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It is demonstrated that neither the arguments leading to inconsistencies in the description 
of  quantum-mechanical measurement nor those "explaining" the process o f  measurement 
by means of  thermodynamical statistics are valid. Instead, it is argued that the probability 
interpretation is compatible with an objective interpretation of  the wave function. 

1. INTRODUCTION 

The problem of measurement in quantum theory and the related problem of  how to 
describe classical phenomena in the framework of  quantum theory have received 
increased attention during recent years. The various contributions express very 
different viewpoints, and may roughly be classified as follows: 

1. Those emphasizing contradictions obtained when the process of measurement 
is itself described in terms of  quantum theory. ~1~ 

2. Those claiming that measurement may well be explained by quantum theory 
in the sense that "quantum-mechanical noncausality" can be derived from statistical 
uncertainties inherent in the necessarily macroscopic apparatus of measurement. ~ 

3. Those introducing new physical concepts like hidden variables. ~3~ 

Suggestions of the third group are usually based on the first viewpoint, and are 
meaningful only if they lead to experimental consequences. These have not been 
confirmed so far. 
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A measurement in quantum theory is axiomatically described by means of 
a Hermitian operator. If  the eigenstates of this operator are cp~, and the state of  the 
measured system S is ~0 = 5-', c~%,  then, according to the axiom, the result of the 
measurement will, with probability ]c ,  12, be the corresponding eigenvalue a~ 
represented physically by a "pointer position," i.e., by an appropriate state of the 
measuring device M. For the most frequent class of measurements, it is furthermore 
predicted that any following measurement can be described by assuming S to be 
in the state %~ after the measurement. 

When describing the process of  measurement as a whole in the framework of 
quantum theory, it is assumed that the apparatus M can be described by a wave 
function ~ ,  the state of the total system M q- S obeying the Schr5dinger equation, 

n n , m , B  

with U~(0 )  = ~,~ 8~ .  As the state of a macroscopic apparatus can be determined 
only incompletely, there must be a large set of states {4}0 compatible with the knowl- 
edge about M. If  this set of states is assumed to be independent of the state of  S 
before measurement, a condition on the coefficients U2~(t) can be derived from the 
requirement that the axiom of measurement be fulfilled in the case c, = 8~ ° , i.e., 
~0 = ~'o • The interaction must be of  the von Neumann type (4) 

9zm U~0 (t) = 3,,~u2B(t ) (2) 

for all but a negligible measure of states of  the set {~}0, and for times t larger than 
the duration of the measurement. Furthermore, practically all states ~ u~( t )~  
must be members of  a set {~},~ corresponding to a "pointer position n" of M. 

In the case of  a general state % the final total state now takes the form 

5b(t) = ~ c,u~e(t) ~oq) (3) 
n,B 

It represents a superposition of different pointer positions. This result is said to be 
in contradiction to the axiom of measurement, because the latter states that the result 
of  the measurement is one of the states ~ u2o(t) ~ % .  It is of course very unsatis- 
factory to assume that the laws of nature change according to whether or not a physical 
process is a measurement. 

The difficulties arising when a macroscopic system is described by quantum 
theory can be seen more directly by applying the main axiom of quantum theory, i.e., 
the superposition principle. If  there are two possible pointer positions {~}~ and 
{gb}~, any superposition Cl~nl "~ C2~n~ must be a possible state. As such super- 
positions have never been observed (see Wigner m) one should at least find dynamical 
causes for their nonoccurrence. Although recent work (5) has shown that dynamical 
stability conditions in the original sense of Schr/Sdinger's (8) have a much wider field 
of applicability than previously expected, the process of measurement does not, 
because of the above arguments, belong to this class of  phenomena. 
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2. CRITICISM OF STATISTICAL INTERPRETATIONS 

Results apparently in contradiction to those of the preceding section have been 
derived in a series of papers (2) which try to make use of the uncertainties in the 
microscopic properties of the apparatus of measurement. The mathematical concept 
used in these theories is the density matrix formalism. 

A simple example may illustrate such theories. If the density matrix describing M 
is ~p~¢~¢~*, the total system is described by 

p(O)= ~ r ~ c c ' 6 6 " - - ~ *  (4) r a  n n ' r o : r a  ~ " F n '  

For a yon Neumann interaction, one obtains 

p(t) = eiHtp(O) e -~r~ -- ~ p c~c*u~ (t) u*~'fD d, d,*~ ~* (5) 
" - -  ' t~ a B '  ~ J " r t ~ r ' B " r n t k ' n "  

a n n ' B B '  

Provided the coefficients u~(t) possess arbitrarily distributed phases guaranteeing that 

Z p~u:~(t) u*$'(t) ~ 8n,qB~,(t ) (6) 
o~ 

(the diagonality in tiff' is not needed), p(t) becomes 

p(t) ~ Z I e. [ 2 q~.%~* Z q'~,(t) ¢~¢ff, (7) 
n t~' 

This density matrix describes exactly the situation postulated by the axiom of 
measurement. (4) 

It is tempting to interpret this result by saying that the statistical uncertainty 
inherent in the macroscopic apparatus is transferred by means of the interaction to 
the system 5'. This means that the outcome of a measurement, i.e, the pointer position, 
should be exactly predictable if we knew the microscopic state of M. Equation (3) 
demonstrates that this interpretation is wrong? 

The contradiction between Eqs. (3) and (7) is--aside from the dubious nature 
of the statistical assumption--due to a circular argument. The density matrix formal- 
ism is itself based upon the axiom of measurement. In order to see this, consider the 
case of a set of states ¢(~) = Zn c~¢,, prepared with probabilities p(% The probability 
of finding the eigenvalue a~ is then 

w• = ~ p ~ ) [ c ~  i) t ~ == tr{P,,p} (8) 
i 

1 The above example is not identical with any of the theories of Ref. 2. It does not, however, use any 
additional assumptions. As it leads to a contradiction, one of the assumptions used must be wrong. 
Some of these theories do not start with an ensemble for the initial state of the apparatus, but assume 
instead that the "pointer position" is represented by some time average. The latter is then trans- 
formed into an ensemble average by means of the ergodic theorem. Interpreted rigorously, these 
theories would prove that the pointer position fluctuates in time. 
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if Pn = ~bn~bn*, and p = ~ p~i)¢(i)~b~i~*. The states ~h (i) will in general not be linearly 
independent, although p may of course be expanded quadratically in terms of a 
complete orthogonal set. The reason for the usefulness of p is that, according to 
the axiom of measurement, all observable quantities can be expressed as linear- 
antilinear functionals of the wave function. 

For example, the statistical ensemble consisting of equal probabilities of neutrons 
with spin up and spin down in the x direction cannot be distinguished by measurement 
from the analogous ensemble having the spins parallel or antiparallel to the y direction. 
Both ensembles, however, can be easily prepared by appropriate versions of the 
Stern-Gerlach experiment. One is justified in describing both ensembles by the same 
density matrix as long as the axiom of measurement is accepted. However, the density 
matrix formalism cannot be a complete description of the ensemble, as the ensemble 
cannot be rederived from the density matrix. The discrepancy between Eqs. (3) and (7) 
arises since, on the one hand, Eq. (3) must hold for all but a negligible number of 
members of the ensemble, whereas Eq. (7) is interpreted as describing an ensemble 
of states % ~B u~(t) ¢~, i.e., each state being essentially different from (3). Only if 
the measurement axiom is accepted can these ensembles not be distinguished by 
subsequent observations. 

The circularity is more obvious in some versions which avoid the density matrix 
formalism (e.g., Rosenfeld (z) who made repeated use of the probability interpretation 
although the latter is to be derived). In such cases, the circular argument is considered 
a "proof  of consistency." This viewpoint cannot be accepted, as it would mean that 
the secondary observation of the pointer position (by a conscious observer or a second 
apparatus) is a measurement in the axiomatic sense. It corresponds to the interpreta- 
tion of measurement due to Heisenberg and yon Neumann (~) (claiming the arbitariness 
of the position of the "Heisenbergscher Sehnitt"), and does not require any contribu- 
tion from thermodynamics. Bohm's analysis of the process of measurement, (7) 
however, shows the importance of the amplification of the result of a measurement up 
to the macroscopic scale, thus leading to a natural position of the "'Heisenbergscher 
Schnitt." (Relative phases between microscopically realized pointer positions could 
still be measured.) 

The secondary (macroscopic) observation is significantly different from the 
primary (microscopic) one, for the physical situation between these two observations 
is described by the reduced wave function. The macroscopic observation can thus be 
performed in a reversible way, in contrast to the microscopic one, which must result 
in the reduction. It is implicitly assumed in applying the density matrix formalism 
that the macroscopic measurement is accompanied by a reduction of the wave function. 

3. CONSEQUENCES OF A UNIVERSALLY VALID QUANTUM THEORY 

The arguments presented so far were based on the assumption that a macroscopic 
system (the apparatus of measurement) can be described by a wave function ¢. It 
appears that this assumption is not valid, for dynamical reasons: 

If  two systems are described in terms of basic states .t(a) and A(2) the wave "f'k 1 "ffk~ 
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c .~(1).~(2) The case where function of the total system can be written as ¢ = ~hk~ kl~V, kl V%" 
the subsystems are in definite states (¢ ---- ¢(1)¢(2)) is therefore an exception. Any 
sufficiently effective interaction will induce correlations. The effectiveness may be 
measured by the ratios of the interaction matrix elements and the separation of the 
corresponding unperturbed energy levels. Macroscopic systems possess extremely 
dense energy spectra. The level distances, for example, of a rotator with moment of  
inertia 1 g cm 2 are of the order 10 -42 eV, which value may be compared with the 
interaction between two electric dipoles of  1 e × cm at distance R, e 2 x cm~/R 3 
10-7(cm/R) 3 eV. It must be concluded that macroscopic systems are always strongly 
correlated in their microscopic states. They still do have uncorrelated macroscopic 
properties, however, if the summations over ki and k2 are each essentially limited to 
macroscopically equivalent states. (s~ Since the interactions between macroscopic 
systems are effective even at astronomical distances, the only "closed system" is the 
universe as a whole. The assumption of a closed system M + S is hence unrealistic 
on a microscopic scale. 

The arguments leading to Eq. (3) can be accepted only if the states ¢~ are 
interpreted as those of the "remainder of  the universe" including the apparatus of 
measurement, instead of those of the latter alone. It is of  course very questionable 
to describe the universe by a wave function that obeys a SchrSdinger equation. 
Otherwise, however, there is no inconsistency in measurement, as there is no theory. 
This assumption is referred to as that of  "universal validity of  quantum theory." 
It leads--as is demonstrated below--to some unusual consequences, but is able to 
avoid the discrepancies of quantum theory. 

The nonexistence of  the microscopic states of macroscopic subsystems of the uni- 
verse leads to severe difficulties in the interpretation of observation or measurement in 
terms of information transfer between systems. In particular, since no microscopic state 
of an organism exists, the principle of"psychophysical parallelism ''(4) does not apply. 

In order to understand Eq. (3), the meaning of  superpositions of macroscopically 
different states has to be investigated. Consider, for the moment, a right-handed sugar 
molecule with wave function q~R • This is different from an eigenstate of its Hamiltonian 
H s ,  ~R • ~°L" In contrast to the analogous situation for an ammonia molecule, the 
tunneling time from cpR to ~L is much larger than the age of the universe. The interac- 
tion matrix element (q~R I H s  I q~r) is extremely small, as H s  can at most change the 
state of  two particles. Assume now that an eigenstate q~R ~ ~z had been prepared. 
The two components would then interact in different ways with their environment, 

e'md?(q~R ~ ~OL) ~ q~(R)(t) for =E ~(Z)(t) CpL ------ ~b(R)(t) ~ ~b(L~(t) (9) 

(Destruction of  the sugar molecule is neglected, and excitations may be taken into 4.) 
With respect to the parity quantum number, the sugar molecule behaves like a 
macroscopic object--the energy difference between the eigenstates is extremely small. 
The two world components ~b (R) and ¢(L) will behave practically independently after 
they have been prepared, since (¢(m I HI  ¢(L)) becomes even smaller with increasing 
time. There are no transitions between them any more. The "handedness" of the 
sugar is dynamically stable, whereas one component of the oriented ammonia molecule 
would emit a photon. 
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Such a dynamical decoupling of components is even more extreme if q~R and ~OL 
represent two states of a pointer corresponding t o  different positions. Each state will 
now produce macroscopically correlated states: different images on the retina, different 
events in the brain, and different reactions of the observer. The different components 
represent two completely decoupled worlds. This decoupling describes exactly the 
"reduction of  the wave function." As the "other"  component cannot be observed any 
more, it serves only to save the consistency of  quantum theory. Omitting this compo- 
nent is justified pragmatically, but leads to the discrepancies discussed above. 

This interpretation, corresponding to a "localization of consciousness" not only 
in space and time, but also in certain Hilbert-space components, has been suggested 
by Everett ~9) in connection with the quantization of  general relativity, and called the 
"relative state interpretation" of  quantum theory. It amounts to a reformulation of 
the "psychophysical parallelism" which has in any case become necessary as a con- 
sequence of the above discussion of  dynamical correlations between states of macro- 
scopic systems) A theory of measurement must necessarily be empty if it does not have 
a substitute for psychophysical parallelism. Everett's relative state interpretation is 
ambiguous, however, since the dynamical stability conditions z are not considered. This 
ambiguity is present in the orthodox interpretation of  quantum theory as well, where it 
has always been left to intuition which property of a system is measured "automati- 
cally" (e.g., handedness for the sugar, but parity for the ammonia molecule). The 
dynamical stability appears also to be the cause why microscopic oscillators are 
observed in energy eigenstates, whereas macroscopic ones occur in "coherent states. ''~5~ 

According to the twofold localization of consciousness, there are two kinds of 
subjectivity: The result of a measurement is subjective in that it depends on the world 
component of  the observer; it is objective in the sense that all observers of this world 
component observe the same result. The question of  whether the other components 
still "exist" after the measurement is as meaningless as asking about the existence of an 
object while it is not being observed. It is meaningful, however, to ask whether or not 
the assumption of this existence (i.e., of  an objective world) leads to a contradiction. 

The probability postulate of quantum theory can be formulated in the following 
way: Suppose a sequence of equivalent measurements have been performed, each 
creating an equivalent "branching of the universe." The observer can explain the 
results by assuming that his final branch has been "chosen randomly" if the com- 
ponents are weighted by their norm. The irreversibility connected with this branching 
is different from that due to thermodynamical statistics, and thus cannot be explained 
in terms of  the latter. Instead, the effect of branching, i.e., measurement, should be 
of importance for the foundation of thermodynamics. It seems to be partly taken 
into account by using the density matrix formalism. ~ 

2 Another suggestion of Wigner's, c1°~ which postulates an active role of consciousness, would require 
corrections to the equations of motion. 
The importance of stability for organic systems has been emphazised by Elsasser. c11~ 

4 This may indeed be the reason why the foundation of quantum-mechanical thermodynamics appears 
simpler than that of classical thermodynamics. Proofs of the master equation would~ however, 
be circular again if the process of measurement and hence the density matrix formalism were 
themselves based on thermodynamics. 
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The famous paradox of Einstein, Rosen, and Podolski (12~ is solved straightfor- 
wardly: A particle of vanishing spin is assumed to decay into two spin-½ particles. 
As a consequence, and according to the axiom of  measurement, each particle possesses 
spin projections of equal probability with respect to any direction in space. After 
measuring the spin of  one particle, however, the spin of  the other one is determined. 
According to Einstein et aL, this cannot be true if quantum theory is complete, as 
there is no interaction with the second particle. The interpretation is that the measure- 
ment corresponds to the transformation 

eim¢(%+qoz - -  %-q~2 +) = ~oa+~o2-~(+'(t) -- %-q~z+¢~-~(t) (10) 

where ¢~+) and ¢(-) are dynamically decoupled after a short time. Hence, there is 
one world component in which the experimentalists observe q~l + and ~v2-, another 
one in which they observe qvl- and q)2 +. AS these components cannot "communicate," 
the result is in accord with the axiom of measurement. 

This interpretation of  measurement may  also explain certain "superselection 
rules ''(aS) which state, for example, that superpositions of states with different charge 
cannot occur. It is very plausible that any measurement performed with such a system 
must necessarily also be a measurement of  the charge. Superpositions of  states with 
different Charge therefore cannot be observed for similar reasons as those valid for 
superpositions of macroscopically different states: They cannot be dynamically stable 
because of  the significantly different interaction of  their components with their 
environment, in analogy to the different handedness components of  a sugar molecule. 

I f  experimental evidence verifies a spontaneous symmetry-breaking of the vacuum 
as predicted by many field theories ~m this would not prove an asymmetry of  the 
world. One may formally construct invariant wave functions W = fdg2 Ua¢ from 
symmetry-violating wave functions ¢ (as done for microscopic systems(15~). The 
former cannot be distinguished from its components Ue¢ if the relative state inter- 
pretation is accepted. 

It appears that the objective interpretation of  quantum theory does not contradict 
the probability interpretation. It has to be admitted, however, that the "relative state 
wave function" describes only part of  the universe. There is no information on other 
components except for those which have been created by branching in the past. 
No estimate can therefore be made on the probability of  an inverse branching process, 
i.e., the spontaneous occurrence of components by accidental overlap. 
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