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This apparent ensemble of discrete numbers is dynamically approximately
described by a master equation. Therefore, it is formally equivalent to an en-
semble of solutions of a stochastic (Langevin-type) equation that essentially
describes individual discrete ‘histories’ n(t) — here in the form of ‘descending
staircase functions’. In terms of a universal Schrodinger equation, the number
of undecayed nuclei n is a ‘robust’ property in the sense of Sect. 4.3.2 if decay
can be assumed to be irreversible (in particular when monitored by detectors).
The various dynamically robust branches of the wave function, arising by the
fast but smooth action of decoherence, describe individual histories for integer
numbers n(t), which represent successions of almost discrete quantum jumps
at certain times ¢y, ta,... (as discussed in Sect.4.3.6). Similar staircase func-
tions have now also been observed for decaying photons in a cavity (Gleyzes
et al. 2006) — thus directly confirming Fig. 3.30 of Joos et al. (2003). However,
deviations from exact steps can always be calculated if the interaction with
the environment is known (Joos 1984): quantum theory is not a stochastic
theory for quantum jumps.

4.6 The Time Arrow in Various Interpretations
of Quantum Theory

The truth could not be worth much
if everybody was a bit right.

Physicists who completely agree about all applications of quantum mechan-
ics often differ entirely about its interpretation, and even on the question of
whether there remain any meaningful problems beyond the mere formalism
(see Fuchs and Peres 2000). Although most of them would agree that quan-
tum theory allows no more than probabilistic predictions, they often derive
irreversible master equations, which describe an increase in entropy, from the
deterministic and time-symmetric Schrédinger equation, using special initial
conditions as in classical statistical physics (see Sect.4.1.2). However, a dy-
namical probability interpretation must be relevant for the arrow of time — re-
gardless of whether it is based on a fundamental stochastic (time-asymmetric)
law or on an incompleteness of the theory (hidden variables) that refers to
an unknown future. Its consequences cannot be avoided just by adding new
words. For example, quantum theory is often called ‘deterministic but acausal’
— while this statement is then justified by the ‘uncertainty’ of classical prop-
erties (such as particle positions or momenta), which just do not apply to
quantum states. Most physicists seem to disregard this consistency problem
in an act of Verdrdngung.

The deepest roots of these conceptual inconsistencies seem to arise from
the fundamental difference between Heisenberg’s and Schrodinger’s ‘pictures’
(see Zeh 2004). While Heisenberg maintained classical concepts in principle
(suggesting only a limitation of the ‘certainty’ of their values), Schrodinger
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described microscopic physical states by wave functions, which can be re-
garded as certain. The classical configuration space on which they are usually
defined would thereby replace three-dimensional space as a new ‘arena of dy-
namics’ rather than describing potential states.® Whether wave functions or
‘observables’ (which formally replace the classical variables in the Heisenberg
picture) carry the dynamical time-dependence is merely a consequence of the
chosen picture.”

Although both pictures are equivalent when used to calculate formal ex-
pectation values for isolated systems, they describe the time arrow of quantum
measurements in different ways. Most physicists seem to subscribe to one or
the other picture (or perhaps a variant thereof) when it comes to interpre-
tations (‘probabilities for what?’). Typically, in the Schrédinger picture one
regards the collapse of the wave function as a dynamical process, while in
the Heisenberg picture it is viewed as an (extraphysical) increase of ‘human
knowledge’. I hope that keeping this difference in mind for the rest of this sec-
tion may help to avoid some misunderstandings that often lead to emotional
debate. One should therefore concentrate on what is actually done when the
theory is successfully applied — though not in a merely pragmatic way. Which
concepts are fundamentally required, rather than being approximately justi-
fied, or even mere tradition and prejudice?

Any meaningful concept of incomplete information or knowledge has
to refer to an ensemble of possible states. For example, physical entropy,
which quantifies irreversibility, is in quantum statistical mechanics defined by
means of von Neumann’s functional of the density matrix (4.4). According to
Sect. 4.2, it measures the size of (genuine or apparent) ensembles of mutually
orthogonal (hence operationally distinguishable) wave functions. While only
genuine ensembles represent incomplete information, the time-dependence of
the density matrix determines that of local entropy in general. Conservation
of global von Neumann entropy reflects the unitarity of the von Neumann
equation (when applicable) — equivalent to the unitarity and determinism of
the Schrédinger equation. No ensemble of classical or any other (unknown)

6 The identity of configuration space and space in single particle quantum mechan-
ics is a consequence of the exceptional kinematics of mass points. This has led to
a popular confusion of single-particle wave functions with spatial fields, and to
the misnomer of a ‘second quantization’ in quantum field theory — see Zeh (2003).
This contrast between the Heisenberg and the Schrdodinger pictures has to be
distinguished from the ‘dualism’ between two competing classical concepts (par-
ticles and fields) that is part of one (the Copenhagen) interpretation. In classical
theory, particle positions and field strengths characterize different physical ob-
jects, which are both constituents of general physical systems. A dualism (or
‘complementarity’), apparently required to characterize quantum objects, should
more correctly be understood as a conceptual inconsistency, often attributed to
a ‘lacking microscopic reality’. However, this conceptual dualism applies only to
the ‘phenomenological reality’ (see Sect.4.3.2). A critical account of the origin of
these conceptual problems can be found in Beller (1996, 1999).
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Fig. 4.3. Quantum measurement of a superposition (|a) + |b))/+/2 by means of a
collapse process, here assumed to be triggered by the macroscopic pointer position.
The initial entropy Sp is smaller by one bit than in Fig.3.5 (and may in principle
vanish), since there is no initial ensemble ‘a or b’ for the property to be measured.
Dashed lines before the collapse now represent quantum entanglement. (Compare
the ensemble entropies with those of Fig.3.5!) The collapse itself is often divided
into two steps — see (4.54) below: first increasing the ensemble entropy by replacing
the superposition by an ensemble, and then lowering it by reducing the ensemble
(applying the ‘or’ — for macroscopic pointers only). The total increase of ensemble
entropy, evident in the final diagram, is a consequence of the first step of the collapse.
It brings the entropy up to its classical initial value of Fig.3.5. The reset here
illustrates also why decoherence is usually irreversible even when a measurement
result is ‘erased’ (and even without a collapse — in which case the final ensemble
entropy would again be Sp). From Chap. 2 of Joos et al. (2003)

variables representing the potential values of observables is ‘counted’ by von
Neumann’s entropy. Figure 3.5, characterizing classical measurements, cannot
therefore be applied to quantum measurements. In terms of quantum states it
has to be replaced by Fig. 4.3, which includes a collapse of the wave function.
The transition from a superposition to an ensemble (depicted by the second
step) affects the final value of von Neumann’s ‘ensemble’ entropy (that would
be reduced by a mere increase of information, as in the first step of Fig. 3.5).
For similar reasons there can be no ‘postselection’ (no retarded increase of
information about the past) by a quantum measurement, as suggested by
Aharonov and Vaidman (1991): there is nothing to ‘select’ from in the ab-
sence of an ensemble of hidden variables.

A wave function and a set of classical configurations are kinematically
used in Bohm’s quantum theory (Bohm 1952, Bohm and Hiley 1993). This
theory is often praised for exactly reproducing all predictions of conventional



