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0.1 Coupled systems

0.1.1 The measurement problem

Elementary QM provides two very different rules for time evolution:

• Hamiltonian time evolution: |ψ〉 7→ e
1
i~∆tH |ψ〉. Change is continuous in time, reversible,

deterministic, linear in the wave function.

• Projective measurements: |ψ〉 7→ Pj |ψ〉/pj with probability pj = 〈ψ|Pj |ψ〉. Change is
discontinuous in time, irreversible, non-deterministic, non-linear in the wave function.

Given that these are completely different, quantum physicists take great care to very carefully
explain when to use the one and when to use the other. ... Huh huh, just kidding. Try to find a
definition of “measurement” in your introductory textbook. So, what’s up with that?

The standard presentation of quantum mechanics divides the world into a “quantum part” and
a “classical part”. The measurement rules connects the two. But it is not clear which degrees of
freedom belong to which side of this cut.

Example: In the standard treatment of the Stern-Gerlach experiment, the spin is modeled
quantum mechanically, but the spatial position of the atom classically. The spin-dependent
movement of the atom is treated as a measurement. But it also seems reasonable to put the
atom’s position to the quantum side of the cut (Fig. 0.1). The interaction between spin and
spatial coordinates is then described by a Hamiltonian time evolution. A measurement only
takes place when an observer records the atom’s position.

We can now state to aspects of quantum mechanic’s measurement problem:

• The pragmatic problem: Why can physicists get away with being so vague about the
notion of “measurement”? Why don’t different modeling decisions produce different pre-
dictions? (We’ll be able to answer this).

• The philosophical problem: Given that quantum mechanics is supposedly more funda-
mental than classical theories, how do we deal with the fact that its predictions are stated
with respect to a classical world? Who’s measuring the wave function of the universe?
(We won’t make progress here. In fact, there’s no agreement what’s the best solution to
this issue. Or whether there is a solution. Or whether there was a problem in the first
place. It’s a mess.)

0.1.2 A quantum model for Stern-Gerlach

Hamiltonian for particle with spin interacting with an external magnetic field:

H =
P 2

2m
− γ~

2
~B · ~σ
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Assume that ~B = Bz~ez . Then only the z-coordinate participates in the interaction, so nothing
is lost by only treating the spin and the z-coordinate quantum-mechanically. The calculation is
best done in interaction picture:

|ψI(t)〉 = e−
1
i~ tH0 |ψS(t)〉 = e

1
i~ tHI |ψS(0)〉

describes the change of dynamics caused by an interaction term HI , where

|ψS(t)〉 = e
1
i~ t(H0+HI)|ψS(0)〉

is the usual Schrödinger-picture wave function. We will, of course, choose

H = H0 +HI , H0 =
P 2
z

2m
, HI = −

γ~B
2

zσz.

First treat the case where the particle is initially in a momentum-0 eigenstate:

|ψS(t = 0)〉 = (α|↑〉+ β|↓〉)|k = 0〉.

Then, with δ := ~γB
2 ,

|ψI(t)〉 = e
iγ
2
tBzσz |ψS(t = 0)〉

= α
(
e
iγ
2
tBz|↑〉|k = 0〉

)
+ β

(
e−

iγ
2
tBz|↓〉|k = 0〉

)
= α|↑〉|δt〉+ β|↓〉| − δt〉. (0.1)

This is an entangled state! A measurement of spin and momentum gives correlated outcomes:

Pr[s, k + dk] =

{
|α|2 (s, k) = (↑,+δt)
|β|2 (s, k) = (↓,−δt) .

The marginal distribution for the spin variable alone is

Pr[s] =

{
|α|2 s = ↑
|β|2 s = ↓ ,

exactly what we would have obtained by treating just the spin quantum mechanically. Thus:
Using a quantum model for the spatial z-component does not change the prediction about the
measured spin state. All it does is to entangle the measured and the measuring degree of freedom
so that the global state becomes a superposition of consistent configurations. We could have
included further degrees of freedom – e.g. the experimentalist observing the particle momentum.
If we model them – simplifying slightly – as a two-dimensional system with (mental) states |,〉
when seeing an upwards moving atom, and |/〉 when encountering one moving downwards, a
similar calculation would have resulted in

|ψI(t)〉 = α|↑〉|δt〉|,〉+ β|↓〉| − δt〉|/〉.
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Instead of a momentum eigenstate, let’s use a more realistic Gaussian initial state. Write |ψk0〉
for a Gaussian wave packet centered around k0 in momentum space:

〈k|ψk0〉 = (2π)−1/4e−
(k−k0)

2

4 .

Then

e
iγ
2
Bz|ψk0〉 = |ψk0+δt〉

so that, if we take |ψS(0)〉 = |ψ0〉,

|ψI(t)〉 = α|↑〉|ψδt〉+ β|↓〉|ψ−δt〉.

We can now see that the correlations between spin and position now build up over time. Indeed:

Pr[s, k + dk] =
1√
2π

 |α|2e−
(k−δt)2

2 dk s = ↑

|β|2e−
(k+δt)2

2 dk s = ↓
.

At t = 0, the momentum distribution is independent of the spin state. For times t ' 1/δ, the
two spin-dependent Gaussian distributions become distinct, but overlap significantly. Only for
t� 1/δ does the sign of a measured momentum value identify the spin state with certainty.

It is instructive to compute the reduced density matrix for the spin. From

|ψI(t)〉〈ψI(t)| = |α|2 |↑〉〈↑| ⊗ |ψδt〉〈ψδt|+ αβ∗ |↑〉〈↓| ⊗ |ψδt〉〈ψ−δt|+ . . .

and

tr |ψδt〉〈ψ−δt| = 〈ψ−δt|ψδt〉 =
1√
2π

∫
e−

(−δt−k)2+(δt−k)2
4 dk =

1√
2π

∫
e−

k2+(δt)2

2 dk = e−(δt)2/2,

we can read off the reduced density matrix in {|↑〉, |↓〉}-basis:

ρspin(t) = trspace |ψI(t)〉〈ψI(t)| =

(
|α|2 αβ∗e−(δt)2

α∗βe−(δt)2 |β|2

)
.

Thus, the state of the spin part alone dephases from a pure state at t = 0 to a probabilistic
mixture of |↑〉 and |↓〉 for times t � 1/δ. The entropy (of entanglement) gradually builds up
from S(t = 0) = 0 to

S(t→∞) = −|α|2 log |α|2 − |β|2 log |β|2.

In fact, these simple calculations offer much more than a solution to the “pragmatic aspect”
of the measurement problem. Here’s what we can take away:

• Q.: Are measurements discontinuous in time?
A.: Nope! Correlations between the measured system and the environment are built up
at a time scale proportional to the inverse coupling strength. The instantaneous process
postulated in introductory QM can be understood as an effective description valid for
times much larger than that.
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• Q.: Are measurements irreversible?
A.: The dynamics on the quantum side of the cut is reversible in theory – the final mea-
surement still isn’t. This doesn’t lead to practical contradictions, though. Assume we put
the hole universe, except for ourselves, on the quantum side. What would it take to reverse
the measurement after a blob of silver (in the Stern-Gerlach case) has been deposited on a
plate, but before we have looked at it? The deposit will have interacted with an enormous
number of degrees of freedom: phonons in the plate, the cosmic background radiation,
thermal photons that have since zoomed off into the sky at the speed of light. Clearly, for
all practical purposes (“FAP”), it is impossible to reverse those interactions. Thus, once
a macroscopic record of an event exists, the irreversibility introduced by QM’s measure-
ment postulate does not change anything FAP. Philosophically, it might still be a thorny
issue! This is all good news if you like to compute things (no immediate contradiction).
It’s bad news if you like to understand foundational questions, because there seems little
empirical guidance on offer for how to handle this conceptual inconsistency.

• Q.: How does a classical world appear in quantum theory1?
A.: When’s the last time you’ve come across a momentum eigenstate in the real world?
Particles do seem to be “here or there”, not “here and there” in the sense of quantum super-
positions. But why is that, given the unitary invariance of QM’s state space, which treats
all bases equivalently? Well, consider the spin degree of freedom of our model. On short
time scales, an arbitrary initial state will dephase into a probabilistic mixture of spin-up
and spin-down states with respect to the z-axis. After the dephasing time, an unrelated ob-
server will therefore find the spin in a σz-eigenstate and will not encounter superpositions.
Recall what distinguishes the z-basis: It is the one in which the interaction takes place!
While the kinematics (i.e. the set of all states) of QM are unitarily invariant, the dynamics
are not. The bases which we perceive as “classical” are dynamically selected, and the
creation of probabilistic mixtures is a result of entanglement building up. This process is
called decoherence. Interactions are local, which is why quantum systems usually appear
to be well-localized in space. However, some interactions select for different bases: e.g.
electrons bound in an atom couple to the environment via the electromagnetic field. This
interaction involves the atomic energy basis. Therefore, the semi-classical description of
electrons in terms of atomic quantum numbers (“n, l,m”) makes sense.

• Q.: In thermodynamics, there’s tension between the fact that entropy increases, while
microscopic dynamics is reversible. The buildup of entanglement seems like an elegant
solution: Local randomness is created from globally reversible dynamics. Maybe all
entropy is entanglement entropy. Is that a good way to think about the apparent increase
of entropy?
A.: You betcha!

• Q.: More prosaically, how does entanglement emerge in natural systems?
A.: When the Hamiltonian contains a coupling term between different degrees of freedom
(and neither system is in an eigenstate of the coupling).

1That’s a reference to the title of an influential book on the topic, co-authored by Cologne’s very own Claus Kiefer.
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