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Abstract: It is argued that Hawking’s ‘greatest mistake’ was no mistake: in the 
canonical theory of quantum gravity for Friedmann type universes all time arrows must 
be correlated with that of the expansion. For recollapsing universes this seems to be 
facilitated partly by quantum effects at the turning point. Because of the resulting 
thermodynamical symmetry between expansion and (formal) collapse, black holes must 
formally become ‘white’ during the collapse phase (while physically only expansion of 
the universe and black holes can be observed). It is conjectured that the quantum 
universe remains singularity-free in this way (except for the homogeneous singularity) 
as a consequence of an appropriate intrinsic initial condition for the wave function.  

 
 
 
 

To be published in the proceedings of the workshop on 
“Physical Origins of Time Asymmetry” 
(held at Mazagon, Spain, October 1991) 

Edts.: J.J. Halliwell, J. Peres-Mercador and W.H. Zurek 
(Cambridge University Press, 1992) 

 
 



 
2 

 
1. Conditioned entropy in quantum cosmology 

 
Invariance under reparametrization of time may be considered as a specific 

consequence of Mach’s principle (the absence of any preferred or ‘absolute’ time 
parameter). In quantum theory it leads to a time-independent Schrödinger equation 
(Hamiltonian constraint), since any reparametrization of physical time (‘clocks’) would 
depend on the considered orbit. For example, in canonical quantum gravity the wave 
function of the universe is dynamically described by the ‘stationary’ Wheeler-DeWitt 
equation HΨuniverse = 0 in superspace (the configuration space of geometry and 
matter). Although the conventional time dependence has then simply to be replaced by 
the resulting quantum correlations between all dynamical variables of the universe 
(which have to include all physical clocks, in particular the spatial metric -- see Page 
and Wootters, 1983), this leaves open the problem of how to describe the asymmetry in 
time which is manifest in most observed phenomena.  

 
For example, entropy as the thermodynamical measure of time asymmetry is in 

quantum theory defined as a functional of the density matrix ρ,  
 
S = Trace { Pρ ln (Pρ) } .    (1) 

 
It requires an appropriate ‘relevance concept’ or ‘generalized coarse graining’ which is 
represented by a ‘Zwanzig projection’ P (an idempotent operator on the space of 
density matrices -- cf. Zeh, 1989). Well known examples are Boltzmann's neglect of 
particle correlations, or the relevance of locality, Plocalρ := ∏iρ∆Vi. This neglect of all 
long range correlations (quantum or classical) gives rise to the concept of an entropy 
density. The density matrix in (1) may then even represent a pure (‘real’) state, ρ = 
|ϕ><ϕ|, which should, however, depend on an appropriate time variable (in order to 
allow the entropy to grow).  

 
Since the physical entropy is in contrast to the entropy of information objectively 

defined as a function of the macroscopic variables (like volume and temperature -- 
regardless of whether these are known), ϕ cannot be identified with Ψuniverse (which is 
a superposition of macroscopically different states), but must instead represent some 
‘relative state’ (conditioned wave function) of the microscopic degrees of freedom with 
respect to ‘given’ macroscopic variables of the universe (including the clocks). This 
state is usually understood as the ‘collapse component’ or the ‘Everett branch’ that has 
resulted from all measurements or measurement-like processes which according to von 
Neumann's dynamical description would have led to superpositions of macroscopic 
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‘pointer positions’. These components can be considered as dynamically decoupled 
from one another once they have decohered. Measurements and decoherence represent 
the quantum mechanical aspect of time asymmetry (Joos and Zeh, 1985; Gell-Mann and 
Hartle, contributions to this conference) that also has to be derived from the Wheeler-
DeWitt wave function. 

 
A procedure for deriving an approximate concept of a time-dependent wave function 

ϕ(t) has been proposed by means of a WKB approximation (geometric optics) for part 
of the dynamical variables of the universe. They may be those describing the spatial 
geometry (Banks, 1985), those forming the ‘mini superspace’ of all monopole 
amplitudes on a Friedmann sphere (Halliwell and Hawking, 1985), or all macroscopic 
variables which define an appropriate ‘midi superspace’. For example, Halliwell and 
Hawking assumed that the wave function of the universe can approximately be written 
as a sum of the form 

 

Ψuniverse ≈ ∑
r

 ei Sr(α,Φ)ϕr(α,Φ;{xn}) , (2)
 

 
where α = ln a is the logarithm of the expansion parameter, Φ is the monopole 
amplitude (homogeneous part) of a massive scalar field which represents matter in this 
model, and the variables xn (with n > 0) represent all multipole amplitudes of order n. 
The exponents Sr(α,Φ) are Hamilton-Jacobi functions  with appropriate boundary 
conditions, while the relative  states ϕr(α,Φ;{xn}) are assumed to depend only weakly 
on  α and Φ. If the corresponding orbits of geometric optics in mini superspace are 
parametrized in the form α(tr), Φ(tr), one may approximately derive, from the Wheeler-
DeWitt equation, a unitary evolution 

 
i ∂
∂tr

 ϕr(tr,{xn}) = Hx ϕr(tr,{xn}) (3)
 

 
for the ‘relative states’ ϕr(α(tr),Φ(tr),{xn}) = ϕr(tr,{xn}). It applies along all orbits of 
each WKB sheet Sr(α,Φ). In order to be acceptable as describing the quantum dynamics 
of the observed world (within these approximations), this equation must include the 
description of the above-mentioned measurements and measurement-like interactions in 
von Neumann’s form 

 

ϕr(tr)  ∝  
 


∑

k
 ck ϕS

k 
 


  ϕA

0   →
tr

  ∑
k

 ck ϕS
k ϕA

k (4)
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in the direction of ‘increasing time’. For proper measurements the ‘pointer positions’ 
ϕΑk of the ‘apparatus’ A must decohere through further ‘measurements’ by their 

environment, and thus lead to newly separated branches with their corresponding 
‘conditioned (physical) entropies’. The formal entropy corresponding to the apparent 
ensemble of different values of k would instead have to be interpreted as describing 
‘lacking knowledge’.  

 
This asymmetry with respect to the direction of the orbit parameter tr means that (4) 

may be meaningfully integrated, starting from the wave function representing some 
instantaneous state of the observed world (i.e. from the actual world branch), only into 
the ‘future’ direction of tr (where it will describe the entangled superposition of all 
outcomes of future measurements). In the ‘backward’ direction of time this calculation 
would not reproduce the correct quantum state, since the unitary predecessors of the 
non-observed components would be missing. This would be particularly important if 
the orbits were continued into the inflationary era, or even into the Planck era, where 
different orbits in mini superspace (and, in the case of recollapsing universes, also both 
of their ‘ends’) have to interfere with one another to form the complete boundary 
condition for the total Wheeler-DeWitt wave function at a → 0. Entropy is expected to 
grow in the same direction of time as that describing measurements. Any such 
asymmetry requires a very special cosmic initial condition; the existence of 
measurement-like processes in the quantum world requires essentially a non-entangled 
initial state (Zeh, 1989). Since the unitary dynamics was derived from the Wheeler-
DeWitt equation, this initial condition for ϕr must then also be a consequence of the 
general structure of Ψuniverse.   

 
In order to describe an appropriate asymmetry of the Wheeler-DeWitt wave function, 

it will be assumed in accordance with existing models that the Wheeler-DeWitt 
Hamiltonian for the gauge-free multipoles of Friedmann type universes is of the form 

 

2e3α H = + ∂
2

∂α2  − ∂
2

∂Φ2
 − ∑

n

∂2

∂x2
n

 + V(α,Φ, {xn}) , (5)

 
 

with a potential that becomes ‘simple’ (e. g. constant) in the limit α → –∞.  In his talk, 
Julian Barbour gave an example of how complicated the effective potential in 
configuration space becomes instead, once a particle concept has emerged from the 
general state of the quantum fields. The hyperbolic nature of (5) defines an initial value 
problem with respect to α which then allows one also to choose a ‘simple’ (or 
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symmetric) initial condition (SIC!) for Ψuniverse in the same limit of small a. For 
example, it may be assumed to be of the form (Conradi and Zeh, 1991) 

 

Ψ(α,Φ, {xk})  →  1
(−V)1/4  exp

 


∫

α

−∞
−V(α' ,Φ, {xk})dα'

 


  → Ψ(α) (6)

 
 
If the initial simplicity of the relative states ϕr of (2) can be derived from this or 

some similar simple structure of the total wave function close to the singularity, this 
would mean that ‘early times’ must correspond to small values of a. Unfortunately, 
orbits in the mini superspace formed by α and Φ must return to small values of a for 
appropriate values of the cosmological constant (even though they are not symmetric in 
the generic case -- see Fig. 1). How, then, can one distinguish between the Big Bang 
and the Big Crunch? Or is that distinction really required for the definition of an arrow 
of time?  

 
The contributions of Murray Gell-Mann, Jim Hartle and Larry Schulman to this 

conference indicate that this need not be the case, provided the considered universe is 
very young compared to its total lifetime. A symmetric (double-ended) low entropy 
condition might be possible even if the total Ψuniverse obeyed a unitary time 
dependence – although it would then represent a very strong constraint. In quantum 
gravity, however, where there is no fundamental time parameter, one has to conclude 
that a simple condition for ϕr may be derived from Ψuniverse either at both ends of an 
orbit in mini superspace or at none. (Any asymmetric selection criterion for orbits or 
their relative states -- for example by means of a time-directed probability interpretation 
-- would introduce an absolute direction of time.) In the second case the asymmetry of 
the world could only be understood as a ‘great initial accident’ (at one end) -- if it is 
possible at all. In the first case all arrows of time have to reverse their direction when 
the universe reaches its maximum extension. The approximately derived unitary 
dynamics for φr may then only be applied in the direction of growing values of a. In 
particular, using the cosmic inflation for explaining a low entropy state at one end only 
would be equivalant to presuming the arrow of causality to apply in a certain direction 
of the orbit (instead of deriving this asymmetry as claimed). 

 
Notice that in quantum gravity there is no problem of consistency between the 

lifetime of the recollapsing universe and its supposedly much longer Poincaré cycles (or 
mean time intervals between two statistical fluctuations of cosmic size), as it has to be 
expected to arise with the mentioned double-ended boundary conditions under 
deterministic (such as unitary) dynamics. The exact dynamics HΨuniverse = 0, 
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understood as an intrinsic initial value problem in the variable α, constitutes a well-
defined one-ended condition, while the reversal of the arrows of time described by the 
dependence ϕr(tr) is facilitated by the corrections to the derived unitary dynamics. 
These corrections have to describe recoherence and inverse branchings on the return 
leg. 
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Fig. 1: Asymmetric classical orbit in mini superspace. (After Hawking and Wu, 1985 -- 
see also Laflamme, this conference). a is plotted upwards, Φ from left to right. Dotted 
curve corresponds to V = - a4 + m2a6Φ2 = 0. 

 
I am thus trying to convince Stephen Hawking that he did not make a mistake before 

he changed his mind about the arrow of time! The asymmetry of individual orbits in 
mini superspace (pointed out by Don Page, 1985) does not appear to be sufficient for 
deriving much stronger thermodynamic conclusions. They would instead require a 
demonstration that most orbits in mini superspace enter the Planck era in two different 
regions corresponding to to ‘relative wave functions’ of extremely different structure. 

 
 
2. Reversal of the expansion of the universe  
in quantum cosmology 
 
Within the canonical quantum theory of gravity it appears therefore impossible for 

the arrow of time to maintain its direction when the universe starts recollapsing. 
However, the picture described so far is not yet a sufficient representation of the exact 
situation defined by the Wheeler-DeWitt equation. As will be shown, the approximation 
of geometric optics does not justify the continuation of classical orbits in mini 
superspace through the whole history of a universe. For example, an orbit chosen to be 
compatible with the WKB approximation of the wave function at one end, and found to 
be incompatible with it at the other one, would merely demonstrate that the concept of 
orbits must have broken down in between. 

 
Wave-mechanically, orbits must be represented by wave packets. The exact 

dynamics for Ψ0(α,Φ) (now replacing the approximation eiS(α,Φ) in mini superspace) is 
described by the wave equation 

 

2e3α H Ψ(α,Φ)  =  ∂
2Ψ

∂α2   −  ∂
2Ψ

∂Φ2
  +  [ − e4α + m2e6αΦ2 ] Ψ(α,Φ)  =  0 . (7)

 
 

The α-dependent oscillator potential in Φ suggests the ansatz  
 

Ψ(α,Φ) = ∑
n

 cn(α) Θn  me3αΦ   , (8)
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where the functions Θn are the oscillator eigenfunctions. In adiabatic approximation the 
coefficients cn(α) decouple dynamically,  

 
d2cn(α)

dα2  + [ − e4α + (2n + 1) m e3α ] cn(α)  =  0 . (9)
 

 
In this case, coherent oscillator wave packets exhibit the least possible dispersion, and 
may therefore be expected to resemble the orbits of geometric optics best.  

     Fig. 2: Wave packet representing the orbit of an expanding universe (first cosine of 
Eq. (10) only). Plot range from left to right is -0.19 < Φ < 0.19, from bottom to top 50 < 
a < 150. The intrinsic structure of the wave packet is not resolved by the chosen grid 
size 
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As was demonstrated by Kiefer (1988), the usual (here ‘final’ with respect to the 
intrinsic wave dynamics) condition of square integrability in α → + ∞ leads to the 
classically expected reflection of quasi-orbits from the repulsive curvature-induced 
potential e4α. For example, a further WKB approximation to (9) leads to solutions of 
the form 

 
cn(α)   ∝   cos[φn(α) + nΔφ]     +   cos[φn(α) − nΔφ + δn] (10)

           =  ' expanding universe'   +  ' collapsing universe'  ,  
 

where the φn’s are monotonic functions of α, approximately proportional to n, while  
δn = (π/4)m2(2n+1)2 is the ‘scattering’ phase shift enforced by the ‘final’ condition. The 
two cosines correspond to the expanding and the recollapsing parts of the histories of 
classical universes in mini superspace. ∆φ is the phase of the classical Φ−oscillation at 
the point of maximum a (describing the asymmetry of the orbit). However, if the 
constant factors for the rhs of Eq. (10) are chosen to form coherent states from the first 
cosine, the phase relations which would also be required to form coherent states from 
the second cosine are completely destroyed by the large phase shift differences δn - δn-1 

∝ n. While the term representing the expanding universe (Fig. 2) may then nicely 
resemble the corresponding part of a classical orbit (Fig. 1), the reflected wave is 
smeared out over the whole allowed area (Fig. 3). From a sharp (n-independent) 
potential barrier, the wave packets would instead be reflected without any dispersion. 
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     Fig. 3: Same wave packet as in Fig. 2 with recollapsing part (second cosine) added. 
The part of the wave packet representing the expanding universe of Fig. 2 is still 
recognizable. 

 
This dispersion will become even more important for more ‘macroscopic’ universes 

(higher mean oscillator quantum numbers ñ), since the phase shift differences are 
proportional to n. The result depicted in Fig. 3 may therefore be expected to represent a 
generic property of Friedmann type quantum universes. Quasi-classical orbits must then 
not be continued beyond the turning point. The wave mechanical continuation leads 
instead to a superposition of many ‘recollapsing’ universes (which cannot be 
intrinsically distinguished from expanding ones). Cosmological quantum effects of 
gravity thus seem to be essential not only at the Planck scale! The phase relations of the 
resulting superpositions of quasi-orbits on the return leg in mini superspace are 
however destroyed by decoherence -- now ‘irreversibly’ acting in the opposite direction 
of the orbit because of the (formally) final condition. (The phase shifts δn could as well 
have been put into the first cosine with a negative sign.) This demonstrates again that 
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the unitary dynamics (3) for the relative states cannot in fact be continued beyond the 
turning point. 

 
Although wave packets solving the Wheeler-DeWitt equation in mini superspace can 

be defined intrinsically asymmetric, they are physically determined (as separate Everett 
branches) by their decoherence from one another -- a mechanism that must work 
symmetrically on both legs. Wave packets in the complete configuration space are not 
to describe the whole ‘quantum world’, but merely the causal connections which seem 
to define its quasi-classical ‘branches’. 

 
 
3. Black-and-white holes 
 
The formal reversal of the arrow of time (with or without the importance of quantum 

effects near the turning point of the universal expansion) must also drastically influence 
the internal structure of black holes (Zeh, 1992). Consider a black hole that forms 
during the expansion of the universe, but that is massive enough to be able to survive 
the turning point (cf. Penrose’s diagram depicting a time-asymmetric universe in Fig. 
4). If the arrow of time is however formally reversed along an orbit through mini or 
midi superspace, this black hole cannot continue ‘losing hair’ any further by radiating 
its higher multipoles away  (by means of retarded radiation). It must instead grow hair 
again by means of the now coherently incoming (advanced) radiation that has to drive 
the matter apart again.  

 
 

Big Crunch

Big Bang

large 
black hole

small 
black hole

a-max

today

a = 0

a = 0

     
Fig. 4: Time-asymmetric universe with a homogeneous Big Bang (Penrose, 1981) 
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The reversal of the arrows of time of course has to include the replacement of time-
directed ‘causality’ by what would formally appear as a ‘conspiracy’. A mere reversal 
of the expansion would not be sufficient to ‘cause’ a reversal of the thermodynamic or 
radiation arrow without simultaneous reversal of the time-direction of this causation. 
The (fork-like) causal structure (see Zeh, 1992) must thus be contained in the dynamical 
structure of the universal wave function that results from the intrinsic initial condition 
by means of the Wheeler-DeWitt equation. The black hole must therefore formally 
disappear as a white hole during the recollapse phase of the universe.  

 
This unconventional behaviour of black holes seems to become interesting only in 

the very distant future (after an horizon and a singularity might be expected to have 
formed). However, our simultaneity with a black hole is not well defined because of the 
time translation invariance of the Schwarzschild metric. Fig. 5 shows a spherical black 
hole in Kruskal-type coordinates (a modified Oppenheimer-Snyder scenario) after a 
translation of the Schwarzschild time coordinate t such that the turning point is now at 
tturn = 0 (hence also at vKruskal = 0). The ‘black-and-white hole’ must then appear 
thermodynamically symmetric (although by no means symmetric in non-conserved 
details -- microscopic or macroscopic). If past horizons and singularities can in fact be 
excluded by an appropriate condition to the Big Bang, the same conclusion must hold in 
quantum gravity for future horizons and singularities. So we may conjecture a 
singularity-free quantum world.  
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v

udoesn't 
exist

thermodynamics
branching
decoherence
stars contracting
causality

anti-thermodynamics
inverse branching
re-coherence
stars expanding
conspiracy

'strange behavior':
no quasi-classical orbits 
                     no observers

     Fig. 5: ‘Black-and-white hole’ originating from a thermodynamically active and 
collapsing spherical matter distribution, with the Kruskal time coordinate v = 0 chosen 
to coincide with the time of maximum  extension of the universe. This classical picture 
itself is not meaningful in the region of ‘quantum behaviour’ around v = 0. 

 
Fig. 6 shows the same situation as Fig. 5 from our perspective of a young universe 

(after an inverse translation of the Schwarzschild time coordinate). In this diagram, t = 
tturn appears to be very ‘close’ to where one would expect the future horizon to form. 
From this perspective, the occurring strange thermodynamic and quantum effects also 
appear to be located close to the future horizon, thereby preventing it to form.  

 
Because of the extreme time dilatation, this reversal of the gravitational collapse 

cannot be seen by an asymptotic observer, although it could be experienced by suicidal 
methods within relatively short proper times. If the black-and-white hole is massive 
enough, this kind of ‘quantum suicide’ must be quite different from the classically 
expected one by means of tidal forces. In a classical picture, travelling through a black-
and-white hole considerably shortens the proper distance between the Big Bang and the 
Big Crunch, but unfortunately we could not survive as information-gaining systems. 
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This consideration should at least demonstrate that the classical (Kruskal-Szekeres) 
continuation of the Schwarzschild metric beyond the horizon is very doubtful! 
 

v

udoesn't 
exist

thermodynamics
branching
decoherence
stars contracting
causality

t = t(amax)

 
Fig. 6: Same black-and-white hole as in Fig. 5, considered from our perspective of a 

young universe. 
 
 Before Stephen Hawking changed his mind about the time arrow in a recollapsing 

universe, he had conjectured (Hawking, 1985) that the arrow would reverse inside the 
horizon of a black hole, since “it would seem just like the whole universe was 
collapsing around one” (cf. also Zeh, 1983). However, this picture would not yet 
describe a  thermodynamically time-symmetric universe. 

 
Penrose’s black holes hanging like stalactites from the ceiling (the Big Crunch) now 

become symmetric as shown in Fig. 7. Black-and-white holes in equilibrium with 
thermal radiation (as studied by Hawking, 1976) would instead consist of thermal 
radiation at both ends. They would possess no ‘hair’ to lose or grow. The classically 
disconnected upper and lower halves of Fig. 7 should rather be interpreted as two of the 
many Everett branches, each of them representing an expanding universe, which 
interfere destructively above the turning point.  
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no classical 
connection

a = 0

a = 0

a-max

collapsing matter 
(losing 'hair': correlated radiation)

thermal radiation 

dense matter
 

Fig. 7: Time-symmetric and singularity-free universe with black-and-white holes 
and small black or white holes. 

 
The absence of singularities in this quantum universe thus appears to be a combined 

thermodynamic and quantum effect. However, one may equivalently interpret the result 
as demonstrating that in quantum cosmology the thermodynamic arrow is a 
consequence of the absence of inhomogeneous singularities -- a generalization (or 
rather, a symmetrization) of Penrose’s Weyl tensor condition.  
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Discussion: 
 

Hawking: Your symmetric initial condition for the wave function is wrong! 
Zeh: Do you mean that it does not agree with the no-boundary condition? 
Hawking: Yes. 
Zeh: It was not meant to agree with it, although we found it to be very similar to the 

explicit wave functions you gave in the literature for certain regions of mini 
superspace. This is however not essential for my argument. It requires only that the 
multipole wave functions ϕr become appropriately ‘simple’ (low-entropic and 
factorizing) for small values of a (as you too seem to assume, although only at that 
end of the orbit where you start your computation).  

Barbour: Did I understand you correctly to say that the criteria Kiefer used to obtain his 
solution was of the kind I call Schrödinger type, namely that there should be no 
blowing up of the wave function anywhere in the configuration space? 

Zeh: Yes - if by blowing-up solutions you mean the exponentially increasing ones. 
Otherwise you would not be able to describe reflection (turning orbits) by means of 
wave packets. I think this assumption corresponding to the usual normalizability is 
natural (or ‘naive’ according to Kuchar) if the expansion parameter a is considered 
as a dynamical quantum variable (as it should in canonical quantum gravity). 

Barbour: Could it be that worries about the turning point are an artifact of the extreme 
simplicity of the model? Consider in contrast a two-dimensional oscillator in a wave 
packet corresponding to high angular momentum!  

Zeh: The described quantum effects at the turning point are due to the specific 
Friedmann potential with an oscillator constant for Φ exponentially increasing with 
α. They do not seem to disappear if added degrees of freedom possess similarly 
‘normal’ potentials (e.g. polynomials multiplied by positive powers of a). This seems 
to be the case in Friedmann-type models.  

Kuchar: Did you study decoherence between ϕ’s corresponding to one S, or also the 
decoherence corresponding to different S’s? 

Zeh: I expect decoherence to be effective between different orbits in mini superspace 
(cf. Kiefer, 1987), between macroscopically different branches of the multipole wave 
functions ϕr along every orbit, and between different WKB sheets corresponding to 
different S’s (cf. Halliwell, 1989; Kiefer and Singh, 1991). 

Griffiths: In ordinary quantum mechanics of a closed system, I do not know how to 
make any sense out of it using the “wave function of the closed system”. I need the 
unitary transformations that take me from one time to another. Is there any analogy 
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of this in quantum gravity? For if not, it is hard to see how quantum gravity can be 
used to produce a sensible description of something like the world we live in. 

Zeh: Your question seems to apply to quantum gravity in general. I think that it is 
sufficient for the “wave function of the universe” to contain correlations between all 
physical variables - including those describing clocks. In classical theory they would 
be unique, and would correspond to the orbits in the complete configuration space 
after eliminating any time parameter. In quantum theory there are no orbits that 
could be parametrized. The quantum correlations must of course obey ‘intrinsic’ 
dynamical laws as they are described by the Wheeler-DeWitt equation. From them 
one tries to recover the time-dependent Schrödinger equation (which has to describe 
the “observed world”) as an approximation when spacetime (the history of spatial 
geometry) is recovered as a quasi-classical concept. 

Lloyd: Could you clarify how black holes would grow hair in the contraction phase? Is 
it through interference between incoming radiation and the Hawking radiation.  

Zeh: Only the incoming (advanced) radiation is essential, since black holes can form by 
losing hair even if Hawking radiation is negligible. This is a pure symmetry 
consideration. A final condition which is thermodynamically and quantum 
mechanically (although not necessarily in its details) the mirror image in time of an 
initial condition that leads to black holes must consequently lead to their time-
reversed phenomena. If Hawking radiation is essential (for small mass), the black 
hole may disappear earlier than t(amax), again before an horizon forms. 

Hawking: The no-boundary condition can only be interpreted by means of semi-
classical concepts such as the saddle point method. 

Zeh: I would prefer to understand such a fundamental conclusion as the arrow of time 
in terms of the exact (even though incomplete) description. In particular, your 
opposite conclusion might be induced by the direction of computation (along the 
assumed orbits) by using approximations -- similar to how it is often wrongly argued 
in chaos theory in the form of ‘growing’ errors as an explanation of increasing 
entropy! 

 -- Did I understand you correctly during your talk that you -- at the time when you 
made what you call your ‘mistake’ -- also expected black holes to re-expand during 
the recollapse of the universe? 

Hawking: Yes. I did not understand black holes sufficiently until I changed my mind. 
 


