has been expanding for almost 14 billion years
(emerged from a state with extremely high energy densities
of physical fields)
theoretical cosmology:
almost all known general relativity models of the Universe
(Lemaître, Kasner, Friedmann, Bianchi, Szekeres, ..., BKL)
predict the existence of cosmological singularities (diverging
gravitational and matter field invariants, incomplete geodesics).

Existence of the cosmological singularities in solutions to GR
may mean that this classical theory is incomplete.
Expectation: quantization may heal the cosmological singularity.
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Introduction (cont)

Some intriguing questions concerning the quantum phase
of the Universe:

What is the energy scale?
What is the mechanism of the transition:
quantum phase � classical phase?
How to relate theory with cosmic observations?

I What is the origin of inflation?
I What is the origin of tiny fluctuations visible in CMB?
I What is the origin of primordial gravitational waves?
I What is the origin of visible matter?
I What is the origin and nature of dark matter?
I What is the origin and nature of dark energy?

If the notion of time is well defined:
I How long had the quantum phase lasted?
I What was before the quantum phase?
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Introduction (cont)

Canonical quantization based on the Holst action and loop
geometry

I Dirac’s LQC1 := ‘first quantize then impose constraints’
I RPS LQC2 := ‘first solve constraints then quantize’

Coherent states3 and canonical4 quantizations based on the
Hilbert-Einstein action

1Ashtekar, Bojowald, Lewandowski, Rovelli, Thiemann, . . .
2P. Dzierżak, P. Małkiewicz, J. Mielczarek, WP, . . .
3H. Bergeron, J.P. Gazeau, P. Małkiewicz, W.P.,. . .
4D.M. Chitre, C.W. Misner, M.P. Ryann, . . .
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Quantum FRW model: summary of results obtained
within RPS LQC approach

Cosmic singularity problem of FRW model can be resolved
by using the loop geometry: big bang turns into big bounce
Discreteness of the spectra of the volume operator
may favor a foamy structure of space at short distances:
no dispersion of cosmic photons5 up to the energy
5× 1017 GeV
Evolution of quantum phase can be described in terms of
self-adjoint true (physical) Hamiltonian

I expectation values of quantum variables coincide
with corresponding classical variables

I Heisenberg’s uncertainty relation is perfectly satisfied
during the entire evolution of the universe.

5F. Aharonian et al., Phys. Rev. Lett. 101, 170402 (2008),
‘Limits on an Energy Dependence of the Speed of Light from a Flare ...’
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Challenge in Cosmology:

Quantization of the Belinskii-Khalatnikov-Lifshitz scenario (1963-82).
FRW metric is dynamically unstable in the evolution towards
the singularity (breaking of isotropy)
Bianchi type metric is dynamically unstable in the evolution
towards the singularity (breaking of homogeneity)
BKL scenario is thought to be generic solution to GR near CS

I does not rely on any symmetry conditions;
I corresponds to non-zero measure subset of all initial conditions;
I solution is stable against perturbation of initial conditions

BKL appears in the low energy limit of superstring models
application of non-singular quantum BKL theory

I realistic model of the very early Universe
I may help in the construction of the theory unifying gravitation

and quantum physics.
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The Bianchi IX model:

Dynamics of Bianchi-IX is the best prototype for the BKL scenario6

Questions to answer:
I What happens to the oscillatory/chaotic dynamics after the

imposition of quantum rules onto the dynamics?
I What happens to the classical singularity of the Bianchi-IX at the

quantum level?
I What is the quantum generation of primordial GW for the Bianchi IX

model?

Successful quantization of the Bianchi IX model would open the
door to the quantization of the BKL scenario.

6V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, “Oscillatory approach to a
singular point in the relativistic cosmology”, Adv. Phys. 19 (1970) 525.
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Metric of the Bianchi IX model

The general form of a line element of the non-diagonal Bianchi IX
model, in the synchronous reference system, reads:

ds2 = dt2 − γab(t)ea
αeb

βdxαdxβ, (1)

where a,b, . . . run from 1 to 3 and label frame vectors; α, β, . . . take
values 1,2,3 and concern space coordinates, and where γab is a
spatial metric.
The homogeneity of the Bianchi IX model means that the three
independent differential 1-forms ea

αdxα are invariant under the
transformations of the isometry group of the Bianchi IX model.
The cosmological time variable t is redefined as follows:

dt =
√
γ dτ, γ := det [γab] (2)

where γ is the volume density, and γ → 0 denotes the singularity.
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Equations of motion

Near the cosmological singularity one can assume7:
1 the stress-energy tensor components may be ignored
2 the Ricci tensor components R0

a have negligible influence
on the dynamics

3 the anisotropy of space may grow without bound
4 rotations of the Kasner axes can be ignored, but oscillations

are alive
which lead to the simplification of the mathematical form of the
dynamics.

7V. A. Belinskii, I. M. Khalatnikov and M. P. Ryan, “The oscillatory regime near the
singularity in Bianchi-type IX universes”, Preprint order 469 (1971), Landau Institute
for Theoretical Physics, Moscow (unpublished); published as sections 1 and 2 in: M. P.
Ryan, Ann. Phys. 70 (1971) 301.
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Equations of motion (cont)

Finally, the asymptotic form (near the cosmological singularity) of the
dynamical equations of the non-diagonal Bianchi IX model reads:

d2 ln a
dτ2 =

b
a
− a2,

d2 ln b
dτ2 = a2 − b

a
+

c
b
,

d2 ln c
dτ2 = a2 − c

b
, (3)

where a = a(τ), b = b(τ), c = c(τ) are scale factors.
The solutions to (3) must satisfy the condition:

d ln a
dτ

d ln b
dτ

+
d ln a

dτ
d ln c

dτ
+

d ln b
dτ

d ln c
dτ

= a2 +
b
a

+
c
b
. (4)

Eq (3) can be obtained from the Lagrangian equations of motion
with L in the form:

L := ẋ1ẋ2 + ẋ1ẋ3 + ẋ2ẋ3 + exp(2x1) + exp(x2 − x1) + exp(x3 − x2). (5)

Włodzimierz Piechocki (NCBJ) Towards solving generic singularity problem Bad Honnef, July 31, 2014 12 / 45



Equations of motion (cont)

Finally, the asymptotic form (near the cosmological singularity) of the
dynamical equations of the non-diagonal Bianchi IX model reads:

d2 ln a
dτ2 =

b
a
− a2,

d2 ln b
dτ2 = a2 − b

a
+

c
b
,

d2 ln c
dτ2 = a2 − c

b
, (3)

where a = a(τ), b = b(τ), c = c(τ) are scale factors.
The solutions to (3) must satisfy the condition:

d ln a
dτ

d ln b
dτ

+
d ln a

dτ
d ln c

dτ
+

d ln b
dτ

d ln c
dτ

= a2 +
b
a

+
c
b
. (4)

Eq (3) can be obtained from the Lagrangian equations of motion
with L in the form:
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Hamiltonian

The momenta, pI := ∂L/∂ẋI , are:

p1 = ẋ2 + ẋ3, p2 = ẋ1 + ẋ3, p3 = ẋ1 + ẋ2. (6)

The Hamiltonian of the system:

H := pI ẋI − L =
1
2

(p1p2 + p1p3 + p2p3) (7)

−1
4

(p2
1 + p2

2 + p2
3)− exp(2x1)− exp(x2 − x1)− exp(x3 − x2),

which due to (6) and (4) leads to the dynamical constraint:

H = 0. (8)
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Hamilton’s equations
The Hamilton equations have the following explicit form:

ẋ1 =
1
2

(−p1 + p2 + p3), (9)

ẋ2 =
1
2

(p1 − p2 + p3), (10)

ẋ3 =
1
2

(p1 + p2 − p3), (11)

ṗ1 = 2 exp(2x1)− exp(x2 − x1), (12)
ṗ2 = exp(x2 − x1)− exp(x3 − x2), (13)
ṗ3 = exp(x3 − x2), (14)
H = 0. (15)

One may show that Lagrangian and Hamiltonian formulations are
completely equivalent. Analytical solution to this 6-dimensional
nonlinear coupled system of equations are unknown.
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Dynamical systems method

The local geometry of the phase space is characterized by the
nature and position of its critical points. These points are locations
where the derivatives of all the dynamical variables vanish.
The set of all critical points and their characteristic, given by the
properties of the Jacobian matrix of the linearized equations at
those points, may provide a qualitative description of a given
dynamical system.
The above situation is specific to the case when a fixed point is of
the hyperbolic type. In the case of the nonhyperbolic fixed point,
linearized vector field at the fixed point cannot be used to specify
completely local properties of the phase space.
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Dynamical systems analysis (cont)

The set of critical points fulfills the following conditions:

p1 = 0 = p2 = p3, (16)
x1 → −∞, x2 → −∞, x3 → −∞, (17)
x3 < x2 < x1 < 0. (18)

One may easily verify that this set satisfies the Hamiltonian constraint.
Thus the set of critical points SB is given by

SB : = {(x1, x2, x3,p1,p2,p3) ∈ R̄6 | (x1 → −∞, x2 → −∞, x3 → −∞)

∧(x3 < x2 < x1 < 0); p1 = 0 = p2 = p3}, (19)

where R̄ := R ∪ {−∞,+∞}.
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Dynamical systems analysis (cont)

The Jacobian (at any point of the set SB):

J =



0 0 0 −1/2 1/2 1/2
0 0 0 1/2 −1/2 1/2
0 0 0 1/2 1/2 −1/2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


The characteristic polynomial associated with Jacobian J reads:
P(λ) = λ6, so the eigenvalues are the following: (0,0,0,0,0,0) .
Since the real parts of all eigenvalues of the Jacobian are equal to
zero, the set SB consists of nonhyperbolic fixed points.
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Dynamical systems analysis (cont)

Summary:
1 We are dealing with the nonhyperbolic type of critical points. Thus,

getting insight into the structure of the space of orbits near such
points requires an examination of the exact form of the vector field.

2 The phase space is higher dimensional.
3 The set of critical points SB is not a set of isolated points, but a

3-dimensional continuous subspace of R̄6.
4 The critical subspace SB is situated in an asymptotic region of

phase space with infinite values of its variables.
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Nonhyperbolicity8

Are the nonhyperbolic critical points directly connected with the chaotic
dynamics?

8E. Czuchry and WP, “Bianchi IX model: Reducing phase space,” Phys. Rev. D 87
(2013) 084021;
E.Czuchry, J. Hell, and WP, ‘Bianchi IX model: Comparing diagonal and nondiagonal
cases’, in preparation.
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Semi-classical Bianchi IX model

In the Misner like parametrization the Hamiltonian for the vacuum
Bianchi type models reads9

H = N (t)
(

2πG
3c2a3

(
a2p2

a − p2
+ − p2

−

)
− c4

32πG
aWn(β±)

)
≈ 0, (20)

where (a, β±; pa,p±) are canonical variables.
Well known homogeneous models can be obtained as follows:

FRW, by taking Wn(β±) = 0 and p± = 0;
Bianchi-I, corresponds to Wn(β±) = 0;
Bianchi-II, has Wn(β±) = n2e8β+ and n > 0.

9H. Bergeron, E. Czuchry, J-P. Gazeau, P. Małkiewicz, and WP, ‘Quantum Bianchi
IX model’, in preparation.
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Classical Hamiltonian

The Bianchi IX model is defined by

Wn(β±) = n2e−4β+

((
e6β+ − 2 cosh(2

√
3β−)

)2
− 4
)
, n > 0. (21)

The potential Wn is bounded from below and reaches its (absolute)
minimal value at β± = 0, with Wn(0) = −3n2.
Wn has C3v symmetry and is asymptotically confined except for three
directions:

(i) β− = 0, β+ → −∞,
(ii) β+ = β−/

√
3, β− → +∞,

(iii) β+ = −β−/
√

3, β− → −∞,
where Wn → 0.
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Figure: The plot of Wn near its minimum. Boundedness from below,
confinement aspects, and C3v symmetry are illustrated.
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Classical Hamiltonian (cont)

Redefining the phase space variables, to suggest possible
approximation, by introducing the canonical pair
(q = a3/2,p = 2pa/(3

√
a)):

H = N (t)

(
2πG
3c2

(
9
4

p2 −
p2

+ + p2
−

q2

)
− c4

32πG
q2/3Wn(β±)

)
. (22)

It results from Eq. (22) that near the singularity, q = 0, we may treat q
as heavy degree of freedom, and β± as light degrees of freedom. It is
so because ‘mass’ of the β± behaves as q2, while ‘mass’ of q is fixed.
Therefore, we may quantize our system by using an adiabatic
approximation.
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Classical Hamiltonian (cont)
For the purpose of the adiabatic quantization:

H = N (t)
(

3πG
2c2 p2 −H±

)
, (23)

where

H± :=
2πG

3c2q2 (p2
+ + p2

−) +
c4

32πG
q2/3Wn(β±) . (24)

β± = 0 = p± corresponds to the classical ground state of the
anisotropy Hamiltonian H±. Thus, FRW may be treated as a
special case of Bianchi-IX , where the anisotropy degrees of
freedom are frozen in their (classical) ground state.
We cannot quantize the FRW model alone, because we should
take into account the effect of quantum ‘zero point energy’
generated by the quantized anisotropy degrees of freedom of the
Bianchi-IX model.
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Quantum Hamiltonian

In what follows we apply the modified Dirac quantization method:
quantizing H (all degrees of freedom) to get Ĥ,
finding semi-classical expression Ȟ of Ĥ,
making adiabatic approximation,
implementing constraint Ȟ = 0.

Since (q,p) ∈ R+ × R and (β±,p±) ∈ R4:
we apply affine coherent states quantization to (q,p),
we apply canonical quantization to (β±,p±)
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finding semi-classical expression Ȟ of Ĥ,
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Quantum Hamiltonian (cont)

The quantum Hamiltonian Ĥ reads (we put N = 1):

Ĥ =
3πG
2c2

(
p̂2 +

~2K1

q̂2

)
− 2πG

3c2 K2
p̂2

+ + p̂2
−

q̂2 − c4

32πG
K3 q̂2/3Wn(β̂±) ,

(25)
where the Ki :

K1 =
1
4

(
1 +

K0(ν)

K1(ν)

)
, K2 =

(
K2(ν)

K1(ν)

)2

K3 =
K5/3(ν)

K1(ν)1/3K2(ν)2/3 ,

(26)
and where the Kα(ν) are modified Bessel functions.
p̂± = −i~∂β± , and β̂± defined as β±, acting on L2(R2,dβ+dβ−);
p̂ = −i~∂q, and q̂ defined as q, acting on L2(R+,dq).
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Semi-classical approximation

We have

Ĥ±(q) =
2πG
3c2 K2

p̂2
+ + p̂2

−
q2 +

c4

32πG
K3 q2/3Wn(β±) . (27)

Due to the harmonic behavior of Wn near its minimum:

Wn(β±) ' −3n2 + 24n2(β2
+ + β2

−) + o(β2
±) , (28)

we approximate the eigen-energies E (N)
± of Ĥ± as follows:

E (N)
± (q) ' − 3c4

32πG
K3q2/3n2 +

~c
q2/3 n

√
2K2K3 (N + 1) , (29)

where N = 0,1, . . . .
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Ĥ±(q) =
2πG
3c2 K2

p̂2
+ + p̂2

−
q2 +

c4

32πG
K3 q2/3Wn(β±) . (27)

Due to the harmonic behavior of Wn near its minimum:

Wn(β±) ' −3n2 + 24n2(β2
+ + β2

−) + o(β2
±) , (28)

we approximate the eigen-energies E (N)
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Semi-classical approximation (cont)
The Hamiltonian Ĥ is now replaced by the one with frozen anisotropy
degrees of freedom in some eigen state evolving adiabatically:

Ĥav = N (t)
(

3πG
2c2

(
p̂2 +

~2K1

q̂2

)
− E (N)

± (q̂)

)
. (30)

The semi-classical expressions with affine CS, is defined as

Ȟav (q,p) = 〈λq,p|Ĥav |λq,p〉 , (31)

where λ := K0(ν)/K2(ν) is chosen to get 〈λq,p|q̂|λq,p〉 = q
and 〈λq,p|p̂|λq,p〉 = p.
Finally, we obtain

Ȟav = N (t)
(

3πG
2c2

(
p2 +

~2K4

q2

)
+

3c4

32πG
K5q2/3n2 − ~c

q2/3K6n(N + 1)

)
,

(32)
where K4,K5,K6 are numerical factors.
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The Hamiltonian Ĥ is now replaced by the one with frozen anisotropy
degrees of freedom in some eigen state evolving adiabatically:
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Imposition of Hamiltonian constraint:

The constraint Ȟav (q,p) = 0 reads

ȧ2

a2 + k
c2

a2 + s2
Pc2K4

a6 =
8πG
3c2 ρ(a) , (33)

where

sP := 2πG~ c−3, k :=
K5n2

4
, ρ(a) := ~c(N + 1)

nK6

a4 . (34)

The main features of this quantum model:
anisotropy degrees of freedom produce radiation-like energy
density ρ(a) (we consider vacuum BIX model);
new repulsive potential term with a−6 generated by the affine CS
quantization;
curvature-like term kc2a−2, present in the classical BIX model.
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Resolution of singularity
Equation (33) can be rewritten as

kc2 + s2
Pc2K4

a4 −
8πG
3c2 a2ρ(a) ≤ 0, (35)

which defines allowed values of scale factor a ∈ [a−,a+]. Thus, the
semi-classical trajectories are bounded:
from below

sP

a2
−

=
2K6

3K4
n(N + 1)

(
1 +

√
1− f (ν)

(N + 1)2

)
(36)

and from above

sP

a2
+

=
2K6

3K4
n(N + 1)

(
1−

√
1− f (ν)

(N + 1)2

)
. (37)
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Periodicity of trajectories

The semi-classical trajectories are periodic.
The oscillatory period T of the universe is

T =
2tP√
K4

(x−x+)−3/4
(

x+

x−

)−1/4

E
(

1− x+

x−

)
, (38)

where tP =
√
sP/c is the Planck time, x± = sP/a2

∓, and E is the
complete elliptic integral of the second kind.
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Conclusions

Applying
mixed procedure of quantization (CS and canonical),
adiabatic approximation to the quantum Hamiltonian ,
constraint H = 0 at the semi-classical level,

it is possible to develop a quantum version of the classical Bianchi-IX
model that looks like a modified FRW model.
The main features of this quantum model are:

the transformation of the quantum energy due to anisotropy
degrees of freedom into radiation-like term ∝ a−4

new repulsive potential term ∝ a−6 generated by quantization,
responsible for the resolution of the singularity
a curvature-like term ∝ a−2 (already present in the classical
Bianchi-IX treatment)
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Chaotic dynamics:
Classical dynamics of the vacuum Bianchi IX model is chaotic10

What about quantum dynamics11?
Universality conjecture for energy levels distribution:

I chaotic classical systems are characterized by the Gaussian like
distribution describing the ‘level repulsion’ in quantum theory12:

PGOE (s) =
π

2
s exp

(
−π

4
s2
)
. (39)

I regular classical systems are characterized by the Poisson like
distribution describing ‘level clustering’ in quantum theory:

PPoisson(s) = e−s, (40)

where s is level-spacing.
10see, e.g., N. J. Cornish and J. J. Levin, “The Mixmaster universe is chaotic”, Phys.

Rev. Lett. 78 (1997) 998; “The Mixmaster universe: A Chaotic Farey tale”, Phys. Rev.
D 55 (1997) 7489

11J. Mielczarek and WP, work in progress.
12It may be described by the distribution based on Gaussian Orthogonal Ensemble

of the random matrices.
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I chaotic classical systems are characterized by the Gaussian like
distribution describing the ‘level repulsion’ in quantum theory12:

PGOE (s) =
π

2
s exp

(
−π

4
s2
)
. (39)

I regular classical systems are characterized by the Poisson like
distribution describing ‘level clustering’ in quantum theory:

PPoisson(s) = e−s, (40)

where s is level-spacing.
10see, e.g., N. J. Cornish and J. J. Levin, “The Mixmaster universe is chaotic”, Phys.
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D 55 (1997) 7489
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Chaotic dynamics (cont):

In real system, chaotic and regular regimes may coexist: the level
spacing distribution can be modelled by distribution interpolating
between Poisson like and Gaussian like distributions, such as the
Brody distribution

PBrody (s, β) = (β + 1)bsβ exp
(
−bsβ+1

)
, (41)

where

b =

[
Γ

(
β + 2
β + 1

)]β+1

. (42)
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Classical Hamiltonian
The action integral for Bianchi type models in Misner’s variables:

I =

∫
(p+dβ+ + p−dβ− − HdΩ), (43)

where β±, p±, Ω, are independent variables, and H = H(Ω, β±,p±).
An evolution parameter (time) Ω is related to the volume density via

Ω = −1
3

ln
√

g. (44)

Thus, the gravitational system enters the singularity regime when the
volume vanishes

√
g → 0, i.e. Ω→ +∞.

For the Bianchi IX model we have

H2 = p2
+ + p2

− + e−4Ω V , (45)

where the potential reads

V = −4
3

e−2β+ cosh(2
√

3β−) +
2
3

e4β+(cosh(4
√

3β−)− 1) +
1
3

e−8β+ .

(46)
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Classical Hamiltonian (cont)

The equipotential lines for the Bianchi IX potential:

-4 -2 0 2 4

-4

-2

0

2

4

Β+

Β
-

Figure: As time increases, the potential becomes triangle like. It is confining
and has the C3v symmetry.

Włodzimierz Piechocki (NCBJ) Towards solving generic singularity problem Bad Honnef, July 31, 2014 36 / 45



Quantum Hamiltonian

Making the canonical mapping

Ω 7→ τ := e−2Ω, H 7→ Hτ := −1
2

e2ΩH, (47)

with unchanged β± and p± variables, leads to the Hamiltonian:

4H2
τ = τ−2(p2

+ + p2
−) + V − 1, V = V (β±). (48)

The singularity occurs at finite time τ = 0.
Quantum operator corresponding to (48) reads

4Ĥ2
τ = − 1

τ2

( ∂2

∂β2
+

+
∂2

∂β2
−

)
+ V (β±)− 1. (49)
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4Ĥ2
τ = − 1

τ2

( ∂2

∂β2
+

+
∂2

∂β2
−

)
+ V (β±)− 1. (49)

Włodzimierz Piechocki (NCBJ) Towards solving generic singularity problem Bad Honnef, July 31, 2014 37 / 45



Eigenvalue problem for Hamiltonian

For statistical analysis we should solve the eigen problem:

Ĥτ fk (τ, β+, β−) = ek (τ)fk (τ, β+, β−), (50)

where k ∈ Z, ek (τ) ∈ R, and {fk}k∈Z can be used to determine an
orthonormal basis in the subspace Dτ , where Dτ ⊂ Hτ := L2(Sτ ,dµ),
chosen in such a way that Ĥτ is essentially self-adjoint on Dτ . The
subset Sτ is defined as:

Sτ := {(β−, β+) ∈ R2 | τ−2(p2
+ +p2

−)+V (β±)−1 > 0, ∀ (p−,p+) ∈ R2},
(51)

where 0 < τ < τ0 defines the monotonicity interval of time.
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Triangle potential well approximation:

The eigen problem for the Ĥτ is mathematically equivalent to
solving the Schrödinger equation for a particle in two dimensional
potential well.
The difficulty in solving this equation is due to complicated form of
the potential, which would require sophisticated numerical
techniques.
Near the singularity, the potential can be approximated by the
hard walls equilateral triangle potential.
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Triangle potential well approximation (cont)
The eigen problem of a particle in equilateral triangle was solved
analytically13. The eigenvalues of Ĥ2

τ are:

e2
q,p = (p2 + pq + q2)E0, (52)

where E0 > 0 is a constant, and

q =


0,1,2, . . . ,
1,2,3, . . . ,

1
3 ,

2
3 ,

4
3 ,

5
3 , . . . ,

(53)

and where
p = q + 1,q + 2, . . . (54)

Taking the spectral square root of the operator Ĥ2
τ , one gets the

spectrum of Ĥτ :

eq,p(τ) ∼
√

p2 + pq + q2. (55)
13Wai-Kee Li, S.M. Blinder, Solution of the Schrödinger equation for a particle in a

equilateral triangle, J. Math. Phys. 26, 2784 (1985)
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Level-spacing distribution for the Bianchi IX model:

Computational procedure:
Bianchi IX potential is approximated by the hard wall equilateral
triangle potential with eq,p(τ) ∼

√
p2 + pq + q2.

quantum numbers necessary to parameterize levels of different
energy are chosen as follows

q =
0
3
,
1
3
,
2
3
,
3
3
,
4
3
,
5
3
, . . . , p = q + 1,q + 2, . . . (56)

corresponding set of eigenvalues Ei is such that
E1 < E2 < E3 < E4 < · · · < EN

set of level-spacings ∆i := Ei+i − Ei ,
si := ∆i/∆̄ are time independent
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Level-spacing distribution (cont):
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Figure: Level-spacing distributions for different number of levels taken into
account: a) 310, b) 1742, c) 53431, d) 142887. The blue line corresponds to
the Poisson like distribution. The red line is the Gaussian like distribution. The
green line is the Brody distribution with the parameter β = 0.35.
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Summary:

Quantum dynamics of a particle in hard wall triangle is satisfactory
described by Brody’s distribution.
Examination of fluctuations of the distribution by unfolding
procedure may bring some new information concerning the
chaoticity of the distribution.
The statistics is time independent as the variable s is time
independent.
This toy model cannot be used to see what happens at the
singularity.
Open question: What is the quantum dynamics of the Bianchi IX
with realistic potential?
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Next steps for the Bianchi IX model:

Studying classical evolution near the singularity by dynamical
systems method to find suitable canonical formulation convenient
for quantization.
Examination of statistics of energy spectrum

I vacuum or perfect fluid - classical chaos does occur,
I massless scalar field - classical chaos may be absent,
I massless vector field - not examined yet.

Rigorous quantization of dynamics: evolution of BIX towards the
cosmological singularity can be considered to be a sequence of
transitions from one Kasner epoch to another via vacuum BII
evolution.14

Making predictions for primordial gravitational waves.

Successful quantization of the Bianchi IX model may enable
quantization of the BKL scenario.

14H. Bergeron, O. Hrycyna, P. Małkiewicz, and WP, ‘Quantum theory of the Bianchi
II model’, Phys. Rev. D, in press.
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Thank you!
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