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Ex. 5 COMPUTATIONAL COMPLEXITY & PHYSICS David Gross, Richard Kueng
www.thp.uni-koeln.de/gross/teaching.html Due: Jan 25th

[ The Deutsch-Josza Algorithm]

The Deutsch-Josza Algorithm is designed to exactly reveal the nature of a Boolean
function f with a single query. The function f : {0,1}" — {0,1} is assumed to be
unknown (a “black box”) that is either

e constant, i.e. f(z) = f(y) for all z,y € {0,1}", or

e balanced, i.e. [{z: f(z) =0} =|{z: f(zx) =1} =2""1
Classically, determining with certainty whether f is constant or balanced may require
2"~1 queries (i.e. evaluations of the function f on a given input). So it may come as a
surprise that a quantum circuit that requires only a single query is able to answer this

question with certainty. This circuit is depicted in Figure 1 and implements the Boolean
function f as a reversible gate acting on (n + 1) qubits via

Bylz) @ |y) = |z) @ [y ® f(x)), Vo e{0,1}",Vye{0,1}. (1)

Here @ denotes addition modulo 2 and for x = (z1,...,2,) € {0,1}" € {0,1}", |z) is a
short-hand notation of |z1) ® - -+ ® |z,). In addition to that, the circuit makes heavy use
of Hadamard gates which amount to

-5(00)

in the computational basis {|0),|1)} of C?. The aim of this exercise is to show that this
circuit is indeed capable of deciding the nature of f in a single query (run).

(1) Suppose that the algorithm depicted in Figure 1 receives the n-qubit input

[Winpur) = [0) @ -+~ @ |0) @ [1).
— —
n times
Determine the state |W;,) that is obtained after applying (n + 1) Hadamard gates in
parallel.
(2) Show that the state |¥;,) = Bf|V,,) then amounts to

1 i 1 1
) = Y (—1>f<>|x>®(ﬁ|o>—ﬁ|1>). 3)

z€{0,1}"

Hint: Start by showing that [0® 2) — [1® z) = (—1)% (|0) — |1)) is true for any z € {0,1}
and generalize this behavior to obtain (3).
(3) Determine the circuit’s final n-qubit state |¥;,) that is obtained after discarding

(omitting) the final qubit and applying Hadamard transformations to the remaining n
qubits.

(4) The quantum circuit is concluded by performing n single qubit measurements in
the computational basis {|0),[1)}. Show that the probability for obtaining only zero-
outcomes equals one, if the hidden Boolean function was constant, and is zero, if the f
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Figure 1: Circuit diagram of the Deutsch Josza Algorithm: (n + 1) parallel Hadamard
matrices are applied to the the (n + 1)-qubit product state |Winput) = [0)¥" ® [1). The
resulting state |y, ) then serves as an input for the “black box circuit” By that encodes
the action of the unknown Boolean function in a reversible way — see Eq. (1). After-
wards, the final qubit is discarded, while the other ones once more undergo a Hadamard
transformation. Finally the remaining n qubits are measured in the computational basis

{10),11)}.

was balanced. Note that this result assures, that such an experiment allows to reveal the
nature of f with certainty.
Hint: According to Born’s rule, the probability of measuring only zeros is given by

Pr(my =0,...,m, = 0) = [{0] @ @ (0]|W;,) |
—_——

n times

(Approximating circuits). The definition of the quantum Fourier transform involves the

gates
1 0
Rk = |: 0 627ri2*k :|

which differ from the trivial time evolution (given by the identity matrix) only by an ez-
ponentially small quantity 1 — 227" Thig might be a source of concern: does a quantum
algorithm require exponentially precise control? Here, we will show that this is not the
case: small errors in the gates will lead only to small differences in the success probability
of the algorithm. (And hence leaving out the Ry’s for large k does not significantly alter
the QFT circuit).

(1) Recall the operator norm of a matrix A is

[ Alle = masx [ A10)] = max(y]A}6),

where the respective maximizations are over normalized vectors ||¢] = ||¢|| = 1. Show
that the operator norm satisfies the triangle inequlaity |A+ Blloo < ||Allco + || B|co- Show
that the operator norm is unitarily invariant: if U is a unitary, then ||AU||o = ||[UA||o0 =
[ Al

(2) Let Uy, Uy be two ideal quantum gates. Suppose we manage to engineer Vi, Vo, which
are close to the U’s in the sense that |U; — V|| < €. Using the two properties established
above, show that

|U2Ur — VaVi|oo < 2e.
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(Of course, by induction, this implies that if a circuit consists of n gates U; realized to
within precision € each, then the total error of the circuit will not exceed ne.)

(3) Lastly, let A be the observable used to read out the result of the computation.
We assume that ||Al| = 1 (optional problem: convince yourself that that’s true for all
examples we have looked at so far). If |¢) is the initial state of the computation, U the
ideal unitary of the circuit, V' our approximation to it, then the read-out error is

trAU ) (|UT — teAV [9) (9] V1]

Prove that this error is no larger than 2||U — V|| .



