[P3]

Ex. 2  COMPUTATIONAL COMPLEXITY & PHYSICS David Gross, Richard Kueng
www.thp.uni-koeln.de/gross/teaching.html Due: Nov 11th

[ The Cook-Levin Theorem] The goal of this exercise is to prove that SAT is NP-complete.
For our purposes, we define SAT to be the language of all Boolean formulas for which there
exists a satisfying assignment. A Boolean formula consists of variables z; taking values

in {true, false} (equivalently, {1,0}), the logical operations of “and”, “or”, and “not”,
and parantheses. A formula ¢(z,...,x,) is satisfiable if there exists an assignment of
true, false to each x; such that ¢(zy,...,x,) evaluates to true (c.f. lecture notes).

By definition of NP-hardness, we have to show that every language L in NP is poly-
time reducible to SAT. Let L be such a language, let x € {0,1}* bit an input bit string,
and let n = |z| be its length. By the definition of polynomial reduction, we have to build
a Boolean formula that is satisfiable if and only if x € L. Also, it must be possile to carry
out this conversion to a Boolean formula in a number of steps polynomial in n.

Let V be the verifier for L, as in the definition of NP. The goal is to construct a
boolean formula that evaluates to true if and only if there exsits a suitable u such that
the Turing machine V', on input of (x,u) halts and outputs 1. This is very similar to the
arithmetic statement we constructed in the proof of Gédel’s Theorem.

(1) As was the case with Godel, we need to find a formula that is satisfied if there
exists a v and a valid history n = (n4,...,n) of states of the verifier V(z,u), such that
the end result is 1. A major difference is that in this case, we have information about
the runtime. What is that piece of information? Use it to define an encoding of the
state of the TM by a string of boolean variables (equivalent to a bit string) of the form
n; = (state of DFA, position of head, contents of entire tape that will be used). Give ez-
picit formulas for the positions at which the various pieces of information are stored in
the string. Why do we use a different encoding from the Godel case?

(2) Find a boolean formula ¢yt (u, n) that evaluates to true if and only if n; represents the
verifier in starting state with (x, ) on the tape. Design formulas ¢nait true (1), Pnext (11, 11, 1)
that check the obvious conditoins (refer back to Godel if necessary).

(3) Combine these steps to show that SAT is NP-complete. In particular, argue that the
reduction you have constructed is polynomial.

(2P)

(5P.)

(3P.)



