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Abstract

This thesis consists of two parts.

The main part is concerned with new schemes for measureaset quan-
tum computation. Computers utilizing the laws of quantuncihagics

promise an exponential speed-up over purely classicatdsviRecently,
considerable attention has been paid to the measuremsed-iparadigm
of quantum computers. It has been realized that local measnts on
certain highly entangled quantum states are computatjosspowerful as
the well-established model for quantum computation basedomtrolled

unitary evolution.

Prior to this thesis, only one family of quantum states waskmto possess
this computational power: the so-called cluster state amaesvery close
relatives. Questions posed and answered in this thesigdeclICan one
find families of states different from the cluster, which stitute universal
resources for measurement-based computation? Can thly Biggular

properties of the cluster state be relaxed while retainimgarsality? Is

the quality of being a computational resource common oraareng pure

states?

We start by establishing a new mathematical tool for undedihg the con-
nection between local measurements on an entangled quatéaterand a
gquantum computation. This framework — based on finitelyalated states
(or matrix product states) common in many-body physics keditst such
tool general enough to apply to a wide range of quantum shetgsnd the
family of graph states. We employ it to construct a varietynetv uni-

versal resource states and schemes for measurement-loasgdtation. It

is found that many entanglement properties of universtgstaay be radi-
cally different from those of the cluster: we identify s&hich are locally
arbitrarily close to a pure state, exhibit long-ranged elatrons or cannot

be converted into cluster states by means of stochastitdpeaations and



classical communication. Flexible schemes for the comgténs of the
inherent randomness of quantum measurements are intchdWde pro-
ceed to provide a complete classification of a natural classates which
can take the role of a single logical qubit in a measuremased quantum
computer. Lastly, it is demonstrated that states can beritangled to be
useful for any computational purpose. Concentration ofsueaarguments

show that this problem occurs for the dramatic majority bpate states.

The second part of the thesis is concerned with discretetgomaphase
spaces. We prove that the only pure states to possess a gatived\Vigner
function are stabilizer states. The result can be seen agexdimensional
analogue of a classic theorem due to Hudson, who showed thadizn
states play the same role in the setting of continuous Varafstems. The
guantum phase space techniques developed for this arguaresubse-
quently used to quantize a well-known structure from cladstomputer

science: the Margulis expander.
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In the standard model of quantum computation, a set of twekystems initially
in a product state is subjected to a unitary time-evolutiothe form of sequential bi-
partite quantum gates [82]. At the end of the evolution, tysems are measured in
some local basis, in order to read out the result of the coatjput Such gate-model
guantum computers are strongly believed to offer a supbmpmial speed-up over
classical machines. One may attribute this computatiooakp to the intractability of
simulating the time evolution in an exponentially largebitt space.

From that point of view, it seems surprising that universamfum computation is
possible without the need of unitary evolution at all. Buieed, theone-way model
of Refs. [89, 90] demonstrates that local measurements @oltister state- a cer-
tain multi-particle entangled state on an array of qubi B are computationally as
powerful as any gate-model computation. The local measemés- a feature that any
computing scheme would eventually embody — then take tleeafopreparation of the
input, the computation proper, and the read-out. In suchtangequantum computa-
tion merely amounts to (i) preparing an algorithm-indeparidesource state and (ii)
performing local projective measurements [16, 18, 54, 6488, 90].

Faced with this result, some obvious questions suggestsitless. First, concen-
trating on thequantum statewhich provide the computational power of measurement-

based schemes, one may ask

1. What are the properties that render a state a universal resofor a measure-

ment-based computing scheme?
Secondly, putting the emphasize methodsthe central question becomes

2. How can we systematically construct new schemes for measutebased quan-
tum computation? Is there a framework which is flexible ehaogallow for the
construction of a variety of different models?

Such questions are clearly relevant from a practical pdiwitsav. What if the states
that naturally occur in some physical situation are diffiéfeom cluster states or graph
states [54, 55, 97]? Is it possible to tailor resource statespecific physical systems?

For some experimental implementations — e.g., cold atorogtical lattices [75], atoms
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in cavities [19, 21, 23, 49], optical systems [11], [20, 1206hs in traps [47], or many-
body ground states — it may well be that preparation of chistéges is unfeasible, costly,
or that they are particularly fragile to finite temperaturelecoherence effects.

Adopting a more fundamental position, it is clearly intées to investigate the
computational power of many-body states — either for th@@se of building measure-
ment-based quantum computers, or else for deciding whatiesttould possibly be
classically simulated [63, 100, 108].

Interestingly, very little progress has been made overabiyears when it comes to
going beyond the cluster state as a resource for measurdrased quantum computa-
tion (MBQC). To the knowledge of the author, no single conagional model distinct
from the one-way computer has been developed which wouldabedon local mea-
surements on an algorithm-independent qubit resource. stat

Our contributions to understanding the computational pafguantum many-body
states are organized in three chapters.

Chapter 1 establishes the existence of a diverse set of universaliresstates
beyond the cluster. Methods for the systematic constmaionew MBQC schemes
and states are described. We introduce the notion of “coatiputl tensor networks”,
building on a familiar tool from many-body physics known hetnames of finitely
correlated states [35], matrix product states [83, 84] ojgmted entangled pair states [2,
112]. Using these methods, we go on to show that entanglepneperties of universal
states may be radically different from those of the cluster.

Chapter 2 — Having shown that the cluster is not unique in constituingiversal
resource, it is natural to ask whether a complete classditaff resource states is pos-
sible. The unqualified version of this question seems dagn&ortunately, it turns out
that a complete classification becomes tractable onceicertural extra assumptions
about resource states are made. This is the content of Clzap#ore specifically, we
initiate the study otomputational quantum wires states on one-dimensional chains
of quantum systems, which may be interpreted as the measuotdrased equivalent of
a single qubit. All qubit wires which can be prepared by segjaly entangling neigh-
boring systems are classified and many of their propertesxglicitly calculated. We
show how to couple such one-dimensional wires together taimla computationally

13



universal resource state.

Chapter 3 — Even though Chapters 1 and 2 present a plethora of new salver
resource, it is still fair to say that “most” states elude mathods. Tailoring a com-
putational scheme to a given state is a painstaking prochghwelies on a host of
coincidental properties: by-product groups must closgickl evolution must be uni-
tary, it must be possible to de-couple logical qubits and sdtlbese notions will be
made precise in Chapter 1). An obvious question to ask ishvenghese problems are
owed to a yet incomplete understanding of measurementzaseputation, or whether
“universality” is truly a rare property among quantum ssatén this chapter we show
that the latter scenario is realized: almost all states@remntangled to be useful.

All results presented in this part are joint work with J. EiseParts of Chapter 1
result from a collaboration with N. Schuch and D. Perez-@ardhe statements in
Chapter 3 were derived by the author as part of a joint proyettS. Flammia.
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1.1 Introduction

1.1 Introduction

1.1.1 Main results

As our main result, we present a plethora of new universalures states and compu-
tational schemes for MBQC. The examples have been chosamtortstrate the flexi-
bility one has when constructing models for measuremesédbaomputation. Indeed,
it turns out that many properties one might naturally cotjexto be necessary for a
state to be a universal resource can in fact be relaxed. Bleeth say, the weaker the
requirements are for a many-body state to form a resourcgufantum computing, the
more feasible physical implementations of MBQC become.

Below, we enumerate some specific results concerning theepties of resource

states. The list pertains to Question 1 given in the intrédac

¢ In the cluster state, every particle is maximally entang¥ti the rest of the lat-
tice. Also, the localizable entanglement [88] is maximad.(one can deterministi-
cally prepare an maximally entangled state between anyite®s, ®y performing
local measurements on the remainder). While both proseatie essential for the
original one-way computer, they turn out not to be necestargomputationally
universal resource states. To the contrary, we congtinicersal states which are

locally arbitrarily pure.

e For previously known schemes for MBQC, it was essential fdmaapart regions
of the state were uncorrelated. This feature allowed onegicé4lly break down a
measurement-based calculation into small parts correspgto individual quan-
tum gates. Our framework does not depend on this restriatigiresources with
non-vanishing correlationbetween any two subsystems are shown to exist. This

property is common e.g., in many-body ground-states.

e Cluster states can be prepared step-wise by means of atlie gatangling gate
(controlled-phase gate). This property has been used iartgmal universality
proof. More generally, one might conjecture that resouteées must always

result from an entangling process making use of mutuallyrnatmg entangling
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1.1 Introduction

gates, also known as a unitagyantum cellular automatoj®9]. Once more, this

requirement turns out not to be necessary.

e The cluster states can be useduassersal preparatorsAny guantum state can
be distilled out of a sufficiently large cluster state by lateasurements. Once
more, this property is essential to the original one-way potar scheme. How-
ever, computationally universal resource states not éxingthis properties do
exist (the reader is referred to Ref. [109] for an analysisesburce states which
are required to be preparators; see also the discussiorctiosd.1.3). More
strongly, we construct universal resources out of whichewan a single two-
gubit maximally entangled state can be distilled.

e A genuinequ-trit resource is presented (distinct, of course, from a qu-érnsion
of the cluster state [127]).

We will further see that there is quite some flexibility comiag the computational
model itself (addressing Question 2 mentioned in the intetidn):

e The new schemes differ from the one-way model in the wayrtherent random-

nessof quantum measurements is dealt with.

e We generalize the well-known conceptimf-product operatorfo encompass any
finite group. E.g. we show the existence of computationaletsdvhere the by-
product operators are elements of the entire single-quiffofd group, or the

dihedral group.

e We explore schemes where each logical qubit is encodesg\veral neighbor-
ing correlation systemgsee Section 1.2 for a definition of the term “correlation
system”).

e One can find ways to construct schemes in which interactiensden logical
gubits are controlled by “routing” the qubits towards antéiraction zone” or

keeping them away from it.

¢ In many schemes, we adjust the layout of the measuremesetpalynamically,

incorporating information about previous measurementaues as we go along.
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1.1 Introduction

In particular, the expected length of a computation is ramditis constitutes no
problem, as the probability of exceeding a finite expectadtle is exponentially

small in the excess).

1.1.2 Previous work

The apparent lack of new schemes for MBQC is all the more ®ingy, given the great
advances that have been made toward understanding theustratcluster state-based
computing itself. For example, it has been shown that thepcaational model of the
one-way computer and teleportation-based approachesatdugu computing [41] are
essentially equivalent [4, 62, 64]. A particularly elegargy of realizing this equiv-
alence was discovered in Ref. [113]: They pointed out thatriaximally entangled
states used for the teleportation need not be physicakddsthe role can be taken on
by virtual entangled pairs used in a “valence bond” [2] diggicm of the cluster state.
This point of view is closely related to our approach to becdbsd in Chapter 1. Fur-
ther progress includes a clarification of the temporal idggendence of measurements
[29]. In Ref. [105] a first non-cluster (though not univerdalt algorithm-dependent) re-
source has been introduced, which includes the naturétyadiilperforming three-qubit
gates. Recently, Refs. [107, 109] initiated a detailedystfdesource states which can
be used to prepare cluster states. A more fine-grained sfudg oomputational power
of resource states can be found in Ref. [6], where it is shbxablbcal measurements on
a resource state can allow a limited classical computetamatiassicaluniversality.
After the contents of this chapter were first published [6,08her authors utilized
the techniques developed here to tailor models to specifisipal setups [110], or to

construct computational schemes with intrinsic resileeagainst noise [15].

1.1.3 Universal resource states

What are the properties from which a universal resource skatives its power? After
clarifying the terminology, we will argue that an answer litcstquestion — desirable as
it may be — faces formidable obstacles.

Quantum computation can come in a variety of different inadions, as diverse as

e.g., the well-known gate-model [82], adiabatic quantumygotation [3] or MBQC. All
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1.1 Introduction

these models turn out to be equivalent in that they can simelzch other efficiently.

For measurement-based schemes, the “hardware” consetsolti-particle quan-
tum system in an algorithm-independent state and a classiocgouter. The input is a
gate-model description of a quantum computation. In evegg sf the computation,
a local measurement is performed on the quantum state anmeégshk is fed into the
classical computer. Based on the outcomes of previous, dtepsomputer calculates
which basis to use for the next measurements and, finalgrsrihe result of the com-
putation from the measurement outcomes [90]. Having thosgmture in mind, we call
a quantum state aniversal resourcdor MBQC, if a classical computer assisted by
local measurements on this states can efficiently predécbtticome of any quantum
computation.

The reader should be aware that another approach has yebertt described in
the literature. The cluster state has actually a stronggrgety than the one just used
for the definition of universality: it is a universal prepema This means that one can
prepare any given quantum state on a given sub-set of sitesudficiently large cluster
by means of local measurements. Hence, cluster states icoptthciple be used for
information processing tasks which require a quantum dufperf. [107] referred to this
scenario a£Q-universality— i.e. universality for problems which require a classical
input but deliver a quantum output. This observation is th@dof Ref. [109], where a
state is called a universal resource if it possesses theggtroperty of being a universal
preparator, or, equivalently, of being CQ-universal.

Clearly, any efficient universal preparator is also a comapomally universal re-
source for MBQC (since one can, in particular, prepare thstel state). But the con-
verse is not true, as our results show. Indeed, while it m@assible to come up with
necessary criteria for a state to be a universal prepara@®],[ we will argue below
that the current limited understanding of quantum compguteakes it extremely hard
to specify necessary conditions for computational unalégs

In order to pinpoint the source of the quantum speedup, wattrigto find schemes
where more and more work is done by the classical computde tie employed quan-
tum states become “simpler” (e.g., smaller or less entai)gl¢éow far can we push this
program without losing universality? The answer is likedybie intractable. Currently,
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1.1 Introduction

we are not aware of a proof that quantum computation is indeac powerful than
classical methods. Hence, it can presently not be excluddnio assistance from a
quantum state is necessary at all.

Observation 1 (Any state may be a universal resourcH)one is unwilling toassume
that there is a separation between classical and quantumpaodation (i.e., BPP#£

BQP), then it is impossible to rule out any state as a uniMeesource.

It is, however, both common and sensible to assume sugdgradrguantum com-
puters and we will from now on do so. Observation 1 still seragurpose: it teaches
us that the only known way to rule out universality is to ingakis assumption (this
avenue was taken, e.g., in Refs. [14, 108]).

Observation 2 (Efficient classical simulation)The only currently known method for
excluding the possibility that a given quantum state formsaversal resource is to

show that any measurement-based scheme utilizing thecstiatee efficiently simulated
by a classical computer.

In a previous publication [8], this observation was folla@®y the paragraph:

Thus, the situation presents itself as follows: there isas$et of quantum
states for which it is possible to prove that any local measent-based
scheme can be efficiently simulated. On the other extrereeg ik an even
tinier set for which universality is provable. For the vastjarity no assess-
ment can be made. Furthermore, given the fact that rigoyassablishing
the “hardness” of many important problems in computer s@dnrned out
to be extremely challenging, it seems unlikely that thigaion will change

dramatically in the foreseeable future.

This assessment proved to be too pessimistic, as shown pi&iga

Still, we conclude that a search for an explicit necessanglitimn for universality is
likely to remain futile. The converse question, howeven ba pursued: it is possible to
show that many properties that one might naively assume podseent in any universal
resource are, in fact, unnecessary.
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1.2 Computational tensor networks

1.2 Computational tensor networks

The current section is devoted to an in-depth treatment laiss of states known respec-
tively as valence-bond states, finitely correlated staes;ix product states or projected
entangled pairs states, adapted to our purposes of measurbased quantum comput-
ing. This family turns out to be especially well-suited fod@scription of a computing
scheme.

Indeed, any systematic analysis of resources states esquiramework for describ-
ing quantum states on extended systems. We briefly comps¢ ef desiderata, based

on which candidate techniques can be assessed.

e The description should eralable so that a class of states on systems of arbitrary

size can be treated efficiently.

e As quantum states which are naturally described in termsnetdimensional
topologies have been shown to be classically simulable§35,100, 108, 115],
the framework ought to handtevo- or higher dimensional topologiesturally.

e The basic operation in measurement-based computatidocemeasurements
It would be desirable to describe the effect of local measergs in a local man-
ner. ldeally, the class of efficiently describable statesithbe closed under local

measurements.

e The class of describable states should include elementhvghiow features that
naturally occur inground stateof quantum many-body systems, suchnas-
maximal local entropy of entanglemeastnon-vanishing two-point correlations

etc.

The description of states to be introduced below compli¢is all of these points.

We will introduce the construction in several steps, startvith one-dimensional
matrix product states. The new view on the processing ofin&tion is that the ma-
trices appearing in the description of resource statesakentliterally, as operators

processing quantum information.
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1.2 Computational tensor networks

1.2.1 Matrix product states

A matrix product stat§ MPS) for a chain ofn systems of physical dimensiah(so

d = 2 for qubits) is specified by

e An auxiliary D dimensional vector spadg’ being some parameter, describing
the amount of correlation between two consecutive blocke®thain),

e For each systema set ofd D x D-matricesA;[j],j € {0...d — 1}.
e Two D-dimensional vector.), | R) representindpoundary conditions

The state vecto’) of the matrix product state is then given explicitly by

d—1

) = > (RlAu[sa] ... Ai[si]|L) [s, ... s0). (1.2)
S1,038n=0

From now on we will assume that the matrices are site-inddgenA;[j| = A[j], so
the MPS is translationally invariant up to the boundary ¢oods. We take the freedom
of disregarding normalization whenever this consistepdysible.

Let us spend a minute interpreting Eq. (1.2). Assume we haagsared the first site
in the computational basis and obtained the outcem®©ne immediately sees that the
resulting state vectdd’(s;)) on the remaining sites is again a MPS, where the left-hand

side boundary vector now reads
[L'(s1)) = Als1]|L). (1.3)

Hence the state of the auxiliary system gets changed aogptdithe measurement
outcome. So we find that the correlations between the statleeofirst site and the
rest of the chain are mediated via the auxiliary space, wvitilthus be referred to as

correlation spacen the sequel.

1There is a reason why thight-hand-side boundary conditioR) appears on thieft of Eq. (1.2). In
linear algebra formulas, information usually flows fromhtigo left: BA|+) means {) is acted on by
A, then byB”. In the graphical notation to be introduce later, it is munbre natural to let information
flow from left to right:

[4) A B . (1.1)

The order in Eqg. (1.2) anticipates the graphical notation.
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1.2 Computational tensor networks

In the past, the matrices appearing in the definitionlofhave been treated mainly
as a collection of variational parameters, used to paraeetinsatz states for ground
states of spin chains [35, 83, 98]. However — and that is tis&cbasight underlying
our view on MBQC — Eqg. (1.3) can also be read as an operdfar acting on some
quantum stat¢l). We will elaborate on this interpretation in Section 1.2.2.

In order to translate Eq. (1.2) to the setting of 2-D lattjees need to cast it into the

form of a tensor network. Settinky, = (| L) and
Alsli = (glAlD), (1.4)

we can write Eq. (1.2) as

D
(1.5)

n*

.....

While Eq. (1.5) is awkward enough, the 2-D equivalent is clatgby unintelligible.
To cure this problem, we introduce a graphical notatiaich enables an intuitive
understanding beyond the 1-D case. In the following, tensoll be represented by
boxes, indices by edges:

L = [L}~, (1.6)

Alsl, = —A[s]~ (1.7)

R, = —{Ri] (1.8)

Needless to say, in the equation abové,i$ the index leaving the box on the left-

hand-side, #” the right-hand-side one. Connected lines designate aotns of the
respective indices. Eqg. (1.2) now reads

(51, 5u| W) =L Als1]}— - —{ Als.] H BT |

A single-index tensor can be interpreted as the expansiefficients of either a “ket”

or a “bra”. Sometimes, we will indicate what interpretatise have in mind by placing

2These graphical formulae are compatible with various sinsystems introduced before [27, 43].
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1.2 Computational tensor networks

arrows on the edges: outgoing arrows designating “ketsgnmng arrows “bras”

=|1),  —{Rt|= (Rl (1.9)

Tensors with two indicesl; , can naturally be interpreted as operators. In the graphical
notation we often want to think of information flowing frometheft to the right, in
which cased =}, A4, ,|r),(l|, would be denoted as

A =4, (1.10)

i.e. with the I.h.s. index being associated with a “bra” amelrth.s one with a “ket”. The

following relations exemplify the definition:
(RIL) = [L}R], (1.11)
AlL) = : (1.12)

AB = —{B}{A}~, (1.13)

tr(AB) = [_@_@j . (1.14)

The formula for the expansion coefficients of a matrix pracitate finally becomes

(51,80 W) = [LI Alsa] }— - — Alsu] [ RT]-

This formula suggest a more “dynamic” interpretation of MBf |.h.s. boundary con-

ditions |L) specify an initial state of the correlation system, whicladsed on by the
matrices of the MPS representation. The next paragraphimg do elaborate on this
point.

24



1.2 Computational tensor networks

1.2.2 Quantum computing in correlation systems

We return to the discussion of the properties of matrix pobdtates. Above, it has
been shown how to compute the overlagj with an element of the computational
basis (c.f. Eq. (1.5)). The next step is to generalize thaplocal projection operator.

Indeed, if|¢) is a general state vector (¥, we abbreviate
(010) A0] + ([1) A[1] =: Alg]. (1.15)

One then easily derives the following, central formula

n

(& (6i)10) =[LFAlg] |- - — Alpn] HR]- (1.16)

(2

Now suppose we measure local observableglorand obtain results corresponding
to the eigenvectofy;) at thei-th site. Eq. (1.16) allows us to re-interpret this process
as follows. Initially, theD-dimensional correlation system is prepared in the state

The result¢;) at the first site induces the evolution
L) = Alp]|L). (1.17)

From this point of view, a sequence of measurementd0iis tantamount to a process-
ing of the correlation system’s state by the operatidfig].2 An appealing perspective
on MBC suggests itself:

Observation 3(Role of correlation spaceMeasurement-based computing takes place
in correlation space. The gates acting on the correlatiostasms are determined by
local measurements. Intuitively, “quantum correlatioreg® the source of a resource’s
computational potency. The strength of this frameworkihdabe fact that it assigns a
concrete mathematical object to these correlations.

Indeed, it will turn out that MBQC can be understood compietesing this inter-

pretation.

30f course, for general measurement basts;] is not going to be unitary. Choosing the bases in
such a way as to ensure unitarity is an essential part of thigref a computational scheme for a given
resource.
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1.2 Computational tensor networks

1.2.3 Example: The 1-D cluster state

To illustrate the abstract definitions made above, we wdtdss the linear cluster state
vector|Cl,) in this section. It is both one of the simplest and certaihlynost impor-
tant MPS in the context of MBQC.

What is the tensor network representation@f,)? Recall that the cluster state can
be generated by preparimgsites in the state vectg#-) := |0) + |1) and subsequently

applying the controlled4 operation

between any two nearest neighbors. Effectivély, introduces ar-phase whenever
two consecutive systems are in the-state. Hence its expansion coefficients in the

computational basis are given by
(51,...,5,|Cl,) = 27"2(=1), (1.19)

wherep denotes the number of sitésuch thats; = s;,; = 1.

This observation makes it simple to derive the tensors oMR& representation.
We need aD = 2-dimensional correlation system, which — loosely speakingill
convey the information about the stateof thei-th site to site + 1. Define the matrices
Al0/1] by

A0}~ = 4,00, (1.20)
AN} = 9),ql, (1.21)

The intuition behind this choice is as follows. By the eletagnrelations
(H0) = (+[1) = (~|0) =272, (~[1) =272, (1.22)

the contraction in the middle of

Alsi] [ Also] |~ (1.23)
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1.2 Computational tensor networks

will yield a sign of "—1” exactly if s; = sy = 1. Indeed, setting the boundary vectors
to|L) = |0), |R) = |+) one checks easily that

(R|A[s,] ... A[s1]|L) = 27"/*(=1)7, (1.24)

which is exactly the value required by Eq. (1.19).

Below, we will interpret the correlation system of a 1-D a¢has a single logical
quantum system. For this interpretation to be viable, wetmlusck that the following
basic operations can be performed deterministically bglloteasurements: i) prepare
the correlation system in a known initial state, ii) trangdbat state along the chain
(possibly subject to known unitary transformations) anddéad out the final state.

To set the state of the correlation system to a definitiveejalie measure some site
— say the-th — in theZ-eigenbasis. Throughout this work, we will choose the notat
X, Y, andZ for the Pauli operators Denote the measurement outcomezby {0, 1}.

In case ofz = 0, Eq. (1.20) tells us that the state of the correlation sydtethe right
of thei-th site will be|+) (up to an unimportant phase). Likewiseza= 1 outcome
prepares the correlation system|in), according to Eq. (1.21). It follows that we can
use Z-measurements for preparation. How to cope with the intrirmndomness of
guantum measurements will concern us later.

Secondly, consider the operators

A = 224D + Al )
< |+){0] + |-)(1] = H, (1.25)
A o« HZ, (1.26)

where H is the Hadamard-gate. We see immediately that measurenmetie X -
eigenbasis give rise to a unitary evolution on the corretatipace. Similarly, one can
show that one can generate arbitrary local unitaries byogpjate measurements in the
Y-Z plane.

Below, we will frequently be confronted with a situationdilthe one presented in

Egs. (1.25,1.26), where the correlation system evolvesienad two possibilities, de-
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1.2 Computational tensor networks

pendent on the outcome of a measurement. It will be convetdentroduce a compact
notation that encompasses both cases in a single equatidaqsS (1.25,1.26) will be
represented as

—AX]}~ =HZ". (1.27)

Herex = 0 corresponds to the outcome) in an X-measurement, whereas= 1 cor-
responds to the outcone). In general, a physical observable given as an argumentto a
tensor corresponds to a measurement in the observableisleigis. The measurement
outcome is assigned to a suitable variable as in the above@ea

Lastly, we must show how to physically read out the state efghrely logical
correlation system. It turns out that measuring tRe 1-th physical system in th&-
eigenbasis corresponds toZzameasurement of the state of the correlation system just
after site:. Indeed, suppose we have measured the:fggstems and obtained results
corresponding to the local projection operdtor ® - - - ® |¢;). Further assume that as

a result of these measurements the correlation systemhs istatg0):

[LHAlpl |- —Alo] = = 10). (1.28)

Using Eq. (1.21) we have that

ZHAb-- [Alb]HAL}— (1.29)

o [+)(1]0) = 0.

But then it follows from Eq. (1.16) that the probability of taiming the result for a
Z-measurement on site- 1 is equal to zero. In other words: if tlverrelation systens

in the statg0) after thei-th site, then the + 1-th physical sitemust also be in the state
|0). An analogous argument for thé)-case completes the description of the read-out

scheme.

1.2.4 2-D lattices

The graphical notation greatly facilitates the passage@ol&ttices. Here, the tensors
A[s] have four indicesA|s]; .4, Which will be contracted with the indices of the left,
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right, upper and lower neighboring tensors respectivefterAchoosing a set of bound-
ary conditions|L), |R), |U), |D) € CP, the expansion coefficients of the state vector

|W) are computed as illustrated in the following example @va2-lattice:

Lot

[LHAls11][H Als2a] HR]
(81,1, -,522|¥) = [ [ ) (1.30)

Als12] || Alszo] [{R]

b (D)

In the 1-D case, we thought of the quantum information as ngpalong a single

correlation system from the left to the right. For highemdinsional lattices, a greater
deal of flexibility proves to be expedient. For example, somes it will be natural to
interpret the tensa#, ;. 4 as specifying the matrix elements of an operatanapping

the left and the lower correlation systems to the right aeduiper ones:

Appwa=(r|@ Wl All)®@|d), A= . (1.31)

Often, on the other hand, the interpretation

A = (| Al @ [0y ©|d), A= 1.32)

or yet another one is to be preferred.

We have seen in Section 1.2.2 that the correlation systenonéalimensional ma-
trix product state can naturally be interpreted as a singtum system subject to a
time evolution induced by local measurements. It would kereble to carry this intu-
ition over to the 2-D case. Indeed, most of the examples tadmigsed below are all
similar in relying on the same basic scenario: some hor@dinies in the lattice are in-
terpreted as effectively one-dimensional systems, inktiie logical qubits travel from
the left to the right. The vertical dimension is used to eittwuple the logical systems
or isolate them from each other. The reader should recdlthigsetting is very similar

to the original cluster state based-techniques. Clednyould be interesting to devise
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schemes not working in this way and the example presenteeldind® 1.3.2 takes a first
step in this direction.

1.2.5 Example: the 2-D cluster state

Once again the cluster state serves as an example. One danuwtdne tensor network
representation of the 2-D cluster state vegtor, ,,,) in the same way utilized for the

1-D case in Section 1.2.3. The resulting tensors are:

S
~ A0 = [4),1+),, (01,(0,, (1.33)
S
Al = (=), 1-), (1,1, (1.34)
L) =|D)=|+), |R)=1|U)=11). (1.35)

An important property of Egs. (1.33, 1.34) is that the teastjf) /1] factor. One could
graphically represent this fact by writing

- 0] , (1.36)

where
[0}= =10), = |+). (1.37)

In other words: the tensor$[0/1] effectively de-couple their respective indices. Based
on this fact, we will see momentarily ho#-measurements can be used to stop infor-
mation from flowing through the lattice.

Indeed, suppose three vertically adjacent sites are medsfiom top to bottom,
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respectively in theZ, X andZ-eigenbasis:

LA[X] . (1.38)

Denote the measurement resultszhyz, z, € {0, 1}. As before, these numbers corre-
spond toz, = 0 for |0) andz, = 1 for |1), as well ast = 0 for |[+) andz = 1 for |—).

In fact, we are mainly interested in the indices of the middlesor, as they will be the
ones which carry the logical information. To this end Eq36).is of use, as it says that
the upper and lower tensors factor and hence it makes sensg-tegard all of their
indices which do not influence the middle part. It hence sedfim consider

(1.39)
As a first step, we calculate
0]
0]
Al = o] [t} =270,
0]
having used Eq. (1.36) and the basic fact
0]=(0[+) =272 (1.40)

A similar calculation whered|0] is substituted byA[1] yields2~!|—)(1|. Hence, for
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A[+] o A[0] + A[1], we have

A+ o [4)(0]+[-)(1] = H. (1.41)

Similarly,

L

~ A[-] x HZ. (1.42)

_|_

After these preparations it is simple to conclude that

AlZ.]

SHAX| b o« Hz7wret (1.43)

AlZ4]

This finding tells us how to transport quantum informaticsmag horizontal lines through
the lattice. Namely by measuring the line in tAeeigenbasis to cause the informa-
tion to flow from the left to the right and measuring vertigadidjacent sites in the
Z-eigenbasis to shield the information from the rest of thtcke.

Eqg. (1.43) should be compared with Egs. (1.25,1.26). So yos$sible corrections
of the formZ#«*#, the procedure outlined above enables us to effectivelygresa 1-D
cluster state within the 2-D lattice.

1.3 Novel resource states

Up to this point, we have reformulated the computational ehad the one-way com-
puter in the language of computational tensor networkss plature of one-way com-
putation is educational in its own right. However, to comungly argue that the frame-
work is rich enough to allow for quite different models, wevbdo explicitly construct

novel schemes. It is the purpose of this section to discussrdoar of examples of new
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resources. As before, important features will be highkghds “observations”.

1.3.1 AKLT-type states

1-D structures

Our first example is inspired by tHeKLT stateg2], which is well-known in the context
of condensed matter physics. TAKLT modeis a 1-D, spin-1, nearest neighbor, frus-
tration free, gapped Hamiltonian. Its unique ground staematrix product state with
D = 2 and indeed, the AKLT model motivated the first studies of ssteltes [2, 35].

The defining matrices of the MPS description are:

—1A[0] = 7, (1.44)
—~{All]}~ 271210),.(1],, (1.45)
— A[2]] 2712|1),.(0], (1.46)

We will choose the boundary conditions to|de = |R) = |0). As a matter of fact, we
will not work directly with the AKLT state, but with a small viation, for which it turns
out to be more straight-forward to construct a scheme for \BIQ this modification,

the matrixA|[0] is given by the Hadamard gate, instead of the PAuperator:

— A0}~ =H. (1.47)

This state shares all the defining properties of the origiha the unique ground-state
of a spin-1 nearest neighbor frustration free gapped Hamdh (see Appendix 1.6.2).
Against the background of our program, the obvious quedtiaask is whether these
matrices can be used to implement any evolution on the atiwalspace.

To show that this is indeed the case, let us first analyze aureagnt in the
{]0), |4), | =) }-basis, whereé+) := 271/2(|1) + |2)). In a mild abuse of notation, we
will hence write|+) for state vectors in the subspace spanned|by, |2)} instead of
{]0),|1)}. From Egs. (1.44-1.47) one finds that depending on the memsunt out-
come, the operation realized on the correlation space widiie of H, X or ZX =Y.

At this point, we have to turn to an important issue: how to pensate for the random-
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ness of quantum measurement outcomes.

Compensating the randomness

Assume for now that we intended to just transport the infaionafaithfully from left

to right. In this case, we consider the operator
By :=H, X, orZX (1.48)

as an unwantet@dy-productof the scheme. The one-way computer based on cluster
states has the remarkable property that the by-productsecdealt with by adjusting the
measurement-bases depending on the previous outcomesutwhanging the general
“layout” of the computation [90]. For more general modelstlae ones considered in
this work, such a simple solution seems not available. Rattly, we can employ a
“trial-until-success” strategy, which proves remarkadpgneral.

The key points to notice are that i) the three possible ouesdif) X andZ generate
a finite groupB and ii) the probability for each outcome is equal {3, independent of
the state of the correlation system. We will refefd@s the model'®y-productgroup.
Now suppose we measure adjacent sites in th¢|0), |+), |—) }-basis. The resulting
overall by-product operatoB = B,,B,,_1 ... B; will be a product ofm generators
H, X, ZX. So by repeatedly transporting the state of the correlaysitem to the right,
the by-products are subject to a random walkibrBecauses is finite, every element
will occur after a finite expected number of steps (as one aaityeprove).

The group structure opens up a way of dealing with the ranéssinindeed, as-
sume that initially the state vector of the correlation egsis given byB|:), for some
unwantedB € B. Transferring the state along the chain will introduce ttdi@gonal

by-product operatoB~! after some finite expected number of steps, leaving us with
B™'BlY) = |4), (1.49)

as desired. The technique outlined here proves to be exiyeypaeral and we will

encounter it in further examples presented below.

Observation 4(Compensating randomnes$)ossible sets of by-product operators are
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not limited to the Pauli group. A way of compensating randessrfor other finite by-
product operator groups is to adopt a “trial-until-succestsategy”, which gives rise to
a random length of the computation. This length is in eacle ci®wn to be bounded

on average by a constant in the system size.

All single-qubit gates

By the preceding paragraphs, we can implement any elemefitasf the correlation
space. We next address the problem of realizing a phaseS¢aje= diag(1, ¢¢) for
someg € R. To this end, consider a measurement on i, 2-/2(|1) £ €¢|2))}-
basis. There are three cases

e The outcome corresponds|td + ¢*¢|2). In this case, we gef(¢) on the corre-
lation space and are hence done.

e The outcome corresponds o) — e¢|2). We getZS(¢), which is the desired
operation, up to an element of the by-product group, whiclcarerid ourselves

of as described above.

e Lastly, in case of0), we implementd on the correlation space. A$ € 3, we

can “undo” it and then re-try to implement the phase gate.

Hence, we can implement any elemenfads well asS(¢) on the correlation space.
This implies thatH S(¢) H is also realizable and therefore any single-qubit unitasy,
SU(2) is generated by operations of the foffy) and HS(¢)H.

The state of the correlation system can be prepared by megsarthe computa-
tional basis. In case one obtains a resultigfdr “ 27, the state of the correlation system
will be |0) or |1) respectively, irrespective of its previous state.(A-butcome will not
leave the correlation system in a definite state. Howevear affinite expected number
of steps, a measurement will give a non-“0"-result. Lastlyead-out scheme can be

realized similarly (c.f. Section 1.2.3).

Observation 5 (Ground states)Ground states of one-dimensional gapped nearest-

neighbor Hamiltonians may serve as resources for transpodtarbitrary rotations.
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Figure 1.1: A universal resource deriving from the AKLT-nebd
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2-D structures

Several horizontal 1-D AKLT-type states can be coupled twbee a universal 2-D re-
source. The coupling can be facilitated by performing arabieid-Z operation, embed-
ded into the three-dimensional spin-1 space, betweercaéytiadjacent nearest neigh-
bors. More specifically, we will use the operati@m{ir|2) (2| ® |2)(2|}, which intro-
duces ar-phase between two systems exactly if both are in the fateThe tensor
network representation of this resource is given by

~ A[0] = H_,®+),0|, (1.50)
Rt

~{ A[1] = 272)0) (1], ® |+),(0],, (1.51)
-

> A[2] = 27Y21) (0], ® |-),, (1], (1.52)
=

as one can check in analogy to Sec. 1.2.5. Here,
Hy_, = |+),(0], + |—), (1], (1.53)

To verify that the resulting 2-D state constitutes a unigerssource, we need to
check that a) one can isolate the correlation system of adval line from the rest of

the lattice, so that it may be interpreted as a logical quiwt la) one can couple these
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logical qubits to perform an entangling gate.
The first step works in complete analogy to Section 1.2.5Fsgel.1. Indeed, one

simply confirms that

(1.54)

wheres € {0,1,2} and Z,,; denotes a measurement in th@), |1), |2)}-basis. So
measuring the vertically adjacent nodes in the computatibasis gives us back the
1-D state, up to a possible sign.

A controlledZ gate can be realized in five steps:

(1.55)

The PaulimatriceX, Y, Z are understood as being embedded intdthg |2) }-subspace.
So, e.g.,X denotes a measurement in @), 2-/2(|1) & |2))}-basis. When operating
the gate, we first measure all sites of the upper and lowes Imé&he X -eigenbasis. In
case the result for the sites at position “0” (refer to labgkbove) is different fromy-),
the gate failed. In that case all sites on the middle line aeasured in the computa-
tional basis and we restart the procedure five steps to th& ri@therwise, the systems
labeled by & are measured. We accept the outcome only if we obtdirjezh sitest+2
and|0) on sitest1 — should a different result occur, the gate is once againidered

a failure and we proceed as above. Lastly, Yheneasurement on the central site is
performed. In case of a result correspondingotg it is easy to see that no interaction

between the upper and the lower part takes place, so thig igsh possibility for the

“We have chosen this approach in order to avoid an awkwardisigm of how to handle phases
introduced by “wrong” measurement outcomes. We are progidroofs of principle for universality here
and will accept a (possibly daunting) linear overhead ingkgected number of steps, if this simplifies
the discussion. Substantial improvements to these schamgsf course, possible.
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gate to fail. Let us assume now that the desired measurem&droes were realized.

At site —2 on the middle line, we obtained

ALl | (1.56)

which prepares the correlation system of the middle lin®jn At site —1, in turn, a
Hadamard gate has been realized, which causes the outptgt efido be 7|0) = |+).
The situation is similar on the r.h.s., so that the above adtat site) can be re-written

as
— ]

[(FHAYTHF) (1.57)

—JA]

We will now analyze the tensor network in Eq. (1.57) step ®pstFor proving its
functionality, there is no loss of generality in restricfiattention to the situation where
the correlation system of the lower line is initially in stat), for ¢ € {0,1}. We

compute for the lower part of the tensor network

,T\ — (&
A+ = X[),Z°[+),- (1.58)

Further, plugging the output‘|+) of the lower stage into the middle part, we find

AlY] oc ZTY(|0) +4|1)), (1.59)
Z°|+)

wherey € 0, 1 reflects the outcome of thé-measurement on the central site= 0 in

case of/1) +4|2) andy = 1 for |1) — i|2). Lastly,

=
+

|
0) - ij1)]

=

x SZHX. (1.60)

Zty

—~

In summary, the evolution afforded on the upper liné/iSZ¥*¢, equivalent taZ¢ up to

by-products. This completes the proof of universality.
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For completeness, note that we never need the by-produegsish for all logical
qubits of the full computation simultaneously. Hence thpested number of steps for
the realization of one- or two-qubit gates is a constant enrthmber of total logical

qubits.

1.3.2 Toric code states

In the following, we present two MBQC resource states whiah raotivated by Ki-
taev’s toric code states [70]. This contrasts with a resuRef. [14] that MBQC on the
planar toric code state itself can be simulated efficiengsically. Different from the
other schemes presented, the natural gate in these schemésad-qubit interaction,
whereas local operations have to be implemented inditeslbp, individual qubits are
decoupled not by erasing sites but by switching off the coggbetween them.

Toric code states are states with non-trivial topologicalperties and have been
introduced in the context of quantum error correction. Thaye a particularly simple
representation in terms of PEPS [114] or CTNs [6] on two aetsquare lattices,

Hu| K| K
o) (K] (K

(1.61)
|Kn| |Kn| |[Kn
&) [R] (K]
where
~ =]
Kpyls] = (1.62)

ZS
|z
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Figure 1.2: Implementation of single-qubit and two-quipeaations in the first toric
code model.a) The measurement pattern for single-qubit operationstaride corre-
sponding circuit.c) Pattern for a two-qubit gate between logical qubisthe corre-
sponding circuit an@) the circuit after some simplifications.

and

Kvls]| = j@ d (1.63)

l.e., Ky and Ky, are identical up to a rotation 90 degrees.

Let us first see howKy acts on two qubits in correlation space coming from the
left. The most basic operation is a measurement in the catipoél basis, which
simply transports both qubits to the right (up to a correlateby-product operator).

Generalizing this to measurements in #eZ plane, we find that

Ky o) = |ZZ(9) (1.64)
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where¢ is the angle with the& axis, and

Z7Z(p) = : (1.65)

(Note that this gate is locally equivalent to theOT gate forp = +7/2.)

Thus, the tensors in Kitaev’s toric code state havgequbit operation as their
natural gate in correlation space, rather thaginglequbit gate. In MBQC schemes
which base on these projectors, two-qubit gates are eamataze, whereas in order
to get one-qubit gates, tricks have to be used. In the firahpia we obtain single-
qubit operations by introducing ancillaeZ& controlled phase between a logical qubit
and an ancilla in a computational basis state yields a l@cebtation on the logical
qubit. In the second example, we use a different approachemwede each logical
qubit in two qubits in correlation space. Using this nonlocal encodimg,obtain an
easy implementation of both one- and two-qubit operatidunghermore, the scheme

allows for an arbitrary parallelization of the two-qubitenactions.

Observation 6(Logical qubits in several correlation system$here is no need to have

a one-one correspondance between logical qubits and aestagtelation system.

Toric codes: first scheme

Ouir first scheme consists of the modified tensor

KH[S]
Kpys] = 7 (1.66)
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[with v/Z = diag(1,4)], arranged as in (1.61) wheb®th K;; and I, are replaced by
Ky. The extraH serves the same purpose as in other schemes: it allows ® tleav
subspace of diagonal operations and thus to implemferdtations. The need for the

v/Z will become clear later: it is connected to the fact that
cNOT= (1@ H) (VZ@VZ) ZZ(—7/2) (1® H) . (1.67)

In the following, we show how this state can be used for MBQ®@&e fubits run
from left to right in correlation space in zig-zag lines in.E#).61); for the illustration
in Fig. 1.2, we have straightened these lines, and markesh@asurement-induced”
interactions coming from th& ;s in (1.66) by ellipses. (The difference between filled
and non-filled ellipses will be explained later.) Tk& H operations of (1.66) do not
depend on the measurement and are thus hard-wired; notiaéhattder is reversed as
we are considering/ andv/Z as two independent operations in the circuit.

Let us first impose that all qubits are initialized [t9); this corresponds to a left
boundary condition0) in correlation space. We will discuss later how to initialthe
scheme. Every second qubit is an ancilla which will be useidhf@ement one-qubit
operations. We first discuss the case of no Pauli errors, lzowd ter how those can be
dealt with.

The implementation of single-qubit operations is illuggdhin Fig. 1.2a. There,
each ellipse denotes a possitlZ interaction. In particular, empty ellipses denote in-
teractions which are switched off (i.e. measured in thbasis), while filled ellipses
denote sites where one can measure inYth& plane to implement & 7 gate. If all
interactions are switched off, all qubits are transportethé right, subject to the trans-
formationv/ZH. As (vZH)? = 1, the ancillae are in the computational basis in every
third step: These regions are hashed in Fig. 1.2a. In thegens aZ”Z(¢) between
ancilla and logical qubit (corresponding to the filled edlgs in the figure) results in a
single-qubitZ rotation on the latter. Thus, in each block of length thre¢hasone

shown in Fig. 1.2a, the transformation

VZHNZHS(W)WZHS(¢) = HS(¥)HS(9) (1.68)
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is implemented [wher§(¢) = diag(1, €'*)], which allows for arbitrary one-qubit oper-
ations. In Fig. 1.2b, the corresponding circuit is showniclinas been simplified using
HNZHNZ = X\ Z = (vVZ)~'H, and that diagonal matrices commute.

Although the scheme has a natural two-qubit interactiop/@émenting an interac-
tion between two adjaceidgical qubits is complicated by the ancilla which is located
inbetween. In order to obtain a coupling, we first swap thecklgqubit with the an-
cilla, then couple it to the now adjacent logical neighbad &inally swap it back. This is
implemented by the measurement pattern shown in Fig. 1.@ainrAempty ellipses cor-
respond to switched off interactions, while the filled ediys all implement Z (—x/2)
gates, each of which together with twdZ and two Hadamards as grouped in the figure
gives aCNOT gate, cf. Eq. (1.67). This measurement pattern corresponiti® circuit
shown in Fig. 1.2d, where we have replaced each painafts by acNOT and aswAP.

By merging eacltNoOT with the two adjacent Hadamards, we effectively obtain

gates. We thus remain with only diagonal gates on the tworaoubits (except for the
SWAP), i.e. the gates all commute and the circuit can thus be #iegbto the one shown
on in Fig. 1.2e, proving that the sequence effectively imp@ats a two-qubit interaction
between the logical qubits. Note that the length of the cetedequence is compatible
with the three-periodicity of the basis of the ancillae.

Pauli errors in this scheme can be dealt with as usfiahnd+/Z are both in the
Clifford group, i.e., Paulis can be commuted through, auficommutes with? errors,
while (1 ® X)ZZ(¢) = ZZ(—9¢)(1 ® X).

Finally, we show how to read out the logical qubits. It holdatt

\—/

H[+] = 2><8 + 1><1 , (1.70)

\—/

e - VL e
1 1 0 0

i.e., a measurement in th¢ basis returns the parity of the ancilla and the logical qubit
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Figure 1.3: Interpretation of the first toric code schemeemmts of parity encoded
qubits. The boxed parts of the circuit decode and encodeysters. a) Z rotations
result inZ rotations in the encoded systet). X rotations result inX rotations in the
encoded system, plug corrections before and after the rotations in casestijebit
below is|—), rather tharj+),. c) Similarly, the coupling circuit Fig. 1.2d results in a
coupling of the encoded logical qubits, up to the safneorrection on the first logical
qubit which depends on thequbit below in exactly the same way. Thus, theorrec-
tions on each qubit cancel out except for the first and thewdsth have no effect due
to the initialization and measurement in the computatibaais.
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If this is done when the ancilla is in a computational basitestone effectively measures
the logical qubit in the computational basis. Note that libthancilla and the logical
qubit are in a well-defined state afterwards and can thususede

Let us now turn towards the initialization procedure. In ttast to the previous
MBQC schemes, the read-out cannot be used for initialinatiche reason is that the
read-out only works if the ancilla qubit is initially in a cqmatational basis state; other-
wise, it just projects onto the subspace spannefi®y), |1,1)} or by {|0, 1), |1,0)}.

In the following, we demonstrate that it is still possibleindialize this scheme by
taking a different perspective on how it encodes logicalitgubTherefore, we group
each logical qubit with the ancilla above (e.g., the first Wubits in Fig. 1.2a), and
encode the new logical qubit in their parity — note that tkisvhat is really measured
in the read-out. The following calculations are most comwetty carried out in a Bell
basis where each state is describedsagl),, where thes qubit stores the sign of the
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Bell state and thé qubit the parity and thus encodes our logical qubit, i.e.

[5)5100, = 10,00 + (=1)°[1, 1) (1.72)
|s),1), < [0,1) + (=1)°|1,0). (1.73)

The circuit transforming between the above encoding andqubés in correlation space

|s), = H F— ancilla
|1}, ——D— logical qubit (1.74)

is

Using this decoding, it is straightforward to investigateavhappens in the various
steps of the MBQC scheme. Firstly, one can easily check thatdasuring two con-
secutive couplings of the qubit pair in thé basis, one prepares them in a maximally
entangled stat®), 0) + |1, 1) up to Pauli errors, corresponding|® |0), in the encoded
system. By pretending a Paulierror on one of the qubits with= 1/2, we effectively
face the mixture0, 0)(0,0| + |1, 1)(1,1

Since the transformation (1.74) is in the Clifford groupuPa&rrors remain Pauli

, corresponding td ; ® [0)(0],.

errors in the encoded system. In the following, we will chéckv the circuit acts on

initial states +) |0),, where the sign can be different on each pair. As we will stadhw,

of them give the same output statistics, and thus the sands faitheir mixture, i.e. the

actual initial state. These considerations are illustrateFig. 1.3, where we take the
circuits of Fig. 1.2 and compose them with the decoding amd@ing circuits (boxed)

in order to determine their action on the encoded system.

Firstly, aZZ(¢) gate on a pair gives & rotation of the encoded logical qubit, since
the action ofZZ(¢) only depends on the parity (Fig. 1.3a). The action of the séco
7 7 rotation of Fig. 1.2b which originally gave ai rotation is shown in Fig. 1.3b.
The right hand side is obtained by usiayot = (1 ® H) CZ (1 ® H), H? = 1, the
fact that diagonal operators commute, #6t%)? = 1. As we see from the simplified
circuit, we obtain anX rotation on the upper logical qubit, but with the rotatioredtion
determined by the state of the , qubit below: While|+) results in a rotatioR, (¢),
the statg—) gives

ZRy(9)Z < Ry(—9) .
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Similarly, the circuit for the coupling of two logical qukitcan be simplified as in
Fig. 1.3c: again, the coupling on the logical qubit§id(¢) .= (H® Z2)ZZ(¢)(H®1)
or

(He ZX)ZZ(¢)(H® X)=(Zx1)Cpl(¢)(Z® 1),

depending on whether the secongubit is|+), or |—)..

Therefore, the error introduced by the unknown state of eaglibit results in &7
correction around each operation on the logical qubit aljpeée that we can assume
this also forZ rotations as they commute with the correction). Although the error
itself is unknown and different for each logical qubit, ittsnsistent within each qubit,
as it is always determined by the same ancilla. Thus, twoexpEnt” errors cancel
out, and one remains only with or#ecorrection on the logical qubit at the beginning
and one at the end of the sequence. The former has no effeetthiminitial state i),
while the latter has no effect either since the encoded &gabit is finally measured in
the computational basis. Thus, the output statistics fercticuit is independent of the
initial state|+), of the phase qubits, and one can equally well start from theiture

1, which completes the argument.

Toric codes: second scheme

The second toric-code-like scheme is based on a very diffestea. Therefore, observe

that theK, tensor can be written as

Ky|[s] = |copy! Als] Hcopy| (1.75)

wherecory is the copy gate0, 0)(0| + |1,1)(1|, H is the Hadamard gate (both with
no physical system associated to them), dritie 1-D cluster projector, cf. Egs. (1.20)
and (1.21). Thus/, takes two qubits in correlation space, projects them orgo th
{]0,0),|1,1)} subspace, implements the 1-D cluster map up to a Hadamaddjian
plicates the output to two qubits. Concatenating theseotsrtsorizontally [this takes
place in (1.61) if allKy’s are measured i, and one neglects Pauli errors] therefore
implements a single logical qubit line, encoded in two geibitcorrelation space. By
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removing the Hadamard gate frofy,, we obtain a 1-D cluster state encoded in two
qubits which is thus capable of implementing any one-qupération on the logical

qubit; in particular, this includes intialization and readt. We thus define the tensor

N7
Rvlsl| = A[s] - (1.76)

Then, the toric code state (1.61) wifki, replaced byKy is universal for MBQC:

Initialization, one-qubit operations, and read-out araelexacly as in the 1-D cluster
state. The logical qubits are decoupled ugtby-product operators in correlation space
by measuring the(, tensors in theZ basis. TheZ by-products in correlation space
correspond td errors on the encoded logical qubits and thus can again biexdtaas

in the cluster. In order to couple two logical qubits, we measa Ky tensor in theY”
basis and obtain &~ controlled phase gate in correlation space, which traeslatthe
same gate on the logical qubits. Note that this model hasdtigi@nal feature that as
as many controlled phases (between nearest neighbors3iasddean be implemented
simultaneously.

In the light of the discussion on the initialization of thesfischeme, one might see
similarities between the two schemes, since in both cagestbrmation is effectively
encoded in pairs of qubits. Note however that in the first sehethe information is
stored in the parity of the two qubits, and the #tdlimensional space is being used; the
reason for this encoding came from the properties offydensor used as a map in hor-
izontal direction. In contrast, the second scheme only [ades the2-dimensional even
parity subspace, and the qubit is rather stored in two cagitise same state; finally,
the encoding is motivated by the properties of #ig tensor as a map on correlation
space in horizontal direction.

1.3.3 Weighted graph states

In this section, we will consider instancesweighted graph statef81, 54] forming

universal resources. To motivate the construction, reball the cluster state can be
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Figure 1.4: Weighted graph state as a universal resourdiel.lfBes correspond to edges
that have been entangled using phase gates with phase, dotted lines correspond

to edges entangled with phase gates with- 7/2. This shows that one can replace
some edges with weakly entangled bonds.

prepared by applying a controlled-phase gate
P(¢) = 0,0)(0,0[ + 10, 1)(0, 1] +[1,0)(1, 0] + €"[1, 1){1, 1], (1.77)

with phasep = = between any two nearest neighbors of a two-dimensionatdadif
qubits initially in the statg+). If one wants to physically implement this operation
usinglinear optics[32], one encounters the situation that the controlled plgade can
be implemented only probabilistically, with the probatyilof success decreasing as
increases. It is hence natural to ask whether one can buifdvarsal resource using

gatesP(¢),0 < ¢ < m, in order to minimize the probability of failute

Translationally invariant weighted graph states

Expanding the discussion presented in Ref. [6], we treavthighted graph state shown
in Fig. 1.4. A tensor network representation of these stedsbe derived along the

same lines as for the original cluster in Section 1.2.3.|8et= 271/2(|0) + i|1)). The

SAlternative models with edges resulting from commutingegaivith non-maximally entangling
power can possibly also be constructed by exploiting idéasn-local gates that are implemented with
local operations and classical communication [25, 26, 33].1
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relevant tensors are given by

O = ) )0 14,(014{01,.4 {01, (1.78)

\ ¥
N

EAU] = [0 [0 [ =)0 (Ui (M 1 (1.79)

Indices are labelech: for “right-up” to Id for “left-down”. The boundary conditions are
|0) for theru, lu, r-directions;+) otherwise.

We will first describe how to realize isolated evolutions ofgée logical qubits.
Again the strategy will be to measure the sites of one hotadime of the lattice in the
X-basis and all vertically adjacent systems in fidasis. The analysis of the situation

proceeds in perfect analogy to the one given in Section 1ng obtains

A[Zi—l,u] A[Zi+17u]
A[X]] % — H G2tz (1.80)
AlZ;_1 4] AlZi1.4]
where
2 = Zi—1u T Ri—1,d t+ Zit1,u T Rit1,d (1.81)

andsS := diag(1,¢) denotes ther /4 gate

The operatord? and S generate the 24-element single qubit Clifford group. Fol-
lowing the approach of Section 1.3.1, we take this as the tisdae product group.

Now choose some phase Re-doing the calculation which led to Eqg. (1.80), where
we now measure in thg0) +¢?|1) }-basis instead ok on the central node, shows that
the evolution of the correlation space is given$yp), up to by-products. In complete
analogy to Section 1.3.1, we see that the model allows forghkzation of arbitrary
SU(2) operations.

How to prepare the state of the correlation system for a sihgtizontal line and
how to read read it out has already been discussed in SecoB. IHence the only
piece missing for universal quantum computation is a siegtangling two-qubit gate.

The schematics for a controlled-gate between two horizontal lines in the lattice

are given below. We implicitly assume that all adjacentssitet shown are measured in
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the Z-basis,

|
=
5
N

XTHAXT}-

Y] . (1.82)

X AKX~

The measurement scheme realizes a contrdlggte, where the correlation system of

o

o

— A[X]

the lower line carries the control qubit and the upper lireetdrget qubit.

In detail one would proceed as follows: first one performsXheneasurements on
the sites shown and th&-measurements on the adjacent ones. If any of these measure-
ments yields the resuli”, we apply aZ-measurement to the central site and restart the
procedure three sites to the right. This approach has bemsentor convenience: it
allows us to forget about possible phases introduced by otlkasurement outcomes.
Still, the “correct” result will occur after a finite expedt@umber of steps, so the over-
head caused due to this simplification is only linear. It goalot hard to see that most
other outcomes can be compensated for — so for practicabpespghe scheme could be
vastly optimized.

Now assume that all measurements yieldéd “Then aY-measurement is per-
formed on the central site, obtaining the regulfAs we did in Section 1.3.1, we assume
that the (lower) control line is in the basis statg for ¢ € {0,1}. The contraction of

the lower-most three tensors gives

THAXHARHAR- (1.83)

= SC|+>luSC|+>T’uH|C>r7
where as beforé = S(i) = diag(1, 7). We plug this result into thel[Y'] tensor:

\—
AlY]

S+ 54

+ (=1)i(S @ )4 [+) -

(1.84)

= | 1)

lu U
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Figure 1.5: Weighted graph state where the gate is achieyeghropriately bringing
two wires together in a “rerouting process”.

Lastly, forz € {0, 1},

AX]HA[X]

A F —HZ" (1.85)
57) | |

Hence, the evolution on the upper line is

H(1 + (=1)%2) oc HSZV*e, (1.86)

equivalent taZ¢ up to by-products. We arrive hence at the following conduasi

Observation 7(Non-maximal entangling power)Jniversal resouces may be prepared

using commuting gates with non-maximal entangling power.

Rerouting

we will consider a second weighted graph state to exempétyaypother novel ingre-
dient that one can make use of in measurement-based quantaputation: One can
think of quantum information being transported in the clatien system of some sys-
tems on the lattice forming “wires”, in a way that gates araired by bringing the
“wires” together. This is an element that is not present s dhiginal one-way com-
puter. The subsequent example of a resource state has mothasen for its plausibil-
ity in the preparation in a physical context, but in a way stinet this idea of “rerouting

quantum information” can very transparently be explairse@, Fig. 1.5.
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The resource that we think about is defined by tensors thdtilyeranslationally

invariant in one dimension, and has period two in the ortinagdimension,

(1.87)
S B0] = [+),]+), (0,{0],, (1.88)
B
Bl = |-),li), (1,1, (1.89)
B

whereas the other one is nothing but the familiar one for ad@tiSter state as in Eqs.
(1.88, 1.89), with boundary conditions

L) =ID) =[+),  |R)=]U)=[1). (1.90)

The resulting state is hence again a weighted graph staggeviione dimension every
second edge is replaced by an edge prepared using a gateowithaximal entangling
power. Then, it is not difficult to see that, again withz,., z,, z4, z; € {0, 1},

= HZo 7Gx, (1.91)
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and

~ A[X] — HZ"t G2, (1.92)

Similarly, we can consider several corner elements in #gsurce. We obtain

A[?X]%A[Zr] — HZ7t7 g (1.93)
B[Z,]
and similarly
v
AlZ)] A[XH—) = (HSH)* X%+, (1.94)
B[Z,]
AlZ,]
E[iX_H»B[ZT] — geta g (1.95)
AlZ,]
5 ;[IX_]}» = Hz=tmra(§ 7)), (1.96)

where we have again made use of the conventionithat 0 corresponds t¢+) and

x = 1to|-). We need one more ingredient to the scheme, this is

BIZIHBOI = [4)+)u(0la (1.97)

BIZIHBUE = [l (1.98)

53



1.3 Novel resource states

and
A
AHAIZ]| = [4)u(0l(0]4, (1.99)
)
A
ANHAIZ] = ()7 =)u({1a. (1.100)
)

Putting these ingredients, and following an argument sima the last subsection, we
find that up to Clifford group by-products, we can transpdong the horizontal lines
for both kinds of local tensors. We can also use the corneepit reroute as depicted
in Fig. 1.5, and bring routes together forming a “gate” imped in the lattice, actually,
a controlleds gate.

It should be noted that it is not obviously possible to faitlyf transport one qubit
of information vertically through the resource. Looselyeaking, the entanglement
between a site of type B and the site of type A directly above iton-maximal (this
is indicated by dotted lines in Fig. 1.5). Interestinglyeoran still perform a (non-

maximally entangling) non-local gate over this connection

Observation 8(Rerouting) Gates in measurement-based quantum computation can be

achieved by means of appropriate routing of quantum infdionan the lattice.

1.3.4 A qubit resource with non-vanishing correlation fund¢ions

We will very briefly sketch a matrix product state on a 1-D chaf qubits, which i)
exhibits non-vanishing two-point correlation functioriyallows for any unitary to be
realized in its correlation system and iii) can be coupled tmiversal 2-D resource in
a way very similar to the AKLT-type example (Section 1.3.The discussion will be
somewhat superficial — however, given the extensive dismussé other models above,
the reader should have no problems filling in the details.

Choose an integen. > 2 and define

G = exp(ir/mX). (1.101)

54



1.3 Novel resource states

Up to a constanty is am-th root of X. The state is defined by the following relations:

— Als] = |s),.(s],G, (1.102)

and
L) =G+, |R) = |+). (1.103)

The two-point correlation functions for measurements as #tate never vanish

completely. Indeed, in Appendix 1.6.1 it will be shown that
(ZiZik) — (Z:) (Zign) = 267, (1.104)

where¢ := 2sin*(7/m) — 1.

For X-measurements, we find

— A[X] - 7°G (1.105)

Pursuing the strategy introduced in Section 1.3.1, we sebyhproduct group t# =
(Z,G), so the group generated yandG. One can easily verify tha8 is indeed a
finite group, equivalent to theihedral groupof order2m.

It is now straight-forward to check that i) measurementhisn¢omputational basis
can be used for preparation and read-out (as in Section) li2 g=neral local unitaries
can be realized by means of measurements in the equatared pf the Bloch sphere
(as in Section 1.3.1) and iii) a 2-D resource is obtainabkefiashion similar to the one
presented in Section 1.3.1. With similar methods, one camfald qubit resource states
that have a local entropy smaller than unity.

1.3.5 Percolation ideas to make use of imperfect resources

For completeness, we mention yet another kind of resourais:i¥ an imperfect cluster
state where some edges are missing. Such a setting is adelant in a number of
physical situations: If the underlying quantum gates boddup the cluster state are
fundamentally probabilistic, such as in linear opticalatectures, then one very natu-

rally arrives at this situation when one aims at minimizing heed for feed-forward. A
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similar situation is encountered in cold atoms in optic#tidas, when in a Mott state
exhibiting hole defects some atoms are missing. We do naeeptedetails of such ar-
guments, which have been considered in Ref. [68], basedeas idfedge percolation
and renormalization [44]. We merely state the result for plateness. Note also that
results that may be similar to these ones have been annoimied. [109].

We consider the setting where one starts from a 2-D or 3-Dcdatiice of sizew x n.
Two neighboring vertices on the lattice are connected witkedge with probability.
The stochastic variables deciding whether or not an edgeesept are assumed to be
uncorrelated. If» > p, = 1/2 holds, then it is not difficult to see that one can extract
a 2-D renormalized lattice of smaller size: This means tim& can find a function
n — m(n), such that one arrives at a cubign) x m(n) array almost certainly as
n — oo, with the following property: Within each of the elementstbis array, there
is a central site that is connected to the central site of dightoring array. Since all
the additional sites can be removed by meang aheasurements, we can treat this
resource effectively as a 2-D cluster state of dimensign) x m(n), and refer to
this as aperfect sublattice This state will not necessarily be exactly a cluster state,
as it may contain vertices having a vertex degree of threiewhich will nevertheless
function as a graph state resource just as the cluster stesgfibr details, see Ref. [68]).
Also,n/m(n) is arbitrarily close to being linear in asymptotically. However, an even
stronger statement holds:

Observation 9 (Percolation) Whenevep > p3 = 0.249, for anye > 0, one can find
a functionn — m(n) with the following property: Starting from a sublattice of3a
D cubic lattice of sizex x n x 2n/m(n), one can almost certainly prepare a perfect

sublattice of sizen(n) x m(n). The asymptotic behavior ef can be chosen to satisfy

n/m(n) = O(nf). (1.106)

That is, with an overhead that is arbitrarily close to theropt scaling, one can ob-
tain a perfect resource state out of an imperfect one, evereifs merely above the per-
colation threshold for a three-dimensional lattice, antlamdy for the two-dimensional
lattice, see Fig. 1.6. The latter argument is technicallyemovolved than the former,

for details, see Ref. [68]. This shows, however, with methaadrelated to the ones con-
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Figure 1.6: Cubic lattice of a graph state correspondinghéosituation where some
edges are missing in a cluster state. If the probahility having an edge is sufficiently
high the processes independent, then a renormalized petiglattice can be found al-
most certainly, giving rise to a cluster state of smalleesigp > p, = 1/2, wherep, is
the percolation threshold for edge percolation in 2-D cudtiices, then a renormalized
lattice can be found almost certainly. Interestingly, eifety2 > p > ps, p3 = 0.249
denoting the percolation threshold in 3-D, one can almagaitdy construct a perfect
sublattice, using an overhead that is arbitrarily closediodp quadratic.

sidered primarily in the present work, that also random etspe the resource as such

can be dealt with.

1.4 One-way computation using encoded systems

In the final section of this work, we will show that one can firesource states for
MBQC that differ substantially from the cluster in varioug@&nglement properties. This
will be done by encoding each system of a resource into sgveyaical particles. We
will not develop any new computational models and make noofitee computational
tensor network formalism introduced before. The study abeled resource states was
initiated in Ref. [6] and later pursued more systematicialiRef. [107].

More concretely, the following statements will be proved:

Observation 10(Resources with weak capabilities for state preparatidhgre exists

a family of universal resource states such that
e The local entropy of entanglement is arbitrarily small,
e The localizable entanglement is arbitrarily small

and, more strongly,
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e The probability of succeeding in distilling a maximally @amgled pair out of the
resource is arbitrarily small, even if one does not a priaxitfie two sites between
which the pair will be established.

In particular, the resource cannot be used as a state prejpara

We start from a cluster state vector orx n systems, denoted B¢'l,,..,,), referred
to as logical qubits. As in Ref. [6], we want to “dilute” theusker state, i.e. encode it

into a larger system, by means of invoking the codewords
10y == [0)**, |T) := |Wi) (1.107)

for some parametdr. The argument relies only on the choice df,) as a code word in
that we focus on its implications on the localizable entangint, and for that argument,
the state vectoil;) has the desired properties of small local entropy and pextiout
invariance. However, for encoded one-way computation fodssible, any state vector
orthogonal to|0)®k may be taken, compare also Ref. [107]. Every qubit of thetetus
is subjected to the encoding operation

Vo= |0)(0] + |1)(1] (1.108)

yielding thediluted cluster|D,, ;). A set of physical qubits corresponding to one clus-
ter bit will be called ablock As before, by docal measurement scheme& mean a
sequence of adaptive local projective measurements, tothé physical systems.

Let us first show again in more detail that such an encodingttates no obsta-
cle to universal quantum computation. Each of the code wisrdsthogonal, and for
computation to be possible, we need to do local dichotomiasmements in the logi-
cal space. By Ref. [118], any two pure orthogonal multi-patates ork qubits can
be deterministically distinguished using LOCC. By makirsg wf the construction of
Ref. [118], this can be done by an appropriate ordered seguafiradapted projective
measurements; ® - - - ® m, on the sites of each codeword, giving rise to an arbitrary

projective dichotomic measurement with Kraus operators
Ay = [) (@], Ag = [9H) (@t =1 — [¢)(y] (1.109)
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1.4 One-way computation using encoded systems

in the logical spacely)) = «|0) + §]1) and|wt) = —3*|0) + a*|1). Hence, one can

translate any single-site measurement on a cluster statainLOCC protocol for the

encoded cluster. This shows tHat) is universal for deterministic MBC. This is the
argument of Ref. [6] (see also Ref. [107] for a more detailed @xtensive discussion
on one-way computing based on encoded systems).

In the following we are going to show in more detail that déshis property, we
are heavily restricted to use this resource to preparessteit a significant amount
of entanglement between two constituents. In fact, we cdrewen distill a perfect
maximally entangled qubit pair beyond any given probapibit success. This means
that these states are universal resources, but on the lepélysical systems utterly
useless for state preparation. The given resource is, eetth say, not meant as a
particularly feasible resource. Instead, we aim at hidttiigg to what extent as such the
entanglement properties can be relaxed, giving a guidadingore general settings.

Note first that the localizable entanglemérit in these resources can easily be
shown to be arbitrarily small: The entropy for a measurenierihe computational
basis read$1,(3/(4k + 2)), whereH, : [0,1] — [0, 1] is the standard binary entropy

function. Using the concavity of the entropy function, welfin
EL(|Dni)(Dnkl) < Hy(3/(4k +2)), (1.110)

such thatimy_.. EL(|D,x)(Dnk|) = 0. This means that for two fixed sites, the rate
at which one can distill maximally entangled pairs by perforg measurements on the
remaining systems is arbitrarily small.

This can be seen as follows. We will aim at preparing a maxineadtangled state
between any two constituents of two different blocks. Itasyeto see that within the
same block, the probability of success can be made arlytsariall. We hence look
at a LOCC distillation scheme, measurement-based schertaking the inputp and
producing outputs

p— KjpK| (1.111)

with probability p; = tr(ijK]T-), j =1,...,J. This corresponds to a LOCC pro-
cedure, where each of the measurements may depend on ahwsgof the previous
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1.4 One-way computation using encoded systems

local measurements. Let us assume that outcomes labeled S for someS < J are
successful in distilling a maximally entangled state.

We start by exploiting the permutation symmetry of the codeds. Choose a block
i of |D, ). Assume there exists a measurement-based scheme withohertyrthat
with probability p, the scheme will leavat least onesystem of blocki in a state of
maximal local entropy. Then there exists a scheme such thlatprobability p, the
scheme will leavehe firstsystem of blocki in a state of maximal local entropy. At
some point of time the scheme is going to perform the first onesmsent on the-th
block. Because of permutation invariance, we may assuntetttiaes so on thé-th
system of the block. The remaining state is still invarianter permutations of the
first £ — 1 systems. Hence there is no loss of generality in assumirtgthleanext
measurement on thieth block will be performed on thé — 1-st system. If the local
entropy of any of the unmeasured systems is now maximal,ttiteeeame will be true
for the first one — once again, by permutation invariance.

Also, it is easy to see that the probabiljithat a measurement-based scheme will
leave any system of blockin a locally maximally mixed state is bounded from above
by

p < 2/k. (1.112)

Let p; be the initial probability of obtaining the outconme for a Z measurement on
this qubit,p; = [(1|D,, )| Clearly,

p < 1/k. (1.113)

We consider now a local scheme potentially acting on alltgudicept this distinguished
one, with branches labeled= 1, ..., J, aiming at preparing this qubit in a maximally
mixed state. Lep, be the probability of the qubit ending up in a locally maxitpal
mixed state. In case of success, so in case of the prepaddtiocally maximally
entangled state, we have thats) = 1/2, in case of failurep;(f) > 0. Combining

these inequalities, we get

1/k > p1 = psp1(s) + (1 —ps)p1(f) = ps/2. (1.114)
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1.5 Conclusions

We can hence show that there exists a family of universalrescstates such that the
probability that a local measurement scheme can prepareanaidy entangled qubit
pair (up to l.u. equivalence) out of any element of that fgnsl strictly smaller than
e > 0.

Let p; be the probability that a site of blockwill end up as a part of a maximally
entangled pair. This means that when we fix the procedure label as before all
sequences of measurement outcomes yvith1, ..., J, one does not perform measure-
ments on all constituents. Létdenote the index set labeling the cases where somewhere
on the lattice a maximally entangled pair appears, so thegtibty p for this to happen

is bounded from above by
p<y pi (1.115)

el
According to the above boung; < 2/k, giving a strict upper bound of < 2n?/k for
the overall probability of success. The family

for k(n) := 27 'n? is clearly universal, involves only a linear overhead as parad to
the original cluster state and satisfies the assumptiorertsizd above.

1.5 Conclusions

In this work, we have shown how to construct a plethora of howadels for measure-
ment-based quantum computation. Our methods were takenrfrany-body theory.
The new models for quantum computation follow the paradigriocally measuring
single sites — and hence abandoning any need for unitaryat@hiring the computa-
tion. Other than that, however, they can be quite differesrhfthe one-way model. We
have found models where the randomness is compensated welbnmanner, the length
of the computation can be random, gates are performed bingofibws of quantum
information towards one another, and logical informaticayrbe encoded in many cor-
relation systems at the same time. What is more, the res@tiates can in fact be
radically different from the cluster states, in that theyyrd&play correlations as typi-
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cal in ground states, can be weakly entangled. A number giguties of resource states
that we found reasonable to assume to be necessary for dcstaten a universal re-
source could be eventually relaxed. So after all, it seemsrttuch less is needed for
measurement-based quantum computation than one couttheddyg have anticipated.
This new degree of flexibility may well pave the way toward#ting computational
model towards many-body states that are particularly lidago prepare, rather than

trying to experimentally realize a specific model.

1.6 Appendix

1.6.1 Computing correlations functions

What is the value of the two-point correlation functioy 7, ) — (Z;) (Z;1x)? In this

work, we have only introduced the behavior of the correfatystem when subject
to a local measurement of a rank-one observable. Howeverder to evaluate the
correlation function, we need “measure the identity” on ititermediate systems or,
equivalently, trace them out. Without going into the geh#raory [35], we just state

that tracing out a system will cause the completely positiag
O:p Y AlilpAfi)f (1.117)

to act on the correlation system.

For the cluster state, using the fact that the bd$@s 1)} and{|+),|—)} are un-
biased, we can easily show thit is the completely depolarizing channel, sending any
p to 27'1. This causes any correlation function to vanish for- 2. How does the
situation look like for the state vector defined by Eq. (1)20@/e compute:

D:pr— Z tr(p G|s)(s|GT)]0)(0], (1.118)
sofors € {0,1}:
O(|s)(s]) = pls){s| + (1 = p)|5)(5] (1.119)
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1.6 Appendix

where0 := 1,1 := 0 andp := |[(0|G|0)|*> = sin?(7/m). In other words: when acting
on the computational basi$, implements a simple two-state Markov process, which
remains in the same state with probabilitgnd switches its state with probability —

p). Now, (Z;Z, 1) equals+2 if an even number of state changes occurred -addf
that number is odd. So for the expectation value we find

k+1

(i) = 23 (’j)pk-la S (1.120)

= 2(2p— 1)F = 2(2sin?(7/m) — 1)~

1.6.2 Hamiltonian of the AKLT-type state

In Section 1.3.1 we discussed an AKLT-type matrix produatest It was claimed that
the state constitutes the unique ground-state of a spimkeseneighbor frustration free
gapped Hamiltonian. It must be noted that in this work, weehaset introduced the
technical tools needed to cope with boundary effects atrtdeoéthe chain. There are
at least three ways to make the above statement rigorougah}ie statement as being
valid asymptotically in the limit of large chains, b) workréctly with infinite-volume
states [35], or c) look at sufficiently large rings with pelioboundary conditions [84].
Once one chooses one of the options outlined above, the pfdbis fact proceeds
along the same lines as the one of the original AKLT state resgmted in Example 7
of Ref. [35] (see also Ref. [84]). Indeed, using the notioihRefs. [35, 84] one verifies
that

Iy :B(C?) - C*xC? (1.121)
B = 2?1,@:1 tr(‘BA[Zl]A[ZQ])‘Zl) ZQ> (1.122)

isinjective. Further, ifj; := range I'y, itis checked by direct computation thitn (Go®
1N1®Gy) =dimgG,. All claims follow as detailed in Refs. [35, 84].
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In particular, leth be a positive operator supported on the vector space spéyned

{11,1),12,2), —(1/4)[0,0) + [1,2) + |2, 1), (1.123)
—(1/v/8)0,0) +10,2) + [2,0),
—(1/+/8)]0,0) +10,1) 4 |1,0)}.

SetH := ). 7;(h), wherer; translates its argumensites along the chain. Thef is
a non-degenerate, gapped, frustration free, nearesthwigtamiltonian (callegharent
Hamiltonianin Ref. [84]), whose energy is minimized by the state at hand.
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2.1 Introduction

In this chapter, we aim to give a complete classification oatural primitive of mea-
surement-based computation. Our approach is best matibgiteonsidering the cluster
state. The state comes in two versions, defined on a one-diamah or on a two-
dimensional lattice respectively. In order to prove undadity of the cluster, it is expe-
dient to first understand how one-dimensional states casdxtto transport and process
one logical qubit. Then, in a second step, one proves thaétbre-dimensional “com-
putational wires” can be coupled in a suitable fashion, tonfa fully universal 2-D

B=

Figure 2.1: In this chapter, we are concerned with univeessdurce states which can
be decomposed states into horizontal chains of quanturaragsrepresenting logical
qubits) and couplings between these chains (mediatindowailogical interactions).

resource.

We will turn this convenient property into an axiom. All statconsidered below
can be prepared in a two-step process (see Fig. 2.1). Firstentangles horizontal
lines of physical systems. Each of these lines will represelogical qubit during
the measurement-based calculation. We are interestedtassif these chains which
are “universal”. Roughly, this means that by means of locaasurements alone, one
should be able to transport and process one qubit worth oftqomainformation. This
concept — which is somewhat stronger than demanding the fiaee maximal localiz-
able entanglement [88] — will be made more precise below.

We will refer to such states on a 1-D chain of quantum systesrt®mputational
guantum wiresAt this step, we actually aim for complete generality: wé eharacter-
ize all qubit computational wires which can be built up by nres&-neighbor entangling
operations.

In a second step, it will be shown how to couple several wiogether, in order
to form a truly universal state on a 2-D lattice. The couphmij be facilitated by a
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controlled-phase type operation.
For simplicity, this paper focuses on qubits and transhetily invariant states. Nei-

ther requirement is, however, crucial for the techniqueaibbel below.

2.1.1 Technical setup

The main mathematical tool used in this chapter are matoxiyet states (MPS), as
introduced in detail in Chapter 1. Some further technicéhitieare discussed in Sec-
tion 2.4.2.

All states we will be concerned with are of the form

1

W)= > (RlA[x,]. .. Afza]|L) |21, ... 2). (2.1)

for two 2 x 2-matricesA[0/1] and appropriate boundary conditiofds, | R).
We recall the basic tenet of Chapter 1. To that end, let

61) @ -+ @ |¢n)
be a product vector. Set
Algi] = (4]0) A0] + (¢4[1) A[1]. (2.2)
It is elementary to verify that
(o] @ ... {&n)|¥) = (RIA[dn] ... Al1]|L). (2.3)

One can hence explicitly compute the overlapiof) with any local projection operator
and therefore the probability of obtaining the associatedamme when performing local
projective measurements. Now, if one performs a projectigasurement on thieh site
and obtains a measurement outcome corresponding tben one causes the operator
Al¢;] to act on the correlation space in Eq. (2.3). Depending orsthie and on the
measurement basis, this operator might be unitary. Henloeahmeasurement on an

MPS may be understood as giving rise to a “formal singledgabmputation in the
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2.2 Computational quantum wires

correlation space”. As detailed Chapter 1, this formalitidno can be made precise:
measurement-based computation takes place in correlapane

Soin order to evaluate the computational usefulness ofengitateV,,), one should
derive its MPS representation and then check which unitaeyations can be realized in
correlation space by means of appropriate local measutsmehis is the programme
carried out below.

2.2 Computational quantum wires

By acomputational wirave mean a family of pure statég,, ), where

(i) |W,) is defined on a 1-D chain of qubits,

(i) |Ww,) is preparable from the product state
0,) =[0)®---®0) € (C)*"
by the sequential action of a nearest-neighbor unitary gate

W,,) = Ut gBAyElo,), (2.4)

(i) in the limit of largen, the entropy of entanglement between the left half and the
right half of the chain approaches one ebit.

These axioms may seem surprisingly weak. Indeed, in thedattion, we loosely
characterized computational wires as states with the ptevéiransport and process
one logical qubit by means of local measurements”. It is argral result of this work
that any state fulfillingi) — (iii) is automatically useful for information processing, as
made precise below.

Note that the 1-D cluster statéS'/,,) are computational wires. In this case, the

entangling nearest-neighbor unitdfyis given by the controlleds gate.

2.2.1 Summary of results

The following main results are obtained in this chapter.
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2.2 Computational quantum wires

e Discounting local basis changes, there is a three-pararfaataely of computa-

tional wires, which can be explicitly parameterized.

e For any wire, there is a one-parameter set of measuremees,bsisch that the
operation implemented on correlation space is unitargspective of the mea-
surement outcome.

e Except for a set of measure zero, all computational wires\alibr the implemen-

tation of any unitary transformation SU(2) in its correlation space.

e A quantum wire may be specified lfi an “always-on operationll’ € SU(2),
which acts on the correlation space after any step, indeggod the basis chosen
or measurement outcome obtained, &inda “by-product angle’s, specifying
how sensitive the resource is to the inherent randomnessaftgm measure-
ments.

e There are “universal” computational wires, which are lbcaltbitrarily close to
a pure state. Previously explored resources with low loogreglement were
obtained by using non-local encodings (see Chapter 1) oimadly entangled
resource states. In the case of the states consideredtesdfdct is inherent.

e One-dimensional computational wires may be easily coupsaag controlled?
type entangling operations. Non-local gates between tjiedbqubits carried in

each 1-D strand can be implemented by means of local measotem

2.2.2 Characterization of all computational wires

The first step is to realize that any computational wire aatibcally has a simple MPS
representation with bond dimension two. This is a converseate of affairs: in the
previous chapter, we had to restrict generality by focusingtates with simple MPS
representations — here, this feature emerges naturally.

Lemma 11. If a state|V,,) fulfills points (i), (ii) above, then it has an MPS representa
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2.2 Computational quantum wires

tion

w,,) (2.5)
— Z ((0|Blzy] Alzn_1] . .. Alz4]]0)) |21, . . ., @),

where A[0], A[1] are2 x 2-matrices andB[x] = |0)(z].

Note that thenth qubit plays a special role in Eq. (2.5), thus breaking thadla-
tional invariance of the MPS representation found in Edl)(2Physically, it is clear
that the final qubit is distinguished: it is the only site whidoes not occur as the in-
put of U in Eq. (2.4). Fortunately, this inhomogeneity turns out ¢éoioelevant for our

computational schem'eWe will hence ignore it in what follows.

Proof. SetU4) .,y = (i, j|U|k, ) and define

Alz]', = U ).

j
Then, using Eq. (2.4) and implying summation over repeatdites,

(X1, .. x| Wy,)
— U(xn7xn71)(0,yn,1) o U(m’m)(o,yl) U(l’lvyl)(oﬂ)
= A[xn_l]xnynil o Al
= {01(10) (@n]) Afzn 1] .. Al24]]0)
= (0[Blan]Alzn-1] . .. Al2:]]0),

proving the claim. ]

As indicated before, local measurements in a b@lsis, |¢*)} can directly be in-
terpreted as a quantum computation in correlation spadeeifassociated operators
A[@], Alg*] are unitary (up to normalization). For a general MPS, suabcallbasis

need not exist. For computational wires, however, thiswags true as shown in the

1To make that claim manifest, one could measure outtheubit in the computational basis. Denote
the result of the measurementby {0, 1}. The resulting state on sités. . ., n—1 has the homogeneous
form of Eq. (2.1), wheréR| = (0| B[x].
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next Lemma. This finding is a precise statement of the earléem that wires are good

for the “transport of one logical qubit” in correlation sgac

Lemma 12. Let |¥,,) be a computational wire. Then — after a suitable local basis

change — it admits an MPS representation as in Eq. (2.5), &her

A0] = sinvy Uy, (2.6)
All] = cosyU;
for some realy and unitariesl; € U(2).

Proof. Let A[0], A[1] be the matrices defining the MPS representatiofdgf) as in
Lemma 11. By Section 2.4.2, Lemma 23 and Lemma 27, the channel

B p— AJ0]pA[0]f + A[1]pA[1]f

has Kraus operator4’[0/1] of the form given in Eq. (2.6). There exists a unitary matrix

V relating the two sets of Kraus operators:

sinyUy = A'[0] = V% A0] + V% A[1]
cosyU; = A'[l] =V Ajo] + V1 ALl

By Egs. (2.2,2.3),
A'f0] = AV[0)], AT = A[V[1)]

so that the primed matrices give the MPS representatioh,gfin the basig17|0), V|1) }.
L

The MPS representation of a state vector is not unique. Irdalh@ving, we use
various degrees of gauge freedom to identify the relevanbfsparameters defining
computational wires.

We will make repeated use of tiiephase gate

S(¢) = diag(e™¥/? €%/?) € SU(2).
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Theorem 13. A computational wire is described by
e an “always-on evolution”W € SU(2) and
e a “by-product rotation angle” € R

in the sense that it allows for an MPS representation where

Al0] = 2712w, (2.7)
All] = 272w S(9).

What is more, there is no loss of generality in assuming thias of the form

W = 6isina/2(sinﬁX+cosﬁZ) c SU(2)

for suitablea, 5 € R.

Proof. A matrix product state does not change when we conjugatedssthing matri-
ces with the same unitary. With this realization in mind, anguing as in Lemma 12,

the result follows from Lemma 25. OJ

Equation (2.7) goes a long way towards understanding tletsiie of computa-
tional wires. Assume that we measure site by site in the coatipnal basis. Then at
every step the operatidiy’ will be applied to the correlation system, irrespectivehaf t
measurement outcome. We will referlfo as thealways-on operationHowever, some
tribute must be paid to the random nature of quantum measmsmr his comes in the
form of theby-productoperationS(¢), which acts on the correlation system in case the
“wrong” measurement outcome (“1”, instead of “0”) is obtadh It is remarkable that
this penalty is fully described by a single parameter:lirg@roduct angleb.

The cluster state serves as the paradigmatic example. tHeralways-on operation
isW = H, the Hadamard gate. The by-product angle,iso that a “wrong” measure-
ment outcome will cause an extfdr) o« Z operation to be applied. Note that is
already in the form given in Eq. (2.29); with= 7 and = 7 /4.

It turns out that there is a second normal form for computatiavires, which is

equally insightful. Indeed, we have:
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Theorem 14. A computational wire is described by
e an “always-on evolution'W'’ € SU(2) and
e a“bias parameter’y € R

in the sense that it allows for an MPS representation where

Al0] = siny W/, (2.8)
All] = cosyW'S(m).

What is more, there is no loss of generality in assuming thiats of the form

W' = 6isino¢/2(sinﬁX+cosﬁZ) c SU(2)

for suitablea, 5 € R.
Proof. As in Theorem 13, employing Lemma 24. O

The relationship between the by-product angle and the Inigke aharacteristic of
the two normal forms above is simply= 4+, as will be shown in Lemma 21.

From Theorem 14 we conclude that by measuring in an appteasis, we may
always assume that the by-product operatdi(is) oc Z, as is the case for the cluster
state. However, the probability of obtaining the one outeanthe other is no longer
1/2, but given bysin® v andcos? v respectively (see also Sec. 2.2.4). This is a remark-
able fact: when using a computational wire to process unkrsrantum states by local
measurements, we must take care not to learn any informabiout the correlation sys-
tem, as this would obviously destroy the coherence of thega® For the cluster state,
it is manifestly true that no information is obtained, as kbeal measurements yield
completely random outcomes. The theory of more general otatipnal wires shows
that “oblivious quantum information processing” by locaéasurements is not tied to
completely random outcomes.

Also, it becomes clear that in general computational witles,local sites are not
maximally entangled with respect to the rest of the lattithis phenomenon will be

explored quantitatively in Section 2.2.6.
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From now on, we will always assume that computational wiresrathe ‘o — W -
normal form” introduced in Theorem 13.

It remains to prove the converse of Theorem 13. Is it the dzetethere exists a le-
gitimate computational wire for every choiceldf ¢? In principle, the answer is “yes”.
There is one subtlety, however. As explained in SectiorR2atmatrix product state is
(asymptotically) completely specified by the defining matricéf) /1] independently

of the boundary conditions only if the channel
B p— AJ0]pA[0]f + A[1]pA[1]f

has a spectral gap. By Lemma Z7fails to have a spectral gap if and only if eitHé¥
is diagonal o/’ = X. In order to avoid technical difficulties, we will often exde

this case from our analysis by invoking the following asstiomp

Assumption 15. Assume thaE has a spectral gap. Equivalently, assume tHatis
neither diagonal nor equal tx .

Interestingly, it turns out that the wires excluded by thesamption would anyway
not allow us to implement arbitraryU (2)-rotations on correlation space as shown in
Section 2.2.4. Hence, no relevant cases are lost.

Lemma 16. Let |¥,,) be an MPS of the form given in Egs. (2.5,2.6). Under Assump-
tion 15, it holds thatV,,) is a computational wire.

Proof. We have to verify propertie@i) and(iii) .
To construct a preparation procedure for the state, we sevée first step of the
proof of Lemma 11 and define
U= Alal';.

This set of numbers can be completed to a unitary matrix if@nid if the jth column
U@ 5 with elements labeled by, i form an orthonormal system. But this can easily

2Many properties of computational quantum wires can easdlycaiculated explicitly in the limit
of long chains, when the boundary conditions cease to plgyrale. Fortunately, their influence is
suppressedxponentiallyin the distance from the boundary (see Section 2.4.2), sdtltedasymptotic”
behavior becomes relevant even for relatively small chains
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be checked:

DU O = D (AO)AN), + ALY AR

T,0 7

= (5]'7]'/ sin2 ﬁ + (de'/ COS2 ﬁ

= 0jj

having made use of the assumption ti&i/1] are proportional to unitaries.

The mapkE is clearly unital and it is gapped by assumption. So the faat the
entropy of entanglement becomes maximal in the limit ofdargs just the content of
Proposition 28. O

2.2.3 Examples

Cluster state

The paradigmatic example of a computational wire is thetelustate. Note that in
the original definition of the cluster, one has to measurallsites in theX -eigenbasis
in order to transport information along the chain, whereashave chosen to use the
computational basis for that purpose. Obviously, the twiindns differ only by the
local transformation7®". It has already been mentioned that the parameters of the
cluster state

W =H, ¢ =.

The by-product angle is the highest possible value.

The T-resource

Ther/2-phase gat&(w/2) is sometimes denoted [3y. It is of interest partly because
T and H generate a finite group: the 12-element single-qubit Glifigroup. This fact
will help us to compensate the randomness of measuremettrogs, as detailed in

Section 2.2.7. We will refer to the computational wire widr@meters

W=H  ¢=nr/2
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as thel'-resource the name referring to its by-product operator.

Superficially, theT-resource seems very close to the cluster state, differmm f
the well-known state only in the by-product angle. Howetbere is an important
physical difference: the entropy of entanglement of a gsife with respect to the rest
of the chain is not maximal! (Note that this does not contagroperty(iii) of the
definition of a computational wire). We will prove this fact $ection 2.2.6, where the
entanglement of a single site as a functionp)aé made explicit. In any case, the fact
has a simple intuitive explanation. Note that unli&ér) « Z, the gateS(n/2) = T

does not have the power to orthogonalize an input vector:

[(@[T[)] >0, Y[¥).

Now consider a measurement of a given site in the computdtlmasis. Because the
by-product operatof’ is “close” to the identity, the state of the correlation gystafter
the measurement depends only “weakly” on the outcome. Hamggiven site has only
“little power” to change the state on the remainder of thédat In other words: the
entanglement is low.

It is perhaps remarkable that universal transformationg bearealized in the cor-
relation space of such a computational wire, even thouglsargte measurement only
has a weak impact (this will be proved in Section 2.2.4).

Correlations

The following wire has been introduced in Chapter 1 to shaat thniversal quantum

computation is possible even when the two-point corregator
(Zi) (Zivk) — (Zi ® Ziyx)
between distant sites never vanish. The parameters are

W = eim/mX, ¢ =m.
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2.2 Computational quantum wires

The absolute value of the correlation function above is mive (cos %)’f (c.f. Chap-
ter 1).

2.2.4 Operations on correlation space

In order toprocessnformation in the correlation space — rather than jtestsportingit

—we need some freedom to choose which operation to apply. Let
(6, €)) = sin 00) + €’ cos H]1)
be a general state vector and consider the associatedatmmespace operation

Ala(0,€)] = sin0A[0] + e cos O A[1] (2.9)
= W(sinf1 + e"“cosbS(9)).

Here, we have employed the normal form of Eq. (2.7). Itis éasge that the operation
in parenthesis (and heneda(6, €)]) is unitary if and only ife’ = +1.

Here, we are lucky twice. Firstly we have found that wheneliere isonemea-
surement basis which allows for unitary transport, thegease-parameter seif such
bases (corresponding the different valueg)pf Secondly, this one-parameter set is

closed under passing to the orthogonal measurement outcome
O—7/2—0, a—a+m.

This observation is of sufficient interest to warrant theadtuction of a new notation
(c.f. Ref. [29])

|0g) := sinf|0) + cos 1)
|15) = cosf|0) —sinf|1)

for the family of bases giving rise to unitary evolution.

Observation 17. For any computational wire, a measurement in any basis froen t
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2.2 Computational quantum wires

one-parameter s€f|0y), |19) } induces a unitary evolution in correlation space.

We proceed to analyze the operatdis,|. Recall thatd[z] is justproportionalto
a unitary matrix: in general, its operator noffA|[x]|| is smaller than one. The norm
turns out to have a simple interpretation. Its square ssdifie probability with which
the operation can be realized.

Lemma 18. In the limit of largen, the probability of obtaining the outconme,) as a

result of a local measurement on a quantum wire is givefiAjy,]||*.

Here, “in the limit of largen” means that the statement is true for sites far away
from the boundaries of the chain.

Proof. SettingS = |zy) (x| in Eq. (2.39), we find that the relevant probability is given
by

tr (Es(poo)) = tr (Alzg](1/21) Afze]") = [|A[ze][|*.

Let us take a closer look at the operations
A[0g] = 272 W (sin 01 + cos 0.5(¢)).
The non-trivial bit is the operator in parenthesis
U6, ¢) :=sin 01 + cos 0S(o).
Clearly,U (0, ¢) is a diagonal unitary with eigenvalues
. Lio)2 (o . O .0
Ay :=sin @ + cosfe = (sm@+sm§) +icos > (2.10)

visualized in Fig. 2.2.
Let

§ = arg(A\y),  p=abs(A)?
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Figure 2.2: Location of the eigenvalugs, A of U(0, ¢) in the complex plane. One
can read off that/ (0, ¢) = ¢ S(—20).

thenU (6, ¢) is proportional toS(—24) and can be implemented with probability of
success equal tp. We may thus visualize the set of operations one can realmnw
varying 6 by drawing the trajectory ok, (6, ¢) in the complex plane. The result for
¢ = mand¢ = w/4 is shown in Fig. 2.3. Apparently, the trajectories are sig This
can be verified explicitly:

(ReAy(6,0),Tm A, (6, )"
= (sinf + cosf cos ¢/2, cosf sin ¢/2)T

_ ( 1 coso/2 ) ( sin 0 ) . (2.11)
0 sing/2 cos 6

Varyingd, the final equation describes the image of a circle undeeatitransformation
(hence an ellipse).

The important lesson to learn is:

Observation 19. In any computational wire, aarbitrary phase gatg(d) can be imple-
mented in a single step. The probability of success may deped

For the cluster state the corresponding result is well-kmddere, measuring in the
{]04), |1¢) }-basis results in the operatidiS(0) on the correlation space. So in this

case, the correspondence between the ahgfethe measurement basis and the angle
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2.2 Computational quantum wires

Figure 2.3: Trajectory of all operations for= = (circle) andy = 7 /2 (ellipse). Every
pointce™ on the curve corresponds to the operatign-26) which can be realized with
probabilityp = 2.

of the correlation space phase gat®) is trivial. Also, the probability of success does
not depend on the phage The same situation clearly holds for general wires with
¢ = w. In all other instances, one must resort to Eqgs. (2.10,4riL@)der to work out
the relation between andé.

One should take a note that the by-product operator

U(ﬂ-/2 - 97 ¢)U(97 ¢)T

does in general depend énlt is manifestly equal t&'(¢) only for 6 = 0.
Let us dis-regard the issue of randomness for a moment arvdsele unitary trans-
formations may be implemented in a computational wire aféseral steps. Obviously,

that is the set of unitaries which can be written in the form
U=WS(6,) WS(6n_1)...WS() (2.12)
for somen. We claim that whenever Assumption 15 holds, @lle SU(2) may be

approximated arbitrarily well by unitaries of the form in . E3.12).

Proof. Let A be the closure of the set of unitaries of the form in Eq. (2.12)r any

e > 0, there is @& € N such that|WW* — WT|| < e. Hence bothS(§) and W S(§)W'T

are inA. Recall thatSU (2) ~ SO(3) and that any rotation can be written as a product
of three rotations about any two fixed distinct axes. B(t) corresponds to a rotation
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2.2 Computational quantum wires

about theZ-axis andiV/ S(5)WT rotates about a different one, as long as Assumption 15
holds. O

It is easily seen that wires not fulfilling Assumption 15 da atlow for universal
operations in their correlation spaces. Indeedl/ifs diagonal, so iV U (6, ¢) for all
0, ¢. If, on the other hand/ = X, then all operations in Eq. (2.12) are elements of an
infinite dihedral group. Both situations corresponds tgprasubgroups ofU (2).

2.2.5 Preparation and read-out

A gquantum computation consists of three steps: 1. preparafithe system in a known
state, 2. unitary evolution, and 3. readout of the result ké@v how to implement the
second step in a computational wire, but have yet to addrepation and readout.

Recall the definition
(6, €)) = sin 00) + e’ cos H]1)
from Sec. 2.2.4. Fof = 7/4 ande = ¢/2 + 7 one finds

1 ‘
Ala(r/4,¢/2+m)] = W (1-e?5(g))
= SW (-l

which has rank one. Clearly, implementing a rank-one operat correlation space is

equivalent to preparing it in the state proportional to tperator’'s range (in this case

W|1)). The operation associated with the orthogonal outcome

Alr/4,6/2] = -W(1+€92S(¢))

N — DN~

W (2[0){0] + (1 + €)[1)(1]),

has rank one if and only i = 7. Hence in the general case, the preparation procedure
may fail to set the correlation system to a definite statehikdase, a new attempt can
be started in the next step. The probability of failing togane the correlation system
successfully is exponentially suppressed in the numbertad$ t
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2.2 Computational quantum wires

To prove that read-out is possible, we must show that one bgsigally decide
whether the correlation system is in one of two given ortmadstateso,), |¢1). This
is possible, where again the probability of failing is expotially small in the number
of local sites measured.

Indeed, employing Eq. (2.42), the task is equivalent tartistishing the two (asymp-
totically) orthogonal many-body vecto,) and|®,) by means of local measurements.
A well-known result [118] states that this is always possitéterministically.

For short wires, the state$, ;) may fail to be orthogonal. However, by repeating
the computation several times if necessary, it is alwaysieffily possible to distinguish
the two cases.

As an example, consider théresource (c.f. Section 2.2.3) with boundary condition
|R) = |0). Assume that only one single site has not been measured aingétaim to
decide whether the correlation system is in the gtater |1). Applying Eq. 2.42 shows
that

o) =2712(10) + 1)), 1) =2713(]0) —i[1)).

These two states may be distinguished by means of unamlsgiate discrimination
with a heralded probability of successiof2 per trial.

2.2.6 Local properties
We can employ Eq. (2.40) to work out the reduced density mafra single site in a

computational wire. The results are

1 cos /2
=1/2 2.13
p=1/ cos /2 1 (219)

for states in the normal form of Theorem 13 and

sin? 7y 0
p= (2.14)
0  cos’y

for the normal form given in Theorem 14. Note that the respeaiways-on operations
W, W' do not affect the local properties of the state.

82



2.2 Computational quantum wires

As a quantitative measure of entanglement, we can competpuhty of a single

site as a function o explicitly:
2 1 -4 4
tr(p®) = 1(3 + cos¢) = sin” y + cos” y

(see Fig. 2.4). An intuitive explanation for this behaviashbeen given in Section 2.2.3.

Figure 2.4: Purity of a local site as a function of the by-proidangles.

Observation 20. Computational wires with arbitrarily low local entanglemeexist.

The density matrices in Egs. (2.13,2.14) allows us to wortktlo@ relationship be-
tween the two normal forms Theorem 13, Theorem 14 expliditigieed, the matrix in

Eg. (2.13) is diagonal in thfl+), |—) }-basis with eigenvalues
1/2{1+ cos(g), 1-— Cos(g)} = {cosz(f), sin2(§)}

We find:

Lemma 21. The two normal forms of Theorem 13 and Theorem 14 are relatethe

relationy = ¢/4 and a basis change of the form
0) = [+),  [1) e,
for a suitable phase..

2.2.7 Compensating randomness

Due to the presence of by-product operators, there is no wapttrol which exact

operation will be implemented on correlation space as dtreba local measurement.
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2.2 Computational quantum wires

In order to give a scheme for universal computation, we mexgitseé methods of dealing
with the inherent randomness of quantum measurements.

If the always-on terniV” and the by-product operatéf(¢) generate a finite group,
there is a simple and efficient possibility to cope with ramdess. This method was
first introduced in Chapter 1 and will be sketched briefly taelo

Define theby-productgroup to beB = (W, S(¢)). Measuring several consecutive
sites in the computational basis, we effectively implenserdndom walk on the finite
groupBB on correlation space. This random walk will visit any eleta&3 after a finite
expected number of steps.

Now assume we want to implement the operatitin) on correlation space. Sec-
tion 2.2.4 provides us with a way of finding an anglsuch thatd[0y] = W S(¢). The
orthogonal outcome will causé[14] = W S(€') to act on the correlation space. As-
sume the first outcome has been obtained. We proceed to ree¢hsudollowing sites in
the computational basis, which will implemdnit=! € B after a fixed expected number
of steps, leaving us with’ =11 S(e) = S(e) as desired. In case of a measurement
outcome corresponding td,), we also teleport the state forward uiil~! appears on
correlation state. So we have effectively implementéd). One can than re-start the
protocol forS(—e + ¢').

By the above paragraph, one can implemgt) and any element oB in a finite
expected number of steps. In particular, it is possible tfope S(¢) and W S(e)WT.
But — as long a$V’ is neither diagonal nor equal f6 — these two families of unitaries
are enough to create ahyc SU(2).

We have seen in Theorem 14 that for any given wire, the alvealysperationiV’
and the by-product angtetake on different values in different basis — if one allows fo
general weightsin v, cos v for the defining matrices. So if a wire does not fulfill the
above criterion in a given basis, it may still be susceptibldne finite group method by
passing to a different basis.

In particular, if a wire given in the normal form of Theorem fidfills the criterion
that (W, S()) is finite, then the same is true for the one-parameter fanfigpmputa-
tional wires with the same always-on operatidnbut different bias-angles.

This observation may be used to construct continuous fasoif computational
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2.3 A coupling scheme

wires in which randomness can be compensated. For exantpilegsé” = H with
arbitrary~y gives a one-parameter family of deformed cluster statds avhitrarily low

local entanglement.

2.3 A coupling scheme

Up to this point, we have analyzed computational wires asasuneement-based ana-
logues of a single qubit”. Naturally, all these results angyanteresting as long as it is
possible to “couple wires together” to form a truly universsource for measurement-
based computation. Fortunately, this can be done.

Here’s the physical recipe for coupling the two computadianires defined on sites
{1,2,3} and{5, 6, 7} respectively.

In the diagram below, let sitefl, 2, 3} and sites{5, 6, 7} belong to two computa-
tional wires. Assume that a further qubit in the staté/?(|0) + |1)) has been placed

23]
56T

To entangle the resource, first perform a controlledate between sitesand4. Then,

on site 4.

apply a controlled?’ gate betweerd and6. Here,Z’ is aZ gate acting in the “prepara-

tion basis” (see Section 2.2.5) on dite

Z'=UZUT, U:i 41 1
V2 \ vz _gig/2

We need to show that using local measurements, it is podsitdgher de-couple

the wires —i.e. undo the entangling operations to recoveotlginal wires, up to some

local corrections — or to implement a logical entanglingegla¢tween the correlation
systems.

De-coupling is actually trivial: just measure the centitd ¢ in the computational

basis. The two entangling operations above were both déadronitaries: if the state

on the central site i), they act as the identity. If, on the other hand, dits in|1), a
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2.3 A coupling scheme

Z will be applied to site2 and al/ ZU' to site6. In particular, the controlled unitaries
commute with a measurement in the computational basis ocethieal site. So if that
measurement yields an outcome|@f, we just recover the original wires without any
modification. If the outcome ifl), local unitaries act on sitesand6 — which can be
counter-acted by a mere change of basis for subsequent ragssnis.

We work out the tensor network representation of the statdtiag from the entan-

gling operations. For systei set

%ﬁﬁ = Ali]i—, ® (i,

fori € {0,1}. Likewise, for system

Af0] | = [4), (Hg AL |=1[=), (o
—— —
so that
Ay X] | = Z".
—

Finally, for 6, we first transform into the basis

W) = UI0) =1/v2(|0) +€*1))
W), = UlL) =1/v2(]0) - ¢”|1))

to obtain

: — Aol ® |0),

— (Gwa -, ) @ ),

= (W, Q) @ (501 -e)0),),
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and, likewise,

S A[n] = Alilir ® (1),

= (W10}, (0] + 5 (1 + ) WI1},11) @ 1),
= (W), o) 1), +

1 7
(WD, (1) ® (51 + 1)),
having made use of the computations of Section 2.2.5. Wesfwem back into the
computational basis, drop a global factor2of'/? on the way and consider the result

under the input of a computational basis state:

A x A +
10) [ As[0] |- 10) [ As[2] 10) [ Ag[2]
|

A
DA > (IR Ado]> [I) HAcl)

= W, 3 (-0 + (14,
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and,

x e—i¢ A _ A
(m%%mw- m%%m]>

- e—m( A _ A
1) Aslwol | [11) [ As[e]
e_i‘b . .
(1 =€)[0), = (1+€e?)[1),).

= W), ®

The outputs for the measurement result “0” and “1” differmpiglobal factor ot~
and b) in the application of & operator on the upper correlation space. We drop the
phase factor a), as it can be gauged away by a local basiselpaiog to the measure-
ment.

Now, measuring sité in the computational basis and siten the X-eigenbasis
yields:

= (Wl0)), ® ((=1)*]1),), (2.15)

= (W), ®§( (~1F (14 e))),
= (W|1) ® (e 81n7|0 1)x4+zﬁcosv|1>)u, (2.16)

for suitablev, e.
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Now, assume:, + z IS even. Chooseé as in Lemma 22. We measure sitén the

following basis:
Yo = (e *“sind, cos d), Y1 = (—e " cosé,sin d).
For the first outcome, we get

0), — W|0)® (cosd A[1]),
1), — WI|1)® (sindsin~y A[0] + cos d cos yA[1]).

Recall thatA[0] = 27121, A[1] = 27Y/25(¢), andS(¢) = diag(e™'%/2,¢%/2). Hence
operator
sin 0 sin v A[0] 4 cos ¢ cos yA[1]

is unitary and has operator norm equabtd’?| cos §|. The same is obviously true for
cosd A[l]. We conclude that in this particular case, the dynamics éndbrrelation
space is unitary. But by Lemma 22, the same is true for thedgahal outcome. Also,
the case where, + z5 is odd is treated similarly.

We can thus deterministically implement an entanglingargibetween the compu-
tational wires.

Lemma 22. For all ¢,y € R, there is & € R such that
| cos(8)| = | sin(8) sin(y) + cos(8) cos(7)e™’?|. (2.17)
What is more, whenever, v, § fulfill the relation above, it is also true that
|sin(8)] = | — cos(8) sin(y) + sin(8) cos(v)e*/?|. (2.18)

Proof. The first part is obvious) — | cos(d)| for 6 € [0, 7/2] is a continuous function
with |cos(0)] = 1 and|cos(7/2)| = 0. The right hand side of Eq. (2.17) is also a
continuous function, taking valuesin(v)| and|cos(y)| at 0 andx/2, respectively.

Hence, the two functions intersect in at least a single point
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To show the second claim compute

cos®(d) = (sin(d)sin(y) + cos(d) cos(v) cos(¢/2))*
+ (cos(d) cos(7) sin(¢/2))?
= sin®(d) sin®(7) + cos®(d) cos*(7)
+  2sin(6) sin(y) cos(d) cos(y) cos(4/2). (2.19)

Hence,

1—cos®(6) = (sin*(y) + cos®(7))(sin(d) + cos*(9))
— sin?(9) sin®(7) — cos*(9) cos(v)
—  2sin(d) sin(y) cos(d) cos(7) cos(¢/2)
= sin’(y) cos®(d) + cos*(7) sin*(d)
—  2sin(d) sin(y) cos(d) cos(7) cos(¢/2)
(— cos(8) sin(y) + sin(d) cos(v) cos(¢/2))
+ (sin(0) cos(y) sin(¢/2))?
| — cos(8) sin(y) + sin(8) cos(7y)e™/?[%. (2.20)

This proves the claim. O

2.4 Proofs and technicalities

2.4.1 Qubit channels

We recall some basic facts about qubit channels from Ref.93p In what follows,A
Is a (trace-preserving) qubit channel. Viewed as a linegyr,me may express it as a
matrix with respect to the Pauli basig i = 0, ...,3. As A is trace-preserving (i.e. the

dual channel\* is unital), the matrix representation takes the form

T(l 0), (2.21)
t T
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wheret € R? andT a real3 x 3 matrix.

There are unitarie§, V' such that the channel

N p— VAUpUNHVT (2.22)
is represented by
1 0 0 0
ti Ar 0 0
T=| ' , (2.23)
ta 0 X O
ts 0 0 Ag

where(1, |A\1],|z|, |A3]) are the singular values @f. The channel is unital if and only
if t =0.
Let

|®) = 27Y2(|00) + |11)). (2.24)
The Choi matrixof A is given by
Cr = (A®1)(|2)(D]) (2.25)

It is true [12] that if (a unital)\ is of the form

3
Alp) = Zpi 0ip0, (2.26)
i=0
then
SpeC(CA) = <p07 s 7p3>' (227)

TheKraus rankof a channel\ is the smallest numbérsuch that
k
Ap) =Y AlilpA[i]!

i=1

for suitableKraus operatorsA|i].

Below, we will derive various normal forms for qubit charmef Kraus rank two.
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Lemma 23. Let A be a unital qubit channel of Kraus rank two. Then there arg¢armes
Uy, U; and a numbery € R such thatA may be represented by means of the Kraus
operators

A[0] = siny Uy, All] = cosy Us.

Note that Lemma 23 is slightly stronger than the well-knownwn fact that unital
qubit channels are random unitary channels (it could aigse®that more unitaries than

the Kraus rank of\ are needed in such a representation).

Proof. Let A’ be the diagonalized channel as in Egs. (2.22,2.23). Mahjifesnk Cy,
is not larger than the Kraus rank af. Using Egs. (2.26,2.27), one finds

Ap) =Y piVieUNp(Vie U, (2.28)
i,pi#0

which implies the claim. O

We say that two channels;, A, areconjugatef there exists a unitary/ such that
Ai(p) = UN(UTpU)UT

for all p.2

Lemma 24. Let A be a unital qubit channel of Kraus rank two. Th&ns conjugate to

a channel with Kraus operators
Al0] = siny W, A[l] = cosy WS (),
fory € RandW e SU(2) of the form

W = 6isina/2(sinﬁX+Cosﬁz). (229)

30ur notion of “being conjugate” coincides with the meanirsgd in linear algebra. It should not be
confused with the way the term is used in Ref. [69]. Channalled “conjugate” in [69] are referred to
as “complementary” below, consistent with Ref. [57].
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Proof. We read off Eq. (2.28) that can be represented by Kraus operators
AJ0] = siny ViU, A[l] = cosyVio,UT

for somei # j, suitableU,V € SU(2) andy such thatsin®y = p;,cos>y = p;.
Conjugating by, we get

A'0] = sinqUV'ay,
A1l = cosyUV'e; = cosy(UV'e) alo;.

There exists a unitarnx such thatXa}aiXT = Z. Conjugate the primed Kraus opera-
tors by X to obtain

A"[0] = sinyW, A"[1] = cosyWZ (2.30)

for W = XUVTX. As every element ofU(2), W is of the form

W — ei(TlX—i-TQY—‘rTSZ)

for some real unit vectar. Conjugating thed”[0/1]'s with a suitable phase gatée),

we can set to zero, without affecting the form of Eq. (2.30). O

Lemma 25. Let A be a unital qubit channel of Kraus rank two. Thé&ns conjugate to

a channel with Kraus operators
Alo)=2712w,  A[l]=2"Y2WS(¢)
for € R andW € SU(2) of the form

W = eisina/?(sinﬁx—i-cosﬁz) (231)

Note that the unitary) in Lemma 24 and the one in Lemma 25 need not be identi-
cal.

Proof. Start with the Kraus operators of Lemma 24. Using the uniganpiguity of the
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Kraus representation, one concludes that

A'l0] = W (sinfA[0] + cosGA[1]), (2.32)
A'll] = W(cosfA[0] —sinfA[1])

is another set of Kraus operators realizihg Because Eq. (2.32) defines a unitary
transformation in Hilbert-Schmidt space,

LATTOTNZ + (A1 = NA[OJIZ + [AL][; = 1.

By the intermediate value theorem, there is a valugsafch that| A'[0]||2 = ||A'[1]]|3 =
1/2.
Set
W' = W (sin 1 + cos 0S(m)).

ThenA’[0] = 27Y/2W' and

AT
= 272 W'[(sin 01 + cos 0S(m)) ! (cos O1 — sin .5())].

The operator in square brackets is of the faf@) for someg, completing the proof.
(]

We conclude with two statements relating the normal fornmssdieed above to the

spectrum of the channel.

Lemma 26. Let A be a unital qubit channel of Kraus rank two. Lete the number

introduced in Lemma 24. Then the singular valued afe 1 and| sin® ¥ — cos? 7|, both

occurring with multiplicity two.
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Proof. The channel\’(p) = WTA(p)W maps

1 — 1,
Z — Z,
X — (sin®y — cos®7)X,

Y — (sin’y — cos®9)Y,

as can be readily verified. O

Lemma 27. Let A be a qubit channel of Kraus rank not larger than two. Assunee th
dual channel\* has an eigenvectod # 1 with eigenvalue\ of absolute valug\| = 1.

ThenA is unital. Further, exactly one of the following situatioconrs:
1. A is the identity channel,
2. A is a non-trivial unitary channel,

3. A has Kraus rank two. In the language of Lemma 24, one of twoilpibgss is

realized:

(a) W isdiagonal. In this casa = 1 and the invariant eigenspace &fconsists

of the set of diagonal operators.

(b) W = X. It follows that\ = —1 with unique eigenvectad = 7.
Proof. Let
3
A = Z C;0;
=0
be the expansion ofl in the Pauli basis. In the language of Eq. (2.21) the eigemval

equationA*(A) = \A reads

1t
0 7~

c=)\cC.

Hence the trace-less part

3
a = E C;,0;
=1
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of A is an eigenvector df'* with eigenvalue\. As the\;’s appearing in Eq. (2.23) are —
up to signs — the singular values6f93], one has that\;| = 1 for at least oneé. It then
follows from the general theory [93] that= 0 and hence that is unital. In particular,
the spectrum and the eigenvectors\dadre the same as the one/of. Also, Lemmas 24
and 26 are applicable. We will make use of the chaniehtroduced in the proof of
Lemma 26.

We assume first thakin? v — cos?y) = +1. If the sign is positive, than\’ is the
identity channel. In case of a negative sigh= X - X. In either case) is a unitary
channel.

Now consider the case whefgin? v — cos?y| < 1. We have thafjA’(B)|| > | B||
for some operatoB if and only if B is a linear combination of andZ. Thus,A has a
non-trivial (i.e.# 1) eigenvector of absolute valuef and only if the channel™ - W/
has a non-trivial eigenvector with eigenvaluié the space spanned liyandZ. Since
1 is a fixed point, this situation occurs if and onlyift Z W = +Z. The positive sign
is realized for diagonal operatiofs. Among thell’s of the form given in Lemma 26,
the negative sign is possible only far = X. O

2.4.2 MPStools

In this section, we translate some basic facts about fintdetyelated states/MPS from
[35] into our language (see also [35]). The basic object wdgis the family of MPS

of the form )

U) = > (RlA[z,]. .. Alz]|L) |y, ... z,)

for A[0/1] complex2 x 2 matrices. Let us denote the Hilbert space of a physical qubit
by A ~ C? and the correlation space i/~ C?.

Clearly,
0, (T,
= S (RIA - Al]|L) (LA . Al R)
2) (3] © - ® [} . (2.33)
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It is always possible to find matrice§0], A[1] and boundary conditions.), | R) such

that
(2.34)

AO]TA[0] + A[1)TA[1] =1
without changing the stat@,,) [84]. We will assume this normal form from now on.
DefineV : B — A ® B by

V= |0>A ® A[O]B + |1>A ® AU]B-

It follows that
VIV = Ao]TA[0] + A[1]TA[1] = 1,

so thatV is an isometry. It holds that

VILY(LIVE = Y~ ) (| © Alea]|L)(L|Afya]-

z1,Y1

Plugging the preceding formula recursively into Eq. (2,38 get

(W) (W
= (R|V...VILYLIVT...VT|R)
trg (|R)(R|V ... VIL)(L|VT...VT).

Now, let.S; be an observable on thith copy of A. Define

Es.(p) = tra(SiVpVT)
= Z ((inSilxi)) A[%]PA[%]T

TiYi

and, in particular,
(2.35)

E(p) := Ey(p) = Y _ Alz]pAla]'.
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The super-operatoifiSs, allow us to compute expectation values as in

tr (S1 @ @8, [V (Ty]) (2.36)
= trg (|R)(R|Es, ... Es, (|L)(L])).

Equation (2.35) shows manifestly tHatis a quantum channel. By Eq. (2.34)js
an eigenvector of the dual channel

E*(X) =) Al2]' X Al]

with eigenvaluel (meaning thaif is trace-preserving).

We now distinguish two cases:

1. The maf* has a spectral gap. Hentés the only eigenvector with an eigenvalue

of absolute value 1.
2. There is an eigenvecter # 1 of [£* with eigenvalue\ of absolute valug\| = 1.

The theory of MPS is much better-behaved in the first cased85¥hich we will
concentrate in what follows. This does not sacrifice too myeherality: Lemma 27
gives a complete classification of the set of measure zeratiazh E does not have a
spectral gap.

Restricting attention to case 1. above, note that:(E) = spec(E*)*, and that
right-eigenvectors of: are left-eigenvectors di* and vice-versa. It follows that there

is a unique invariant state,, of I£ and further that
B(|LY(L]) — tr(| L){(L]) poo (2.37)

exponentially fast as — oc.

Now, choose the normalization pf), | R) such that

(L)L) =1,  tr(|RY(R|pe) = 1. (2.38)
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Employing Eqg. (2.36) we find that

Timtr (|9,) ()
— JL%tr(|R>(RIE"(IL><L|))
= tr (|R)(R] poo) tr(|L)(L|) = 1,

so that the choice (2.38) is asymptotically compatible \hithrequirement that,,) be
normalized.
We continue by computing

lim tr (]]_®n (%9 S & ]1®n |\I]2n+1><\112n+1|) (239)

n—oo

= tr (Es(poo)).

Hence, manifestly, the outcomes of measurements on sitksently far away from
the boundaries of the chado not depend on the boundary conditidhs, | R). What
is more, their influence is suppressed exponentially fastardistance to the boundary.
We may thus speak of “the state associated with the matAg@sA[1]".

SettingS = |i)(j
a single site in the chain:

, one can use Eq. (2.39) to derive the reduced density matix

pPo= tr[—n,—l},[l,n]|‘I’2n+1><‘1’2n+1| (2.40)
1 o AN 1o
= 5 2t (AR AL 1) Gl (2.41)
2¥)
asn — oo.
Lastly, let

Poo = A1|P1) (1] + A2|d2) (2]

be the spectral decomposition of the invariant state. Asxgeguence of Eq. (2.36) one
finds that
/241, ] [ W) (W] = AT[ D) (@1 + N5| Do) (P
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asn — oo. Here,
D)= Y (RlAx]. . Afza)lén) |an, . 2). (2.42)

One may easily check that the;)’s are (asymptotically) normalized. It is also true that
the|®,) is (asymptotically) orthogonal t@b, ). Indeed, by Eg. (2.37)i" converges to
the completely depolarizing channel as— oc. By Theorem 3 of [73], the comple-
mentary channel converges to the noiseless channelldBuis just the output of that
complementary channel acting o). Because thép;)’s are orthogonal, so must the
|®;).

Clearly then, the entropy of entanglement between the tWechains converges to
one bit if and only if

)\1 = )\2 = Poo X 1.
Thus:

Proposition 28. If IE has a spectral gap, then the entropy of entanglement bettmeen

half-chains is maximal if and only i is unital.
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Too entangled to be useful: measure-

ment-based computation on generic states
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3.1 Introduction

A classical computer endowed with the power to perform measants on certain en-
tangled many-body states is thought to be exponentiallyerpokverful than a classi-
cal machine alone. For example, a computer with access &b feeasurements on a
cluster state can find factors of a large integer in an amolutitn@ polynomial in the
number of digits of that integer [82, 102]. The best-knowassical algorithm requires
super-polynomial runtime and it is strongly believed thasnbstantial improvement is
possible. It is in this sense that certain many-body statesgss strong computational
powers.

How common is this property? There are at least two reasanbdiieving that
typical pure quantum states are powerful resources.

Firstly, this belief may be based on an intuition akin to Fewam’s famous argument:
because simulating quantum mechanics seems to be too hadassical computer,
it must conversely be true that the laws of quantum mechanifes superior compu-
tational power. Now, predicting the results of local measugnts even on a quantum
state which has a simple classical characterization (eigrins of a preparation proce-
dure, or a local Hamiltonian for which it is the ground stagejremendously difficult
in general. What is more, a typical state is described by eaptially many parameters
— so it cannot even be efficiently represented in the memoayatdissical computer, let
alone be subject to an efficient simulation. One would hexped it to be a potent
computational resource, if only a suitable scheme couldevesdd to utilize its power.

Secondly, one may recall that generic states are extremgiyyhentangled from
many points of view [53]. For example, a typical state is anedent resource for
guantum teleportation with respect to any partition of yistems into two parties. Why
then shouldn’t such a state also be an equally excellentiresdor measurement-based
computation? What is more, all previous results (the authaware of) which rule out
universality for certain states do so by proving that théestare not entangled enough
to support a universal quantum calculation [79, 108, 109].

Both arguments turn out to be fallacies. We show below thatlfes of states with

a very highgeometric measuref entanglement cannot be universal. Recall that the
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geometric measure [9, 101, 122] of a state vepioris defined as
E,(|¥)) = —logsup [(a|¥)[,

the supremum being over all product vectiars® We proceed to show that the criterion
is fulfilled by generic states: they are too entangled to kefulisn this sense. The
fraction ofn qubit states subject to this problem will be shown to be atlea ¢ .

The intuition behind the argument is that most states areskew” to the set of
product states, that the results of local measurementsegorery little information.
The (mild) technical difficulty one needs to overcome in oriemake the statement
rigorous, is to establish that for most given statasy possible measurement scheme
fails to yield useful information — even if one has complet@kledge about the state
and the capability of adjusting future measurement basegdittoned on previous out-
comes.

The observations presented in this chapter should be stilegein the context of
the broad question asking to which extend “entanglemengdponsible for a quantum

computational speed-up [65].

3.2 Statement of results

We will show that certain highly entangled states cannoaanh the power of a classical
computer to solve NP problems. (For definiteness, one may tfi the paradigmatic

factoring problem.)

Theorem 29(Classical simulation of highly entangled statelsgt |¥,,) be ann qubit

state with geometric measure of entanglement
E,(|¥,)) >n—24.

Consider a classical computer which has the power to perfiocal measurements on
|W,,). Assume this joint system is capable of finding a solutiomfdRproblemP after

t time steps, with probability of success at leh&.

LIn this chapter]og is the base 2 logarithm arid the natural logarithm.
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Then there exists purely classicahlgorithm which identifies a solution tB after

1
2C(n)In — 2°
Dy
time steps with probability of success at least p;. Here,C(n) is the time it takes to

verify that a proposed solution t8 is valid.

Note thatC' is a polynomial function of. (this being the defining property of NP
problems).

The theorem implies that a family of statds,) cannot provide a super-polynomial
speedup whenever their geometric measure is of the #6y(h,,)) = n — O(logn).
A priori it is unclear that states with such an extreme geoimentanglement exist at
all. It turns out that not only do they exist, but that this peay is shared by the vast
majority of all many-body states.

Theorem 30(Typical geometric entanglementilhe fraction of state vectors an> 11
qubits with geometric measure of entanglement less than 2logn — 3) is smaller
thane ",

Corollary 31 (MBQC-uselessness is typical)se the notions of Theorem 29. The frac-
tion of pure states on qubits which have the power to speed up a classical computer
by more than a factor of

16C(n) In inQ
Dy

is smaller thare="".

Can we thus conclude that families of highly entangled state not universal for
measurement-based quantum computing? The answer is ‘ypd4§ a standard as-
sumption. Indeed, Theorem 29 pertains only to NP problemkilétighly unlikely,
there is currently no way of ruling out that quantum computdfer super-polynomial
speedups over their classical counterparts for some prhleut fail to do so for any
problem in NP. Recall, however, that Shor’s algorithm [18@2ures that quantum com-
puters can factor integers in polynomial time. It is verpstyly suspected that classical

machines alone require super-polynomial time for the sasle t
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Therefore, it is extremely reasonable to assume that tseseme NP problem for
which quantum computation offers a super-polynomial sppédo NP1 BQP # BPP

[121])2 Under this assumption, we may state:

Theorem 32 (Criterion for MBQC-uselessness)et {|V,,)},, be a family of quantum

states, wher¢V,,) is defined om qubits. If
E,(|¥,)) > n — O(logn),

then the family is not universal for measurement-based atetipn.

3.3 Proofs

Proof of Theorem 29We assume that the classical part of the algorithm is detesmi
tic. This entails no loss of generality, since any probabdiparts may be implemented
by using quantum measurements as cdims.the course of the calculation, the com-
puter will perform up ton local measurements, obtaining one2dfpossible sequences
of outcomes. There is a sét of “good” outcomes, which will cause the computer to
output a valid solution to the problei aftert time steps. By assumption, the proba-
bility of obtaining an outcome from the sétis larger thanl /2. Each element of is
labeled by a product state) in the obvious way. Clearly, the probability of the event

associated withw) to occur is
o) < 27 (1V0) < g
Hence
1/2 < Prob(G) < |G|27"" = |G| > 2" 0L,

Thus the ratio of good outcomes to the total number oh@y&2" > 279-1.

2Failure of this assumption to hold would result in far morefpund problems for the field of quantum
information theory than the existence of a vacuous statemenPhD thesis.

3In fact, this seems to be the only way to introduce true rantss into an otherwise classical (and
hence deterministic) setup.
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To simulate the procedure on a classical probabilistic agerp use the following
algorithm: Choose the outcome of the measurements randasitlg a fair coin. If the
random string causes the classical part of the computationtput a result aftertime
steps, check whether it solves the probl&mif the result is valid, output it and abort.
Otherwise — or if the computer fails to terminate aftéme steps — repeat the procedure
with another random string.

The probability of not having obtained a valid outcome aftetrials is bounded
above by

(1- 2—5—1>k < e k2

Setk = In(1/p;)2°*! to achieve a probability of failure smaller thap. The claim is

now immediate. OJ

Lemma 33 (Measure concentration on the spheregt |«) be a normalized vector in

C4, let|¥) be drawn from the unit sphere according to Haar measure. Then
Prob{|(a|¥)|* > €} < exp{—(2d — 1)e}.
Proof. The cumulative distribution function

2d—1
Prob{2d |[(a|W)|? > 2} = (1 - %)

can be found in [56, 86] (the factarin front of the dimension is a result of working in

a complex space as explained in the appendix). We set /(2d) and compute
(1 — €)' = exp{In(l — €)(2d — 1)} < exp{—e(2d — 1)},

having made use of the concavitylaf ]

Lemma 34 (Nets) On the set of pure product states bmjubits, there is ar-net .

4k
Newl < (%) .

where
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More specifically,

supigf [ ]y — |d)H2 < €/2 (3.1)
= sup irdlf ||} (a| = a)(al||, < e (3.2)
& supsup a|a@)]? > 1 — %, (3.3)

where the optimizations are over all product stafes and all elementsa) of the net
Nk

Proof. For the second part, see Lemma Il.4 in [52] (see also Ref).[77]
As for the first part, leto;) € C* such thafa) = ), |a;). Let M be an(e/k)-net
in the set of qubit states. Hence, for evérthere existsa;) € M, such that

62

Ja)? > 1 — —.
[{cvi|ai) | > 1k

It follows that

) 2\ ” €2
V2> (1—-—) >1-——
(aa)] _(1 4k) >1-5,

where the final inequality can be checked by differentiatuittp respect tak.
To conclude, selV, ;. to be the set of alk-fold tensor products of elements it
and use the upper bound for the cardinality\dffrom [52]. O

Proof of Theorem 30Let ¢ = 2! for some yet to be determined numlietet \; ,, be

ane-net on the set of product vectors amubits. By Lemma 33 and the union bound,

Prob{ sup [{(a|¥)]*>>27"}
|&)eNen

< exp{—(2" —1)27} }./\/'en}

< exp{—2"""+2nlIn2 + 4nIn(5n)}

< exp{—2""'4 2nl} (3.4)
< exp{-2""" 4 2n?} (3.5)
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where the estimate (3.4) is valid if
2nl(1 —In2) > 41n(5n). (3.6)

Choosing = n — log(3n?), the condition above is satisfied wher> 11. Further, Eq.
(3.5) becomesxp{—n?}.

Now let|a) be a general product vector afig) be the closest element in thaet.
Then

[[{a®)[* = (alw))?| = [tr

VAN VAN
T 2
/\E/—\
|
2
=

IN
M
I
~

It follows that

sup |(a|¥)|? < 2711 = g-ni2logntlogd+l o 9—ni2logn+3

|a)
with probability larger thart — e=". O

The proofs of Corollary 31 and Theorem 32 should now be olssziou

3.4 Outlook

The results sketched in this chapter can be greatly strength For example, one can
show that typical states still fail to be universal in somesss even if one assumes nature
would allow us tochoosethe outcomes of local measurements should we so desire.
While this scenario is incredibly powerful for some statkskéd to the complexity
class PostBQPR= PP [1]), it turns out that postselected measurements onalgiates

once more fail to allow for universal measurement-basedocaation in some sense.
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3.5 Appendix: Real vs. complex vector spaces

The proof of Lemma 33 depends on a concentration phenomdrtbe blaar measure
onreal spheres [56, 86]. Obviously, we are concerned with stateoxwedrawn from a

complexd-sphere. In this section, we will briefly state the relati@tvizeen the respec-
tive notions of Euclidean distance and Haar measure on #hanel complex sphere.

Supposer € C¢ is of the forma + ib for a,b € R%. We use the usuaR{linear)

mapping
LT ¢
b

(z,2") (3.7)
= (a,d’) —i(b,a’) +i{a, V') + (b, V) (3.8)
= (ux),u(2) +i[u(x), ()], (3.9)

from C? to R??, Then

where(-, -) is the canonical scalar product@t, (-, -) the Euclidean one iR?? and(., -]

the symplectic product iiR?¢. In particular,
(r,2) = (z,2) = [[zflcs = [[o(2)[pea-

Hence: preserves Euclidean distances.
Now define a measune- on C¢ in terms of the Haar measurg by

pe(A) = pr(u(A)).

From Eq. (3.9) it is clear that the effect of a unitary openaton A corresponds to an
orthogonal and symplectic operationgnl). Henceuc is U(d)-invariant and must thus

be the Haar measure.
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3.6 Introduction

The termphase spaceriginates in classical mechanics. Here, the state of desing
particle in one spatial dimension is completely specifiedhy real parameters: its
position and its momentum. The two-dimensional real vesfmace spanned by the
position and the momentum axes is referred to as the pastjiase space. Likewise,
the state of a single continuous-value quantum system magpéeified by a quasi-
probability distribution on phase space — namely the paitiéVigner function.

The Wigner function shares many properties of classicabadodity distributions,
except for the fact that it can take negative values. Quamthase space methods are
employed heavily in some areas of physics, such as quanttios ¢@5], the investiga-
tion of a “quantum-classical correspondence” [66, 124}epresentation theory of the
canonical commutation relations [36, 85], to name a few.

Considerable work has been undertaken to explore Wigneatiuns for finite-
dimensional quantum systems [24, 39, 46, 71, 74, 78, 94, 118, 126]. It is fair
to say that discrete phase space tools have been studiety fimaitheir mathematical
appeal. The author is not aware of any technical problemfthatbeen solved using
discrete Wigner functions that could not — or only in a coasithly less convenient way
—have been treated without resorting to phase space mggemlthowever, Chapter 5).

In Chapter 4 we give an in-depth introduction into discrete quantum phegmces.
Beyond the Wigner function as such, we treat a whole arraglated structures such
as Weyl-Heisenberg operators (or generalized Pauli apespathe Clifford group, and
stabilizer states. All these mathematical objects fit seashy into the phase space
formalism.

The analogy between Wigner functions and probabilityridigtions is spoiled by
the fact that the former may become negative. It is hencealatu ask whether there
are quantum states for which this problem does not occurnidia technical result of
Chapter 4 pertains to this question: We show that, on a Hilpace of odd dimension,
the only pure states to possess a hon-negative Wigner cumate stabilizer states. The
Clifford group is identified as the set of unitary operatiavisich preserve positivity.

The result can be seen as a discrete version of Hudson’s dined#udson established
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that for continuous variable systems, the Wigner functiba pure state has no neg-
ative values if and only if the state is Gaussian. Turning teech states, it might be
surmised that only convex combinations of stabilizer stafige rise to non-negative
Wigner distributions. We refute this conjecture by meana obunter-example.

Chapter 5 presents a technical application of the methods deriveatrbe¥We use it
to quantize the Margulis expander map — a well-known strediu classical computer
science. The result is a quantum expander which acts oretisévigner functions in
the same way the classical Margulis expander acts on pidlgalstributions. The con-
struction is the only instance known to the author wherediptiase space techniques
facilitate the simple solution of an otherwise non-triyiabblem. What is more, appli-
cations based on discrete and continuous phase spaces dandbeped in complete
analogy.
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A discrete Hudson’s theorem
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4.1 Introduction

4.1.1 General Introduction

The Wigner distribution establishes a correspondence detvguantum mechanical
states and real pseudo-probability distributions on pkpsee. 'Pseudo’ refers to the
fact that, while the Wigner function resembles many of thepprties of probability
distributions, it can take on negative values. This phermmmndas been linked to non-
classical features of such quantum states (see Ref. [6@|nf@xposition of literature
on that problem). It is naturally of interest to characterizose quantum states that are
classical in the sense of giving rise to non-negative phpaeesdistributions.

For the case of pure states described by vectofs i L?(R), the resolution of
this problem was given by Hudson in Ref. [60]. Later, Soto @halerie generalized

Hudson’s result to states of multi-particle systems (RE®4]).

Theorem 35. (Hudson, Soto, Claverid)ety € L*(IR") be a state vector. The Wigner
function ofy) is non-negative if and only if is a Gaussian state
By definition, a vector is Gaussian if and only if it is of thenfio

w(q) o e2mi(dba+zq) 7

whereq, z € R" andf is a symmetric matrix with entries i 1.

It is our objective to prove that the situation for discreteagtum systems is very
similar, at least when the dimension of the Hilbert spacedd. oBefore stating the
result, we pause for a brief overview of its main ingrediediscrete Wigner functions
and stabilizer states.

The Wigner function [125] of a pure statec L*(RR) is computed as

Wop.a) =" | e ita— e+ 50 (@)

Equivalently,IV,, is the (symplectic) Fourier transform of tleharacteristic function

!Note that the boundednesspfc L?(IR™) implies that? has positive semi-definite imaginary part.
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=y, Which in turn is defined by

2y (pq) = tr(w(p, q)' ) (¥]).

Here,w(p, q) = e!®X~") are the well-knowiWeylor displacement operatof86, 119].
Partly triggered by the advent of quantum information tlyeconsiderable work has
been undertaken to explore Wigner functions for finite-disienal quantum systems
[24, 39, 46, 71, 74, 78, 94, 116, 117, 126]. Two approacheshinig identified in
the literature on that subject. The first one aims to casgfaition of the Wigner
function into a form that can be interpreted for both conbinsi variable and discrete
systems [46, 78, 116, 117]. The second approach — introdug&ibbons, Hoffman,
and Wootters in Ref. [39] — focuses on f@pertiesof Eq. (4.1). The authors imposed
a set of axioms which a candidate definition of a discrete \figanction would have
to fulfill in order to resemble the well-known continuous oterpart.

We will argue that, for odd dimensiow’s

=d7' Y eTFE (g — 27 E)w(g + 27%€)
3=

is the most sensible analogue of Eq. (4.1), judged in terregloér of these approaches.
Here,p, q are elements ¢, = {0,...,d—1} and2™! = (d+1)/2is the multiplicative
inverse of2 modulod. Indeed, the definition given above is the discrete symialect
Fourier transform of the discrete characteristic functéom will be shown to be the
uniquechoice to mimic certain desirable properties of the comusiWigner function.

Stabilizer states were originally defined by Gottesman ih €] as the joint eigen-
vectors of certain sets of elements of the qubit Pauli gréixeeeding the case of qubits,
stabilizer states for higher-dimensional quantum systesme been treated in the litera-
ture (see, e.g. Refs. [42, 59, 72, 96]). Such states find wldrapplications in quantum
information theory, ranging from quantum error correcfi®?] to Cluster state quantum
computation [91]. Although displaying complex featurestsas multi-particle entan-
glement [55], stabilizer states allow for an efficient clagbdescription. In particular, a
guantum computer that operates only with stabilizer stzdasffer no principal advan-

tage over classical methods of computing [82]. The lattestent is sometimes called
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Gottesman-Knill Theorem

Using that language, we intend to show:

Theorem 36. (Discrete Hudson’s Theorenhet d be odd and) € L*(Z") be a state
vector. The Wigner function af is non-negative if and only if is astabilizer state

Given thaty(q) # 0 for all ¢, a vectory is a stabilizer state if and only if it is of the
form

W(q) e%i(tﬁqﬂ-xQ)’
whereq, x € 7!, andf is a symmetric matrix with entries iA,.

Theorem 36 should convey two central messages. Firstlyeifight definitions are
employed, the continuous and the discrete case behaveiwglgrly (even though the
methods of proof are completely different). Secondly, dséurther evidence to what
might be called a piece of folk knowledge in the field of quaminformation theory:
namely that stabilizer states are the natural finite-dinogras analogue of Gaussian
states.

The paper is organized as follows. We survey previous worthersubject in Sec-
tion4.1.2. Section 4.2 is devoted to a superficial, yet seiftained introduction to Weyl
operators, characteristic functions, Wigner distribogi@and stabilizer states. The main
theorem is proven in Section 4.3. Sections 4.5 to 4.7 addesgsus related topics. The
results of these last three sections do not rely on each. oftwrcretely, we comment
on the relation between stabilizer states and GaussiasstaSection 4.4; we consider
mixed states with positive Wigner functions in Section 46l aise Section 4.7 for a
discussion of Hilbert spaces whose dimension is the powarmoime.

Readers interested only in the structure of the proof, btimits full generality, are
deferred to Ref. [3], where a particularly simple speciaecaf the main result is laid
out.

4.1.2 Previous Results

Recently, Galva@t. al. took a first step into the direction of classifying the quamtu
states with positive Wigner function [38]. To explain théat®nship of their results to

the present paper, we have to comment on an axiomatic apptoatiscrete Wigner
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functions and, further, on stabilizer states in dimensitias are the power of a prime
number.

In Ref. [39], Gibbons, Hoffmann, and Wootters listed a setegfuirements which
should be met by any definition of a discrete Wigner funclign Denoting the dimen-
sion of the Hilbert space by, their axioms amount to

1. (Phase space)V is a linear mapping sending operators to functions a@n-ad
lattice, called thgphase space

2. (Translational covarianceThe Wigner function is covariant under the action of
the Weyl operators (in the sense of Theorem 41).

3. (Marginal probabilities)There exists a functiof(\) that assigns a pure quantum
state to every line in phase space. if is state vector, then the sum of its Wigner
function along\ must be equal to the overla@(\)|)]>.

Let us call functions that fall into this clageneralized Wigner function3 his term is
justified, as the characterization does not specify a ursquéion: for ad-dimensional
Hilbert space, there exigf*! distinct generalized Wigner functions. Note also that the
construction has been described only for the case where” is the power of a prime,
because only then the notion ofiae in phase space has a well-defined meaning.

We turn to the second remark, concerning stabilizer stai@ssider a composite
system, built of d-level particles. We are free to conceive it as a sinfjlelimensional
object. The two points of view give rise to different defiaits of stabilizer states, the
'single-particle’ one being starkly reduced as comparetthéomultiple-particle one. In
Section 4.7, we show that the set of single-particle stadgilstates is strictly contained
in the set of multi-particle ones. Indeed, the ratio of thepeetive cardinalities of the
two sets grows super-exponentiallyrinAs an example, the generalized Bell and GHZ
states

4"/ Z i@ i),  d? Z i) @ |i) @ i),

arguably the best-known multi-particle stabilizer statesnot belong to the respective
single-particle sets.
The result of Ref. [38] concerns quantum states in primegvaimensions that are

non-negative with respect @l possible definitions of generalized Wigner functions.
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These states are shown to be mixtures of single-particheligtxr states, as described
above. The authors aim to establish necessary requirefioegsantum computational
speedup. Indeed, if the Wigner function of a quantum compsijeositive at all times,
then it operates only with stabilizer states and hence ©fferadvantage over classical
computers, by the Gottesman-Knill Theorem.

Thus for the case of non-qubit pure states, Theorem 36 isiie results of Ref.
[38] and goes further in two essential ways. Firstly, it ©14$ to look at a single defini-
tion of the Wigner function, as opposedtd?”+1 generalized ones. Secondly, quantum
computation and the Gottesman-Knill Theorem are natusatyin the context omul-
tiple particles. Our definition assigns positive Wigner funcsidéo all multiple-particle
stabilizer states, while Ref. [38] effectively relies o ingle-particle definitioA. On
the other hand, our main theorem does not address qubitxedmsiates, which Galvao
et. al.do.

4.2 Phase Space Formalism

The termphase space formalisencompasses the ideas and tools in relation to\tiad
representationto be defined shortly. We will give a concise introductiothis section.
Many of the results presented can be found in the literaturesome, e.g. the Clifford

covariance of the Wigner function in non-prime dimensi@egm to be new.

4.2.1 Weyl representation

We start by considering@&dimensional quantum systemodd. In its Hilbert spacet,
we choose a basig0), ..., |d — 1)}, labeled by elements &f,. Henceforth,Z, will
be referred to as theonfiguration spacand abbreviated b§.

The pivotal objects in the phase space formalism ar&\tiyd operatorgalso known
as thegeneralized Pauli operatofysas constructed below. Let(q) = eTi4. The

relations

2(q)|r) = [ + q), 2(p)|z) = x(pz)|z) (4.2)

2Up to equivalence under Clifford operations.
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4.2 Phase Space Formalism

define theshiftandboostoperators respectively. The Weyl operators are given by

w(p, q) = x(—27"pq) 2(p)i(q), (4.3)

for p,q,t € Q. The specific choice of phases will prove useful late?oThe set of
Weyl operators is closed under multiplication, up to phasgdrs. Direct computation

shows that the composition law is given by

w(p, Jw(p', q) (4.4)

T
/ /
L I O N sy S I (4.5)
/ /
q
where
0 1
J = : (4.6)
~1 0

We write w(v) = w(v,,v,) for elements = (v,,v,) € Z2. The spacé’ := Q x Q
with inner product given by Eq. (4.5) will be callgthase space the sequel, owing to
its analogy to the phase space known in classical mechanics.

The preceding constructing generalizes naturally to mlelfparticles. Indeed, the
configuration space of anparticle system is given b = Z7. Multiplication between
two elementg, ¢ € (@ is understood as the usual inner prodpgt= > . p;q;. The
Hilbert space is again spanned fiy) },co and the Weyl operators are defined to be the

3The choice of phase factors ensures that the symplectic product Eq. (4.5) appears in the com-
position law Eq. (4.4) thus making the connection betweernteyl operators and symplectic geometry
manifest. Other definitions in use, ew(p, ¢) = 2(p)i(q) carry the same dependence in a less obvious
manner. See also Refs. [36, 117].
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tensor products

w(p7Q) = w(plv---vpanlv"'7QTL) (47)
= w(p1,q1) @+ @ W(Pn, Gn)-

Equations (4.4), (4.5) remain valid in the multiple-pddisetting, if we substitute the

matrix J by its multi-dimensional version

Oan ]]'an

J =
—Loxn  Onxn

We end this section with some miscellaneous remarks.

A state vectoty)) can be identified with a complex function on configurationcgpa
by settingi(q) = (¢|1). We will use both representations interchangeably.

The continuous Weyl operators(p, ¢) = ¢'®X=4P), p ¢ € R fulfill exactly the
same composition law as stated in Eq. (4.4)y ifs set tox(¢) = ¢“ and the other
symbols are interpreted in the obvious way. In fact, EQ.)(4%.4hen equivalent to the
fundamentaMeyl commutation relation86]. Having this analogy in mindy andg
will sometimes be callechomentunandpositioncoordinates respectively.

For future reference, note the two simple relations

(wp, ) (x) = x(—=27"pq + px)i(z — q), (4.8)
trw(p,q) = d"dp0040- (4.9)

It remains yet to justify the name Wesdpresentation Forv € V,t € Z,, define
w(v,t) = x(t)w(v). Equation (4.4) takes on the form

w(vl,tl)w(w, tg) = w(vl + ’Ug,tl + t2 + 2_1[’1}1, 1)2]).

The setlV” x Z,4, equipped with the above composition law is called Hesenberg
group H (Z%), the Weyl matrices constituting a unitary representatibt/ ¢Z7;) [36].
This point of view on Weyl operators will be needed only in Applix 4.8.1.
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4.2.2 Clifford group

The Clifford group is the subset of the unitary operators thap Weyl operators to

multiples of Weyl operators under conjugation:
Uw(v)UT = c(v)w(S(v)) (4.10)

for some maps : V — C andS : V — V [40]. The structure of the Clifford group is
described in the following theorefn

Before stating the theorem, we have to comment on a re-apgeasue: namely
that things are more involved if is not a prime number. For prime valuesfZ,
has the structure of Bnite algebraic field Z is afinite vector spacand most of the
intuitions we have about vector spaces continue to be trumorfy the more severe
deficiencies of the general case is the fact that not everyezien of 7, possesses a
multiplicative inverse moduld. But even if the analogue of a theorem about vector
spaces holds for non-prime valuesdfit is often difficult to find a proof in the litera-
ture. Appendices 4.8.3 and 4.8.4 contain a collection daéstants of this kind. Less
technically inclined readers will not loose much by skigpthese sections.

For the sake of clarity of language, we call functigiten @ which fulfill f(Aa+b) =
Af(a)+f(b) linear, disregarding the fact th&l might fail to be a linear space. Similarly,
a subsetS of @ that is closed under addition and multiplication by elersesftZ, is
referred to as subspace We define a functiorb to be symplectidf it is linear and

preserves the symplectic forrjts -, S-] = [-, -].

“Note that the “Clifford group” which appears in the contektjaantum information theory [40] has
no connection to the group by the same name used e.g. in tresesyation theory o$O(n).
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Theorem 37. (Structure of the Clifford group)

1. For any symplecti®, there is a unitary operatog(S) such that
1(S) w(v) u(S)" = w(Sv).
2. 11 is aprojective representatiasf the symplectic group, that is

u(S)(T) = e u(ST)

for some phase facter?.

3. Upto a phase, any Clifford operation is of the form
U = w(a)u(S)

for a suitablea € V and symplectic.

The representation is called theNeil or metaplectiaepresentation [36, 123]. The-
orem 37 is could be called a discrete version of the celethr&tene-von Neumann
Theorem{36]. Its proof is not essential for understanding the fartargument and has
therefore been moved to Appendix 4.8.1.

Note that a Clifford operation is connected to a veatand a linear mapping§. This
should remind us of a well-known structure on linear spaa#fsie transformationsAn
affine mappingA is of the formA(b) = S b+ a whereS is an invertible linear operator
anda a vector. Let us call symplectic if its linear parf is.

We will frequently use the 'dot notation’ to define functioosone parameter; for

example writingS - + a for A.

Lemma 38. (Clifford group and affine transformationshe mapping
S +a— wla)uS)

is a projective representation of the group of symplectimaftransformations.
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Proof. All we need to do is to compare the composition law of the affjreaup

(S-+a)o(T-+b) = S(T-+b)+a
= ST -+(Sb+a)

to the composition law of the representation

w(@)p(S) wb)u(T) = wla) p(S)wb)u(S)" 1(S)u(T)
= w(a)w(Sb)u(S)u(T)
x w(Sb+a)u(ST)

which proves the assertion. O

The correspondence established by the last lemma will firehatangible manifes-
tation in Section 4.2.4, when we will see that the Cliffordgp induces affine transfor-

mations of the Wigner function.

4.2.3 Fourier Transforms

LetQ = Z} andf : Q — C be a complex function o@. The Fourier transform of is

(FHP) =Fp) = 1QI Y x(pa)f(a)- (4.11)
q€Q

In the course of the main proof we will be confronted with Reutransforms of
functions which are defined only on a subspacé&olif d is prime, then any subspace
of @ = 77 is of the formZ?’, for somen’ < n, SO no new situation arises.

For non-prime dimensions, however, subspaces may not belabehaved. Con-
sider as an exampl@, 3,6} C Zj. The set is closed under addition and multiplication,
but can clearly not be written &'

To cope with this problem, we will cast Eq. (4.11) into a format is well-defined
for functionsf on more general spaces. The construction is presented.biéloan be
found in any textbook on harmonic analysis (e.g. Ref. [92]).

A characterof @) is a function¢ : @ — C such that{(a +b) = ((a)((b). Any
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character of) is of the form((q) = x(zq) for an appropriate: € @ (see Appendix
4.8.3). We can hence conceive the Fourier transformatiéinetein Eq. (4.11) as a

function of the characters ©:
FO=1QI7*>¢a)f(a)- (4.12)

We denote the set of characters(@tby Q*. With these notions, Eq. (4.12) defines a
function@Q* — C. If, now, S is any subspace @ and f a function onS, the Fourier

transform

f97=8 Q=187 () f(s)

is well-defined.

For f : V — C, we define thesymplectic Fourier transforras

(Fsf)(a) = V72D x([a, 1)) f(b)- (4.13)
bevV
Finally, take a note that the normalization in Egs. (4.11 @h12) has been chosen
in such a way thalParzeval's Theorerf f|| = ||f|| holds, wherg| f||> = > f (@)

4.2.4 Definition and properties of the Wigner function

Employing Eqg. (4.9) in conjunction with the composition |&g. (4.4), one finds that
the Weyl operator$w(p, ¢)} form an orthonormal basis in the space of operators{on
with respect to the trace scalar proddct tr(-'-). Thecharacteristic functiort, of
an operatop is given by its expansion coefficients with respect to the Miagis:

=, (&) =d " tr(w(E, x)p). (4.14)

We mentioned in the introduction that the continuous Widnection is the sym-
plectic Fourier transform of the characteristic functi®®, 119]. The two latter con-
cepts have been defined for finite-dimensional systems ipréeeding paragraphs. We

can now state, in complete analogy to the continuous case:
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Definition 39. (Wigner function)Let d be odd,)Q = Z] for somen. LetV,H be as

usual and lef be a quantum state cH.
TheWigner functionlV, associated withp is the symplectic Fourier transformation

of the characteristic functiog,,.
An explicit calculation yields, for alt € V,

(FsE,) (a) = d™ > x([a,b]) tr(w(b)p)

beV

= 4 tr(<d‘" > x(a, b])ﬂ)(@*) p)

=: d "tr(A(a)p), (4.15)

where we have implicitly defined th#hase space point operatei(a) [39].
Theorem 40 lists a selection of properties of the Wigner tionc For a more thor-

ough discussion, the reader is deferred to Refs. [46, 117].

Theorem 40. (Properties of the Wigner function)

1. The phase space point operators have unit trace and forortwonormal basis
in the space of Hermitian operators dii. Hence the Wigner function of an

Hermitian operator is real, and further, theverlap

d=" tr(po) = ZW

veV

andnormalizatiorrelations

Z W,(v) =trp

v

hold.

2. For a pure state), the Wigner functiodV, := W\, equals

Wy(p.q) =
A X(Ep)P(q — 271 (g +271¢).
=
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3. When computing marginal probabilities, the Wigner fusrtbehaves like a clas-

sical probability distribution:

> Walp,q) = [v(g)*

PER

4. The multi-particle phase space point operators factor:
A<p17 <oy Dny 1y, - - -, qn) = ®A(Z)(pl7 qz)

(and hence so does the Wigner function).

5. It holds that4(0)|¢) = | — ¢). In other words, the phase space point operator at

the origin equals th@arity operator

6. The Wigner functiof’,, of an operator product is given by theproduct(also
known as thé&roenewoldr Moyal product45]):

Wpo(u) = (W, « Wo)(u)

=AY W(u+v) Wo(u+ w)x([v, w)).

v,W

Proof. The proofs are all straight-forward; we give only hints omtto conduct them.

It will be essential to recall the well-known relation

> xlay) = d" 6,0, (4.16)

TELY

forally € ZJ.

Indeed, the first claim can be proven by using Eq. (4.16) tagetith the definition
of the phase space point operators Eq. (4.15). Employ Defin®9 and Eq. (4.16) to
establish the second assertion, which in turn implies tingd tme. Theorem 40.4 makes
use of the fact that(pq) = [ [, x(p:¢:); See also Section 4.7 for a very similar and more
explicit calculation. The validity of the fifth statementbest shown using Egs. (4.8),
(4.16).
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Let us lastly turn to Claim 6. We have noted that the phaseespamt operators
form an orthonormal system. Hence we can expand an operatderms of its Wigner
functionasp = >, W,(v)A(v). Substitutingo ande by their respective expansions in
Woe(v) = d™"tr(A(v)po) yields the desired formula with the help of Lemma 63[]

The following statement will be vital to the proof of the maimreorem. It assigns an

elegant geometric interpretation to the Clifford group.

Theorem 41. (Clifford Covariance)Let U = w(a)u(S) be a Clifford operation. Let
o = UpUT for some Hermitian operatop. The Wigner function isovariantin the
sense that

W,(v) =W, (Sv+a).

Proof. We compute the action of the Clifford group on the phase spat# operators.

The claim follows by use of Eq. (4.15). O

Our definition of the discrete Wigner function coincidestwiite ones used in Refs.
[46, 116, 117, 126]. Itis further equal to Leonhardt’s versj74], up to a permutation
of points in phase space; it corresponds to choice (a) in[R&f.and lastly toG' = Z
in Ref. [24]. One can show that/, as defined here, fulfills the axioms of Ref. [39]
which had been laid out in Section 4.1.2. Put differentlysiain element of the set
of generalized Wigner functions. Gibboet al. remarked in Ref. [39] that among
the generalized Wigner functions, some stand out by thein diegree of symmetry.

In our language, this symmetry is an incarnation of the @idfcovariance established
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in Theorem 41. Naturally, it is now interesting to ask how méreedom is left in the
definition of a Wigner function, once one requires CliffomVariance to hold. We show

in Appendix 4.8.2 that the definition used here is virtuaihyque in that regard.

4.2.5 Stabilizer States

Using the composition law of the Heisenberg group Eq. (4t49,easy to see that two
Weyl operatorsw(v;), w(v2) commute if and only iffvy, v5] = 0. Now consider the
image of an entire subspaéé under the Weyl representatian The set

w(M) = {w(m)|m e M}

consists of mutually commuting operators if and only if tjenplectic form vanishes
onM:

[m1,my] =0, forallm; € M.

Spaces of that kind are callagiotropic. Clearly, if M is isotropic, then the opera-
tors w(M) can be simultaneously diagonalized. We will see thdf\ifi = d", the
eigenspaces become non-degenerate and can thus be usegldmat state vectors in
the Hilbert space. A subspagdé of V' is said to banaximally isotropidf its cardinality

equalsd™. See Appendix 4.8.3 for a justification of that nomenclature

Lemma 42. (Stabilizer States)et M be a maximally isotropic subspace Bt Let
v € V. Up to a global phase, there is a unique state vedtdr v) that fulfills the
eigenvalue equations

X([v, m])w(m) |M,v) = |M,v)

forall m € M.

Proof. Existence: It is elementary to check that

(MY X, m])w(m) (4.17)

meM

is a rank one projection operator fulfilling the eigenvalgeations.
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Uniqueness: According to Appendix 4.8.3, there greharacters of\/, each giv-
ing rise to a distinct projection operator as defined in tisé p@aragraph. Two distinct
operators of that kind are mutually orthogonal, becausg Ileéong to different eigen-
values of at least one of the Weyl operators. 8t H = |@)| = p™ and thus there is no
space for more than one-dimensional solutions to the gigeafequations. O

The state vectdr\/, v) is called thestabilizer stateassociated td/ andv. For obvi-
ous reasons, one refers to the set of operdtes, m|) w(m)|m € M} as thestabilizer
of | M, v). Due to the isotropicity of\/, the stabilizer is closed under multiplication and
thus constitutes a group. Occasionally, we wyité) for | M, 0). To specify a stabilizer
state, we need to specify a maximally isotropic sp&teThis is best done by giving a
basis{m,, ..., m;} of M. Itis convenient to assemble the basis vectors as the calumn
of a2n x k-matrix, which is generally referred to as tenerator matrix As the choice
of a basis is non-unique, so is the form of the generator ratri

A stabilizer staté /) is agraph statédf it possesses a generator matrix of the form

9
, (4.18)

]lan

whered is a symmetrie: x n-matrix [55]. The designation stems from the fact ttiat
can be interpreted as the adjacency matrix of a graph. Maoypepties of| /) are de-
scribable in terms of that graph alone [55]. Some authongiredghe diagonal elements
¥%; to vanish (equivalently, no vertex of the graph should bledihto itself), but we will
not impose that restriction. Note that there exist consiblgrmore general definitions
of graph states [96].

Obviously, we will be concerned with Wigner functions oftsteer states. Lemma

43 clarifies their structure.

Lemma 43. (Wigner functions of stabilizer stateShe Wigner function of a stabilizer
state| M, v) is theindicator functionon M + v. More precisely,

1 1 1 ace M+wv

Wi 0) = owan(@) = 24 °
else.
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Proof. The representation given in Eq. (4.17)|6f,v) determines the characteristic
function

Ejary (0) = d7" x([v, b])0nr ().

We compute the symplectic Fourier transformation:

(Fs Zpaw) (@) = d7 > ([, B)x([v, b)) (b)

beV

= a7 (a0, b)

beM

= d"6y(a—0).

Where
M+ ={v e Vl|m,v]=0forallm e M}

is thesymplectic complemewtf M in V. But M is a maximally isotropic space and
henceM = M~ (see Appendix 4.8.3). O

In particular we know now that the Wigner function of stadeli states is non-
negative. The next sections are devoted to the proof of theerse.

4.3 Discrete Hudson’s Theorem

4.3.1 Bochner's Theorem

Define theself correlation function

Ky(q, ) = (g +27"2)0(qg — 27"2)

and note that the Wigner function fulfills

Wi(p,q) = %Zi(m)f{w(q,x)- (4.19)
zeQ

Fix aqy € Q. Designating the functiop — W(p, q) by W(-,q), Eq. (4.19) says
thatWW (-, qo) is the Fourier transform oK (¢, - ). ThereforeJV is non-negative if and
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only if the d" functionsK (qo, - ) have non-negative Fourier transforms.

In harmonic analysis, the set of functions with non-negakourier transforms is
characterized via a theorem due to Bochner. It is usuallygir@ither in the context
of Fourier analysis on the real line or else, in full gengyafior harmonic analysis on
— not necessarily abelian — locally compact groups. Whigefthmer statement is not
general enough for our purpose, the latter is not easilysasdole. However, it turns out
that in the discrete abelian setting an elementary proobeagiven. It is stated in the

next theorem, along with a variation for subsequent use.

Theorem 44. (Variations of Bochner’s Theorenb)et M/ be a subspace a. Let f :
M — C. It holds that

1. The Fourier transform of is non-negative if and only if the matrix
A%y =fle—q)  (r,qe M)

is positive semi-definite.
2. The Fourier transform of has constant modulus (i.&f ()| = const) if and only

if fis orthogonal to its translations:

(f.a(g)f) =Y f@)f(x—q) =

for all non-zerog € M.

Proof. The following computation is a variant of a well-known faochecerning circulant
matrices. We claim that any characteof M is an eigenvector ofl with eigenvalue
A = |M|Y/2 £(¢). Indeed, plugging in the definitions yields

(AQ(z) = Y A%((a)
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There exist M| characters and thus equally many eigenvectors.ofherefore,A can
diagonalized. All its eigenvalues are non-negative if anly & f is non-negative.

By the same argument} is proportional to a unitary matrix if and only Jff(¢)|
is constant. But a matrix is unitary if and only if its rows fioran ortho-normal set of
vectors. L

From here, the proof proceeds in two steps. Section 4.3\&ki Theorem 44.1 to
gain information on the pointwise modulls(q)| of a vector with non-negative Wigner
function. Building on these finding, we will analyze the peojies of such Wigner

functions in Section 4.3.3.

4.3.2 Supports and Moduli

Lemma 45. (Modulus Inequality)Let ) be a state vector with non-negative Wigner
function.
It holds that

()P > [0(g — )] [(g + )]
forall ¢,z € Q.

Proof. Fix aq € Q. As W, is non-negative, so is the Fourier transform/of(q, - ).
Bochner’s Theorem implies that the matrdx, = K (x — y, ¢) is positive semi-definite
which in turn implies that all principal sub-matrices are pg particular the determi-

nant of the2 x 2 principal sub-matrix

Ky(q,0)  Ky(g,27)
Ky(g, —2x)  Ky(q,0)

[ (q)|? (g4 x)(q — )
|

2

V(g +2)(g — ) v (q)

must be non-negative. But this means

()" = [¥(q + 2)p(q — 2)]* > 0,

which proves the theorem. O
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We will call the setsupp v of points where a state-vector is non-zerostgport
S = supp ¢ has the property to contain th@dpointof any two of its elements. Indeed,
if a,b € S, then setting; = 27 (a + b) andz = 27!(a — b) in the Modulus Inequality
shows that

(W27 (a + b)) = [¥(a)] [¥(D)] > 0,

hence2~'(a + b) € S. Let us refer to sets possessing this quality as bealanced

The following lemma clarifies the structure of balanced.seescall that a subset
of V is affineif A = M + v for a subspac@/ and some vectar. An affine space is a
subspace if and only if it contains the oridin

Lemma 46. (Balanced setsh subsetS of ) is balanced if and only it is an affine
space.

Proof. We show the "only if’ part, the other one being simple.

As both the characterizations of balancedness and affiretingariant under trans-
lation, there is no loss of generality in assuming that .S. We have to establish that
is closed under both addition and scalar multiplication.

Leta € S. We claim that

27'\a e S (4.20)

forall / € N and\ < 2. The proof is by induction oh Suppose Eqg. (4.20) holds for
somel. If A < 2*liseven, therz="'\a = 27!(\/2)b € S. Else,

27" \a=2" (2—1% a+ 24% a) €5,
which shows the validity of Eq. (4.20).

There exists an integér> d such thal' = 1 mod d. Indeed, by Euler’s Theorem,
2¢(d) = 1 mod d, where¢ is Eulers totient function. Sé = d¢(d) satisfies the
requirements. Insertinginto Eq. (4.20), we conclude thatz € S for all A < 2¢. Thus
certainly\ a € S forall A € Z,; and we have proved closure under scalar multiplication.

If a,b € S then, by the last paragraph, 2b € S and hence~!(2a + 20) € S,
establishing closure &f under addition. ]
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Lemma 47. (Constant Modulud)et be a state vector with non-negative Wigner func-

tion. Then|y (- )| is constant on the support of.

Proof. Pick two pointsz, ¢ € supp ¢» and suppose)(q)| > | (x)|.
Letting z = = — ¢, the assumption readlé(q)| > |1(¢ + z)|. The Modulus Inequal-
ity, centered af + z, gives

[Wla+2) = )+ 22)]. (4.21)

As supp ¢ is affine, we know that)(q + kz) # 0 for all k£ € Z,. Hence Eqg. (4.21),
together with the assumption implies

g+ 2)1* > (g + 2)] [¥(g + 22)]
& |olg+2)] > [l +22)].

By inducting on this scheme, we arrive at

[W(q)| > |(qg+2)| > (g4 22)] > -

and thereforéy (q)| > |v(¢ + dz)| = |¥(q)|, which is a contradiction.
Thus|y(q)| < |¢(x)|. Swapping the roles of andq proves that equality must
hold. ]

At this point, we have full knowledge of the pointwisedulusof a state vector with
non-negative Wigner function. Thghasef ¢ ( - ) are, however, completely unknown.
The section to come addresses this problem indirectly,urystg non-negative Wigner

functions.

4.3.3 Non-negative Wigner functions

To motivate the following, assume for a moment thilahas a non-negative Wigner
function and further, thap(q) # 0 for all ¢. Choose &, € @ and consider the function
W(-,q). Lemma 47 implies thaf{,(qo, - ) has constant modulus and hence — by

Theorem 44.2 3/ ( -, qo) must be orthogonal to its translations. Clearly, a non-tiega
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4.3 Discrete Hudson’s Theorem

function possesses this property if and only if it is suppdn at most a single point.
There hence existsja € @ such thatV (p, ¢o) x 0,,,. This observation starkly
reduces the possible forms of positive Wigner functionsiilitbe generalized to state

vectors with arbitrary support in the next lemma.

Lemma 48. Let ) be a state vector. [, is non-negative, then it is of the form
Ww(v) =d" (ST(’U)

whereT C V is a set of cardinalityi”.
What is more, if) € T, then the set of elementsBiwith vanishing position coordi-

nates
{(p.0)eT[pe @}

is a subspace df’.

Proof. Let S = supp v. Again, we may assume thatis a subspace ap, for else we

replacey by w(—s)1 for somes € S. It follows thatsupp K, = S x S. Indeed,

Ky(q,z) #0 & q+27'z€S

& qgeSNzes.

Denote byS* = {q € Q|sq = 0 for all s € S} the orthogonal complement &f>.
We will adopt the common notatigp] = p + S+ for cosets ofS*. It should be clear
that [p] is nothing other but thaffine spacevith directional vector space given s/
and base vectqr. The setS* of characters of can be identified witld) /S+. Certainly,
s — x(ps) defines a character ¢f for everyp € ). Further,x(ps) = x(p's) for all
s € Sifandonly ifp — p’ € S+. That indeed all elements &f can be obtained this
way is shown in Corollary 60.

Define K7, to be the restriction of;, to its supportS x S. For the rest of the proof,

SFor subsetss of ), S+ denotes therthogonalcomplement, while for subsefs of ' the same
symbol refers to thesymplecticcomplement. This notation is natural, as for b@hand V' only one
respective inner product has been defined.
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4.3 Discrete Hudson’s Theorem

we fix agy € S. Now consider

W(p,qo) = d™> x(pr)K(q,x
T€EQ

= d"Y X(p2)K'(qo, x

€S

Viewed as a function im, W (p, ¢o) has constant values on cosetsSof. Therefore,
W'([pl, q) == d"|S|"* W (p, q) (4.22)

is a well-defined function o8*. The considerations of the previous paragraph allow us
to identify W/ ([ -], o) as the Fourier transform df’(qo, -).

We can now repeat the argumentation presented just befereuthent lemma. In-
deed, the modulus oK’ (qo, [-]) is constant andV’ is non-negative. Furthermore, by
definition ofgy, K'(qo, [ -]) is non-zero and we may thus conclude that W’ ([p], q)
is supported on exactly one cosgt|.

Normalization ofy implies|v (- )| = [S]'/2. Hence| K, (qo, - )| = |5 and

1€ (a0, IIP =D 1K (g0, 2)* = S| 7"

By Parzeval’s Theorem|W'([-],qo)||* = | S|~ as well. It follows thatV’([po], g0) =
51472
Inverting Eq. (4.22) gives

W(p.q)=d™" { b=l (4.23)
0 else
which proves the first claim of the lemma. The cardinality/of fixed by the normal-
ization of the Wigner function (Theorem 40.40).
Now supposéV(0,0) = W’'([0],0) # 0. Clearly, theni¥(p, 0) is non-zero if and
only if p € [0] & p € S+. The last assertion of the lemma follows, singe is a
subspace of). O

So a non-negative Wigner function is the indicator functiof some sef’. This
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4.3 Discrete Hudson’s Theorem

finding is compatible with Lemma 43, which describes thecttme of Wigner functions
of stabilizer states. The next two lemmas verify thahas indeed all the properties of

the sets that appear in Lemma 43.

Lemma 49. Let«y be a state vector. i/, is of the form
Wy (v) = d™" or(v),

thenT is an affine space.

Proof. The proof proceeds similar to the one of Lemma 46. There i9s® of gener-
ality in assuming that € 7.

First, we show that’ is closed under scalar multiplication. To this end, pick ampo
a € T. There exists a symplectic mappisgthat sends: to a vectora’ of the form
(a;,,0) wherea, € @ (see Appendix 4.8.4). The sgt = ST is the support of the
Wigner function ofu(S5). By the second assertion of Lemma 48, € ST for every
A\ € Zg4. HenceS™t(\d') = da € T.

Turning to closedness under addition,det € T'. By the last paragrapBga, 20 € T'.
Arguing as before, note that the sét— 2a is the support of the Wigner function of
w(—2a)y and thus closed under multiplication. A8 — 2a € T' — 2a, we know that
b—acT—2aandhencé +acT. O

Lemma 50. Let ) be a state vector such thét), is of the form
W¢(U) = d_néT(’U).

If T'is a subspace, then it is isotropic.

Proof. The vectory describes a pure state, heriég « W,, = W, (recall the Moyal
product, introduced in Theorem 40). Let 7'. Plugging in the definitions gives

Wy * Wy (u)

=Y Wlu ) Wlu+ w)x (o, w])

v,weV

= d=°r Z X([va])'

v,weT
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4.4 Discrete Gaussians

Note that) . x([v,w]) < |T'| = d" with equality if and only iffv, w] = 0 for all w.

Hence
Ww * Ww(u) S d" = W¢(u)

For the left-hand and the right-hand side to be edliahust be isotropic. O

Thereforel’, as defined above, is of the forfh= M + v whereM is an isotropic
space of cardinalityl”. But then,IW,, is the Wigner function of a stabilizer state, by

Lemma 43. We have proven:

Theorem 51. (Main Theorem)ety € L?*(7Z") be a state vector. If the Wigner function

of ¢ is non-negative, then is a stabilizer state.

4.4 Discrete Gaussians

It has long been realized that the coefficients of stabilstate vectors are described
by quadratic forms. However, the current literature eitheglects the non-prime case
(Refs. [30, 42, 96]) or is less explicit (Ref. [59]) than tlidwing lemma in showing
the tight relation between Gaussian states and stabiliatrss

We will concentrate on stabilizer states with full supportis constitutes only a
modest restriction of generality. Indeed, letbe a general stabilizer state, gt :=
supp . Let us for the sake of simplicity assume thias prime and?’ is a subspace of
(). The restriction of the coordinate functioriq) to ()’ can be thought of as defining a
vectory’ of a quantum state of am := dim Q' particle system. It is now possible to
check that)’ is a stabilizer state. In this way any stabilizer state caui®eed as one
with full support, possibly on a smaller system. We will, rewer, not take the time to
make this construction precise nor will we rely on it in theger.

Lemma 52. Let ) be a state vector. The following statements are equivalent.
1. ¢ is a stabilizer state and(q) # 0 for all g € Q.

2. Up to the action of a Weyl operatafr,is a graph state.
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4.4 Discrete Gaussians

3. There exists a symmetmcx n-matrixf and anz € Q) such that
U(q) = wifatza

Proof. (1= 2). By assumptior)) = | M, v) for some maximal isotropic spadd and
a vectorv. We claim that there is no non-zepos () such thatp,0) € M.

For suppose there exists such.a'hen

(qlw(p, 0)|M) = x(—pq){q|M).

On the other hand,

{glw(p, 0)|M) = X([v, (p, 0)]) {a| M),

by the definition off M, v). Hencesupp | M) must be contained within a hyper-surface
of () specified bypg = const, which contradicts the assumption thapp v = Q.

There arei™ elements inV/. By the last paragraph, no two of them have the same
position coordinates. As there exist only = |@Q| possible choices for the position
coordinates, one can find for everye @ ap € @ suchthatp, q) € M. Lete,,... e,
denote the canonical basis@f. Choosen,, ..., m, € M such that the position part

of m; equalse;. The span ofm;};—; ., has clearly cardinality”, so we have found a

basis of M. By construction, the generator matrix composed of thesesva&ctors has
the form shown in EqQ. (4.18) with somex n-matrix d. It is not hard to see that/ is
isotropic if and only ifd is symmetric, establishing that/) is a graph state. Theorem
41 and Lemma 43 show that(v)| M) = |M,v) = |i).

(2 = 3). Let M be an isotropic space which possesses a generator mative of t
form given in Eq. (4.18). Letn; = (v;, ¢;) be theith column of that matrix. We need

to establish the existence of a symmetric matrand anz € () such that
(q| M, v) = w10 = 4(q).

Indeed, choose
0=2""9, x; = [v,my].
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4.5 Mixed States

Using Eg. (4.8), one can then check by direct computation:thfalfills the defining

eigenvalue equations

X (v, mi)w(ma)y = ¢

and henceéy) = |M,v), by Lemma 42.
(3= 1). Reverting the previous proof shows thats a graph state. It has maximal
support by definition. O

The claimed analogy between stabilizer states and Gausisites is apparent when
comparing statement 3 to Theorem 35.

4.5 Mixed States

It is natural to ask how the results obtained before gerseraédi mixed states. Certainly,
mixtures of stabilizer states are non-negative on phassespad it might be surmised
that all such quantum states are convex combinations ofig&tones. In the context
of continuous variable systems, Brocker and Werner rdfate analogous conjecture
by giving a counter-example [17]. Again, the situation imigar in the finite setting, as
will be shown now.

As a consequence of Theorem 404()) can be decomposed d$0) = P, + P_,
where Py denotes the projector onto the symmetric and antisymmstaie vectors
respectively. Sincé’, + P_ = 1, we have that’. = 1/2(1 — A(0)). Because we
know the Wigner functions of both (W (v) = d=") and of A(0) (W (v) = d,0), we

immediately obtain

d"—1 v=0

W (v) = ! (4.24)

2 _
" else.

For a single three-dimensional quantum system there existsgque antisymmetric
state vectofy)_) = 271/2(| + 1) — | — 1)), henceP_ = |¢)_){v_|. Figure 4.2 depicts
the Wigner function of the stajg obtained by mixing the pure states

|¢—>7 w(_lv O)W)—)v w(_lv _1)|¢—>

140



4.5 Mixed States

-1 0 1
Momentum

Figure 4.2: Wigner function of the equal mixture of the vesto)—), w(—1,0)|y_)
andw(—1, —1)|¢_). White squares stand for a valuelg®, black squares fab.

with equal weights.

The Wigner function of a single-particle stabilizer stata line in the two-dimensional
phase space, according to Lemma 43. Therel@tetr 1) such lines and hence equally
many stabilizer states. Assume these states have beerhbiotmsome order and de-
note the associated projection operatorshy. . ., Pyq11). Letp = Zf(d“) A P; be a
convex decomposition ¢f in terms these operators. If there is a paimt phase space
whereW,(v) = 0 andWp, (v) # 0, then clearly\; must vanish. By exhaustively listing
all 12 lines inZ2, one finds thap can have non-zero coefficients only with respect to
the stabilizer states whose Wigner functions are shownguargi4.3.

But p admits no convex decomposition in terms of these three.lihedeed, no
two of them cover all the points in the supportiéf,, so only a mixture of all three

lines could potentially suffice. Now notice that the paiht—1) is an element only of

mrl

Figure 4.3: The white squares mark all linesZihithat do not intersect any point where
the Wigner function shown in Fig. 4.2 vanishes.
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4.6 Dynamics

the third line, while(1, 0) is contained in both the second and the third one. Therefore
any mixture of these three lines takes on a higher valuglom than on(1, —1). The

distributioni¥/,, on the other hand, is constant on its support.

4.6 Dynamics

Having established which quantum states give rise to ngathe phase space distri-
butions, the next step is to characterize the set of op@stiwat preserve this property.
We have seen in Section 4.2.4 that Clifford unitaries imgehpermutations in phase
space and thus manifestly preserve positivity. They arguein that regard, as will be
shown now.

By the results of Section 4.3, it is apparent that a unitagrafponU can preserve
positivity only if it sends stabilizer states to stabiliztates. One can reasonably conjec-
ture that only Clifford operations possess this featureiaride case of single-particles
in prime-power dimensions, a proof of this fact has beenrgineRef. [38]. The gen-
eral case, however, poses surprising difficulties whicleliaxced us to take a less direct
route.

Let us shortly pause to clarify our objectives. We aim to ebtarize the set of
unitariesU that satisfy statements of the kindit’;;,;+ is non-negative whenevév/,
is. We can require the above statement to holdafimy Hermitian operatop, or just
wheneverp is a quantum state In the former case the restrictions éhare much
stronger than in the latter one. Indeed, by consideringtiage of the phase space point
operatorsA(a) under the action off and making use of Lemma 63, itis straight-forward
to prove that only Clifford operations can preserve positiof the Wigner functions
of general Hermitian operators. The following theorem ighgly more ambitious in
considering only the action @f on quantum states.

Theorem 53. (Only permutations preserve positivity)et U be unitary. If, for all quan-
tum statesp with non-negative Wigner function, it holds thaf, .+ is non-negative,
thenU is Clifford.

Proof. Firstly, take a note that substituting 'quantum state’ bgsiptive operator’ in

the above theorem, only amounts to a change of normalizatidndoes not alter the
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4.6 Dynamics

statement. Set

plp) = minW,(v),
v(p) = minarg W, :={v e V|W,(v) = u(v)}.

Let p be such thau(p) < 0. We claim thatu(p) = (o), wherep’ = UpUT. In
other words:U preserves minimal values.

Indeed, there exists positive constahts such that
)xlu(p/) + )\Qd_n =0.

Henceo := A\ip + A\21 has a non-negative Wigner function. The assumptign) <

11(p) yields
Wieui (v) = Mp(p)) + Aed™ < 0

for everyv € v(p’), which contradicts the defining property Gf Thusu(p') < u(p).
Substituting’ by U~! shows that equality of(p) andu(p") must hold.
Now set
pla) = (1 —d™") " w(a)P-w(a)'

forall a € V. We haveu(p(a)) = pu(p'(a)) = —1 andv(p) = {a}. The crucial obser-
vation lies in the fact that(p’) contains only a single point as well. 3@ preserves the
'pointed’ shape ofiV/,(a). To see why that is the case, suppose theredigsuch that
lv(p(ag)’)| > 1. There arel*" operators(a)’ and equally many points in phase space,
so there exists am such that/(ay) andr(a;) intersect in at least one point Define
o = 1/2(p(ap) + p(ay)). It holds thatu(c) > —1/2, whereadV,,(v) = —1 which is
a contradiction. There is hence a well-defined functfowhich sends: to the unique
element ofv(p(a)’).

Finally, leto be any density matrix. The idea is to mixery weakly top(a), so that
the positions of the minima of the mixture are still deteredrbyp(a). Indeed, there
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4.7 Prime power dimensions

exists are > 0 such that

v(p(a) +e0) = {a}
uipla) + e0) = —1+eW,(a);
v(p(a) +eo’) = {S(a)}

plpla) +eo’) = —1+eW,(S(a)).

Hencel, (Sa) = W,(a). We have established th&tacts as a permutation in phase

space and is therefore Clifford by Lemma 63. O

4.7 Prime power dimensions

Wigner functions for quantum systems with prime power digi@ns have received
particular attention in the literature (most prominentiyRef. [39]). Once again, this is
due to the fact that a finite field of ordérexists exactly whed is the power of a prime
and that the field’s well-behaved geometrical propertiedifate many constructions.
The present section briefly addresses the relationshipdegtthree natural approaches
to Wigner functions for such systems. We assume the read&eedy familiar with the
definition of Weyl operators over Galois fields; a thoroudindduction can be found in
Refs. [39, 46].

Let d = p”* for some prime number. There are three natural ways of associating a
configuration space té. These are

1. ann-dimensional vector space ovVéy,
2. aone-dimensional module ov&j. or
3. aone-dimensional vector space over the Galois igldof orderp”.

The first and the second of these points of view have manjfestn covered in this
paper. So far we neglected case 3, because — as we will seear eccompletely
reduced to the first one.

Let us quickly gather some well-known facts on finite fieldsp Is prime andn a

positive integer]F',» denotes the unique finite field of ordér= p". The simplest case
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4.7 Prime power dimensions

occurs forn = 1, whenlF, ~ Z,. Forn > 1, fields[F,. are realized byextending
F,, which is then referred to as thmase field Extension fields contain the base field
as a subset. The extension field possesses the structureratliamensional vector
space over the base field. A set of element®'pfis abasisif it spans the entire field
under addition and",-multiplication. After having chosen a badi, . . ., b, }, we can

specify any element = 3. f'; by its expansion coefficientsf’}. The operation

n—1
Tof =
k=0

takes on values in the base field andjslinear. Therefore,

(fig9)— Tr(fg)

defines ar¥,-bilinear form. For any basiéb; }, there exists @ual basis{v’} fulfilling
the relatioriIt(b'b;) = ¢, ; (we do not use Einstein’s summation convention). From now
on, we assume that a basjsand a dual on&’ have been fixed.

Repeating the construction put forward in Section 4.2, weoduce the Hilbert
spaceH = L*(FF,»), in other wordsH is the span of|¢)|¢ € F,-}. The choice of a

basis induces a tensor structure’dgrvia
) =1 gy — Q) lg').

We obtain a character df,» by settingx,~(f) = x,(Trf). Note that forn = 1,

Xpn = Xp- Expanding momentum coordinates- » p;b', the character factors:

x(pg) = xp (D_pig (b)) = [ [ xolmia).

1]
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4.7 Prime power dimensions

Similarly, the shift and multiply operators factor with pext to this tensor structure:

()T o) = @)
Z(Zpibi)|zijj> = HXp(pixi”ijbj)
= ®Z(i)(pi)|xi>a

wherez(® andz¥ act on theith p-dimensional subsystem. A straight-forward compu-
tation along the lines just presented shows that both thd @@rators and the phase
space point operators factor:

w(p,Q) = ®w(i)(pivqi):w(plv'-'vpnvqlv"'vqn)

A(p7 Q) = ®A(2)(pl7q2) = A(plu s 7pn7q17 ce 7qn)

The above result thus states that the Wigner function inglbgethe choice) = F»
coincides — up to re-labeling of the phase space points —thwttone for@ = T7. In
particular, both definitions give rise to the same set okstatith a non-negative phase
space distribution.

For stabilizer states, however, the situation is not as, easwill be discussed sub-
sequently. The preceding discussion suggests defining a nﬁp — ]Ff," by

(p7Q) = (plv"'vpnvqlv"'vqn)

(see Refs. [46, 87]). Le¥/ be a maximal isotropic subspace]bﬁn. Itis readily verified
that.(M) C F2" is again isotropic and a subspace. Further, we have showhthsets
of Weyl operatorsv(M) andw(:(M)) coincide and hence so do the stabilizer states
|M) and|c(M)).

The converse is not true.”! does not necessarily m@f," subspaces to those of
1F§n More precisely, ifM C ]Ff," is a subspace, then'(M) can easily be proven to

be closed under addition, but will in general fail to be cthsederl',-.-scalar multipli-
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4.7 Prime power dimensions

cation. This proves the remark made in the introduction,efgithat the set of 'single-
particle’ (i.e. lFf,n) stabilizer states is a true subset of corresponding 'rpatticle’ set.

The following subsection gives a quantitative account efrélation of the sets.

4.7.1 Counting stabilizer codes

We are going to count the number of stabilizer states of @sysbmposed af d-level
particles. In fact, the computation given below is slightipre general in that it gives
the number ofk-dimensionaktabilizer code$40].

Stabilizer codes are generalizations of stabilizer st&esall Eq. (4.17), where we
showed that summing Weyl operatarsm) over the elements: of a maximal isotropic
subspacé/ of V yields a one-dimensional projection operator. It can bewshihat if
the requirement of maximality is dropped, the sum still aaéds to a projector. The
range of this operator is tretabilizer codedefined by)/. The dimensionn of M and

the dimensiork of the stabilizer code are related by= d" ™.

Theorem 54. (Number of isotropic subspacesgt V' be a2n-dimensional symplectic
vector space ovefF;, whered is the power of a prime. The numberefdimensional

isotropic subspaces 6f is given by

m—1

Tso(n, m, d) = m d [T+,

=0

where the square brackets denote @aussian coefficients

7

Proof. The proof is inspired by a method employed in Ref. [22] to sddvrelated
problem. We count the number of linearly independentuples consisting of mutual
orthogonal vectors. Indeed, as the first veatpwe are free to choose any non-zero
element of V. There ared®® — 1 such choices. The second vector must lie in the
symplectic complement of the span of the first vedtg)-. Hence,v, can be chosen
from a2n — 1-dimensional vector space, the only restriction being thag (v;). It
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follows that there exisi?*~! — d' possibilities forv,. Inducting on this scheme gives

m—1

[[@—a) (4.25)
=0
such tuples.

However, since two different tuples might correspond togame isotropic space,
Eq. (4.25) over-counted the subspaces. To take that facaodount, we must divide
by the number of bases within an-dimensional space. Arguing in a similar fashion
as before, we arrive gf[;" '(d™ — d) for the sought-for number (see also Ref. [22]).

Division gives

m—1 d2n—i _ i m—1 J2n—=i) _q
am —di dm—i—1"

i=0 =0

Iso(n,m,d) =

ExpandingZ>™~9 — 1 = (d"~* — 1) (d"~* + 1) and using the definition of the Gaussian
coefficients concludes the proof. O

Corollary 55. The number ofi”~™-dimensional stabilizer codes defined onl-level

systems is
n m—1
Stabs(n,m,d) = dm[ } H(d"_i +1).
Mla 3z

In particular, the number of stabilizer states is

n

Stabs(n,n,d) = d" H(dl +1).

i=1

Proof. We only need to justify the pre-factaf. The defining Eq. (4.17) generates a
projector onto a stabilizer code given an isotropic spacand a charactey([v, -]) on
M. If dim M = m, then there aré)M| = d™ distinct such characters (see Appendix
4.8.3). O

We can now compare the number of stabilizer states fparticles of dimensiod
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to the corresponding number for a singledimensional system:

Stabs(1,1,d") dm 41 pale
> XS = g2,

Stabs(n,n,d) H?=1<di+1)=ﬁ(di+1>

This is the super-exponential scaling mentioned in the@dhiction.

4.8 Appendix

4.8.1 Discrete Stone-von Neumann Theorem

This section generalizes well-known results for prime-podimensions (see e.g. Ref.
[80] and citations therein) to all odd The proof is based on some simple observations

employing group representation theory. We state a prepé&mma beforehand.
Lemma 56. The Weyl representation is irreducible.
Proof. We compute

1
Wme(a,t)\? = d N " trw(0, 1))
d

acV, t

teZy
_ d—(?n—i—l) ZdQn -1

t

which establishes irreducibility by a well-known critemidrom group representation
theory (see any textbook on that topic, e.g. [103]). O

Proof. (of Theorem 378y the composition law Eq. (4.4) it is clear that(p, ¢, t) :=
w(S(p,q),t) is a representation of the Heisenberg group which affordséme char-
acter (i.e. trw(a,t) = trw'(a,t)). The preceding lemma yields that and w’ are

equivalent and thus the existence @) follows. Further,

u(S)u(Tyw(p, )u(T) (ST = u(S)w(T(p, q))u(S)"
= w(ST(p,q))
= w(ST)w(p, q)u(ST)".
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Because the Weyl matrices span the set of all operatorsashirie fixeg:(S7") modulo
a phase and we have proven the second assertion.

We turn to the last claim. Let andc be as defined in Eq. (4.10). Using the com-
mutation relations Eq. (4.4) and the fact that conjugatipmibitaries leaves the center
x(t)1 of the Weyl representation invariant, it is easy to see thatust be an isometry
in the sense thdtSa, Sb] = [a, b]. To proceed, consider the following calculation. On

the one hand

Uw(a)wd)U" = Uw(a+b,27 [a, b)) UT (4.26)
= w(S(a+b),2 a,b))c(a +b),

while on the other hand,

Uw(a)w®)UT = Uw(a)UTUw(b) (4.27)
= w(Sa)w(Sb)c(a)c(b)
= w(Sa+ Sb,27'Sa, Sb))c(a)c(b).

Comparing the last lines of Egs. (4.26) and (4.27) one findsSmust be compatible
with addition inZ2* meaning thatS(a + b) = Sa + Sb. Because€Z, is cyclic the

preceding property implies thatis also compatible with scalar multiplication:
S(Aa) =S(a+---+a)=S(a)+---+ S(a) = AS(a).

Hences is linear and therefore symplectic. Lastly, again usingdif4.26) and (4.27),
we have that(a+b) = c(a)c(b) and conclude thatis a character. By Lemma 58, there

exists amy € V such that(-) = x([aop, S-]). Thus:

w(ag)u(S) w(a) u(S)wlag)' = w(ag)w(Sa)w(-ap)
= X(lao, Sal)w(Sa)
= c(a)w(Sa).
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4.8.2 Axiomatic Characterization of the Wigner function

The discussion in Section 4.2.4 should suggest that Defin@P yields 'the’ natural
analogue of the original continuous Wigner function. Hoemr\o bolster that claim
with more objective arguments, we establish that — at leaptime dimensions — the

form is virtually determined by the property of Clifford castance (Theorem 41).

Theorem 57. (Uniquenesshetd be an odd prime. Le®), V, H be as usual. Consider

a mappinglV’ that fulfills the following axioms.

1. (Phase spaceé)’ is a linear mapping sending operators to functions on thesgha

spaceV/ .

2. (Clifford covariance)lV’ is covariant under the action of the Clifford group, in

the sense of Theorem 41.
ThenW,;(p, q) = MW,(p, q) + X\, for two constants,; ». If further,

3. (Marginal probabilities)V’ gives the correct marginal probabilities, as stated in
Theorem 40.3,

thenW(p, q) = W(p, q).

Proof. Consider an alternative definitign— W/ of a Wigner function. Linearity im-
plies the existence of a set of operatdrg(v)} such thail”’(v) = d=" tr(A'(v)p). W’
is covariant under the action of the Weyl operators if ang dnll’ (v) = w(v) A’(0)w(v).
So the only degree of freedom left in the definition/&f is the choice ofd’(0). Again,
one must required’ (Sv) = u(S) A(v) u(S) if Theorem 41 is to hold. In particular,
because the origifi is a fixed point of any linear operatiord,(0) must commute with
all 1(S).

As a consequence, the old, unprimed Wigner functidgny of A’'(0) stays fixed
under any symplectic operatigh Since any two non-zero points bf can be mapped
onto each other by a suitable symplectic matfiX¥V 4., must be constant on all such
points. So there are only two parameters free to be chdggng) (0) andW o) (v), v #

0. Clearly, the set of all operators that comply with thesest@ints is spanned by
and A(0):
A'(0) = A T+ Xy A(0). (4.28)
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The above decomposition implies the first statement of theoiidm.

As for the second claim, choosear V. The projection operatda) (| is invariant
under the action of Weyl operators of the fourp, 0). Thus, due to Clifford covariance,
the Wigner functionlV,, must bep-shift invariant: W, (p + p', q) = W, (p.q). We
required Theorem 40.3 to hold, hence

Z VV|/a> (p7 0) =d" W/(Ov 0) = 0q,0-

PEQ
By Eq. (4.28) and Theorem 40.5 it follows that' (0,0) = d~" (A1 + A2da0), Yielding
)\1 - 0, )\2 - 1 D

4.8.3 Characters and Complements

Consider a spacB = Z!; with a bilinear form( -, -) : R x R — Z4. For anys € R the
functionr — x((s,r)) defines a character @éf. The form is said to baon-degenerate
if (s,-) # (¢, ) for distincts, s'. The two spaces we are concerned with @revith
the canonical scalar product aidwith the symplectic scalar product. Both can easily
be checked to be non-degenerate.

The following lemma states a basic fact about spaces withdegenerate forms.

We repeat it for completeness.

Lemma 58. Let R = Z!; with non-degenerate bilinear forft , - ). Any charactei of
R is of the form((r) = x([s, r]) for some unique € R.

Proof. Addition givesV the structure of a finite abelian group. Therefdre~ V*,
as is well-known (see e.g. Ref. [92]). So there @ré different characters of’, but

equally many of the forny([v, -]). ]

If d is prime and\M a subspace df’, the well-known relationlim M + dim M+ =
dim V' holds [61]. It is, however, no longer true in the general céseounter-example
can be constructed along the same lines as in Section 41@l3a$analogue exists as

demonstrated below.

Theorem 59. Let R = Z; with non-degenerate bilinear forr , - ). If M denotes a

subspace oR?, then the 'complementarity relationM/| |[M*| = |R| holds.
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Proof. We will show that
M+~ (V/M)". (4.29)

Form € M+, the relationv] — x([m, v]) defines a character &f/ M, as can easily
be verified. Let us denote the map— x([m, -|) by ¢;.

Conversely, given an elemeqtof (V/M)", v — (([v]) is a character of/. By
Lemma 58 there exists a uniquec V such that/([v]) = x([w,v]). If m € M, then
¢([m]) = ¢([0]) = 1 and hencev € M+*. Using the notions just introduced, we can
defines, : (V/]Wyk — M+ by ¢ — w.

It is simple to check that, = «;*. In particular,., is invertible and Eq. (4.29)
follows.

With the help of Lagrange’s Theorem, we can compute

M| = [(v/ar)”

= [V/M| = |V|/|M],

which concludes the proof. O

Corollary 60. LetV, @ be defined as usual. L&t be an isotropic subspace df and
S be any subspace ¢J.

1. (Maximally isotropic spaces)/ is equal to its symplectic complemeit- if and
only if |M| = d".

2. (Characters of subspacesyy character] of S can be written ag (s) = x(¢s)
for a suitableg € Q.

Proof. Claim 1 follows immediately from Theorem 59 and the fact ibatropic spaces
are contained in their symplectic complemeht:c M*.

We turn to the second statement. In Lemma 48 we have arguethéheharacters
of S which are expressable agqs) stand in one-to-one correspondence to cosets in
Q/S*. But|Q/S*+| = |S| and hence all characters are of that form. O

4.8.4 A geometric note

The proof of the Main Theorem makes use of the fact that fonatyorv € V, there
exists a symplectic operatighthat sends to a vector of the forntp, 0). Indeed, ifd is
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prime, any two vectors are similar, in the sense that theyoeanapped onto each other
by a symplectic matrix. Technically, this is a trivial inocation of Witt's Lemma (see
Ref. [8] for a formulation that is applicable in our context)

Once again the non-prime case poses additional difficulfrescall that theorder
of av € V is the least positive € Z, such that\v = 0. It is easy to see that the
order of a vector is left invariant by the action of inverébinear mappings. I is a
composite number (i.e. not prime), theh= 72" contains elements of different orders
which cannot be related by a linear operation. However, oiglinconjecture that any
two vectors of equal order are similar. This is the conteniheffollowing lemma. Some

concepts used in the proof can be found in Refs. [61, 128].

Lemma 61. (Similarity) LetV = Z2". Leta;,a; € V be two vectors with the same

order. Then there exists a symplectic maffisuch thatSa; = as.

Proof. We can slightly weaken the assumptions made abowll we require for this
proof is thatV is a finite Z;-module with non-degenerate symplectic fofm -]. It
need not be of the forrd?".

Letv € V be a vector of ordetl. Asv — x([v, -]) implements an isomorphism,
V. — V*, ord (x([v, -])) = ord(v) = d. There hence exists@ € V such that
[v,w] = X has ordetrl. Any such number possesses a multiplicative invarsemodulo
Z4 and hencev’ = A\~ fulfills [v,w'] = 1. Vectors satisfying such a relation are said to
behyperbolic couplesDenote their spaf{v, w'}) asH.

SetV’ := H*. By Theorem 59V| = |H||V’|. Further, it is easy to see that
H+ N H = {0} and hencd/ = HOV', where® denotes th@rthogonal direct sum
We claim that the symplectic inner product is non-degeeenatl’”’. Indeed, suppose
there is a non-zero’ € V' such thafv’, w'] = 0 for all w" € V'. Then, by definition of
V', [h,w'] = 0forall h € H and therefore’ would be orthogonal on all vectors bf.
Hence such a’ cannot exist by the non-degeneracy of - |.

Note thatl’’ fulfills the assumptions made abdutat the beginning of the proof and

has strictly smaller cardinality. Thus, we can induct B to obtain a decomposition
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of V' in terms of two-dimensional subspaces spanned by hyperboliples{v;, w.}.
We arrange these vectors as the columns of a matrix (vq,...,v,, w},...,w)).
The construction of the couplds;, w;} ensures tha$ is symplectic, as can easily be
verified.

Now letay, as € V be two vectors with maximal order. By the preceding disaussi
there exists symplectic matricés havinga; as their respective first column. Clearly,
thenS, S, 'a; = as.

Lastly, supposerd(a;) = k < d. Itis easy to see that = ka,/d are elements of
V with maximal order. Further, if mapsa] to @), then alsai,; to as,. O

Corollary 62. (Transitive action)Let |M;,v1), |Ms,v9) be stabilizer states. If their
respective associated isotropic subspagés M, are spanned by vectors of maximal

order, then there exists a Clifford operation relating thesate vectors.

Proof. Let {m@, . ,mﬁf)}, i = 1,2 be bases ol/; and M, respectively. Assume that

all vectors have maximal order. It is simple to adapt the ijprevproof for constructing
a symplectic matrixs sendingn." tom!?. O

4.8.5 Some properties of the phase space point operators

Lemma 63. (Properties of the phase space point operafbing) phase space point op-

erators fulfill the following relations

A(a) = w(2a)A(0),
A(a)A(b) = w(2a — 2b),
tr(A(u) A(v) A(w)) = x([v,u] + [u, w] + [w,v]).

Further, if U permutes the phase space point operators under conjugation

forall v € V, thenU is Clifford.

Proof. Clifford covariance (Theorem 41) implie$(a) = w(a)A(0)w(a)t. Using The-
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orem 40.5 it is easy to see thaf0)w(a)A(0) = w(—a) andA(0)? = 1. Hence
Aa) = w(a)A(0)w(—a)A(0) A(0) = w(2a)A(0)

proving the first relation. The second one follows.
For the proof of the third equation, we abbreviztg)) asA. Then

tr (A(u) Av)A(w))
w) A w(20) Aw(2w)A)
Juo(—2v)w(2w) A?)

[, ] + [u = v, w]) tr(w(2(u — v + w)) A)
o, 4] + [, w] + [, 0]) tr(Afu — v+ w)).

DO

= tr(w(
= tr(w(2u
= x(
= x(

It has been noted in Theorem 40.40 that phase space poirdtopehave unit trace,
which concludes the proof.

Lastly, suppose the action éf permutes phase space point operators. For any
a € V,we have

Uw(a)UT = Uw(227(a - 0))UT

for suitablea’, 0’ € V. HenceU maps Weyl operators to Weyl operators and is thus
Clifford by definition. O
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5.1 Introduction

Motivated by the prominent role expander graphs play inétcal computer science
[58], quantum expanders have recently received a greabdleention [5, 10, 11, 48,
50, 51, 67]. In chapter, we present an observation whichvalfor the simple explicit
construction of such quantum expanders. The method red@glly on quantum phase
space techniques: Once familiar with this techniques, #salt is an almost trivial
corollary of the analogous classical statement. We fudisguss continuous analogues
of quantum expanders, where again, phase space methods tkisdan obvious gen-
eralization. Hence, the present note can equally be redasiehe presentation of a
simple quantum expander, as as a short exposition of thegshre of the phase space

formalism as such.

5.2 Preliminaries

5.2.1 Expanders

Expander graphs turn up in various areas of combinatoridscamputer science (for
all claims made in this section, the reader is referred toetkeellent survey article
Ref. [58]). They often come into play when one is concerneith &iproperty which

“typically” holds, but defies systematic understanding. ils@e example is given by
classical error correction codes. One can show that a ralyditrosen code is extremely
likely to have favorable properties, but it seems very diftito come up with a deter-
ministic construction of codes which are “as good as randoBEXpander graphs can
be explicitly constructed, but capture some aspects ofrgegeaphs. It turns out that
this property can be used to de-randomize, e.g., the catistnuof codes or certain
probabilistic algorithms.

The formal definition is straightforward. Consider a gragtwith NV verticesV,
each havingD neighbors (we allow for multiple links and self-links). Treds an ob-
vious way to define a random walk on the graph: At each time st@article initially
located on a vertex will be moved to one of thé neighbors of with equal probabil-

ity. The resulting Markov process is described byNas N doubly stochastic matriA.
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The largest eigenvalue of is A; = 1, corresponding to the “totally mixed” eigenvec-
tor (1,...,1)/N. Let A be the absolute value of the second largest (by absolute)valu
eigenvalue. A small value of means that the Markov process is strongly mixing, i.e.,
converges rapidly to the totally mixed state. We &lan (N, D, \) expanderif it is
described by these parameters. The goal is to find familiexpénder graphs with
arbitrarily many verticesV, but constant (and small) degréeand\.

While the notion of an expandgraphseems hard to quantize (see, however, Ref.
[51]), it makes sense to look for quantum analogues of styomixing Markov pro-
cesses with low degree. Indeed, we call a completely pesitiapA a (N, D, \)-
quantum expandef A can be expressed in termsfKraus operators acting ds(C")
and the absolute value of its second largest singular valbeunded from above by
(here,B('H) denotes the space of linear operators acting on a lineaeggacOnce
more: The intuition is to have a quantum channel which can e using few Kraus
operators, but which rapidly sends any input to the comlyletexed state under re-
peated invocatioh.

Quantum expanders have been introduced independently.ifbREfor the purpose
of constructing states of spin-chains with certain extdleanganglement and correlation
properties, and in Ref. [11], where the problem was appmadiom a computer sci-
ence perspective. Very recently, randomized [51] and eipliO, 11, 48, 50] construc-
tions of expanders have appeared in the literature.

The basic idea is implicit in earlier work [5].

5.2.2 Margulis expander

Margulis provided the first explicit construction of a fayjnf expander graphs [76].
Their expansion properties can be verified by elementatedibus) means [58].

The vertices of Margulis’ graph are given by the points aVax N-lattice? We
label the axes of the lattice by the element&qf= {0,..., N — 1}. Now consider the

LIt follows directly from the definition of ari/V, D, \)-quantum expander that
[AN(p) = 1/Nll2 < Allp = 1/N||2, (5.1)

that is, each invocation of the quantum expander contrhet®-horm distance to the maximally mixed
state inC™ by at least\.
°Note a slight inconsistency in our notation: the number ofiges in this case i&'2, notN.
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P

Figure 5.1: Phase space distributions resulting from thpg#ications of the Margulis
expander acting on a configuration initially concentrateithe origin of a7 x 7 lattice.
The starting distribution can be interpreted either as asatal particle with a well-
defined position on a two-dimensional lattice, or as the gurarphase space operator
A(0,0) (see text for definition).

four affine transformations o#?3; given by

T, @ v S, (5.2)
Ty, : v Siv+(1,0)7,
T3 : v+— Syv,

Ty : v Syv—(0,1)7,

where

51: ) S2:

All operations are moduldv. LetS be the set of these four operations, together with
their inverses. In Margulis’ construction, two verticeg aonsidered adjacent if and
only if they can be mapped onto each other by an operati¢h in

One finds that\ is bounded above by/25/8, independent ofV [37, 58]. An
instance of a random walk on the Margulis graph is visualindeig. 5.1.

5.2.3 Discrete phase space methods

Discrete quantum phase spaces have been discussed inmé&tadpter 4. In order to
keep the present chapter as self-contained as possibley&va gery brief summary of
the relevant methods.

The present section can be approached from a purely mativamat from a phys-
ically-oriented point of view. To make the argument moreessible, we will briefly
outline both approaches before going into details.
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Mathematically one starts by noting that the operatidisised in the construction
of the Margulis graph (Eqg. (5.2)) are affine transformations2,, where in addition
the linear partS; has unit-determinant. The functions of this kind form a &rgroup,

which we will refer to as~ 5. Two facts will be established below. Firstly,

e there is a (projective) unitary representation
T +— UT

of Gy onCV.

This representation facilitates the quantization of thpaeder. Indeed, the quantum
Margulis expander will be defined as the c.p. mag which applies one of the unitaries
Ur, T € S atrandom. To prove that this construction defines an expaweewill need

a second fact:

e Let N be odd. There ar&/? hermitian operatorsi(a) € B(CY), labeled by the
pointsa € 73;, such that

1. The operators form an orthonormal basis with respecetéittbert-Schmidt
inner product:

1
N tr (A(v) A(w)) = yu. (5.3)

2. The basis thus defined is compatible with the unitary sepr&tion oiG y
in that
Ur A(v) Uy = A(T(v)), (5.4)

forT € Gy, v € 75%,.

In order to analyze the action dfy on a density operatqgs, we will use Eq. (5.3) to
expandp in terms of theA(a)’s and then Eq. (5.4) to reduce the problem to the classical
case (see Section 5.3).

Physicallyspeaking, we will employ a phase space description of thatguasys-
tem. Recall that the terphase spaceriginates in classical mechanics. Here, the state
of a single particle in one spatial dimension is completelycified by two real param-

eters: its position and its momentum. The two-dimensiogeal vector space spanned
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by the position and the momentum axes is referred to as thelpa phase space.
Likewise, the state of a single quantum system can be sptifi@ quasi-probability
distribution on phase space, namely the particle’s Wignection. The Wigner func-
tion shares many properties of classical probability diatrons, except for the fact that
it can take negative values (see Chapt. 4).

In the context of continuous-variable systems, affine vatpreserving transfor-
mations of the phase space are knowga@sonical transformationd_et p be a density
matrix and denote bi#/,(v) the associated Wigner function. It is well-known [13] that
for every canonical transformatidh, there is a unitary operatéf; which implements

the mapl’ in the sense that

WUTpU:TF(U> = W,(T'(v)).
As detailed below, a similar relation holds for finite-dinsenal quantum systems, as-
sociated with discrete phase spaces. Indeed, the Wignetidarof a density operator
p turns out to be nothing but the collection of expansion coieffits ofp with respect
to the basis given in Eq. (5.3); canonical transformatiaesedements of-y; and the
correspondencé — Uy is just the representation mentioned in the first paragrdph o
this section.
So in this physical language, the basic realization is thatouilding blocks of the
Margulis scheme (Eq. (5.2)) are canonical transformatidrasdiscrete phase space.
To make all this more precise, |&t be odd, H = CV and assume that some basis
{]0),...,|N — 1)} in H has been chosen. Let= ¢~ be anNth root of unity. We
define theshiftandboostoperators as the generalizations of @&ndZ Pauli matrices

by
2(Qk) =k +q),  z(p)lk) = k) (5.5)
(arithmetic is modulaV). TheWeyl operatorsare

2 (p)a(g), (5.6)

3We restrict attention to odd dimensions, as the theory afrdte Wigner functions is much more
well-behaved in this case.

w(p,q) =w
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where2™! = (N + 1)/2 is the multiplicative inverse o2 modulo N. For vectors
a=(p,q) € 7%, we writew(a) for w(p, q). Let

A(0,0) : [z) — [ =) (5.7)
be theparity operatorand denote byi(p, ¢) its translated version,

A(p,q) = w(p, q) A(0,0) w(p,q)". (5.8)

We will refer to theA(p, ¢)’'s asphase space operator©ne can check by direct cal-
culation that Eq. (5.3) holds. Thé/igner functionof an operatomp is the collection

of the expansion coefficients pfwith respect to the basis formed by the phase space
operators. Formally:

W,(p,q) = %tr (A(p.q) p). (5.9)

There are two symmetries associated with a phase spacslatians and volume-
preserving linear operations. We shortly look at both imtuFirstly, it is simple to
verify that fora, b € 73,

w(a) A(b)w(a)" = A(a +b). (5.10)

Hence, Weyl operators implement translations on phaseesp&econdly, letS be a
unit-determinant matrix with entries iiy. It turns out (c.f. Chapt. 4) that there exists

a unitary operatop:(.S) such that, for alt € 7% the relation
p(S) A(a) u(S)" = A(S a) (5.11)

holds.
It follows immediately that for every affine transformati@nof the type given in

4The operatoy(S) is themetaplectic representationf the symplectic matrixS. In quantum infor-
mation theory, the setw(a) 1(S) : a € Z3%;,det(S) = 1} is called theClifford group[40], which must
to be confused with the Clifford group appearing in the crintd Fermions or representation theory of
SO(n).
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Eq. (5.2), there exists a unitary operatar such that
Wiy pui (@) = W, (T (a)). (5.12)

Hence, one can unitarily implement the building blocks ofriytais’ random walk.

5.3 A guantum Margulis expander

With these preparations, it is obvious how to proceed. Ddhirecompletely positive
mapAy by

1
A =N U pU! 5.13

where we have used the notation defined in Eq. (5.12) above irf@mediately gets:

Observation 64 (Quantum Margulis expanderfor odd N, the mapAy (EQ. (5.13))
acts on Wigner functions in the same way the Margulis expaancts on classical prob-
ability distributions. In particular, its degree and itsegirum are identical to the ones
of the Margulis random walk. The Wigner functions/d$ eigen-operators are the

eigen-distributions of the classical random walk.

Proof. Let A\’ be the stochastic matrix associated with the random walkerassi-
cal Margulis graph. For € 7Z3%;, lete(v) be the function or¥3;, which takes the value
1 atv and O else. Clearly, the s¢t(v)},c42 spans the space of all functions on the

lattice. Also,

C 1
AY (e(v) = 5 > e(T(w)).

TeS

Using Egs. (5.12, 5.13), we get for the quantum version

AN(A(W) = 7 S0 ATE))

TeS

Hence the action of the classical and the quantum expandeideamntical on a basis.
The claims follow. ]
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5.4 Efficientimplementation

Consider a quantum expander which acts on a tensor-prodibertspace C?)*" ~
CN for N = d". The expander igfficientif it can be realized usingoly(n) single-
gudit or two-qudit quantum gates. So far, only two efficieahstructions have been
published [10, 48]. The Margulis expander adds to this list.

Theorem 65 (Efficient implementation) The quantized Margulis expander acts effi-

ciently on(C?)®n,

To establish the claim, we need to clarify how we introduceresor product struc-
ture inC". Every0 < j < N —1 can be expressed indaadic expansion ag= j; . .. j,
for 0 < j; < d. More precisely;j = > | j,d"~". The tensor product structure is now

given by|j) = [j1) @ - ® [Ja).

Lemma 66 (Efficient constituents)Let N = d". The following operators act efficiently
onC¥:
1. The quantum Fourier transform
N—-1

F:|j)— N71/2 Zexp (z%ykﬂk}
k=0

2. The Weyl operators(1,0) andw(0, 1).
3. The operatorg.(7}) and u(715).

Proof. The first statement is well-known. See Chapter 5 in Ref. [82]the qubit
version, which can easily be adapted to genérallext, considerv(1,0) = z(1). We
have

. 21 . .
z(1)]j) = eXp(lﬁj)Ula---;]n)

= exp (1271' Zjld_l) |j17 s 7]n>

=1

= ® exp (i27rjld_l) |71)-
1
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Hencez(1) is actually local. One confirms that(1) = F z(1) F' and thusz(1) is
efficient.
To conclude the proof, we need to borrow three statements tine theory of meta-

plectic representations. Firstly,is a projective representatign.e.,
p(ST) = S0 () u(T)

for some phase(S,T') (c.f. Chapt. 4). Secondly,

0 1
F:
fCl )
and thirdly,
1 42
U =
+ M( 01 )
is given by

Uslj) = exp(i2n/N (F5°)) 14)-

The last two statements can be found in Theorem 4.1 of [80¢{lstspeaking only for
the case of priméV, but the proofs work for any odd value) or in Lemma 2 to Lemma
4 of [7]. The claim becomes easy to verify:

Uclj) = exp (27 (F Z jljl'dn_l_ll)) 17)
=1

= H R(lv l/)|j>7

Ll

where we have introduced the diagonal two-qudit unitary

R(LU)|ji, jv) = exp(i2m (Fhugud™™")) 0, jv).

SActually, . is even daithful representation, but that fact is irrelevant for our purgose
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ThusU.. — and therefore in particular(7} ) — are efficient. Finally,

3

0 1 1 =2 0 1
T, =
-1 0 0 1 -1 0
which implies thau(Ty) o« FU_F* is efficient. O

The proof of Theorem 65 is now immediate, as all thes which appear in the
construction ofA can be implemented by combining the unitaries treated irabtve

lemma and their inverses.

5.5 Continuous variable systems

The quantum phase space terminology of Section 5.2.3 hginalfy been introduced
in the context of continuous variable systems (see e.g.[B8}. In particular, if we
re-interpret the affine transformatiosgiven in Eq. (5.2) as operations dr?, we
immediately obtain a completely positive map, acting on the infinite-dimensional
Hilbert space of a single mode. Does it constitute a quantpareder? After reviewing
some definitions in Section 5.5.1, we will give an affirmatareswer in Section 5.5.2.

The action of expanders on second moments is discussedtinrsbb. 3.

5.5.1 Continuous phase space methods

In the continuous case, the phase space is giveR%yLet X and P be the canonical

position and momentum operators. The Weyl operators [135are now
w(p, q) = exp(igP — ipX). (5.14)
As in Eq. (5.7), the parity operatot(0, 0) acts on state vectoigs € L*(R) as

(A0,0)¢)(x) = ¢ ().
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We define the phase space operatd(s, ¢) for (p, q) € R? exactly as in Eq. (5.8). The
Wigner function becomes

W,(p.q) =7 " tr (A(p, q) p)

c.f. Eqg. (5.9). The obvious equivalents of Egs. (5.10,5Hdl}l fora € R? andS <
Sp(2,R), the group of unit-determinant transformations of the tlumensional real
plane. Hence it is plain how to interpret Eq. (5.12) and finalbw to turn Eq. (5.13)
into a definition ofA ., the infinite-dimensional quantum Margulis map.

5.5.2 A continuous quantum Margulis expander

A slight technical problem arises when transferring theni@din of an expander to
the infinite-dimensional case: both the invariant distiitou f(v) = 1 of a classical
expander and the invariant operatoof a quantum expander map are not normalizable.
Hence, if we define e.g. the action of a completely positive than the set of trace-
class operatorg ' (H), the would-be eigenvector with eigenvalue 1 is not even @ th
domain of definition. In the light of this problem, we switahthe following definition

of a quantum expander, which is compatible with the noticedusgp to now.

Definition 67. Let N < oo and setH = C¥. A completely positive map is an
(N, D, \)-quantum expandéf; for all traceless operatorsX’ € 7'(H),

A2 < AIX]o-
The definition above is best understood in terms of the Hesgnpicture:
| tr(A™(p) X)| = [ tr(p (AT)* (X)) < A"

for all normalized || X ||, = 1), traceless observablés. Thus the state becomes “fea-
tureless” exponentially fast when being acted onAbyLet A\,; be the second largest
eigenvalue of the finite Margulis expanders. Then:

Observation 68 (Continuous quantum expandef)he infinite-dimensional quantum

Margulis mapA ., is an (oo, 8, Ay/)-quantum expander.
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5.5 Continuous variable systems

Note that by the previous section, we know there(@es, \,,) quantum expanders
for arbitrary highN. A priori, however, this does not imply the existence of aioh
for N = oo.

Once more, by switching to the phase-space picture, thef pfad@bservation 68
can be formulated completely in classical terms. The im@nibehind the argument is

simple to state. Take an eleménbf S, e.g.

1 2
T:v+— . (5.15)
01
The inverse is given by
» 1 -2
T = , (5.16)
0 1

regardless of whether the matrix is interpreted as actinB 0 or Z%. As the same is
true for all other elements &, the action of the classical Margulis map “looks similar”
on continuous, infinite discrete and on finite phase spacddeast as long as it acts
on distributions which are concentrated close to the oyigfinthat the cyclic boundary
conditions ofZ3, do not come into play. Using this insight, the following lemneduces
the continuous to the finite case.

Lemma 69. Let f € CJ(IR?) be a continuous function with compact support, such that
f(v)dv = 0. (5.17)
R2

Let A : L'(R?*) — L'(R?) be the classical Margulis map acting on distributions on
R?. Then

A2 < Anl| f]l2- (5.18)

Proof. We discretize the problem by partitioniig?® into a net of squares with side
lengthé. More specifically, for(z, y) € 72, let

Qs(x,y) = [(x = 1/2)6, (x +1/2)0] x [(y — 1/2)0, (y + 1/2)]

be the square with edge lengthcentered aroundz 6, 0) € R?. The discretized
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5.5 Continuous variable systems

version off is f5 : Z? — C defined by

),
— f(v)dv.
52 Q(S(mvy)

Note thaty_  fs(x,y) = 0. OnZ?, we use the-dependent norm

fs(z,y) =

15l = (623" st y)?)
x,y

(the factors? corresponds, of course, to the volume of the squaxgs, v)). Now, let
T be one of the affine transformations We can interpref’ as an operation o#?

and define its action oy accordingly by

(T(fs))(@,y) = fs(T~ (2, y))-

For small enough, the approximation is going to be arbitrarily good: using timi-
form continuity of f, and the fact that all' € S are continuous and volume-preserving,

one finds that for every > 0, there is & > 0 such that simultaneously

[ fslla = 11f1l2| < €/2, (5.19)
A2 = JAH)I2 | < e/2. (5.20)

As the support of is compact, there is al € N such thatf;(x, y) andA(fs)(z, y)
are equal to zero wheneviar] > R or |y| > R. This enables us to pass frdfi to the
finite latticeZ3, for N > 2R. Indeed, when we re-interprét as a functiorZ3, — C
and theT' € S as affine transformations d#i3,, the values of|fs||. and || A(f5)]|2
remain unchanged. But we know thatis an(V, 8, \);)-expander for every finitév.
Hence

A5 |2 < Anll 512,

implying (by Egs. (5.19,5.20))

A2 < Aul]fll2 — €.
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5.5 Continuous variable systems

This proves the claim, as the right hand side can be chosemaddttrarily small. [

(of Observation 68) Once again, the quantum Margulis mAp, acts on the Wigner
function W of any operatotX in the same way the classical Margulis scheme acts on
distributions onR?. Now, X € T'(H) impliesWx € L*(R?). BecauseC{(RR?) is

dense inL?(IR?) and A, is continuous, Lemma 69 suffices to establish the clainf.]

5.5.3 Action on second moments

In physics, one often measures the concentration of a plpase glistribution by its
second moments with respect to canonical coordinates., Tihugy be interesting to
look for signatures of the strong mixing properties of a quamexpander in its action
on second moments.

More precisely, first moments are the expectation valuesi@fpbsition and mo-
mentum operator§(X), (P))T (where(A) = tr(pA) for an operatord). The second

moments are defined as the entries ofd¢beariance matrix

oRe| PXA-0TXP - 0(P)
(PX)= (X)(P)  (P*)— (P

As the action of the continuous quantum expander in stateesggadefined via the
metaplectic representation, the change in second momamtseccomputed explicitly.
In particular, anyS € Sp(2,R) gives rise to a congruence — S~vS7 for second
moments. More generally, it is not difficult to see that fdsitary convex combinations
of states subject to affine transformations, the outpussdind second moments depend
only on the same moments of the input.

Under the Margulis random walk, one obtains for the first motse

1 1
(X) = EZW (P) HEZPT

TeS TeS

with (zr, pr)T = T((X), (P))T. For the second moments:

2
o () = 3 (Tl + 175 ()T ) + 26, (5.21)

1=1
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5.5 Continuous variable systems

where the matrixG is given by

2
Yrd— ) X T 2w T
>or I\Tf\T — 2T % i 1S - (X7 |S|)

G:

The latter matrix is evidently positive: Just wrifeasG = AAT with A € R/ with

entries
xXr Z
Al,T = |S‘1/2 - |S‘1/27 (522)
pr
A2,T = |8\1/2 —E |8\1/2 (5.23)

To show that the main diagonal entriesfof)(v) diverge exponentially in the number
n of applications of the mayp, it is hence sufficient to consider the map

2
Y9 =) (TwTiT + ﬂ‘lv(Ti‘l)T),

since

a b a4+ 2c b
c b c+ 2a

Let v = ¢ (v) be the covariance matrix after iterations ofg and definen =
(a+¢)/2,andp = (a — ¢)/2 to simplify notation. Then

S a4+ (=1)"f b
b 3" — (—1)"p
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This means that

1 n
Elog?,(V( )) - (n — o0).

Thus, the elements of the main diagonal — and thereforetalg6" (7)), det(f™(v)),
andspec(f™(v)) — diverge exponentially in the numberof iterations.

5.6 Summary and Outlook

Employing phase space methods, we were able to quantizd-astablished combina-
torial structure with almost no technical effort.

The unitaries which appear in the construction of expanteve randomization
properties which are in some sense extremal. It would beeastieg to see whether
connections to other extremal sets of unitaries — elgitary designg28],[4] — can
be found. Also, more practical applications may be antieipae.g., when one aims
at initializing quantum systems in the maximally mixed staiith few (i.e. D) oper-
ations, under repeated invocation of the same completaditip® mapA. Lastly, the
programme may improve the understanding of iteratadlomization proceduress
the one discussed in Ref. [106].
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