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The dependence of macroscopic systems upon their environment is studied under the
assumption that quantum theory is universally valid. In particular scattering of photons
and molecules turns out to be essential even in intergalactic space in restricting the
observable properties by locally destroying the corresponding phase relations. The
remaining coherence determines the ‘classical” properties of the macroscopic systems. In
this way local classical properties have their origin in the nonlocal character of quan-
tum states.

The effect of the interaction depends essentially on whether it permanently ‘measures’
discrete or continuous quantities. For discrete variables (here exemplified by two-state
systems) the classical properties are given by the measurement basis. The continuous
case, studied for translational degrees of freedom, leads to a competition between
destruction of coherence by the interaction and dispersion of the wave packet by the
internal dynamics. A non-phenomenological Boltzmann-type master equation is derived
for the density matrix of the center of mass. Its solutions show that the much-discussed
dispersion hardly ever shows up even for small dust particles or large molecules. Instead
the coherence length decreases towards the thermal de Broglie wave length of the
object, whereas the incoherent spread increases. The Ehrenfest theorems are shown
nevertheless to remain valid for recoil-free interactions. Some consequences of these

investigations for the quantum theory of measurement are pointed out.

1. Introduction

The relation between classical and quantum me-
chanics is at the heart of the interpretation problem
of quantum theory. Outcomes of measurements are
usually expressed in classical terms at a certain level
of description: the pointer position is assumed to be
definite like the position of a classical point mass in
space. On the other hand, the general applicability
of quantum theory — that is, essentially, the super-
position principle — is important for many phenome-
na of macroscopic objects, for example, in solid state
physics. However, if applied rigorously, this principle
would lead to possible states never observed in na-
ture, like superpositions of macroscopic objects in
very different positions or of other “macroscopically
different’ states. One may also wonder why micro-
scopic objects are usually found in energy eigen-

states, whercas macroscopic objects occur in time-
dependent states.

In addition to obviously macroscopic bodies, nearly
all molecules except the very small ones seem to
have a well-defined spatial structure. Especially mol-
ecules like sugar, alanine etc. appear only in right-
handed or left-handed (chiral) configurations, al-
though eigenstates of a parity-conserving Hamil-
tonian, in particular the ground state, are symmetric
(or antisymmetric) under parity transformation and
therefore cannot be chiral unless in case of degenera-
cy. This phenomenon has sometimes been called the
‘paradox of optical isomers’. The smallness of the
transition matrix element <¢.| H|@g> between chiral
states is of importance, but is not sufficient to ex-
plain the non-occurrence of eigenstates of the mole-
cule. Therefore this superselection rule must have
reasons which lie outside the molecule.
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Another important consequence of the superposition
principle is the kinematical “‘quantum nonlocality’. It
means that for two spatially separated systems there
are in general ‘quantum-correlated’ states of type

Y Coml@uy P> +1@> @Y. Such  superpositions

together with the interferences contained therein are
‘real” in the sense that the latter may have observ-
able dynamical effects — they are not due to incom-
plete information as for classical ensembles. In con-
trast, classical concepts are kinematically local, even
those used for the description of extended objects
like classical waves. Hence, locality would have to
be derived together with classical concepts for the
appropriate macroscopic situations, if quantum
theory were assumed to be universally valid. This
kinematical nonlocality is more specific than the
general (perhaps dynamical) nonlocality, which has
been demonstrated by Bell to be required for possi-
ble theories behind quantum theory (hidden vari-
ables theories).

As is well known, Schridinger’s original attempts
[1] to derive classical concepts and equations of
motion by means of wave packets obeying his equa-
tion have failed. More recently the importance of
the environment for the microscopic dynamical be-
haviour of macroscopic quantum systems has been
reckognized [2-6]. In principle, taking into account
such interactions is by no means new. In particular
the sensitivity of interference terms with respect to
interactions with the outside world had in many
situations  to be carefully discussed. Nevertheless,
their general role and the underlying dynamical
mechanism both seem to have been misinterpreted.
Otherwise it would not be understandable that
Ehrenfest’s theorems are still widely used to justify
classical motion, or the von-Neumann equation
(quantum Liouville equation) to ‘derive’ master
equations. The destruction of interference terms is
often considered as caused in a classical way by an
‘uncontrollable influence” of the environment on the
system of interest. In fact, this interpretation seems
to date back to Heisenberg [7]. But the opposite is
true: The system disturbs the environment, thereby
dislocalizing the phases. If the system is originally in
a superposition Y ¢,|p,>, it may influence the en-

n

vironment |®,> as if being measured by it according
to [8]

Z()n‘(pn>‘q)()>ﬁz('n‘q)n>|€pn>~ (11)

Only because of the kinematical nonlocality (quan-
tum correlation) does this interaction process have
an effect on later measurements performed at the
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system. The interference terms still exist. but they
are not there! {The synonymy of everyday language
contains a classical prejudice.) No intcrnal (even er-
godic) unitary evolution can explain the disap-
pearance of local phases [9, 10], just as the in-
teraction with the environment cannot describe a
non-unitarity in the ‘total’ system.

What is ‘there’ (what can be observed locally at the
considered system) is in quantum theory described
by the system’s density matrix. The use of the local
density matrix allows at most only a partial deriva-
tion of classical concepts for two reasons: it already
assumes a local description, and it presupposes the
probabilistic interpretation leading to the collapse of
the state vector at some stage of a measurement.
This paper is concerned only with this partial deri-
vation. The interaction will thereby be treated non-
phenomenologically — in contrast to conventional
treatments of open systems. The locality assumption
may perhaps be justified by a fundamental (underiv-
able) assumption about the local nature of the ob-
server together with the usual locality of interactions
[11]. The collapse could then be based on an as-
sumption on how a nonlocal reality is cxperienced
subjectively by a local observer [2. 12]. The difficul-
ties in giving a complete derivation of classical con-
cepts may as well signal the need for entirely novel
concepts.

The density matrix of a subsystem ¢ is given by

l’w:Tr<DPmm1~ (]2)

where Trg is the trace over the degrees of freedom of
the environment and py, is the density matrix of
the system plus environment — ideally the dyadic
product [¥><{¥| of a pure state of the whole uni-
verse. Since p, will in general correspond to a
‘mixed state’ (‘improper mixture’), certain phase re-
lations are not defined locally. Observables that de-
pend on such phases can not be measured (or
measurements will give trivial information). If the
dislocalization of certain phases by the natural en-
vironment is unavoidable, superselection rules arise:
Quantities corresponding to those subspaces be-
tween which interference terms are permanently de-
stroyed locally can be thought of as always existing
— though not necessarily behaving deterministically.
Within the limits of resolution of ‘measurement’
their paths may be assumed to exist, just as if they
were classical quantities.

This ‘coming into being of classical properties’ ap-
pears related to what Heisenberg may have meant
by his famous remark [7]: “Die ‘Bahn’ entsteht erst
dadurch, dafl wir sie beobachten.” It clearly empha-
sizes the irreversible nature of observation. However,
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the Copenhagen interpretation considers classical
conceptions a necessary and fundamental (non-deriv-
able) prerequisite for the description of measure-
ments, and therefore has to deny the possibility of
analyzing them entirely within quantum mechanical
terms. The point of view assumed here is rather
related to Mott’s analysis of g-particle tracks [13].
Quantities under the described conditions are called
‘continuously measured”. In contrast to genuine
measurements (as referred to by Heisenberg) the
measurement-like interaction (1.1) need not be con-
trollable. It is only required that the resulting en-
vironment states |®,> arc (approximately) orthogo-
nal - not that the information indicated by the letter
n is in any way extractable or classical itself in the
sensc of the above. Measurements proper (including
the rcading of the results by an observer) are de-
scribed by the collapse of the (total) wave function —
leading to one of its components |¢,) |®,> —, where-
as the (controllable or uncontrollable) measurement
without reading retains the complete superposition
(1.1) with its resulting density matrix (1.2). Con-
tinuous measurement (even if “ideal” as in (1.1)) will
also have certain dynamical consequences: it may
either lead to a freezing of the motion [14, 15]
(more generally to enforced motion [16]) - called
Zeno's quantum paradox’ or the “watchdog effect” —
or to the validity of probabilistic master equations
like those expressed by Fermi's Golden Rule instead
of a unitary cvolution [6]. It is these instead of the
Schrodinger equation which should therefore serve
to derive classical equations of motion.

The investigation of spatial motion under con-
tinuous measurement forms the main part of this
paper. This subject is discussed in Sect. 111.2.2. In
addition also the simpler situation of two-state sys-
tems (parity versus chirality eigenstates) is studied in
detail (see Sects. II, [11.2.1 and IIL.3). Section II
presents some introductory remarks about stationary
correlations, whereas the realistic situation of time-
dependent states is considered in Sect. 11I. Subsec-
tion II1.3 is devoted to a comparison of time-de-
pendent and time-independent environmental states,
in particular in the case of thermal equilibrium. Sec-
tion [V gives a short summary of the main results
and discusses some consequences of this work for
the interpretations of measurement in quantum me-
chanics.

II. Time-Independent Correlations
The total Hamiltonian can be written as
H=H,+Ho+ W, (2.1

where ¢ refers to the system and ¢ to the environ-
ment. The stationary states (cigenstates of ) may be
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approximated by product states (‘local states’) only
if the interaction W can be considered as a per-
turbation. Since the density of states is very large for
macroscopic objects, even extremely small interac-
tions must not in general be considered as per-
turbations. As an example, the level density of a
macroscopic rotator (neglecting all other degrees of
freedom) has been compared with the interaction
matrix ¢lements between two elementary dipoles,
one of them positioned on the rotator and the other
at an astronomical distance [2]. The exact energy
states are clearly non-perturbative in this case.
Hence, il the total system is described by an eigen-
state of H, a macroscopic system cannot be in a
state by itself at all, that is, it is usually strongly
correlated with the environment. The sensitivity of
time-dependent states with respect to interactions
with the environment as well as that of interactions
with a time-dependent environment will be discussed
in Sect. [1I.

If the total system is described by a stationary densi-
ty matrix of large entropy, as for example the
canonical one, the subsystem’s density matrix (1.2)
may instead be insensitive to small interactions, as

pcun2271 exXp [_(Hrp+ H®+ VV)kT]
~Z texp[—(H,+Hg)/kT], (2.2)

and therefore

po=25" Trgexp[—(H,+Ho+W)/kT]
~Z: expl— H,kT]. (2.3)

This insensitivity of the canonical density matrix is
facilitated by the almost-degeneracy of the eigenval-
ues of the resulting p,. Although the eigenstates of
H are still extremely sensitive to the existence of W,
the interference terms arising from the individual
eigenstates of H in the eigenbasis of p, cancel (com-
pare also I11.3.1). They would become important if
the situation corresponded to a genuine measure-
ment including the ‘reading’, which could single out
the eigenstates. Of course, an environment in ther-
mal equilibrium is inappropriate as a measurement
device.

However, an equilibrated environment is appropri-
ate for the dislocalization of phases. Consider for
example the parity eigenstates @ > of a chiral mole-
cule in interaction with an unpolarized photon. The
energy difference between these states is in most
such cases extremely small, as the transition between
chirality eigenstates would require a simultaneous
tunneling of several atoms. In this sense chirality
resembles a macroscopic property. If |y, +> arc
angular momentum and parity eigenstates of the
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scattered photon, the four scattering cigenstates for
each value of L can be chosen to be total parity
eigenstates

=Tl Do+ e Dl .

P> =c oo ly>+cS 1o D1

(2.4a)
(2.4Db)

where s= + distinguishes the two solutions for each
total parity value m= 4 assigned by the second bi-
nary upper index. In a spherical box of radius R
these are also the energy eigenstates according to the
boundary condition

sin{(kR— L7/2+0) =0k, =(nn+ Ln/2—90%,)/R. (2.5)

This is an implicit definition, as the phase shifts o
depend (weakly) on k. In order to measure chirality
in the time dependent scattering process (1.1), the
states |¢@,» of that equation now have to be the
chirality states [pg > =2""%(lp,> +|e_>). Taking
the limit of an infinitesimal time in (1.1), one finds
[17] that the total Hamiltonian (for cach subspace
of L) can be written as

—4E Photon
H=——(lo.> <osl=lo ><o 1I®1,+ Hy

+yllor <orl @z >t l—1lz2 > <{x2 1]
—lory Corl @y > <xal —1x3 > <x3 1} (2.6)

where y =701, L, R) is a coupling constant and |z} ,)
=2"12(15 > 4 |7* D). These linear combinations are
required for total parity conservation. [yi ,> are as-
sumed to contain the exact radial solutions (see also
Sect. 111.3). The interaction commutes [18] with the
projection operators |pp><{@pl®1, and |p;>{¢,|
®1,. For y/4AE—0 one obtains the eigenstates
lo,> 173> or lo_» lz.» with factorizing parity and
energy being independent of photon parity. For
AE/»—0 the stationary statcs can be chosen either
as the total parity eigenstates

P> =27 e D > Hle > D) (2.72)
W= >=2"" e Dl +le D) (2.7b)
and analogously for s= —. or as their superpositions
WD =lor> 17>, 1D =low 123 (2.84)
and

Yr o =lor> 12>, [P =low 7). (2.8b)

Such parity-mixed states are possible as a con-
sequence of a degeneracy of eigenstates with dif-
ferent parity and the same value of 5. Hence, in thc
case of strong coupling corresponding to a ‘con-
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tinuous measurement’ of chirality, the chirality
states |@g. 1> facilitate factorizing energy eigenstates.
This degeneracy is the stationary version of the
‘watchdog effect’.

Practically, the coupling to a single photon is very
small, and the limit AE/y—0 is not obtained. For a
non-negligible effect many photons are needed. Pfei-
fer [19] has in fact demonstrated that for sugar
molecules virtual {bound) photons are sufficient to
produce stationary states of type (2.8) - now with in-
finitely many photons instead of onec. But virtual pho-
tons have to be considered as part of the “dressed’
sugar molecule ~ not as an environment. There
now exist the two degenerate ground states (for
+>0) of type (2.8 b) for the dressed sugar molecule:
The renormalized energy difference is 1E"Y=0,
whereas the excited states (2.8 a) will not be bound.
Therefore superpositions of the two dressed states
(2.8b) are still possible. This means that the result
by itself does not explain why chirality of macro-
molecules is a ‘classical’ property. Pfeifer’s further
argument is based on proposals by Jauch [20],
Hepp [21], and Primas [22] according to which
observables must be constructed in Fock space,
whereas the renormalized states of type (2.8 b) essen-
tially require a non-denumerable number of contri-
butions. If true, this postulated superselection rule
would mean that non-trivially dressed particles
could never be observed. The solution of this ap-
parent paradox is that the observables also have to
be non-trivially dressed, that is, thev have to be
operators for “physical” systems. However. the im-
portant result AE"Y=0 (corresponding to a sta-
tionary watchdog effect) renders the stationary scat-
tering states with non-virtual photons extremely sen-
sitive to the coupling. Since AE™" =0 one always
has the situation described by (2.8). where |p) are
now the dressed states of the molecule, and |y>
describes a real photon again: In a stationary situa-
tion the dressed sugar molecule would be strongly
correlated with its environment of free photons.

The canonical density matrix (that means, in partic-
ular, an unpolarized photon) is

Pen=2Z" e T (R - T D)
+e M (W > KR+ D CFOD (2.9)

Partical tracing gives
Pp=13. (2.10)
that is. no interference terms in any basis. In con-

trast, the density matrix of an ideal non-degenerate
gas
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Pean (X, X)=Z " [dP kexp [—k*2mky T +ik(x —x')]
~exp [ —(x —xVmkgT/2] (2.11)

contains coherence effects over the range of the ther-
mal de Broglie wavelength

s =R2amkg T)~ V2, (2.12)

The extreme result (2.10) 1s a consequence of com-
plete equilibration in connection with the degenera-
cy leading to (2.8). The classical significance of the
chirality states has to be investigated for a time-
dependent situation (see Sect. I11.2.1). It will turn out
from quantitative considerations that the chirality-
sensitive scattering of photons by sugar is too weak
to lead to noticeable evolution towards equilibrium
within reasonable times. Other scattering processes
of the same (chirality-measuring) type are respon-
sible for the chirality superselection rule.

Stationary correlations analogous to those with vir-
tual photons have also been considered for super-
positions of states with different charge (Sect. 4 of
Ref. 23). Different charges lead to different polariza-
tion of the surrounding matter by the long range
electromagnetic field. But this argument in favor of
charge superselection rules is subject to a similar
critisism as before: Static polarization describes
merely a renormalization of the charged particle.
One may conjecture that only the radiation part of a
particle’s field has to be used for calculating cor-
relations with the environment, whereas the general-
ized Coulomb part [24] contributes a matter-in-
duced renormalization for building up a ‘quasi-par-
ticle”. The dislocalization of phases is then obviously
a4 time-dependent — in fact irreversible — process, as
the Sommerfeld radiation condition has to be em-
ploved. When generalized this means that macro-
scoplc properties can only occur in an irreversible
situation [25].

I1. Time-Dependent Correlations
II1.1. Short-Time Behaviour

In classical mechanics, where a system and its en-
vironment both possess their own states, an interac-
tion W will disturb the independent motion. This
kind of dynamical influence may as well occur for
time-dependent states in quantum mechanics, but in
addition the interaction will here tend to correlate
two initially factorizing states. Both effects can be
investigated and distinguished by representing the
state |¥) of the whole system by the Schmidt-
canonical form [23], that is. as a single sum,
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\‘f’(r)>12p3‘2(r)\@(f)>\dsi(f)% 3.1)

where {@;} and {®;} are certain time-dependent or-
thonormal systems in the Hilbert spaces of system
and environment, and Y p;=1. For an initially sep-
arating state !

[#(0)> =10 (0P (0)), (3.2)
that is, po(0)=1. one finds in second order of time
po()=1—At2, (3.3)

where (now dropping the argument ¢ =0)

1= ¥

JFO.m+0

-

JE0.m*0

l<(ﬁj (j)ml H|(/70 430>k2

K@} Dol WiGo Dol (3.4)

This ‘rate of de-separation’ [23], which measures the
amount, at which the two systems become corre-
lated, has to be distinguished from the total rate of
change of the initial state, which is given by

B- ¥

Jom*0.0

i<¢) q;m\HkBO (1_)0>\2' (35)

The difference between the two quantities

B—A= Z ‘(/7/ ‘50‘ HWO (I_)0>|2

j*F0

-+ Z K(ﬁo (ﬁrn'H’(ﬁO q)_0>l‘2 (36)

m+0

is the ‘classical rate of change’ and therefore the
sum of the rates for both systems.

For example. the von-Neumann-type interaction
(1.1) may be described by the Hamiltonian

H:)"Z“;l|q)n> <(pnlﬁ~ (37)

where y is a coupling constant, %, a ‘pointer scale’
and p the infinitesimal translation operator (momen-
tum operator) of the pointer. The wave function of
the pointer (environment) after time ¢ i1s then

@,,(.\', T):(I)U(-\‘_Tln T). (38)

A measurement is ‘complete” when the wave packets
@, for different n are approximately orthogonal (and
therefore equal to the Schmidt states @,(1)). The de-
separation rate (3.4) can conveniently be written as

A={Go Pol H(1 = [@o» {Pol (1 —1Do> {Dyl) H|Go Do)
(3.9)

and be calculated for the case (3.7) with @022(’,,(/),,
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to give

_“'2<(D0‘ Zan Ocm'C;lF'Crn‘z}

n,m

|(p0> {Z 0(,% knlz o
n

=72 Do| P*1P0> (o, — ) (3.10)
it (Pl pldy>=0. From the uncertainty relation
(Fourier theorem) one obtains
Az (o, — 3,)? /4D, (3.11)
where b2=(x—x)? defines the width b of the wave
packet @q(x). y/b describes the ‘effectivity of
measurement’ [6]. The total rate of change
B=72{do| p* Do) o 277 2 /4b (3.12)
depends on o, whereas A is determined solely by
the spread of the =,

For coupled harmomc oscillator Hamiltonians the
de-separation rate is proportional to the product nN
of quantum numbers, if the initial states |@o> and
|@,> are assumed to be eigenstates |@,» and |@y> of
H, and H, respectively (see Sect. 4 of Ref. 23). This
means that the sensitivity increases with level density -
in accord with stationary considerations (Sect. II).
However, if the initial states are coherent states (ei-
genstates of the annihilation operator), the rate is
independent of the eigenvalues and remains small
with small interaction. Therefore coherent states can
remain approximately uncorrelated even in the mac-
roscopic limit. This argument may explain the dom-
inance of the ficld aspect over the particle aspect
for boson fields.

Another example appropriate for investigation by
this method is an interaction by long range forces. If
in an initially factorizing two-particle state

lp(rhrz):([’(rl)‘p(l‘z)

the two wave packets have width b; and are local-
ized at r® with b;<|r§ —r9] the interaction part V of
the Hamiltonian

(3.13)

pi | pi
et
2m,;  2m,

V(1) (3.14)

may be expanded at r§ —r}

V(e =122 VI =19 +Y (==l + iVl —r3)
k

+3 Z("n —ry =1y = =1+ i
k1

S8 Vg —r9). (3.15)

For Gaussian wave packets the rate of de-separation

is in this approximation
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Azb%b%ZVﬁ, (3.16)
k.l

where

Vi =04 6 V(X —r9). (3.17)

Equation (3.16) is of course invariant under ex-
change of the particles and independent of particle
masses. (The formation of correlations 1s indepen-
dent of the internal dynamics of ecach system In
second order of time, see (3.4).) The interaction can
be interpreted as a measurement of the position of
particle 1 by particle 2 and vice versa - unlike von
Neumann’s interaction (3.7), which neglects momen-
tum conservation. The ‘resolution” of the “pointer’ i
is 1/b;, that is the width of the momentum wave
function @(p;) or &(p,), since up to order t* an
interaction potential transfers only momentum
(without shifting the wave packet spatiallvi.

The significance of the quantity 4 can for this situa-
tion be demonstrated by a simple calculation be-
yond the short-time expansion. For m: acroscopic ob-
jects (with large masses) the effect of the spreading
of the wave packet can be neglected. Hence. in a
first approximation only the interaction 1r, —r,) in
the Hamiltonian may be retained. The density ma-
trix of the whole system then evolves according to

pry,ra, 1, rs, 1)

:p(t:())exp~it[l/(r1—r2)fI'(r;-r;]]. (3.18)
The initial state will again be assumed to factorize,
@(ry) P(ry) * (ry) P*(ra).

The density matrix for, say. particle 1

p(1=0)= (3.19)

after time 1 18

Polr, rt)=Trep

:p(p(rh r’], 0) j.dsl'i(D(r) -

cexp{—it[V(r,—n—Tuo;—n]. (3.20)

Hence, the initial density matrix of particle 1 is
multiplied by a factor, originating from the for-
mation of correlations between the two particles and
expected to yield a suppression of interference terms

between different locations r; and ri. Expanding
V(r, —r,) again as in (3.15) gives
pw(rlﬂr/lvt):p(p(rlﬂr,lao)
-exp ‘”[Z = G VY T

Wl
{roer—rie i)/ 2+ = rk U s =31}
. derl(D exp{+1tz L=k V- (3.21)

Obviously only the last factor describes a damping
of interference terms. It may be discussed by insert-
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ing a Gaussian wave function of width b for particle
2. Up to a phase factor the integral I in (3.21) then
becomes

I:exp[—IZbZZ{Z Valr =i 1 (3.22)
1 k
For small arguments the damping factor reads

I~1—=02hY {3 Vil =2 (3.23)
! k

The similarity of the second term with the de-sepa-

ration paramcter A in (3.16) is obvious. For a

Coulomb-like potential with coupling constant g

g

==, (3.24)
I¥|

one has
3nr—r2o

Ty=g 0 (3.25)

B

The order of magnitude of suppression of interfer-

ence terms over a distance [:=r, —r}| can now be

estimated by combining (3.23) and (3.25) and con-

sidering the special case, where r; —r; is parallel to

r)—r{. Then
4[2b2g2 5

I~ ———F"- 1%

a

(3.26)

where a:=r)—r?| is the distance between the two
particles. In the range where the above approxi-
mations arc valid, (3.26) can be used to estimate the
coherence range | under the influence of the second
particle with wave packet width b. Its influence is
appreciable if the second term in (3.26} is non-neg-
ligible. roughly if

]2 bl fJ: [2

o

~ 1. (3.27)
o

For simplicity, the symmetrical situation b=I[ is
considered. Table ! illustrates the case of clectrostat-
ic interaction g=g¢, ¢,/4me, between two particles
each carrying one elementary charge.

For gravitational interaction the small value of the
coupling constant can be compensated by suf-
ficiently large masses. For example, two dust par-
ticles with m=10"°g at a distance of ¢=1cm will
loose interference  properties over a  range
[=10 *cm after t=1s. Two earthlike bodies at earth-
moon distance would reduce their coherence
lengths to 107! ¢cm within 107 '%s with respect to
an external observer. Hence the center of mass states
of macroscopic bodies may always be assumed to be
well localized.
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Table 1. Coherence range for two elementary charges after various
times ¢ at various distances «a. as resulting from their Coulomb
interaction and calculated in short-time approximation

=10"%s 1=1s r=1 year
a=1km [0 cm 10° cm 10" 'em
a=1m 10t em 10~ tem 10 *cm
a=1cm 10~ %cm [0 *em 10~ %cm

111.2. Irreversible Production of Correlations

If a system is originally in a superposition ) ¢,l@,>

with respect to the measurement basis, its density
matrix in this basis is p,, =¢,¢¥. A measurement of
type (1.1) will be called “incomplete’. if the apparatus
or environment states |®,> are not (approximately)
orthogonal after measurement. The matrix elements
pnr ate thereby multiplied by factors {&,|®,.> with
[K&,|®, > <! for n=n'. that is, the nondiagonal ele-
ments will be suppressed. In collision-type interac-
tions these processes will last only for a short time,
but may occur repeatedly. Many individually in-
effective collisions ({®,|®,>~1) may in this way
become important. Multiplying the density matrix
elements repeatedly with interference-reducing fac-
tors {®,| P, > corresponds to the integration of an
irreversible master equation analogous to Boltz-
mann’s Stol3zahtansatz.

If, in addition, the duration of a scattering process is
short compared to the typical time scales of
evolution of the object by itself. the total evolution
can approximately be described by an alternating
dynamics: The change of p is equal to the change
given by the internal dynamics interrupted by com-
plete scattering processes, or formally

cp cp
IT/ :[Hixlternalaf)]+i«7’ > (328)
ct C1scatt.

cp . . .
where — is defined by means of the S-matrix.
ct scatt.

To work out such a Boltzmann-equation one has
only to solve the equations of motion for the in-
ternal dynamics and the scattering process separately
(instead of a Schrodinger equation with the full
Hamiltonian and complicated initial conditions). To
begin with, only the scattering term in (3.28) will be
considered, neglecting the internal dynamics of the
system.

The most obvious measuring process for macroscop-
ic bodies is scattering of light. To justify this state-
ment one just has to open one’s eyes. It will turn
out, that even the cosmic background radiation can
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act as an effective measuring device. As discussed in
Sect. 11 for time-independent correlations, an
equilibrated environment like thermal radiation is
able to destroy (or dislocalize) interference terms -
although it cannot really measure anything. This
argument will now be extended to the case of time-
dependent formation of correlations.

Consider an environment equally distributed over N
possible values of the relevant degree of freedom
(‘pointer positions’),

Po=N"1 Y |6, (. (3.29)

n=1

Using D,(x)=do(x—nAx) and von Neumann’s uni-
tary interaction (3.7) with vo, T=ndx for simplicity,
one obtains for the density matrix of the whole
System

[)(0): Z Con ("m’l(pm> <(pm’l ®N7 ! qu)n> <d)nl

m,m’

‘)/)(T):N*] Z Cn C?f;’l@m> <Q)m" ®Iq)n+m> <¢n+m’l~
mom'.n (330)

If the width of the wave packet @, is much smaller
than Ax (complete measurement after one or several
collisions), one obtains

PolT)=3 1enl 100> <. (3.31)

The phases have been dislocalized as before. Nev-
ertheless, if the ‘pointer variable’ x js cyclic, @q(x
—NAx)=dy(x), or if N-ox, ‘reading’ the result at
the pointer would not give any information about o,
as

Pa(T)=Tr, p(T)
= N7 ! Z I(’m‘2‘¢ll'km> <¢n+ml

m,n

=N~ ! Z’(I)n> <€Dn’ :/)d)(o) (332)

The environment is therefore inappropriate for a
measurement (the interaction is ‘uncontrollable’) in
spite of (3.31).

I1.2.1. Chirality

Two-state systems provide the simplest examples for
studying the effect of repeated scattering processes.
As previous work [6] has shown, systems with few
degrees of freedom are VEry sensitive to such con-
tinuous measurements. For example, chirality states
may become dynamically stabilized by repeated
chirality-dependent scattering processes. Important
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work concerning this question was done by Si-
monius [26], Pfeifer [19] and Harris and Stodolsky
[27]. The latter considered the effect of irreversible
scattering off a chiral molecule in great detail. Their
method will be briefly described in the following
paragraph.

If the state of molecule plus environment is written
as

P> =lor> 1Pr>+ 10> @),

the coherence between the chiral states |pg> and
lor)> is given by the off-diagonal term prr in the
density matrix of the considered molecule,

PrL=LP| Pr>.

In a chirality-dependent scattering process a one-
particle state [7> leads to a change of pp, according
to

(3.33)

(3.34)

PrL=Pre{yl SISk >, (3.35)
where S, are scattering matrices of the particles,
assumed to depend on the chirality of the molecule.
Then the second term in (3.28) reads

CPre

= —Aprel), (3.36)

cl scatt.

where

2i=(1=<yISTSrlx>) - number of collisions per s.

(3.37)

The parameter 4 may be expressed in terms of scat-
tering phase shifts. However, Ref. [26] does not
contain numerical estimates of /.

Experimental evidence for chirality is best known
from the phenomenon of optical activity. The observ-
ability of this effect demonstrates that chirality is
measured by light. Thus rotating the photon polar-
ization reduces the coherence between left and right
handedness. An essential part of the natural sur-
rounding of a molecule like sugar is thermal ra-
diation of, say, room temperature or day light. Here
again it is important to realize, that the incident
light need not be polarized in order to destroy in-
terferences.

The order of magnitude of this effect may be esti-
mated as follows. The scattering of a plane wave o
with angle o of polarization with respect to some
reference frame can be assumed to be dominated by
the lowest multipole part (p-wave). Then the effect of
optical activity may be described by

p. 2 £sindlp, a+1/2>),
(3.38)

Ok L 1P, 2> > 1og L) (cOs
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where |p, 2> represents the p-wave part of a plane
wave with polarization . If, for example, the mole-
cule were initially in its ground state,

o> =2""lor> +loL)). (3.39)
the density matrix of the total system with unde-
termined photon polarization would read

PO =%(lor> + o) ({@gl+ {prl)

Ry <ol + o+ 7/2)> (o +1/2)), (3.40)

where pp(0)=1/2. In a scattering process the two
parts of the photon polarization contribute inde-
pendently to (3.38). (The form of the photon density
matrix is here independent of the choice of a special
basis. For a discussion see Sect. 111.3.) Therefore pgy
after scattering is pry=5(cos” d-sin’3), whereas popo,
remains unchanged. In this ‘uncontrollable measure-
ment” no information is transferred to the environ-
ment,

For a single scattering process J is obviously very
small. hence

PR PRLCOS(20) = prp (1 —28%). (3.41)
If Q scattering cvents per second occur, one has an
approximately exponential decrease of pg,.,

Prol il =pri(0exp(—282Q1)

=:ppl0)exp(—1t/7). (3.42)
The characteristic time t may be estimated from
experimental data of optical activity (coherent for-
ward scattering). The observed angle ¢ of rotation is
obuaimed as the sum of contributions from all mole-
cules [28]. The scattered waves interfere construc-
tively only in forward direction. The angle ¢ turns
out to depend on &, the vessel length d, the density n
of molecules and the wave number & of the photons
according to @ ~dnd/k*. For sugar the value of &
derned from measurement of ¢ is about 5.10-1'¢
radians (for visible light). For sunlight Q~10'ts~!,
leading to a characteristic time t~10'! years.

One therefore has to conclude that optical activity is
not sufficient to explain the absence of coherence
between chiral states. However, quite general cir-
cumstances provide measurements of chirality to-
gether with other properties of spatial orientation.
For example, scattering of air molecules at room
temperature (with thermal de Broglie wavelength of
/m>=10"%cm) corresponds to a characteristic time
t~10""s, as the wave lengths are small enough for
scattering to distinguish between chiral states with
almost perfect efficiency.
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II1.2.2. Localization of Macroscopic Objects

As mentioned before, macroscopic objects cannot
avoid scattering photons and other particles. The
effect of these scattering processes on the scattered
particles of course depends on the position of the
scattering object. As a consequence, this position is
measured. In this way certain interference terms in
the density matrix of the macroscopic object will be
destroyed.

The mechanism of position measurement by scatter-
ing can be described in analogy to that of chirality
measurement. If a particle is scattered off a macro-
scopic object, its resulting state |y,> will depend on
the location x of the scattering center,
XD 170 =X 11> = %D Sy, (3.43)
where S, is the scattering matrix for an object with
center of mass positioned at x. The mass of the
macroscopic object is considered as infinite in this
treatment (recoil-free collisions). If the position of
the center of mass is instead described by a wave
function ¢(x), the state of the whole system evolves
according to

[ x @) [x) 1) =[x o)) S, 17> (3.44)
The density matrix of the position of the scattering
center after scattering reads
P, X) = p(x) *(x) {7IS% Syl (3.45)
Hence, the density matrix elements are multiplied by
factors <y|Si S.|y>, the matrix elements between the
corresponding ‘pointer positions’. For sufficiently
large Ax:=|x—x'| one may expcct {y|SL S|x> ~0.
For such distances one clearly has a strong damping
of interference terms. On the other hand, for small
values of Ax a single scattering process will merely
have a small influence, that is |[<y| S S,|7> ~1. This
situation will be assumed in the following, thus great-
ly underestimating the rate of damping for large
distances, where the interference terms will very
soon vanish anyhow.

If the scattering interaction is invariant under a
translation in space, the scattering matrices for scat-
tering at x and x’ are in momentum representation
related by a phase factor,
Sk, k)=S(k, k') e itk Kix (3.46)
where S(k, k') is the usual scattering matrix with the
scattering center at the origin.
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The expression to be calculated is

<A Se Skl
— [P kK d* K" So(k. K) STk K ¢(K) * (k")
=[P kd* K k" Sk K) S*(k k)

C o k=¥ QIR e (K (K, (3.47)

where ¢(k) is the momentum wave function of the
scattered particle.

In the considered range of ineffective single scatter-
ing, the typical wavelength of the measuring particle
is large compared to the distance |x —x'| between the
two positions of the scattering center, that is, the
wave function may be replaced by a plane wave with
appropriate normalization (one particle in a cube of
length L). The momentum wave function may then
be approximated by

c(k)~L 2 5% (k ko), (3.48)

where Kk, is the momentum of the incident particle
and ko|x —x|<1. The scattering matrix can be ex-
pressed in terms of the scattering amplitude as

Sk K) =53k — k) + = [ (k. k) 3k —K'). (3.49)
2k

Inserting (3.48) and (3.49) in (3.47) and expanding
the exponential yields

. 13k, .
ASe S =1+ 7573 jfﬁ\.f (k. ko)I? d(k —ko)

=ik —ko) (x —X) = [(k—ko) (x = x)]*}- (3.50)

Integrations over angles can be performed elemen-
tarily. Let the angle between X —x' and the direction
of incidence k, be o« Then

{yISE Sy =1 +Zn—;L—2 kolx —x'| cosa
Ao —2nfdcos Of (cos )% cos O}
(k().x_x/l)z [
—‘*78Fl7* él(l +C052 CX)
+n(3cos?a—1) {dcos@|f(cos ©)? cos* O

—4mcos?a|dcos @] f(cos O)* cos? @}. (3.51)

The above expression of course depends on . If the
scattered particles (e.g. photons) are randomly dis-
tributed, one can average over « and replace the
result by
_(kolx = x)”

8n2l?
- {3/404+7/2 |d cos O f(cos O))* cos? O
— 27 [d cos O] f (cos O cos OF.

1

(3.52)
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The imaginary part, containing information about
the direction of incidence, has disappeared.

The effect of a single scattering process on the densi-
ty matrix is therefore approximately given by

’ ' l\ 2 ,)2
(x>t ) 1 SR )

~ p(x.x) ex (_(kolx—x/\)za . ) (3.53)
FPCXTEED g M) o
where

oeﬂ-:% [dcos @1 f(cos O [2—cos O =11 (3.54)

The effect of 1 subsequent independent scattering
processes is

’ ’ (k()\x—xv }:
p(x, X )=px,x)exp| —n— 3 - )

5 3.55
2 l- (3:53)

— G - ).

where n is given by

n=1>flux-t ‘
=2 particle density - mean velocity- 1= L ‘\—, rl.
{3.56)
The density matrix thus changes according to
p(x, X)) = p(X, X)exp { —At(x—x)7}. (3.57)
where
LI (3.58)

T8’V

The parameter A, which may be called localization
rate’. describes the overall effect of many indi-
vidually ineffective measurements of position by
scattering. Using (3.57). the contribution from scat-
tering to the Boltzmann cquation (3281 can NOw be
written as

Cpix.xX)

= A{x =XV px. X (3.59)

=
ct scatt

This equation describes an irreversible damping of
interference terms in the density matrix for the po-
sition of the scattering center. A phenomenological
rate equation of this type (resp. {3.28)) has been
suggested by Wigner [4]. Equation (3.59) as well as
(3.28) will in the following be discussed for the case
of various objects scattering photons or other par-
ticles.

[11.2.2.1. Various Position Measurements. Scattering
of electromagnetic waves by small objects (i.e. with
size much smaller than the wavelength) is described
by Rayleigh's law. Scattering will then be dominated
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by the dipole contribution and the well-known fre-
quency dependence o~ m* arises. The cross sections
for simple situations can easily be calculated. Some
examples will be employed in order to demonstrate
the suppression of interference terms between dif-
ferent locations for small objects.

Let the scattering object be a small dielectic sphere
with radius a¢ and uniform isotropic dielectric con-
stant ¢(w). Then the differential cross section for
scattering radiation with wave vektor k is (after
averaging over polarizations) [29]

o _ s 6(‘"‘_] )Z(I—I—cosz 9)/2 (3.60)
=k*a -— ) .

dQ s+2
Hence (3.54) gives

M e—1)\2
a “:F 1\406 (m) (361)
and

17 fe—1\*Nc¢ .
Ay=— — k®a®. 3.62

Y g (:;‘+2> V a ( )

For black body radiation the wave-numbers k are
occupied according to Planck’s law

kjfm——————— 3.63
nix exp(ck/kyT)=1" (3.63)
giving the density
Ak 2 (kgTN?

A, may be replaced by its average value
CdYk d*k

A=) o ok AN — -5 n(k
. (27'[)3 ”( k §(2H)3 }1( )
17 g(k)— 142 kS

:—3a(’c’jclk( (k) ) -

4r e()+2/) explck/kgT)—1 (3.65)

If ¢(k) 1s approximately constant (for frequencies be-
low the resonance region it can be replaced by its
static value), the result is

kpT\’ =1\ _ 34 |
IZ(TT> (8—4—2) 7!;(/ ¢t0)

where J(x) is the
J191~=1.002.

The time dependence of the density matrix (3.57) can
be written as

(3.66)

Riemann (-function, with

p=p0)exp [ —(x—=x")2/81*(1)]. (3.67)
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This means that interferences between a characteris-
tic distance
I(ty:=(8 A1)~ 12 (3.68)
are suppressed (! is defined such that I?=(x—x)* for
a Gaussian wave packet, comp. (3.98)). The order of
magnitude of this effect can now easily be calculated
by inserting some typical values in the above equa-
tions. The resulting coherence length may be illus-
trated for t=1s by the following examples. For a
large dust particle (¢=10"%cm) background ra-
diation leads to [=107°cm, whereas for a smaller
one (a=10"%cm) a value of only I=10% cm results.
For T=300 K the latter example yields /=107 cm.
Thermal radiation alone would therefore prevent ob-
servation of interference effects even for very small
dust particles.

Even free clectrons (or other charged particles) are
affected by thermal radiation. Inserting the classical
Thomson cross section

dO’T

e? \2
T0= (—2) (1+cos? @)/2,

mc

(3.69)

where e?/mc¢? is the *classical electron radius’, gives

17 N¢ e? \2
Ay=——k? (—) 3.70
oov me? (3.79)
and as average value
17 [e?\2 . k*
A=~ 5 (e—,> cfdk— —n
47 \mc- explck/kgT)—1
102 22 (kg T\
= e[ ) () (3.71)
n- ne? ¢

with {(5)~1.03. For 1 =15 a ‘coherence length” of /(1
=1s)=10*cm for T=3, and I(t=1s)=0.1cm for T
=300 results. All values of I depend on time as 1~ !2
(see (3.68)).

On the other hand, if the wavelength of the scattered
particle is comparable with or smaller than the ex-
tension of the scattering object (c.g. a dust particle),
the geometrical cross section becomes relevant. In
particular the comparatively small de-Broglie wave-
length (2.12) for particles of, say, room temperature,
leads to a strong coherence damping for objects
subjected to scattering by air molecules even in the
best available vacuum. For the case of geometrical
scattering one has in (3.58)
Oerp = (’_gcom. =~ 7-[([2#

{3.72)

where « 1s the extension of the scattering object.
Averaging over wavelengths gives, c.g. for thermal
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Table 2. Localization rate A in cm *s ' for three sizes of “dust
particles” and various scattering processes

a=10"7 cm a=10""cm a=10"°cm
dust dust large
molecule
Cosmic background  10° 10-° 1012
radiation
Room temperature 10%? 102 10°
Sunlight (on earth) 102! 107 1013
Air 103 1032 103
Laboratory vacuum 10?3 10'° 1017
(108 particles/cm?)
radiation,
A= g (kBT)SV(S) (3.73)
=——ua’c e .
(2n)° c

(compare (3.66), where A depends in a quite different
way on radius and temperature). Table 2 gives a
listing of various scattering processes for three sizes
a of ‘dust particles’. The last value a=10"°cm
corresponds to large molecules. The table contains
rough estimates for the localization rate A for the
different measuring agents listed in the first column.
A is given in units of cm~2s~ %

The table shows that in general scattering of air
molecules is most important, mainly because of the
small thermal de Broglie wavelength of the scattered
particles.

I11.2.2.2. Equation of Motion. In the preceding sec-
tions the influence of scattering processes on the
density matrix was considered neglecting internal
dynamics. For a complete treatment including also
the unitary evolution of the system itself, the full
Eq. (3.28) has to be discussed.

For a ‘free’ mass point one has

(3.74)

Himernal = 2}/”"

The quantum mechanical evolution of the system
described by this Hamiltonian leads to the well-
known spreading of wave-packets, corresponding to
an increasing coherence length. The opposite effect
is generated by the scattering term. The equation of
motion (3.28) now reads (for one space dimension)

eplx,x, ) 1 ( 6t a8l
j oA
ot 2m >

EvEl —@) p—id(x—x)p. (3.75)
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It is convenient to introduce rotated variables

yi=x—x, (3.76 a)
zi=x+X', (3.76 b}
which transform the above equation into
ép(y,z,t 2 ¢? s
PRED_ 2T e, (3.77)
ct mcoycrz

One may construct special solutions of this equation
by a Gaussian ansatz

p(y.z,)=exp—[A(t)y?+iB(t) vz~ Ciir 2=~ D(1)],
(3.78)

where p is Hermitean if the time-dependent coef-
ficients A, B, C are real. D(r) normalizes trace p to
unity. This ansatz appears sufficienily general to
exhibit the essential properties of the solutions of
(3.75). Obviously A(tr) describes the range of coher-
ence contained in p, whereas C(r) specifies the exten-
sion in space of the ensemble. explicitel

|
Ax)P=——. (3.79
(47 =g 5.79)
The spread in momentum is given by
B2
4 2=2(A — ) 3.80
(4p) e (3.80)

hence the lefthand side of the uncertainty relation
can be written as

(Ax)Z(Ap)Zzl(A B’ ) (3.81)

—t

4\C 4C*?
For A= C (pure state) and B=0 one has the well-
known case of a real Gaussian wave packet with
minimum uncertainty. The ansatz (3.7%) leads to the
coupled ordinary differential equations

dA 4

" AB+ A, (3.82 )
dt m

dB 2 8

"B " gc, (3.82b)
dt m m

dCc 4

Y=_8B 82
dt m ¢ (3:82¢)
while D(t) is given by

e P=2(C/m)">. (3.83)
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Rescaling the time ¢ by introducing t:=1/m retains
only the product Am as a dynamical parameter,

dA

—=44B+ Am, (3.84a)
dz

B

% _2B> s4c, (3.84b)
dt

d

—C=4BC. (3.84¢)
dt

The solution is characterized by a third-order poly-
nomial G(7) obeying

G"'=32Am. (3.85)
Then
G? G
Alty= — — 3.86
=G T (B.862)
G/
B(t)= —— 386b
(0=—;5 ( )
Clo)= (3.86¢)
=— 86¢
e
identically fulfill (3.84). Writing
16 5 5
G(T)Z*B"AWIT +ey,ti ¢y T4cg, (3.87)

the coefficients may be determined by initial con-
ditions, e.g., at t=0, as

1

('ozm, (3.88a)
. __4B0

ci=—4 co)y (3.88b)
o [BO)T

;=4 (4A(0)+ C0) ) (3.88¢)

They are obviously related to the physical quantities
(4x)* and (4p)? (see (3.79) and (3.80)).

The Gaussian density matrix (3.78) has the further
advantage that its diagonal representation

=2 Pal@w {p,l (3.89)

can be explicitely constructed by solving the integral
equation
Pa@ulX)=fdX p(x, X) 9u(x"). (3.90)

Solutions [30] are the harmonic oscillator wave
functions

235
@) =NH,[2(A0) " *x] exp—x2[2(AO)"?* +iB]
(3.91)
with
1/4
N=_40 (3.92)

2 Iyl g2

(H, are Hermite polynomials). The eigenvalues p,
are given by

Pn=Do qnv (393)
where

ZCI'Z Al;‘Z;clx’Z
pO:ALz_’_CLW q:Al‘"z—&-C“z' (3.94)

The diagonal representation (3.89) also allows calcu-
lation of the entropy (kz=1),

S=—<Inp)
= —trace(plnp)=-> p,Inp,

=—po ' (poInpy+qlng). (3.95)

It may be more convenient to use the ‘linear en-
tropy’

Siini=—<p>
= —trace (p)= — Y p?

= —(C/A)}? (3.96)

with — 18y, <0. Sy, is obviously monotonuously
connected with S in this case. As (3.75) is a master
equation, the entropy is expected to increase. This is
indeed so, as

dSlin
dt

= —2tracepg

= —2fdxp(x,x") p(x', x)
= +2A{dxp(x, x') (x —x)* p(x,X')

=2/ fdx'(x—x')*|p(x, x)|*>0. (3.97)
For C> A the entropy S is negative (resp. Sy,< —1)
— corresponding to the presence of negative proba-
bilities. This range has to be excluded. It would
occur by integrating (3.75) backwards in time be-
yond a pure state, just as exponential decay would
lead to normalizations greater than unity for nega-
tive times.

The following discussion will concentrate on the
question, over what distances interferences can be
observed at the mass point under consideration,
described by a density matrix p of type (3.78). The
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crucial ‘coherence width’ [ of the density matrix
(3.78) is given by

l(1):=[8A(1)] "2 (3.98)

It describes the width of p in x, for which coherence
is present. For a pure initial Gaussian state of width
b.

o(x,0)=(2nh?) ¥ exp(—x?/4b%), (3.99)
one has

1
mm=cm:§;, B(0)=0. (3.100)

The time dependence of A(r) according to the mas-
ter equation (3.75) as described by (3.86a) is then
given by

AAZmEb 4 +2Am T + 24 Amb* 1 4 3b?

Aln)=— , (3.101
) 28 Amb* T + 32+ 12b%) , 3101)
while
3h?

Clr)== . 3.102

® 2(8Amb? 3+ 312+ 12b%) ( )
A(t) increases linearly with time for small ¢,

1

A(l):gb—z—i—/lt+0(t2), (3.103)
as well as for large t,
1= L Lo (3.104)
T4 320 ' o

In the first case the term Ar arises from the scatter-
ing term in (3.75), whereas for large times 3/4 of it s
compensated by the internal dynamics. In both cases
the destruction of coherence dominates the disper-
sion of the wave packet.

As mentioned above, the linear time dependence
(3.103) would lead to negative entropy and negative
cigenvalues of the density matrix for negative times.
In fact, the exact behavior for very small times is
characterized by a quadratic time dependence (com-
pare Sect. 1IL.1). As the linear time dependence can
be justified by averaging over many scattering
cvents, the master equation (3.75) will hold for times
¢ being large compared to the time interval At be-
tween two collisions: 3 At. The initial condition
(3.100) is therefore consistent with the master equa-
tion only if it is not essentially changed by a few
measuring collisions. This holds true if the original
width b is small compared to the effective wave
length /4 of the scattered particles: b </ Because of
the very small thermal de Broglie wavelengths of the
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molecules, which dominate as a measuring agent in
almost all situations, this consistency condition for
pure initial states could be realized in nature only
for very small initial widths b.

The large-time behavior (3.104) corresponds to a
coherence length decreasing as (A¢)~' . This again
holds only as an approximation, since the coherence
length has to asymptotically approach the thermal
de Broglie wavelength g of the object as given by
the temperature of the particle bath. that is
A()</32. This limitation of the present model is
due to the assumption of passive measurements (re-
coil-free collisions), dynamically equivalent to an in-
finite mass, and therefore vanishing de Broglic wave-
length.

Investigation of the higher order terms of the expan-
sions (3.103) and (3.104) shows that they are negli-
gible if the sets of inequalities

Ar<€t<Am*b® < Am? 1% and

3 <bjLzz </12mz” (3.103)
A
for small times, or
1 1 s brm?
[>522>1a and t >*}l"* (3106)

asymptotically, are simultancously fulfilled. Here the
consistency conditions discussed above have been
added for completeness. Although, according to
(3.104), A(r) becomes asymptotically independent of
the original width b. the range of validity of asymp-
totic behavior strongly depends on it. The complete
shape of the solutions differing in the physical pa-
rameters b, m and A is characterized solely by the
dimensionless quantity j:=Amb* For example,
from the expression (3.101) one may derive the re-
sult, that A(r) can never drop below A(0) if
u>192-12

In order to illustrate the different types of solutions
for A(t), the coherence length [(t)=(8A(1))~ ' 2 is pre-
sented in Fig. 1 for the six sets of parameters that
result from combinining T=0, 3 K and 300 K with b
=10~2¢m and 107 % em. and m=10"'* g (small dust
particle). Measurement by thermal radiation only —
although not being very realistic  is considered, as
it allows to display the different types most dis-
tinctly. The resulting values of the dimensionless
quantity g are 0. 10~'. 10" for T=0. 3K, 300 K,
respectively, for h=10"2cm. and pu=0. 10°'%, 10°
for h=10 *cm. Only for the combination
h=10"7% cm and 7 =300 K the consistency condition
for pure initial states is not fulfilled.

As can be seen from Table 2, scattering of air mole-
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Fig. 1. Time dependence of the coherence length [():=(8A(t)~ 12
for center of mass of a small dust particle with radius «=10 *cm
imass m=10"'*g) under continuous mcasurcment by thermal
radiation only. Six typical situations differing in temperaturc T
and coherence length b=1(0) of the mnitial Gaussian wave packet arc
shown. All curves with T 40 start with negative derivative (compare
(3.104)) — reckognizable only for T=2300 K. Notice that increase
of c¢oherence length corresponding to quantum mechanical
spreading of wave packets dominates only in a limited time range
and 1f b is sufficiently small, or if T=0 (no measurement). For
large times ! decreases in all cases T#0 with (~! . Decrease of
will cease finally at the thermal de Broglie wave length 2y, of the
dust particle (not described by the model). In realistic situations
scattering of molecules will reduce the coherence length even
more eflectively

cules dominates in effectivity under realistic con-
ditions. mainly because of the small thermal de
Broglie wavelength, e.g. 2~10""cm for T=300 K.
For the same dust particle as in Fig. 1 with radius
a=10 *cm, now with initial wave function width
h=10""'"cm, one finds ¢=10% and Ar~10""*s. The
asvmptotic region will then begin already at
1~10"%s., Hence, under usual circumstances all
"macroscopic’ objects can be assumed to be local-
ized within their thermal de Broglie wavelengths.
Another important physical quantity is the spatial
extension of the ensemble described by the density
matrix p. It is given by the coefficient C(¢), namely

T 3 i
(Ix) =—— (8AI71T3+*"52+12}7‘)

8C() 12 b> (3.107)

(compare (3.79) and (3.102)). Again - as is thc case
for the coherence length - for large times the A-
dependent term dominates. Hence the spreading of
the ensemble is more rapid than had to be expected
from a usual dispersion of the wavc packet by itself.
Figure 2 presents Ax(r) for the same situations as in
Fig. 1.

The strong influence of the environment can also be
seen by considering the entropy S of the density

237
Ax(t) [em]
L Lo RPN BRI R
5%
«’/
1010
19 b=102cm
1 b=10"cm 3
107 -
P By P PSR A
107 1 10 10 10 t{sec]
Fig.2. Time dependence of the spatial extension  Ax(r)

=(8C(1)~ "2 of the enscmble evolving from an initial Gaussian
wave packet for the samc situations as in Fig. 1. In all cases with
T >0 Ax increases faster than without measurement (T =0)

matrix p. In the case of a dust particle measured by
air molecules, the entropy, when expressed as the
number N =e5 of states contained in the orthogo-
nalizing ensemble turns out, for example for
1=10"%s, to be about N =5-10° (sec (3.95)).

111.2.2.3. Ehrenfest Theorems. The time dependence
of the mean values of position and momentum of a
free particle follows the ‘classical’ equations

LN (3.108 a)
dr m

d

—<p>=0. (3.108 b)
dr

These equations are special cases of what is known
as "Ehrenfest theorems’, which formally connect the
time dependence of mean values of canonically con-
jugate observables with the Hamilton equations of
classical mechanics. They arc often used to link
quantum mechanics with classical mechanics. How-
ever, theorems on expectation values are by no
means sufficient. Nevertheless, the time dependence
of mean values is of importance for a partial deriva-
tion of classical motion as discussed in the introduc-
tion. Equations (3.108) have to be rederived for sys-
tems under continuous measurement, as the density
matrix does then not obey a von Neumann cqua-
tion. This could invalidate the Ehrenfest theorem. In
addition, the so-called ‘watchdog-effect” or *Zeno
paradox’ might influence the motion of the particle.
This effect is a consequence of repeated (cven ideal)
measurements and can lead to a freezing of the
motion of the continuously observed object. Analy-
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sis of this mechanism has shown [6], that systems
with dense spectra are not as sensitive to this freez-
ing as, e.g. two-state systems. In the case of a “free’
particle one has a continuum of states, therefore
ideal measurements are not expected to lead to a
freezing of the motion.

The Ehrenfest theorem in the form of Egs. (3.108) can
be shown to remain valid by direct calculation.
Writing the equation of motion (3.75) in operator
notation as

dp [ ] :

—=|— 3.109
iD= T (3.109)
where

(X ZIXY = —A(x =X p(x, X'), {3.110)

the time derivative of the expectation value of po-
sition 18

d, o fodpl_ ol [P
dt(x}—Tr{xd[}——zTrI [M,p]}—%Tr{xl}

_»

m

+Tr{xX}, (3.111)

while for momentum one has

d _ dp| . p’
dt<p>—Tr{p dt}_ —zTr{p[zm, p]}+Tr {pZ}
=Tr{pZ}. (3.112)

These equations are identical to (3.108) if the terms
containing £ vanish. This can be seen immediately,
since

Tr{xZ}=A[dxdx §(x—x)x(x—x)?p(x, x)=0,
(3.113)

Tr{pZ}= —iAfdxdx' & (x —x)(x —x")*p(x, x')=0.
(3.114)

Hence, the connection between the expectation val-
ues of position and momentum, as given by the
Ehrenfest theorem, is retained. A continuous
measurement by (ideal) scattering processes, when
described by (3.75), does not lead to a damping of
the spatial motion.

111.3. Stationary Environment

The measurement of a certain property leading to
the destruction of local phases requires that the en-
vironment changes in dependence on the value of
the property to be measured, as described by von
Neumann’s interaction (1.1). As discussed previously,
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the measurement may well be ‘uncontrollable” in the
sens¢ that the environment is in a homogenuous
mixture of all ‘pointer positions” before and there-
fore also after measurement. If the probabilities for
all pointer positions are equal, the initial density
matrix of the environment can be diagonalized as
well by means of an orthogonal set of superpositions
of pointer positions. Especially one may choose el-
genstates of the interaction Hamiltonian (in the fac-
tor space of the environment), that is. states that
cannot vary in dependence on the measured proper-
ty. This raises the question (to be discussed in
I11.3.1) of how the destruction of phases can be
understood in this ‘stationary representation’. Ho-
mogeneous mixtures occur in particular in canonical
ensembles like black body radiation. for instance if
chirality is measured by unpolarized photons.

In Sect. [I11.2 measurements were described by means
of successive collisions. This procedure is equivalent
to the application of a master equation. and to the
assumption of a time-dependent environment (in-
coming wave packets). In the case of an equilibrated
environment, eigenstates of the interaction-free
Hamiltonian have to be considered as initial en-
vironment states. Since

exp(—Hq,/kT)@)exp(—H(p/kT)

is only an approximation of exp[—(H,+Hg
+ W)/kT], information may then still flow into cor-
relations between the systems. The use of a master
equation in the case of a stationary state of the
environment will be justified in Sect. IT11.3.2.

I11.3.1. Measurement by Eigenstates of the Interac-
tion. Consider the situation of a two-state system ¢
measured by another two-state system ;. by means
of the Hamiltonian

H=y[log> {@rl—lor> {oLl]
Tl > N+l <xo 11 (3.115)

It corresponds to chirality being measured by polar-
ization as in Sect. II (with AE=0) except for the
important difference of spatial degrees of freedom
now being neglected. The polarization 7 rotates in
dependence on chirality like

lor, 1> [eos (1) 4> Lisin(G0) [z 2]

This time dependence is reversible, since the particle
carrying the polarization cannot ‘run away’ in this
model. An initial superposition 27" *(lpg> +1@L>)
leads to a density matrix of the subsystem ¢ given
by

. 1 cos(2yt)
poll)=2 (Cos(Zyt) | )

(3.116)

(3.117)
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in the chirality basis. There is no linear term in ¢
corresponding to a master equation for a two-state
system. The interference disappears reversibly at
2+t=m/2,37/2, etc. Since the same result is obtained for
an initial polarization |y_»> instead of |y_ >, it holds
as well for a mixture of both.

A mixture corresponding to the unity matrix can
also be written as a mixture of the superpositions
71 >=2"Y2(y > +lyx_>), being eigenstates of the
Hamiltonian. They are not able to measure chirality,
as they obey the trivial time dependence

lor > 71> exp[£iyt] and

. 3.118
Wl exp[Fiyt] ( )

In this case the superposition 27 '2(jog> +|@.>)
leads to the density matrix of a pure state for all
times,

1 exp[i2i",'t]>

[ :l
potl) z(exp[¥2iw] 1

(3.119)

with the upper or lower sign corresponding to an
initial state jy{) or |r,), respectively. All interference
terms are locally preserved. Both systems remain
passive according to (3.118), and neither measures
the other one. Nevertheless, a mixture of [y;> and
l7-> with equal weights leads to (3.117) again, and
therefore surprisingly is able to ‘measure’ chirality
(to destroy local phases).

This situation can be illuminated by considering the
case of an initial mixture p,, which is not due to
incomplete information, but instead due to a ki-
nematical correlation with an environment ¢ of the
environment y (‘improper mixture’), 27 "2 (jy;> P>
+ 72> |®,>), without interaction between ¢ and yx
and (@, |®,»=0. This corresponds to the same ini-
tial density matrix p,=1/2 that leads to (3.117). The
time dependence is now given by (compare 3.118)

or U710 | Py explEiyi] -+ @2 exp[ Five]}
=0p 1P + 1122 1920)

ccos(0) il 21D — x2> [P22) sin (1)}
The combined states 271 2(|y > (D> T2 |P,2)) now
lead to a time-dependence that does measure chiral-
ity. and thereby they assume the role of |y+)> in

(3.116). As the ‘Schmidt representation’ (3.1) is de-
generate in this case,

(3.120)

PO+ @)=l D@ D>+ _>1P_), (3.121)

Eq. (3.120) can also be written

\or. > {Lz->cos(yt)£ily_>sin(yt)]|®, >
+LLilz>sm@t)+_>cos(yn)]iP_>}  (3.122)
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wherein |@, > remain completely passive and |y.>
resume their original role as in (3.116). In the generic
case the Schmidt representation of a correlated state
is unique, and the phase relations defining the states
which diagonalize the density matrix p, are given
unambiguously.

The situation described by this simple model essen-
tially holds in more complicated systems except that
the recurrence time for local phases dramatically
increases with the number of effective degrees of
freedom of the environment.

111.3.2. Measurement by a Stationary State of the
Environment. The preceding simple two-state model
for the environment led to an oscillating time-de-
pendence of the interference term pg;. A more re-
alistic environment |@(t)> will in general cause a
more complicated behaviour. The Boltzmann-type
master equation (3.28) — corresponding to a linear
time-dependence — is usually justified by averaging
over collisions occurring at a constant rate. The
exact time-dependence of ppp would then be given
in a complicated way by the shape of the incoming
wave packets.

For stationary initial states of the environment con-
stant rates may be derived in the usual manner from
a Born approximation. In a one-dimensional model
the interaction with the scattered particles may be
assumed to be of type

W=[log><{orl—l9.><{@.l]
& Lx> <xal+ 12y < Vix).

where x> refers solely to the particle spin. If the
initial state is assumed to be

(3.123)

[P0 =3(ler> +low) (x> +1122) 12(0)) (3.124)
it will evolve according to
P =3er> 11> +lo 120) 1@ (1)

+3(lor) 12> o ) (), (3.125)

where |®@.(1)> is the spatial part of the scattered
particle state, corresponding to the potential + V(x),
respectively. The interference term

pr(t)=%[<P (VD)) +<{P_ (1)@ (1))]

=LiRedd, (1)|D_ (1)) (3.126)

is most conveniently calculated from the interaction
representation (in second order)

1 T

Pru(t) =% Re{l —2{P(0)] [dr fdt" Vi (t) Vi (r') | 9(0))
0

0

4 2
(b (0) [ jdrvwm] a><0>>} (3.127)
0



240

with Vi (t)=exp(iHo 1) V(x) exp(—iH, 7). Inserting a
complete system of plane waves |k’> normalized on
an interval of length 2L and assuming |®(0)> also to
be an ecigenstate of Hyg with eigenvalue E(k), one
obtains the usual resonance factors

8 TR B2
pRL(r)-LZ; (E) —E(V)? Wik k) (3.128)
where
- L
Vik k)= | dxV(x)cos(kx) cos (k' x). (3.129)

L

For sufficiently large times the resonance factor in

(3.128) may be replaced by ntd(E(k)— E(K'))/2 and

the sum over k' for large L be approximated by an

integral, ¥ —L/2n [dk a(k) (with density of states
<

(k). This leads to the linear time-dependence

a 1 a
pRL([):% (1 *Z [) :Eexp (#Et)

with a=2|V(k, k)2 a(k). The coefficient vanishes with
increasing L due to the normalization of the particle
wave functions. For N independently scattered par-
ticles, with N being proportional to L (fixed density).
the damping factor in (3.130) occurs N times and the
L-dependence cancels in close analogy to (3.42) and
(3.57.

However, the Born approximation can here be
avoided in a simple way, as the stationary solutions
|@.> corresponding to the chirality/spin states
o> 1710. lo> 172> and fow> 720+ lowy l71,, respec-
tively, can be found exactly. For example, for a local
potential V(x)=70{x) and an interval —L<x=L
they are given by

(3.130)

@, ()=A.sin[ki(x+L)] for x=0, (3.131 a)
®.(x)=Bysin[k.(x—L)] for x=0, (3.131b)
with eigenvalue equation

k= Fytan(kL) (3.132)

derived from the continuity condition at x=0. The
eigenvalues can be written as

Lk,=(n—%n+4,.: n=1L23 .. (3.133)
with |4,.]<m/2. The difference 4, — A, =:44, in-
creases smoothly from 0 for small k to @ for large k,
where the Born approximation holds. For given mo-
mentum the quantum number i can be assumed to
be of order L. The overlap integrals required for
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pri(l) are calculated as

Ly sin(4,. —An_)
- (17—‘}7'1)7T+L1y,+,—ﬁm—

+(_)nfmiiir1AlL+j1’";L_ (3.134)
+m) 4 A+ A .

<d)n v l (I)Hl“>

Although the denominator of the first term causes a
resonance-like behaviour in k—k" if n and m are
replaced by kL/2rm and k'L 27, the states can never
be considered as dense within the resonance, and
may contribute individually under a sum. critically
depending on the values of A,, —A,_. The second
term vanishes with L— .

The general time-dependence of prplt) is now given
by expanding the initial state by means of the sta-
tionary states {3.131),

(log> +lo) 71>+ 2N @(0)>
= (W)R> Vl> + \(PL> |12>) Z Cpr i(‘bn'>

+(‘(pR>][2> +‘(pL> 1X1>)ch— lq)n—>' (3135)

With

Cp— = Cy -
L T E

si (A;Aﬁ- ——Jm -

(3.136)

one obtains from (3.126) for massless particles (with
E + = kni C)

"

sintd, . — 1, )

1 . . H
prilt) =7 Re Cop Cus ()70 - -
)1.121./,1 neee (n—nnn— ]rz» ;Jm—

‘Auf )

sin (4,
m—pyn+ A, — A,

cexp {—iltm—ma+d,.— Jer L}, (3.137)

In order to get a linear time dependence as in (3.130)
one has to employ a similar initial condition. Choos-
ing for simplicity ¢, , =0 gives

=

LD 1 =)

ccos[(m—Dmet L.

([ 1 sin?(d,, . — 1)
PRI )—2 y 1

(3.138)

assuming A,. ¢t L<1. In the Born approximation
range (4, — 4, =nform= Iy the term with m=1-1
dominates for small ¢ leading to a quadratic
time dependence. A linear time dependence cannot
be obtained from a partial sum over m. It is there-
fore convenient to partition the sum into three parts,

z 7. I—w—1 I+ K i
Y~ Y =Y +2X+ X (3.139)
m=1 m=- 7 m=— s m=1-x m=Il+x+1

thereby leaving the critical terms in the finite sum.
The infinite sums can be replaccd by integrals over
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k:=(m—1)2n/L=:2nv/L for sufficiently large x,

[z cos(vret/L)

2prL()=sin?(44)) 1 Z Dt A
!
4 = ket/2L
7] MEE%; ?, (3.140)
27nk/L

Herce again the smooth dependence of 4,, =4 (k)
on k,=2nl/L, and [A|<n together with x> 1 have
been taken into account. Integrating by parts and
expanding the result for small values of kct/L gives

1
v+ A4(ko)]?

2;)R1‘(I):Sin { Z

1 ct
n?x  4L{
As expected, this expression depends only linearily
on time. The constant term has assumed an incon-
venient form as a consequence of the approxi-

mations. [t can, of course, be calculated exactly, and
is known to be unity from the initial normalization

of 13.126). Indeed,

(3.141)

s

Z (vir+2)" 72 is the pole expan-
V= —
sion of 1/sin?(x). The result up to first order in cr/L
then reads

2prrtt)=1 ”smﬂ1mk»
2p =]——3 /!
HFRIL 4r 0

N o .
_exp[ N3 sin (AA(ko))]. (3.142)
Again. as in (3.130), the L-dependence cancels if the
number of independently interacting particles is pro-
portional to L. This result holds beyond the Born
approximation (i.e. for arbitrary A4(ky}) and may be
generalized by means of (3.137) to include other
mnitial conditions and times t> L/ c.

IV. Summary and Conclusions

The microscopic behaviour of macroscopic systems
is dynamically extremely sensitive to their environ-
ments. In particular certain phase rclations will be
destroyed locally by the specific nature of the in-
teraction, which may be assumed to be entirely pas-
sive. I the system by itself is — for the usual purpose
of calculating probabilities for futurc local measure-
ments  described by its density matrix. which in
turn is diagonalized by an ensemble of states, the
latter may turn out to appropriately characterize
classical properties in a way similar to the wave
packets originally used by Schrodinger to represent
“particles’. In this way classical properties are caused
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by the influence of a specific environment, and con-
trary to usual thought are not intrinsic to macro-
scopic systems. This demonstrates clearly that classi-
cal physics is not a limiting case of the quantum
physics of isolated systems. On the other hand the
origin of classical properties can be successfully ana-
lyzed within quantum mechanics. The “particle” as-
pect - usually considered as the representation of
spatial discontinuity - is thereby obtained as a con-
sequence of the fundamental quantum measurement
or collapse of the state vector (implicitely contained
in the density matrix formalism). This is analogous
to the possibility of eliminating as a fundamental
process the concept of ‘quantum jumps’ in atoms —
representing a discontinuity in time — and of replac-
ing them by the time-dependent Schrodinger equa-
tion in connection with the collapsc during measure-
ments or observations [8]. The interaction with the
environment — even if passive - leads to a non-
unitary evolution in time of the local density matrix.
This appears as a local indeterminism for the en-
semble of diagonalizing states.

In detail the situation is different for discrete or
continuous spectra of the considered degrees of free-
dom. The first case has been studied from various
points of view for the example of a simple two-state
system. If the internal dynamics is negligible, the
resulting density matrix is diagonalized by the repre-
sentation being ‘measured’ by the interaction. In the
case of chiral molecules in a normal environment
this basis will consist of the chirality states. Al-
though an optically active molecule interacts with
light so weakly that it could remain in its parity
eigenstates if kept in a sufficient vacuum and free
from collisions with the walls, it can hardly ever be
produced in such a state. Il exposed to collisions
with air molecules, for example, chirality states will
be preserved in contrast to parity states, although
both pairs of states — if “dressed’ by virtual photons
— may be energy eigenstates. If the internal dynamics
is non-negligible, it may be suppressed by the
watchdog-effect [6].

The situation of continuous degrees of freedom be-
ing measured by a continuous measurement scale is
represented by the translational motion of small
dust particles or large molecules interacting with
photons or molecules. If the position is ‘con-
tinuously measured”, the density matrix resulting
from an initial Gaussian wave packet is determined
by an interplay of measurements with the dispersion
of the wave packet. Asymptotically the effect of
measurements dominates: The coherence length de-
creases whereas the spreading of the density matrix
in space increases with time, thus locally mimicing
an indeterministic motion. However, as the density
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matrix remains Gaussian, its eigenstates are eigen-
functions of the harmonic oscillator with arbitrary
number of nodes and asymptotically increasing
widths. They are inappropriate to represent localized
particles. A reduction or Everett branching of the
total state vector according to the corresponding
Schmidt-representation (compare Eq. (3.1) (1]
would not describe the observed situation.
Measurements proper seem in any case to contain a
discrete observation representation at some stage.
Even if a photon is observed directly by the eye, it is
registered by discrete visual cells. In such situations
of ‘measurements of continuous variables by discrete
pointers’ the unitary description of a measurement Is
(for measurements of the first kind)

@) Py =3 0,(x) Do (4.1)

where ¢,(x)= B @(x) is the restriction of ¢(x) onto
the interval of x being registered by the pointer
position @,. Since in this case - in contrast to a
continuum of pointer positions — the states @, may
be considered as mutually orthogonal after a
measurement-like interaction, the local density ma-
trix

Po=2. @n(x)@F (X (4.2)

does not contain any interference between positions
in different intervals. Hence, the eigenstates will be
restricted to these intervals.

It is crucial for this argument that the discrete point-
er by itsell is not initially in a superposition Zcm b,

"
of different positions. This will in turn be achinevcd if
the discrete pointer is macroscopic in being con-
tinuously measured by scattering photons or mole-
cules as studied for two-state systems (chirality in-
stead of pointer position). As demonstrated by the
linearity of the master equation (3.59). the com-
ponents ¢,(x) @, will then in addition evolve in time
independently of one another. (In spite of the linear
Schrodinger equation this cannot always hold true,
since the density matrix of a system interacting with
its environment cannot in general obey a von Neu-
mann equation [23]: Usually, factorizing states are
not stationary.) This result allows to specify the re-
duction of the state vector equivalent to the Everett
interpretation, provided an appropriate cosmological
initial condition is assumed for the total Everett
state [25].

Of course, no unitary treatment of the time de-
pendence can explain why only one of these dynami-
cally independent components is experienced. How-
ever, it does explain how macroscopic states — In
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particular the discrete ones like those occurring in
measurement devices or in the central nervous sys-
tem — will develop quantum correlations with mac-
roscopic states of other systems, and form dynami-
cally independent components (branches). For exam-
ple, il Y ¢, @,(x) ¥, describes the cigenstates @, of the

x
density matrix of a dust particle (compare Sect.
[11.2.2), corrclated to the states ¥, of the photon
field, an observation of the dust particle as in (4.1)
now Jeads to

Y (X)W o) B () B @y

HZ()IRI()DI(’K) le.n (Pn‘ (4'3)

where the second step corresponds to the scattering
of photons off the discrete ‘pointer” &. Since the
states ¥, , will be mutually orthogonal in cach index
due to the enormous information capacity of the
photon field ¥, the components differing in z and n
will form dynamically independent branches. As this
is required in order to render the reduction version
of the measurement dynamically consistent with the
Schrédinger equation (if Everett’s interpretation [31]
is accepted). this result is hoped to be an important
step in understanding the measurement process.

This mechanism of producing classical properties
would be effective also for theorics like Bohm's [32.
33], that explicitely introduce classical variables in
addition to a universal wave function. This may
undermine the motivation for such theories [34].

We wish to thank Deutsche Forschungsgemeinschalft for financial
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