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Abstract

This thesis consists of two parts.

The main part is concerned with new schemes for measurement-based quan-

tum computation. Computers utilizing the laws of quantum mechanics

promise an exponential speed-up over purely classical devices. Recently,

considerable attention has been paid to the measurement-based paradigm

of quantum computers. It has been realized that local measurements on

certain highly entangled quantum states are computationally as powerful as

the well-established model for quantum computation based on controlled

unitary evolution.

Prior to this thesis, only one family of quantum states was known to possess

this computational power: the so-called cluster state and some very close

relatives. Questions posed and answered in this thesis include: Can one

find families of states different from the cluster, which constitute universal

resources for measurement-based computation? Can the highly singular

properties of the cluster state be relaxed while retaining universality? Is

the quality of being a computational resource common or rareamong pure

states?

We start by establishing a new mathematical tool for understanding the con-

nection between local measurements on an entangled quantumstate and a

quantum computation. This framework – based on finitely correlated states

(or matrix product states) common in many-body physics – is the first such

tool general enough to apply to a wide range of quantum statesbeyond the

family of graph states. We employ it to construct a variety ofnew uni-

versal resource states and schemes for measurement-based computation. It

is found that many entanglement properties of universal states may be radi-

cally different from those of the cluster: we identify states which are locally

arbitrarily close to a pure state, exhibit long-ranged correlations or cannot

be converted into cluster states by means of stochastic local operations and



classical communication. Flexible schemes for the compensation of the

inherent randomness of quantum measurements are introduced. We pro-

ceed to provide a complete classification of a natural class of states which

can take the role of a single logical qubit in a measurement-based quantum

computer. Lastly, it is demonstrated that states can be too entangled to be

useful for any computational purpose. Concentration of measure arguments

show that this problem occurs for the dramatic majority of all pure states.

The second part of the thesis is concerned with discrete quantum phase

spaces. We prove that the only pure states to possess a non-negative Wigner

function are stabilizer states. The result can be seen as a finite-dimensional

analogue of a classic theorem due to Hudson, who showed that Gaussian

states play the same role in the setting of continuous variable systems. The

quantum phase space techniques developed for this argumentare subse-

quently used to quantize a well-known structure from classical computer

science: the Margulis expander.
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In the standard model of quantum computation, a set of two-level systems initially

in a product state is subjected to a unitary time-evolution in the form of sequential bi-

partite quantum gates [82]. At the end of the evolution, the systems are measured in

some local basis, in order to read out the result of the computation. Such gate-model

quantum computers are strongly believed to offer a super-polynomial speed-up over

classical machines. One may attribute this computational power to the intractability of

simulating the time evolution in an exponentially large Hilbert space.

From that point of view, it seems surprising that universal quantum computation is

possible without the need of unitary evolution at all. But indeed, theone-way model

of Refs. [89, 90] demonstrates that local measurements on the cluster state– a cer-

tain multi-particle entangled state on an array of qubits [16] – are computationally as

powerful as any gate-model computation. The local measurements – a feature that any

computing scheme would eventually embody – then take the role of preparation of the

input, the computation proper, and the read-out. In such a setting, quantum computa-

tion merely amounts to (i) preparing an algorithm-independent resource state and (ii)

performing local projective measurements [16, 18, 54, 64, 81, 89, 90].

Faced with this result, some obvious questions suggest themselves. First, concen-

trating on thequantum stateswhich provide the computational power of measurement-

based schemes, one may ask

1. What are the properties that render a state a universal resource for a measure-

ment-based computing scheme?

Secondly, putting the emphasize onmethods, the central question becomes

2. How can we systematically construct new schemes for measurement-based quan-

tum computation? Is there a framework which is flexible enough to allow for the

construction of a variety of different models?

Such questions are clearly relevant from a practical point of view. What if the states

that naturally occur in some physical situation are different from cluster states or graph

states [54, 55, 97]? Is it possible to tailor resource statesto specific physical systems?

For some experimental implementations – e.g., cold atoms inoptical lattices [75], atoms

12



in cavities [19, 21, 23, 49], optical systems [11], [20, 120], ions in traps [47], or many-

body ground states – it may well be that preparation of cluster states is unfeasible, costly,

or that they are particularly fragile to finite temperature or decoherence effects.

Adopting a more fundamental position, it is clearly interesting to investigate the

computational power of many-body states – either for the purpose of building measure-

ment-based quantum computers, or else for deciding which states could possibly be

classically simulated [63, 100, 108].

Interestingly, very little progress has been made over the last years when it comes to

going beyond the cluster state as a resource for measurement-based quantum computa-

tion (MBQC). To the knowledge of the author, no single computational model distinct

from the one-way computer has been developed which would be based on local mea-

surements on an algorithm-independent qubit resource state.

Our contributions to understanding the computational power of quantum many-body

states are organized in three chapters.

Chapter 1 establishes the existence of a diverse set of universal resource states

beyond the cluster. Methods for the systematic construction of new MBQC schemes

and states are described. We introduce the notion of “computational tensor networks”,

building on a familiar tool from many-body physics known by the names of finitely

correlated states [35], matrix product states [83, 84] or projected entangled pair states [2,

112]. Using these methods, we go on to show that entanglementproperties of universal

states may be radically different from those of the cluster.

Chapter 2 – Having shown that the cluster is not unique in constitutinga universal

resource, it is natural to ask whether a complete classification of resource states is pos-

sible. The unqualified version of this question seems daunting. Fortunately, it turns out

that a complete classification becomes tractable once certain natural extra assumptions

about resource states are made. This is the content of Chapter 2. More specifically, we

initiate the study ofcomputational quantum wires– states on one-dimensional chains

of quantum systems, which may be interpreted as the measurement-based equivalent of

a single qubit. All qubit wires which can be prepared by sequentially entangling neigh-

boring systems are classified and many of their properties are explicitly calculated. We

show how to couple such one-dimensional wires together to obtain a computationally

13



universal resource state.

Chapter 3 – Even though Chapters 1 and 2 present a plethora of new universal

resource, it is still fair to say that “most” states elude ourmethods. Tailoring a com-

putational scheme to a given state is a painstaking process which relies on a host of

coincidental properties: by-product groups must close, logical evolution must be uni-

tary, it must be possible to de-couple logical qubits and so on (these notions will be

made precise in Chapter 1). An obvious question to ask is whether these problems are

owed to a yet incomplete understanding of measurement-based computation, or whether

“universality” is truly a rare property among quantum states. In this chapter we show

that the latter scenario is realized: almost all states are too entangled to be useful.

All results presented in this part are joint work with J. Eisert. Parts of Chapter 1

result from a collaboration with N. Schuch and D. Perez-Garcia. The statements in

Chapter 3 were derived by the author as part of a joint projectwith S. Flammia.
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New schemes for measurement-based
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1.1 Introduction

1.1 Introduction

1.1.1 Main results

As our main result, we present a plethora of new universal resource states and compu-

tational schemes for MBQC. The examples have been chosen to demonstrate the flexi-

bility one has when constructing models for measurement-based computation. Indeed,

it turns out that many properties one might naturally conjecture to be necessary for a

state to be a universal resource can in fact be relaxed. Needless to say, the weaker the

requirements are for a many-body state to form a resource forquantum computing, the

more feasible physical implementations of MBQC become.

Below, we enumerate some specific results concerning the properties of resource

states. The list pertains to Question 1 given in the introduction.

• In the cluster state, every particle is maximally entangledwith the rest of the lat-

tice. Also, the localizable entanglement [88] is maximal (i.e. one can deterministi-

cally prepare an maximally entangled state between any two sites, by performing

local measurements on the remainder). While both properties are essential for the

original one-way computer, they turn out not to be necessaryfor computationally

universal resource states. To the contrary, we constructuniversal states which are

locally arbitrarily pure.

• For previously known schemes for MBQC, it was essential thatfar-apart regions

of the state were uncorrelated. This feature allowed one to logically break down a

measurement-based calculation into small parts corresponding to individual quan-

tum gates. Our framework does not depend on this restrictionand resources with

non-vanishing correlationsbetween any two subsystems are shown to exist. This

property is common e.g., in many-body ground-states.

• Cluster states can be prepared step-wise by means of a bi-partite entangling gate

(controlled-phase gate). This property has been used in theoriginal universality

proof. More generally, one might conjecture that resource states must always

result from an entangling process making use of mutually commuting entangling
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1.1 Introduction

gates, also known as a unitaryquantum cellular automaton[99]. Once more, this

requirement turns out not to be necessary.

• The cluster states can be used asuniversal preparators: Any quantum state can

be distilled out of a sufficiently large cluster state by local measurements. Once

more, this property is essential to the original one-way computer scheme. How-

ever, computationally universal resource states not exhibiting this properties do

exist (the reader is referred to Ref. [109] for an analysis ofresource states which

are required to be preparators; see also the discussion in Section 1.1.3). More

strongly, we construct universal resources out of which noteven a single two-

qubit maximally entangled state can be distilled.

• A genuinequ-trit resource is presented (distinct, of course, from a qu-trit version

of the cluster state [127]).

We will further see that there is quite some flexibility concerning the computational

model itself (addressing Question 2 mentioned in the introduction):

• The new schemes differ from the one-way model in the way theinherent random-

nessof quantum measurements is dealt with.

• We generalize the well-known concept ofby-product operatorsto encompass any

finite group. E.g. we show the existence of computational models, where the by-

product operators are elements of the entire single-qubit Clifford group, or the

dihedral group.

• We explore schemes where each logical qubit is encoded inseveral neighbor-

ing correlation systems(see Section 1.2 for a definition of the term “correlation

system”).

• One can find ways to construct schemes in which interactions between logical

qubits are controlled by “routing” the qubits towards an “interaction zone” or

keeping them away from it.

• In many schemes, we adjust the layout of the measurement pattern dynamically,

incorporating information about previous measurement outcomes as we go along.

17



1.1 Introduction

In particular, the expected length of a computation is random (this constitutes no

problem, as the probability of exceeding a finite expected length is exponentially

small in the excess).

1.1.2 Previous work

The apparent lack of new schemes for MBQC is all the more surprising, given the great

advances that have been made toward understanding the structure of cluster state-based

computing itself. For example, it has been shown that the computational model of the

one-way computer and teleportation-based approaches to quantum computing [41] are

essentially equivalent [4, 62, 64]. A particularly elegantway of realizing this equiv-

alence was discovered in Ref. [113]: They pointed out that the maximally entangled

states used for the teleportation need not be physical. Instead, the role can be taken on

by virtual entangled pairs used in a “valence bond” [2] description of the cluster state.

This point of view is closely related to our approach to be described in Chapter 1. Fur-

ther progress includes a clarification of the temporal inter-dependence of measurements

[29]. In Ref. [105] a first non-cluster (though not universal, but algorithm-dependent) re-

source has been introduced, which includes the natural ability of performing three-qubit

gates. Recently, Refs. [107, 109] initiated a detailed study of resource states which can

be used to prepare cluster states. A more fine-grained study of the computational power

of resource states can be found in Ref. [6], where it is shown that local measurements on

a resource state can allow a limited classical computer to attain classicaluniversality.

After the contents of this chapter were first published [6, 8], other authors utilized

the techniques developed here to tailor models to specific physical setups [110], or to

construct computational schemes with intrinsic resilience against noise [15].

1.1.3 Universal resource states

What are the properties from which a universal resource state derives its power? After

clarifying the terminology, we will argue that an answer to this question – desirable as

it may be – faces formidable obstacles.

Quantum computation can come in a variety of different incarnations, as diverse as

e.g., the well-known gate-model [82], adiabatic quantum computation [3] or MBQC. All
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1.1 Introduction

these models turn out to be equivalent in that they can simulate each other efficiently.

For measurement-based schemes, the “hardware” consists ofa multi-particle quan-

tum system in an algorithm-independent state and a classical computer. The input is a

gate-model description of a quantum computation. In every step of the computation,

a local measurement is performed on the quantum state and theresult is fed into the

classical computer. Based on the outcomes of previous steps, the computer calculates

which basis to use for the next measurements and, finally, infers the result of the com-

putation from the measurement outcomes [90]. Having this procedure in mind, we call

a quantum state auniversal resourcefor MBQC, if a classical computer assisted by

local measurements on this states can efficiently predict the outcome of any quantum

computation.

The reader should be aware that another approach has recently been described in

the literature. The cluster state has actually a stronger property than the one just used

for the definition of universality: it is a universal preparator. This means that one can

prepare any given quantum state on a given sub-set of sites ofa sufficiently large cluster

by means of local measurements. Hence, cluster states couldin principle be used for

information processing tasks which require a quantum output. Ref. [107] referred to this

scenario asCQ-universality– i.e. universality for problems which require a classical

input but deliver a quantum output. This observation is the basis of Ref. [109], where a

state is called a universal resource if it possesses the strong property of being a universal

preparator, or, equivalently, of being CQ-universal.

Clearly, any efficient universal preparator is also a computationally universal re-

source for MBQC (since one can, in particular, prepare the cluster state). But the con-

verse is not true, as our results show. Indeed, while it proves possible to come up with

necessary criteria for a state to be a universal preparator [109], we will argue below

that the current limited understanding of quantum computers makes it extremely hard

to specify necessary conditions for computational universality.

In order to pinpoint the source of the quantum speedup, we might try to find schemes

where more and more work is done by the classical computer, while the employed quan-

tum states become “simpler” (e.g., smaller or less entangled). How far can we push this

program without losing universality? The answer is likely to be intractable. Currently,
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1.1 Introduction

we are not aware of a proof that quantum computation is indeedmore powerful than

classical methods. Hence, it can presently not be excluded that no assistance from a

quantum state is necessary at all.

Observation 1 (Any state may be a universal resource). If one is unwilling toassume

that there is a separation between classical and quantum computation (i.e., BPP6=
BQP), then it is impossible to rule out any state as a universal resource.

It is, however, both common and sensible to assume superiority of quantum com-

puters and we will from now on do so. Observation 1 still serves a purpose: it teaches

us that the only known way to rule out universality is to invoke this assumption (this

avenue was taken, e.g., in Refs. [14, 108]).

Observation 2 (Efficient classical simulation). The only currently known method for

excluding the possibility that a given quantum state forms auniversal resource is to

show that any measurement-based scheme utilizing the statecan be efficiently simulated

by a classical computer.

In a previous publication [8], this observation was followed by the paragraph:

Thus, the situation presents itself as follows: there is a tiny set of quantum

states for which it is possible to prove that any local measurement-based

scheme can be efficiently simulated. On the other extreme, there is an even

tinier set for which universality is provable. For the vast majority no assess-

ment can be made. Furthermore, given the fact that rigorously establishing

the “hardness” of many important problems in computer science turned out

to be extremely challenging, it seems unlikely that this situation will change

dramatically in the foreseeable future.

This assessment proved to be too pessimistic, as shown in Chapter 3.

Still, we conclude that a search for an explicit necessary condition for universality is

likely to remain futile. The converse question, however, can be pursued: it is possible to

show that many properties that one might naively assume to bepresent in any universal

resource are, in fact, unnecessary.
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1.2 Computational tensor networks

1.2 Computational tensor networks

The current section is devoted to an in-depth treatment of a class of states known respec-

tively as valence-bond states, finitely correlated states,matrix product states or projected

entangled pairs states, adapted to our purposes of measurement-based quantum comput-

ing. This family turns out to be especially well-suited for adescription of a computing

scheme.

Indeed, any systematic analysis of resources states requires a framework for describ-

ing quantum states on extended systems. We briefly compile a list of desiderata, based

on which candidate techniques can be assessed.

• The description should bescalable, so that a class of states on systems of arbitrary

size can be treated efficiently.

• As quantum states which are naturally described in terms of one-dimensional

topologies have been shown to be classically simulable [35,63, 100, 108, 115],

the framework ought to handletwo- or higher dimensional topologiesnaturally.

• The basic operation in measurement-based computation arelocal measurements.

It would be desirable to describe the effect of local measurements in a local man-

ner. Ideally, the class of efficiently describable states should be closed under local

measurements.

• The class of describable states should include elements which show features that

naturally occur inground statesof quantum many-body systems, such asnon-

maximal local entropy of entanglementor non-vanishing two-point correlations,

etc.

The description of states to be introduced below complies with all of these points.

We will introduce the construction in several steps, starting with one-dimensional

matrix product states. The new view on the processing of information is that the ma-

trices appearing in the description of resource states are taken literally, as operators

processing quantum information.
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1.2.1 Matrix product states

A matrix product state(MPS) for a chain ofn systems of physical dimensiond (so

d = 2 for qubits) is specified by

• An auxiliary D dimensional vector space(D being some parameter, describing

the amount of correlation between two consecutive blocks ofthe chain),

• For each systemi a set ofd D ×D-matricesAi[j], j ∈ {0 . . . d− 1}.

• TwoD-dimensional vectors|L〉, |R〉 representingboundary conditions.

The state vector|Ψ〉 of the matrix product state is then given explicitly by1

|Ψ〉 =

d−1
∑

s1,...,sn=0

〈R|An[sn] . . .A1[s1]|L〉 |s1, . . . , sn〉. (1.2)

From now on we will assume that the matrices are site-independent:Ai[j] = A[j], so

the MPS is translationally invariant up to the boundary conditions. We take the freedom

of disregarding normalization whenever this consistentlypossible.

Let us spend a minute interpreting Eq. (1.2). Assume we have measured the first site

in the computational basis and obtained the outcomes1. One immediately sees that the

resulting state vector|Ψ′(s1)〉 on the remaining sites is again a MPS, where the left-hand

side boundary vector now reads

|L′(s1)〉 = A[s1]|L〉. (1.3)

Hence the state of the auxiliary system gets changed according to the measurement

outcome. So we find that the correlations between the state ofthe first site and the

rest of the chain are mediated via the auxiliary space, whichwill thus be referred to as

correlation spacein the sequel.

1There is a reason why theright-hand-side boundary condition|R〉 appears on theleft of Eq. (1.2). In
linear algebra formulas, information usually flows from right to left: BA|ψ〉 means “|ψ〉 is acted on by
A, then byB”. In the graphical notation to be introduce later, it is muchmore natural to let information
flow from left to right:

|ψ〉 // A // B // . (1.1)

The order in Eq. (1.2) anticipates the graphical notation.
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In the past, the matrices appearing in the definition of|Ψ〉 have been treated mainly

as a collection of variational parameters, used to parametrize ansatz states for ground

states of spin chains [35, 83, 98]. However – and that is the basic insight underlying

our view on MBQC – Eq. (1.3) can also be read as an operatorA[s1] acting on some

quantum state|L〉. We will elaborate on this interpretation in Section 1.2.2.

In order to translate Eq. (1.2) to the setting of 2-D lattices, we need to cast it into the

form of a tensor network. SettingLi = 〈i|L〉 and

A[s]i,j := 〈j|A|i〉, (1.4)

we can write Eq. (1.2) as

〈s1, . . . , sn|Ψ〉 =

D
∑

i0,...,in

Li0A[s1]i0,i1 . . . A[sn]in−1,inR
†
in . (1.5)

While Eq. (1.5) is awkward enough, the 2-D equivalent is completely unintelligible.

To cure this problem, we introduce a graphical notation2 which enables an intuitive

understanding beyond the 1-D case. In the following, tensors will be represented by

boxes, indices by edges:

Lr = L // , (1.6)

A[s]l,r = // A[s] // , (1.7)

R†
l = // R† . (1.8)

Needless to say, in the equation above, “l” is the index leaving the box on the left-

hand-side, “r” the right-hand-side one. Connected lines designate contractions of the

respective indices. Eq. (1.2) now reads

〈s1, . . . , sn|Ψ〉 = L A[s1] . . . A[sn] R† .

A single-index tensor can be interpreted as the expansion coefficients of either a “ket”

or a “bra”. Sometimes, we will indicate what interpretationwe have in mind by placing

2These graphical formulae are compatible with various similar systems introduced before [27, 43].
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arrows on the edges: outgoing arrows designating “kets”, incoming arrows “bras”

L // = |L〉, // R† = 〈R|. (1.9)

Tensors with two indicesAl,r can naturally be interpreted as operators. In the graphical

notation we often want to think of information flowing from the left to the right, in

which caseA =
∑

l,r Al,r|r〉r〈l|l would be denoted as

// A // = A, (1.10)

i.e. with the l.h.s. index being associated with a “bra” and the r.h.s one with a “ket”. The

following relations exemplify the definition:

〈R|L〉 = L R , (1.11)

A|L〉 = L A // , (1.12)

AB = // B A // , (1.13)

tr(AB) =
B A ��

����

��

. (1.14)

The formula for the expansion coefficients of a matrix product state finally becomes

〈s1, . . . , sn|Ψ〉 = L A[s1] . . . A[sn] R† .

This formula suggest a more “dynamic” interpretation of MPS: the l.h.s. boundary con-

ditions |L〉 specify an initial state of the correlation system, which isacted on by the

matrices of the MPS representation. The next paragraph is going to elaborate on this

point.
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1.2.2 Quantum computing in correlation systems

We return to the discussion of the properties of matrix product states. Above, it has

been shown how to compute the overlap of|Ψ〉 with an element of the computational

basis (c.f. Eq. (1.5)). The next step is to generalize this toany local projection operator.

Indeed, if|φ〉 is a general state vector inC2, we abbreviate

〈φ|0〉A[0] + 〈φ|1〉A[1] =: A[φ]. (1.15)

One then easily derives the following, central formula

(

n
⊗

i

〈φi|
)

|Ψ〉 = L A[φ1] . . . A[φn] R . (1.16)

Now suppose we measure local observables on|Ψ〉 and obtain results corresponding

to the eigenvector|φi〉 at thei-th site. Eq. (1.16) allows us to re-interpret this process

as follows. Initially, theD-dimensional correlation system is prepared in the state|L〉.
The result|φ1〉 at the first site induces the evolution

|L〉 7→ A[φ1]|L〉. (1.17)

From this point of view, a sequence of measurements on|Ψ〉 is tantamount to a process-

ing of the correlation system’s state by the operationsA[φi].3 An appealing perspective

on MBC suggests itself:

Observation 3(Role of correlation space). Measurement-based computing takes place

in correlation space. The gates acting on the correlation systems are determined by

local measurements. Intuitively, “quantum correlations”are the source of a resource’s

computational potency. The strength of this framework liesin the fact that it assigns a

concrete mathematical object to these correlations.

Indeed, it will turn out that MBQC can be understood completely using this inter-

pretation.

3Of course, for general measurement bases,A[φi] is not going to be unitary. Choosing the bases in
such a way as to ensure unitarity is an essential part of the design of a computational scheme for a given
resource.
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1.2.3 Example: The 1-D cluster state

To illustrate the abstract definitions made above, we will discuss the linear cluster state

vector|Cln〉 in this section. It is both one of the simplest and certainly the most impor-

tant MPS in the context of MBQC.

What is the tensor network representation of|Cln〉? Recall that the cluster state can

be generated by preparingn sites in the state vector|+〉 := |0〉 + |1〉 and subsequently

applying the controlled-Z operation

CZ = |0, 0〉〈0, 0|+ |0, 1〉〈0, 1|+ |1, 0〉〈1, 0| − |1, 1〉〈1, 1| (1.18)

between any two nearest neighbors. Effectively,CZ introduces aπ-phase whenever

two consecutive systems are in the|1〉-state. Hence its expansion coefficients in the

computational basis are given by

〈s1, . . . , sn|Cln〉 = 2−n/2(−1)p, (1.19)

wherep denotes the number of sitesi such thatsi = si+1 = 1.

This observation makes it simple to derive the tensors of theMPS representation.

We need aD = 2-dimensional correlation system, which – loosely speaking– will

convey the information about the statesi of thei-th site to sitei+1. Define the matrices

A[0/1] by

// A[0] // = |+〉r〈0|l, (1.20)

// A[1] // = |−〉r〈1|l. (1.21)

The intuition behind this choice is as follows. By the elementary relations

〈+|0〉 = 〈+|1〉 = 〈−|0〉 = 2−1/2, 〈−|1〉 = −2−1/2, (1.22)

the contraction in the middle of

// A[s1] A[s2] // (1.23)
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will yield a sign of ”−1” exactly if s1 = s2 = 1. Indeed, setting the boundary vectors

to |L〉 = |0〉, |R〉 = |+〉 one checks easily that

〈R|A[sn] . . .A[s1]|L〉 = 2−n/2(−1)p, (1.24)

which is exactly the value required by Eq. (1.19).

Below, we will interpret the correlation system of a 1-D chain as a single logical

quantum system. For this interpretation to be viable, we must check that the following

basic operations can be performed deterministically by local measurements: i) prepare

the correlation system in a known initial state, ii) transport that state along the chain

(possibly subject to known unitary transformations) and iii) read out the final state.

To set the state of the correlation system to a definitive value, we measure some site

– say thei-th – in theZ-eigenbasis. Throughout this work, we will choose the notation

X, Y , andZ for thePauli operators. Denote the measurement outcome byz ∈ {0, 1}.

In case ofz = 0, Eq. (1.20) tells us that the state of the correlation systemto the right

of the i-th site will be |+〉 (up to an unimportant phase). Likewise, az = 1 outcome

prepares the correlation system in|−〉, according to Eq. (1.21). It follows that we can

useZ-measurements for preparation. How to cope with the intrinsic randomness of

quantum measurements will concern us later.

Secondly, consider the operators

// A[+] // = 2−1/2( // A[0] // + // A[1] // )

∝ |+〉〈0| + |−〉〈1| = H, (1.25)

// A[−] // ∝ HZ, (1.26)

whereH is the Hadamard-gate. We see immediately that measurementsin theX-

eigenbasis give rise to a unitary evolution on the correlation space. Similarly, one can

show that one can generate arbitrary local unitaries by appropriate measurements in the

Y -Z plane.

Below, we will frequently be confronted with a situation like the one presented in

Eqs. (1.25,1.26), where the correlation system evolves in one of two possibilities, de-
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pendent on the outcome of a measurement. It will be convenient to introduce a compact

notation that encompasses both cases in a single equation. So Eqs. (1.25,1.26) will be

represented as

// A[X] // = HZx. (1.27)

Herex = 0 corresponds to the outcome|+〉 in anX-measurement, whereasx = 1 cor-

responds to the outcome|−〉. In general, a physical observable given as an argument to a

tensor corresponds to a measurement in the observable’s eigenbasis. The measurement

outcome is assigned to a suitable variable as in the above example.

Lastly, we must show how to physically read out the state of the purely logical

correlation system. It turns out that measuring thei + 1-th physical system in theZ-

eigenbasis corresponds to aZ-measurement of the state of the correlation system just

after sitei. Indeed, suppose we have measured the firsti systems and obtained results

corresponding to the local projection operator|φ1〉 ⊗ · · · ⊗ |φi〉. Further assume that as

a result of these measurements the correlation system is in the state|0〉:

L A[φ1] . . . A[φi] // = |0〉. (1.28)

Using Eq. (1.21) we have that

L A[φ1] . . . A[φi] A[1] // (1.29)

∝ |+〉〈1|0〉 = 0.

But then it follows from Eq. (1.16) that the probability of obtaining the result1 for a

Z-measurement on sitei+1 is equal to zero. In other words: if thecorrelation systemis

in the state|0〉 after thei-th site, then thei+ 1-th physical sitemust also be in the state

|0〉. An analogous argument for the|1〉-case completes the description of the read-out

scheme.

1.2.4 2-D lattices

The graphical notation greatly facilitates the passage to 2-D lattices. Here, the tensors

A[s] have four indicesA[s]l,r,u,d, which will be contracted with the indices of the left,
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right, upper and lower neighboring tensors respectively. After choosing a set of bound-

ary conditions|L〉, |R〉, |U〉, |D〉 ∈ CD, the expansion coefficients of the state vector

|Ψ〉 are computed as illustrated in the following example on a2 × 2-lattice:

〈s1,1, . . . , s2,2|Ψ〉 =

U U

L A[s1,1] A[s2,1] R

L A[s1,2] A[s2,2] R

D D

. (1.30)

In the 1-D case, we thought of the quantum information as moving along a single

correlation system from the left to the right. For higher-dimensional lattices, a greater

deal of flexibility proves to be expedient. For example, sometimes it will be natural to

interpret the tensorAl,r,u,d as specifying the matrix elements of an operatorA mapping

the left and the lower correlation systems to the right and the upper ones:

Al,r,u,d = 〈r| ⊗ 〈u|A |l〉 ⊗ |d〉, A = // A

OO

//
OO . (1.31)

Often, on the other hand, the interpretation

Al,r,u,d = 〈r|A |l〉 ⊗ |u〉 ⊗ |d〉, A =
��

// A //
OO (1.32)

or yet another one is to be preferred.

We have seen in Section 1.2.2 that the correlation system of aone-dimensional ma-

trix product state can naturally be interpreted as a single quantum system subject to a

time evolution induced by local measurements. It would be desirable to carry this intu-

ition over to the 2-D case. Indeed, most of the examples to be discussed below are all

similar in relying on the same basic scenario: some horizontal lines in the lattice are in-

terpreted as effectively one-dimensional systems, in which the logical qubits travel from

the left to the right. The vertical dimension is used to either couple the logical systems

or isolate them from each other. The reader should recall that this setting is very similar

to the original cluster state based-techniques. Clearly, it would be interesting to devise
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schemes not working in this way and the example presented in Section 1.3.2 takes a first

step in this direction.

1.2.5 Example: the 2-D cluster state

Once again the cluster state serves as an example. One can work out the tensor network

representation of the 2-D cluster state vector|Cln×n〉 in the same way utilized for the

1-D case in Section 1.2.3. The resulting tensors are:

// A[0]

OO

//
OO

= |+〉r|+〉u 〈0|l〈0|d, (1.33)

// A[1]

OO

//
OO

= |−〉r|−〉u 〈1|l〈1|d, (1.34)

|L〉 = |D〉 = |+〉, |R〉 = |U〉 = |1〉. (1.35)

An important property of Eqs. (1.33, 1.34) is that the tensorsA[0/1] factor. One could

graphically represent this fact by writing

A[0] =

+

0 +

0

, (1.36)

where

0 // = |0〉, + // = |+〉. (1.37)

In other words: the tensorsA[0/1] effectively de-couple their respective indices. Based

on this fact, we will see momentarily howZ-measurements can be used to stop infor-

mation from flowing through the lattice.

Indeed, suppose three vertically adjacent sites are measured, from top to bottom,
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respectively in theZ,X andZ-eigenbasis:

// A[Zu]

OO

//

// A[X] //

// A[Zd] //
OO

. (1.38)

Denote the measurement results byzu, x, zd ∈ {0, 1}. As before, these numbers corre-

spond tozu = 0 for |0〉 andzu = 1 for |1〉, as well asx = 0 for |+〉 andx = 1 for |−〉.
In fact, we are mainly interested in the indices of the middletensor, as they will be the

ones which carry the logical information. To this end Eq. (1.36) is of use, as it says that

the upper and lower tensors factor and hence it makes sense todis-regard all of their

indices which do not influence the middle part. It hence suffices to consider

A[Zu]

// A[X] //

A[Zd]

. (1.39)

As a first step, we calculate

0

// A[0] //

+

=

0

+

// 0 + //

0

+

= 2−1|+〉〈0|,

having used Eq. (1.36) and the basic fact

+ 0 = 〈0|+〉 = 2−1/2. (1.40)

A similar calculation whereA[0] is substituted byA[1] yields 2−1|−〉〈1|. Hence, for
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A[+] ∝ A[0] + A[1], we have

0

// A[+] //

+

∝ |+〉〈0| + |−〉〈1| = H. (1.41)

Similarly,

0

// A[−] //

+

∝ HZ. (1.42)

After these preparations it is simple to conclude that

A[Zu]

// A[X] //

A[Zd]

∝ HZzu+x+zd. (1.43)

This finding tells us how to transport quantum information along horizontal lines through

the lattice. Namely by measuring the line in theX-eigenbasis to cause the informa-

tion to flow from the left to the right and measuring vertically adjacent sites in the

Z-eigenbasis to shield the information from the rest of the lattice.

Eq. (1.43) should be compared with Eqs. (1.25,1.26). So up topossible corrections

of the formZzu+zl, the procedure outlined above enables us to effectively prepare a 1-D

cluster state within the 2-D lattice.

1.3 Novel resource states

Up to this point, we have reformulated the computational model of the one-way com-

puter in the language of computational tensor networks. This picture of one-way com-

putation is educational in its own right. However, to convincingly argue that the frame-

work is rich enough to allow for quite different models, we have to explicitly construct

novel schemes. It is the purpose of this section to discuss a number of examples of new
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resources. As before, important features will be highlighted as “observations”.

1.3.1 AKLT-type states

1-D structures

Our first example is inspired by theAKLT state[2], which is well-known in the context

of condensed matter physics. TheAKLT modelis a 1-D, spin-1, nearest neighbor, frus-

tration free, gapped Hamiltonian. Its unique ground state is a matrix product state with

D = 2 and indeed, the AKLT model motivated the first studies of suchstates [2, 35].

The defining matrices of the MPS description are:

// A[0] // = Z, (1.44)

// A[1] // = 2−1/2|0〉r〈1|l, (1.45)

// A[2] // = 2−1/2|1〉r〈0|l (1.46)

We will choose the boundary conditions to be|L〉 = |R〉 = |0〉. As a matter of fact, we

will not work directly with the AKLT state, but with a small variation, for which it turns

out to be more straight-forward to construct a scheme for MBQC. In this modification,

the matrixA[0] is given by the Hadamard gate, instead of the PauliZ operator:

// A[0] // = H. (1.47)

This state shares all the defining properties of the original: it is the unique ground-state

of a spin-1 nearest neighbor frustration free gapped Hamiltonian (see Appendix 1.6.2).

Against the background of our program, the obvious questionto ask is whether these

matrices can be used to implement any evolution on the correlation space.

To show that this is indeed the case, let us first analyze a measurement in the

{|0〉, |+〉, |−〉}-basis, where|±〉 := 2−1/2(|1〉 ± |2〉). In a mild abuse of notation, we

will hence write|±〉 for state vectors in the subspace spanned by{|1〉, |2〉} instead of

{|0〉, |1〉}. From Eqs. (1.44-1.47) one finds that depending on the measurement out-

come, the operation realized on the correlation space will be one ofH,X orZX = i Y .

At this point, we have to turn to an important issue: how to compensate for the random-

33



1.3 Novel resource states

ness of quantum measurement outcomes.

Compensating the randomness

Assume for now that we intended to just transport the information faithfully from left

to right. In this case, we consider the operator

B1 := H,X, orZX (1.48)

as an unwantedby-productof the scheme. The one-way computer based on cluster

states has the remarkable property that the by-products canbe dealt with by adjusting the

measurement-bases depending on the previous outcomes, without changing the general

“layout” of the computation [90]. For more general models, as the ones considered in

this work, such a simple solution seems not available. Fortunately, we can employ a

“trial-until-success” strategy, which proves remarkablygeneral.

The key points to notice are that i) the three possible outcomesH,X andZ generate

a finite groupB and ii) the probability for each outcome is equal to1/3, independent of

the state of the correlation system. We will refer toB as the model’sby-productgroup.

Now suppose we measurem adjacent sites in the{|0〉, |+〉, |−〉}-basis. The resulting

overall by-product operatorB = BmBm−1 . . . B1 will be a product ofm generators

H,X,ZX. So by repeatedly transporting the state of the correlationsystem to the right,

the by-products are subject to a random walk onB. BecauseB is finite, every element

will occur after a finite expected number of steps (as one can easily prove).

The group structure opens up a way of dealing with the randomness. Indeed, as-

sume that initially the state vector of the correlation system is given byB|ψ〉, for some

unwantedB ∈ B. Transferring the state along the chain will introduce the additional

by-product operatorB−1 after some finite expected number of steps, leaving us with

B−1B|ψ〉 = |ψ〉, (1.49)

as desired. The technique outlined here proves to be extremely general and we will

encounter it in further examples presented below.

Observation 4(Compensating randomness). Possible sets of by-product operators are
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not limited to the Pauli group. A way of compensating randomness for other finite by-

product operator groups is to adopt a “trial-until-successstrategy”, which gives rise to

a random length of the computation. This length is in each case shown to be bounded

on average by a constant in the system size.

All single-qubit gates

By the preceding paragraphs, we can implement any element ofB on the correlation

space. We next address the problem of realizing a phase gateS(φ) := diag(1, eiφ) for

someφ ∈ R. To this end, consider a measurement on the{|0〉, 2−1/2(|1〉 ± eiφ|2〉)}-

basis. There are three cases

• The outcome corresponds to|1〉 + eiφ|2〉. In this case, we getS(φ) on the corre-

lation space and are hence done.

• The outcome corresponds to|1〉 − eiφ|2〉. We getZS(φ), which is the desired

operation, up to an element of the by-product group, which wecan rid ourselves

of as described above.

• Lastly, in case of|0〉, we implementH on the correlation space. AsH ∈ B, we

can “undo” it and then re-try to implement the phase gate.

Hence, we can implement any element ofB as well asS(φ) on the correlation space.

This implies thatHS(φ)H is also realizable and therefore any single-qubit unitary,as

SU(2) is generated by operations of the formS(φ) andHS(φ)H.

The state of the correlation system can be prepared by measuring in the computa-

tional basis. In case one obtains a result of “1” or “ 2”, the state of the correlation system

will be |0〉 or |1〉 respectively, irrespective of its previous state. A “0”-outcome will not

leave the correlation system in a definite state. However, after a finite expected number

of steps, a measurement will give a non-“0”-result. Lastly,a read-out scheme can be

realized similarly (c.f. Section 1.2.3).

Observation 5 (Ground states). Ground states of one-dimensional gapped nearest-

neighbor Hamiltonians may serve as resources for transportand arbitrary rotations.
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Figure 1.1: A universal resource deriving from the AKLT-model.

2-D structures

Several horizontal 1-D AKLT-type states can be coupled to become a universal 2-D re-

source. The coupling can be facilitated by performing a controlled-Z operation, embed-

ded into the three-dimensional spin-1 space, between vertically adjacent nearest neigh-

bors. More specifically, we will use the operationexp{iπ|2〉〈2| ⊗ |2〉〈2|}, which intro-

duces aπ-phase between two systems exactly if both are in the state|2〉. The tensor

network representation of this resource is given by

// A[0]

OO

//
OO

= Hl→r ⊗ |+〉u〈0|d, (1.50)

// A[1]

OO

//
OO

= 2−1/2|0〉r〈1|l ⊗ |+〉u〈0|d, (1.51)

// A[2]

OO

//
OO

= 2−1/2|1〉r〈0|l ⊗ |−〉u〈1|d, (1.52)

as one can check in analogy to Sec. 1.2.5. Here,

Hl→r := |+〉r〈0|l + |−〉r〈1|l. (1.53)

To verify that the resulting 2-D state constitutes a universal resource, we need to

check that a) one can isolate the correlation system of a horizontal line from the rest of

the lattice, so that it may be interpreted as a logical qubit and b) one can couple these
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logical qubits to perform an entangling gate.

The first step works in complete analogy to Section 1.2.5, seeFig. 1.1. Indeed, one

simply confirms that
A[Zu]

// A[s] //

A[Zl]

= ± // A[s] // , (1.54)

wheres ∈ {0, 1, 2} andZu/l denotes a measurement in the{|0〉, |1〉, |2〉}-basis. So

measuring the vertically adjacent nodes in the computational basis gives us back the

1-D state, up to a possible sign.

A controlled-Z gate can be realized in five steps:

−2 −1 0 1 2

// A[X] A[X] A[X] A[X] A[X] //

// A[Z] A[Z] A[Y ] A[Z] A[Z] //

// A[X] A[X] A[X] A[X] A[X] //

.

(1.55)

The Pauli matricesX, Y, Z are understood as being embedded into the{|1〉, |2〉}-subspace.

So, e.g.,X denotes a measurement in the{|0〉, 2−1/2(|1〉± |2〉)}-basis. When operating

the gate, we first measure all sites of the upper and lower lines in theX-eigenbasis. In

case the result for the sites at position “0” (refer to labeling above) is different from|+〉,
the gate failed. In that case all sites on the middle line are measured in the computa-

tional basis and we restart the procedure five steps to the right4. Otherwise, the systems

labeled by aZ are measured. We accept the outcome only if we obtained|1〉 on sites±2

and|0〉 on sites±1 – should a different result occur, the gate is once again considered

a failure and we proceed as above. Lastly, theY measurement on the central site is

performed. In case of a result corresponding to|0〉, it is easy to see that no interaction

between the upper and the lower part takes place, so this is the last possibility for the

4We have chosen this approach in order to avoid an awkward discussion of how to handle phases
introduced by “wrong” measurement outcomes. We are providing proofs of principle for universality here
and will accept a (possibly daunting) linear overhead in theexpected number of steps, if this simplifies
the discussion. Substantial improvements to these schemesare, of course, possible.
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gate to fail. Let us assume now that the desired measurement outcomes were realized.

At site−2 on the middle line, we obtained

A[1] // , (1.56)

which prepares the correlation system of the middle line in|0〉. At site−1, in turn, a

Hadamard gate has been realized, which causes the output of site−1 to beH|0〉 = |+〉.
The situation is similar on the r.h.s., so that the above network at site0 can be re-written

as
// A[+] //

+ A[Y ] +

// A[+] //

. (1.57)

We will now analyze the tensor network in Eq. (1.57) step by step. For proving its

functionality, there is no loss of generality in restricting attention to the situation where

the correlation system of the lower line is initially in state |c〉, for c ∈ {0, 1}. We

compute for the lower part of the tensor network

|c〉 A[+] //

OO

= X|c〉rZc|+〉u. (1.58)

Further, plugging the outputZc|+〉 of the lower stage into the middle part, we find

+ A[Y ]

OO

+

Zc|+〉
∝ Zc+y(|0〉 + i|1〉), (1.59)

wherey ∈ 0, 1 reflects the outcome of theY -measurement on the central site:y = 0 in

case of|1〉 + i|2〉 andy = 1 for |1〉 − i|2〉. Lastly,

// A[+] //

Zc+y(|0〉 + i|1〉)
∝ SZc+yX. (1.60)

In summary, the evolution afforded on the upper line isHSZy+c, equivalent toZc up to

by-products. This completes the proof of universality.
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For completeness, note that we never need the by-products tovanish for all logical

qubits of the full computation simultaneously. Hence the expected number of steps for

the realization of one- or two-qubit gates is a constant in the number of total logical

qubits.

1.3.2 Toric code states

In the following, we present two MBQC resource states which are motivated by Ki-

taev’s toric code states [70]. This contrasts with a result in Ref. [14] that MBQC on the

planar toric code state itself can be simulated efficiently classically. Different from the

other schemes presented, the natural gate in these schemes is a two-qubit interaction,

whereas local operations have to be implemented indirectly. Also, individual qubits are

decoupled not by erasing sites but by switching off the coupling between them.

Toric code states are states with non-trivial topological properties and have been

introduced in the context of quantum error correction. Theyhave a particularly simple

representation in terms of PEPS [114] or CTNs [6] on two centered square lattices,
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(1.61)

where

II
II

KH [s]

uuuu

II
IIuuuu

=

CC
C

Zs

{{{

Zs

CC
C{{{

(1.62)
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Figure 1.2: Implementation of single-qubit and two-qubit operations in the first toric
code model.a) The measurement pattern for single-qubit operations andb) the corre-
sponding circuit.c) Pattern for a two-qubit gate between logical qubits,d) the corre-
sponding circuit ande) the circuit after some simplifications.

and

II
II

KV [s]

uuuu

II
IIuuuu

=
CC

C

Zs Zs

CC
C

{{{

{{{

, (1.63)

i.e.,KH andKV are identical up to a rotation by90 degrees.

Let us first see howKH acts on two qubits in correlation space coming from the

left. The most basic operation is a measurement in the computational basis, which

simply transports both qubits to the right (up to a correlated Z by-product operator).

Generalizing this to measurements in theY -Z plane, we find that

$$II
II

KH [φ]

::uuuu

$$II
II::uuuu

=
%%JJ

JJ

ZZ(φ)

99tttt

%%JJ
JJ99tttt

(1.64)
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whereφ is the angle with theZ axis, and

ZZ(φ) =















1

eiφ

eiφ

1















. (1.65)

(Note that this gate is locally equivalent to theCNOT gate forφ = ±π/2.)

Thus, the tensors in Kitaev’s toric code state have atwo-qubit operation as their

natural gate in correlation space, rather than asingle-qubit gate. In MBQC schemes

which base on these projectors, two-qubit gates are easy to realize, whereas in order

to get one-qubit gates, tricks have to be used. In the first example, we obtain single-

qubit operations by introducing ancillae: aZZ controlled phase between a logical qubit

and an ancilla in a computational basis state yields a localZ rotation on the logical

qubit. In the second example, we use a different approach: weencode each logical

qubit in two qubits in correlation space. Using this nonlocal encoding,we obtain an

easy implementation of both one- and two-qubit operations;furthermore, the scheme

allows for an arbitrary parallelization of the two-qubit interactions.

Observation 6(Logical qubits in several correlation systems). There is no need to have

a one-one correspondance between logical qubits and a single correlation system.

Toric codes: first scheme

Our first scheme consists of the modified tensor

##HH
HH

K̃H [s]

;;vvvv

##HH
HH;;vvvv

=

$$II
II

KH [s]

66nnnnnn

LL
LL==||||| √

ZH
$$HH

HH

(1.66)

=

''NN
NN

N

Zs

77ppppp

√
ZHZs

&&MMMM88qqqq
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[with
√
Z = diag(1, i)], arranged as in (1.61) wherebothKH andKV are replaced by

K̃H . The extraH serves the same purpose as in other schemes: it allows to leave the

subspace of diagonal operations and thus to implementX rotations. The need for the
√
Z will become clear later; it is connected to the fact that

CNOT = (1⊗H) (
√
Z ⊗

√
Z) ZZ(−π/2) (1⊗H) . (1.67)

In the following, we show how this state can be used for MBQC. The qubits run

from left to right in correlation space in zig-zag lines in Eq. (1.61); for the illustration

in Fig. 1.2, we have straightened these lines, and marked themeasurement-inducedZZ

interactions coming from theKH [s] in (1.66) by ellipses. (The difference between filled

and non-filled ellipses will be explained later.) The
√
ZH operations of (1.66) do not

depend on the measurement and are thus hard-wired; note thatthe order is reversed as

we are consideringH and
√
Z as two independent operations in the circuit.

Let us first impose that all qubits are initialized to|0〉; this corresponds to a left

boundary condition|0〉 in correlation space. We will discuss later how to initialize the

scheme. Every second qubit is an ancilla which will be used toimplement one-qubit

operations. We first discuss the case of no Pauli errors, and show later how those can be

dealt with.

The implementation of single-qubit operations is illustrated in Fig. 1.2a. There,

each ellipse denotes a possibleZZ interaction. In particular, empty ellipses denote in-

teractions which are switched off (i.e. measured in theZ basis), while filled ellipses

denote sites where one can measure in theY -Z plane to implement aZZ gate. If all

interactions are switched off, all qubits are transported to the right, subject to the trans-

formation
√
ZH. As (

√
ZH)3 = 1, the ancillae are in the computational basis in every

third step: These regions are hashed in Fig. 1.2a. In these regions, aZZ(φ) between

ancilla and logical qubit (corresponding to the filled ellipses in the figure) results in a

single-qubitZ rotation on the latter. Thus, in each block of length three asthe one

shown in Fig. 1.2a, the transformation

√
ZH

√
ZHS(ψ)

√
ZHS(φ) = HS(ψ)HS(φ) (1.68)
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is implemented [whereS(φ) = diag(1, eiφ)], which allows for arbitrary one-qubit oper-

ations. In Fig. 1.2b, the corresponding circuit is shown, which has been simplified using

H
√
ZH

√
Z =

√
X
√
Z = (

√
Z)−1H, and that diagonal matrices commute.

Although the scheme has a natural two-qubit interaction, implementing an interac-

tion between two adjacentlogical qubits is complicated by the ancilla which is located

inbetween. In order to obtain a coupling, we first swap the logical qubit with the an-

cilla, then couple it to the now adjacent logical neighbor, and finally swap it back. This is

implemented by the measurement pattern shown in Fig. 1.2c. Again, empty ellipses cor-

respond to switched off interactions, while the filled ellipses all implementZZ(−π/2)

gates, each of which together with two
√
Z and two Hadamards as grouped in the figure

gives aCNOT gate, cf. Eq. (1.67). This measurement pattern correspondsto the circuit

shown in Fig. 1.2d, where we have replaced each pair ofCNOTs by aCNOT and aSWAP.

By merging eachCNOT with the two adjacent Hadamards, we effectively obtain

CZ = |0, 0〉〈0, 0|+ |0, 1〉〈0, 1|+ |1, 0〉〈1, 0| − |1, 1〉〈1, 1| (1.69)

gates. We thus remain with only diagonal gates on the two lower qubits (except for the

SWAP), i.e. the gates all commute and the circuit can thus be simplified to the one shown

on in Fig. 1.2e, proving that the sequence effectively implements a two-qubit interaction

between the logical qubits. Note that the length of the complete sequence is compatible

with the three-periodicity of the basis of the ancillae.

Pauli errors in this scheme can be dealt with as usual:H and
√
Z are both in the

Clifford group, i.e., Paulis can be commuted through, andZZ commutes withZ errors,

while (1⊗X)ZZ(φ) = ZZ(−φ)(1⊗X).

Finally, we show how to read out the logical qubits. It holds that

##GG
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H [+]

;;wwww
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=

∣

∣

∣

∣

∣

∣

0

0

〉〈

0

0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

1

〉〈

1

1

∣

∣

∣

∣

∣

∣

, (1.70)
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, (1.71)

i.e., a measurement in theX basis returns the parity of the ancilla and the logical qubit.
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Figure 1.3: Interpretation of the first toric code scheme in terms of parity encoded
qubits. The boxed parts of the circuit decode and encode the system. a) Z rotations
result inZ rotations in the encoded system.b) X rotations result inX rotations in the
encoded system, plusZ corrections before and after the rotations in case thes qubit
below is|−〉s rather than|+〉s. c) Similarly, the coupling circuit Fig. 1.2d results in a
coupling of the encoded logical qubits, up to the sameZ correction on the first logical
qubit which depends on thes qubit below in exactly the same way. Thus, theZ correc-
tions on each qubit cancel out except for the first and the last, which have no effect due
to the initialization and measurement in the computationalbasis.

If this is done when the ancilla is in a computational basis state, one effectively measures

the logical qubit in the computational basis. Note that boththe ancilla and the logical

qubit are in a well-defined state afterwards and can thus be reused.

Let us now turn towards the initialization procedure. In contrast to the previous

MBQC schemes, the read-out cannot be used for initialization. The reason is that the

read-out only works if the ancilla qubit is initially in a computational basis state; other-

wise, it just projects onto the subspace spanned by{|0, 0〉, |1, 1〉} or by{|0, 1〉, |1, 0〉}.

In the following, we demonstrate that it is still possible toinitialize this scheme by

taking a different perspective on how it encodes logical qubits. Therefore, we group

each logical qubit with the ancilla above (e.g., the first twoqubits in Fig. 1.2a), and

encode the new logical qubit in their parity – note that this is what is really measured

in the read-out. The following calculations are most conveniently carried out in a Bell

basis where each state is described as|s〉s|l〉l, where thes qubit stores the sign of the
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Bell state and thel qubit the parity and thus encodes our logical qubit, i.e.

|s〉s|0〉l ↔ |0, 0〉 + (−1)s|1, 1〉 (1.72)

|s〉s|1〉l ↔ |0, 1〉 + (−1)s|1, 0〉 . (1.73)

The circuit transforming between the above encoding and thequbits in correlation space

is

. (1.74)

Using this decoding, it is straightforward to investigate what happens in the various

steps of the MBQC scheme. Firstly, one can easily check that by measuring two con-

secutive couplings of the qubit pair in theX basis, one prepares them in a maximally

entangled state|0, 0〉+ |1, 1〉 up to Pauli errors, corresponding to|0〉s|0〉l in the encoded

system. By pretending a PauliZ error on one of the qubits withp = 1/2, we effectively

face the mixture|0, 0〉〈0, 0| + |1, 1〉〈1, 1|, corresponding to1s ⊗ |0〉〈0|l.
Since the transformation (1.74) is in the Clifford group, Pauli errors remain Pauli

errors in the encoded system. In the following, we will checkhow the circuit acts on

initial states|±〉s|0〉l, where the sign can be different on each pair. As we will show,all

of them give the same output statistics, and thus the same holds for their mixture, i.e. the

actual initial state. These considerations are illustrated in Fig. 1.3, where we take the

circuits of Fig. 1.2 and compose them with the decoding and encoding circuits (boxed)

in order to determine their action on the encoded system.

Firstly, aZZ(φ) gate on a pair gives aZ rotation of the encoded logical qubit, since

the action ofZZ(φ) only depends on the parity (Fig. 1.3a). The action of the second

ZZ rotation of Fig. 1.2b which originally gave anX rotation is shown in Fig. 1.3b.

The right hand side is obtained by usingCNOT = (1 ⊗H) CZ (1 ⊗ H), H2 = 1, the

fact that diagonal operators commute, and(CZ)2 = 1. As we see from the simplified

circuit, we obtain anX rotation on the upper logical qubit, but with the rotation direction

determined by the state of the|s〉s qubit below: While|+〉s results in a rotationRx(φ),

the state|−〉s gives

ZRx(φ)Z ∝ Rx(−φ) .
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Similarly, the circuit for the coupling of two logical qubits can be simplified as in

Fig. 1.3c: again, the coupling on the logical qubits isCpl(φ) := (H⊗Z)ZZ(φ)(H⊗1)
or

(H ⊗ ZX)ZZ(φ)(H ⊗X) = (Z ⊗ 1)Cpl(φ)(Z ⊗ 1) ,
depending on whether the seconds qubit is|+〉s or |−〉s.

Therefore, the error introduced by the unknown state of eachs qubit results in aZ

correction around each operation on the logical qubit above(note that we can assume

this also forZ rotations as they commute with theZ correction). Although the error

itself is unknown and different for each logical qubit, it isconsistent within each qubit,

as it is always determined by the same ancilla. Thus, two subsequentZ errors cancel

out, and one remains only with oneZ correction on the logical qubit at the beginning

and one at the end of the sequence. The former has no effect since the initial state is|0〉l,
while the latter has no effect either since the encoded logical qubit is finally measured in

the computational basis. Thus, the output statistics for the circuit is independent of the

initial state|±〉s of the phase qubits, and one can equally well start from theirmixture1s which completes the argument.

Toric codes: second scheme

The second toric-code-like scheme is based on a very different idea. Therefore, observe

that theKV tensor can be written as

$$II
II

KV [s]

::uuuu

$$II
II::uuuu

=
$$JJJJ

COPY† H A[s] COPY

##HH
HH

H

;;vvvvv

::tttt

(1.75)

whereCOPY is the copy gate|0, 0〉〈0| + |1, 1〉〈1|, H is the Hadamard gate (both with

no physical system associated to them), andA the 1-D cluster projector, cf. Eqs. (1.20)

and (1.21). Thus,KV takes two qubits in correlation space, projects them onto the

{|0, 0〉, |1, 1〉} subspace, implements the 1-D cluster map up to a Hadamard, and du-

plicates the output to two qubits. Concatenating these tensors horizontally [this takes

place in (1.61) if allKH ’s are measured inZ, and one neglects Pauli errors] therefore

implements a single logical qubit line, encoded in two qubits in correlation space. By
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removing the Hadamard gate fromKV , we obtain a 1-D cluster state encoded in two

qubits which is thus capable of implementing any one-qubit operation on the logical

qubit; in particular, this includes intialization and read-out. We thus define the tensor

##GG
GG

K̃V [s]

;;wwww

##GG
GG;;wwww

=
$$JJJJ

COPY† A[s] COPY

##HH
HH

H

;;vvvvv

::tttt

. (1.76)

Then, the toric code state (1.61) withKV replaced byK̃V is universal for MBQC:

Initialization, one-qubit operations, and read-out are done exacly as in the 1-D cluster

state. The logical qubits are decoupled up toZ by-product operators in correlation space

by measuring theKH tensors in theZ basis. TheZ by-products in correlation space

correspond toZ errors on the encoded logical qubits and thus can again be dealt with as

in the cluster. In order to couple two logical qubits, we measure aKH tensor in theY

basis and obtain aZZ controlled phase gate in correlation space, which translates to the

same gate on the logical qubits. Note that this model has the additional feature that as

as many controlled phases (between nearest neighbors) as desired can be implemented

simultaneously.

In the light of the discussion on the initialization of the first scheme, one might see

similarities between the two schemes, since in both cases the information is effectively

encoded in pairs of qubits. Note however that in the first scheme, the information is

stored in the parity of the two qubits, and the full4-dimensional space is being used; the

reason for this encoding came from the properties of theKH tensor used as a map in hor-

izontal direction. In contrast, the second scheme only populates the2-dimensional even

parity subspace, and the qubit is rather stored in two copiesof the same state; finally,

the encoding is motivated by the properties of theKV tensor as a map on correlation

space in horizontal direction.

1.3.3 Weighted graph states

In this section, we will consider instances ofweighted graph states[31, 54] forming

universal resources. To motivate the construction, recallthat the cluster state can be

47



1.3 Novel resource states

Figure 1.4: Weighted graph state as a universal resource. Solid lines correspond to edges
that have been entangled using phase gates with phaseφ = π, dotted lines correspond
to edges entangled with phase gates withφ = π/2. This shows that one can replace
some edges with weakly entangled bonds.

prepared by applying a controlled-phase gate

P (φ) = |0, 0〉〈0, 0|+ |0, 1〉〈0, 1|+ |1, 0〉〈1, 0|+ eiφ|1, 1〉〈1, 1|, (1.77)

with phaseφ = π between any two nearest neighbors of a two-dimensional lattice of

qubits initially in the state|+〉. If one wants to physically implement this operation

usinglinear optics[32], one encounters the situation that the controlled phase gate can

be implemented only probabilistically, with the probability of success decreasing asφ

increases. It is hence natural to ask whether one can build a universal resource using

gatesP (φ), 0 < φ < π, in order to minimize the probability of failure5

Translationally invariant weighted graph states

Expanding the discussion presented in Ref. [6], we treat theweighted graph state shown

in Fig. 1.4. A tensor network representation of these statescan be derived along the

same lines as for the original cluster in Section 1.2.3. Set|i〉 := 2−1/2(|0〉 + i|1〉). The

5Alternative models with edges resulting from commuting gates with non-maximally entangling
power can possibly also be constructed by exploiting ideas of non-local gates that are implemented with
local operations and classical communication [25, 26, 33, 111].
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relevant tensors are given by

// A[0]

ffLL

//

88rr

88rr
ffLL

= |+〉ru |+〉lu |+〉r〈0|ld〈0|rd〈0|l, (1.78)

// A[1]

ffLL

//

88rr

88rr
ffLL

= |i〉ru |i〉lu |−〉r〈1|ld〈1|rd〈1|l. (1.79)

Indices are labeledru for “right-up” to ld for “left-down”. The boundary conditions are

|0〉 for theru, lu, r-directions;|+〉 otherwise.

We will first describe how to realize isolated evolutions of single logical qubits.

Again the strategy will be to measure the sites of one horizontal line of the lattice in the

X-basis and all vertically adjacent systems in theZ-basis. The analysis of the situation

proceeds in perfect analogy to the one given in Section 1.2.5. One obtains

A[Zi−1,u] A[Zi+1,u]

// A[Xi]
TT jj

//

A[Zi−1,d]
jj

A[Zi+1,d]
TT

= HS2xi+zi, (1.80)

where

zi = zi−1,u + zi−1,d + zi+1,u + zi+1,d, (1.81)

andS := diag(1, i) denotes theπ/4 gate.

The operatorsH andS generate the 24-element single qubit Clifford group. Fol-

lowing the approach of Section 1.3.1, we take this as the model’s by-product group.

Now choose some phaseφ. Re-doing the calculation which led to Eq. (1.80), where

we now measure in the{|0〉±eiφ|1〉}-basis instead ofX on the central node, shows that

the evolution of the correlation space is given byS(φ), up to by-products. In complete

analogy to Section 1.3.1, we see that the model allows for therealization of arbitrary

SU(2) operations.

How to prepare the state of the correlation system for a single horizontal line and

how to read read it out has already been discussed in Section 1.2.3. Hence the only

piece missing for universal quantum computation is a singleentangling two-qubit gate.

The schematics for a controlled-Z gate between two horizontal lines in the lattice

are given below. We implicitly assume that all adjacent sites not shown are measured in
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theZ-basis,
// A[X] A[X] A[X] //

A[Y ]

QQQQ mmmm

// A[X]
mmmm

A[X] A[X]

QQQQ
//

. (1.82)

The measurement scheme realizes a controlled-Z gate, where the correlation system of

the lower line carries the control qubit and the upper line the target qubit.

In detail one would proceed as follows: first one performs theX-measurements on

the sites shown and theZ-measurements on the adjacent ones. If any of these measure-

ments yields the result “1”, we apply aZ-measurement to the central site and restart the

procedure three sites to the right. This approach has been chosen for convenience: it

allows us to forget about possible phases introduced by other measurement outcomes.

Still, the “correct” result will occur after a finite expected number of steps, so the over-

head caused due to this simplification is only linear. It is also not hard to see that most

other outcomes can be compensated for – so for practical purposes the scheme could be

vastly optimized.

Now assume that all measurements yielded “0”. Then aY -measurement is per-

formed on the central site, obtaining the resulty. As we did in Section 1.3.1, we assume

that the (lower) control line is in the basis state|c〉, for c ∈ {0, 1}. The contraction of

the lower-most three tensors gives

|c〉 A[X]

OO

A[X] A[X] //

OO

(1.83)

= Sc|+〉luSc|+〉ruH|c〉r,

where as beforeS = S(i) = diag(1, i). We plug this result into theA[Y ] tensor:

A[Y ]

ggOOOOOO
77oooooo

Sc|+〉
ssss

Sc|+〉
KKKK

(1.84)

= |+〉lu |+〉ru + (−1)c+yi(S ⊗ S)|+〉lu |+〉ru.
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Figure 1.5: Weighted graph state where the gate is achieved by appropriately bringing
two wires together in a “rerouting process”.

Lastly, forx ∈ {0, 1},

// A[X] A[X] A[X] //

Sx|+〉 Sx|+〉
= HZx. (1.85)

Hence, the evolution on the upper line is

H(1+ (−1)c+yiZ) ∝ HSZy+c, (1.86)

equivalent toZc up to by-products. We arrive hence at the following conclusion:

Observation 7(Non-maximal entangling power). Universal resouces may be prepared

using commuting gates with non-maximal entangling power.

Rerouting

we will consider a second weighted graph state to exemplify yet another novel ingre-

dient that one can make use of in measurement-based quantum computation: One can

think of quantum information being transported in the correlation system of some sys-

tems on the lattice forming “wires”, in a way that gates are realized by bringing the

“wires” together. This is an element that is not present in the original one-way com-

puter. The subsequent example of a resource state has not been chosen for its plausibil-

ity in the preparation in a physical context, but in a way suchthat this idea of “rerouting

quantum information” can very transparently be explained,see Fig. 1.5.
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1.3 Novel resource states

The resource that we think about is defined by tensors that arefully translationally

invariant in one dimension, and has period two in the orthogonal dimension,

A A A A A

B B B B B

A A A A A

. (1.87)

This is, we have two kinds of tensors: One set is given by

// B[0]

OO

//
OO

= |+〉r|+〉u 〈0|l〈0|d, (1.88)

// B[1]

OO

//
OO

= |−〉r|i〉u 〈1|l〈1|d (1.89)

whereas the other one is nothing but the familiar one for a 2-Dcluster state as in Eqs.

(1.88, 1.89), with boundary conditions

|L〉 = |D〉 = |+〉, |R〉 = |U〉 = |1〉. (1.90)

The resulting state is hence again a weighted graph state, where in one dimension every

second edge is replaced by an edge prepared using a gate with non-maximal entangling

power. Then, it is not difficult to see that, again withx, zr, zu, zd, zl ∈ {0, 1},

A[Zu]

// B[X] //

A[Zd]

= HZx+zdSzu, (1.91)
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and

B[Zu]

// A[X] //

B[Zd]OO

= HZx+zuSzd. (1.92)

Similarly, we can consider several corner elements in this resource. We obtain

// A[X]

OO

A[Zr]

B[Zd]

= HZx+zdSzu , (1.93)

and similarly

��
A[Zl] // A[X] //

B[Zd]

= (HSH)zdXzl+x, (1.94)

A[Zu]

// B[X]
��

B[Zr]
= Zx+zrSzu, (1.95)

A[Zu]

B[Zl] B[X] //
OO

= HZx+zu+zl(SZ)zu , (1.96)

where we have again made use of the convention thatx = 0 corresponds to|+〉 and

x = 1 to |−〉. We need one more ingredient to the scheme, this is

B[Zl] B[0]

OO

//
OO

= |+〉r|+〉u〈0|d, (1.97)

B[Zl] B[1]

OO

//
OO

= |−〉r|i〉u〈1|d, (1.98)
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and

// A[0]

OO

A[Zr]OO
= |+〉u〈0|l〈0|d, (1.99)

// A[1]

OO

A[Zr]OO
= (−1)zr |−〉u〈1|l〈1|d. (1.100)

Putting these ingredients, and following an argument similar to the last subsection, we

find that up to Clifford group by-products, we can transport along the horizontal lines

for both kinds of local tensors. We can also use the corner pieces to reroute as depicted

in Fig. 1.5, and bring routes together forming a “gate” imprinted in the lattice, actually,

a controlled-S gate.

It should be noted that it is not obviously possible to faithfully transport one qubit

of information vertically through the resource. Loosely speaking, the entanglement

between a site of type B and the site of type A directly above itis non-maximal (this

is indicated by dotted lines in Fig. 1.5). Interestingly, one can still perform a (non-

maximally entangling) non-local gate over this connection.

Observation 8(Rerouting). Gates in measurement-based quantum computation can be

achieved by means of appropriate routing of quantum information in the lattice.

1.3.4 A qubit resource with non-vanishing correlation functions

We will very briefly sketch a matrix product state on a 1-D chain of qubits, which i)

exhibits non-vanishing two-point correlation functions,ii) allows for any unitary to be

realized in its correlation system and iii) can be coupled toa universal 2-D resource in

a way very similar to the AKLT-type example (Section 1.3.1).The discussion will be

somewhat superficial – however, given the extensive discussion of other models above,

the reader should have no problems filling in the details.

Choose an integerm > 2 and define

G := exp(iπ/mX). (1.101)
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Up to a constant,G is am-th root ofX. The state is defined by the following relations:

// A[s] // = |s〉r〈s|lG, (1.102)

and

|L〉 = G†|+〉, |R〉 = |+〉. (1.103)

The two-point correlation functions for measurements on this state never vanish

completely. Indeed, in Appendix 1.6.1 it will be shown that

〈ZiZi+k〉 − 〈Zi〉 〈Zi+k〉 = 2ξk, (1.104)

whereξ := 2 sin2(π/m) − 1.

ForX-measurements, we find

// A[X] // = ZxG (1.105)

Pursuing the strategy introduced in Section 1.3.1, we set the by-product group toB =

〈Z,G〉, so the group generated byZ andG. One can easily verify thatB is indeed a

finite group, equivalent to thedihedral groupof order2m.

It is now straight-forward to check that i) measurements in the computational basis

can be used for preparation and read-out (as in Section 1.2.3), ii) general local unitaries

can be realized by means of measurements in the equatorial plane of the Bloch sphere

(as in Section 1.3.1) and iii) a 2-D resource is obtainable ina fashion similar to the one

presented in Section 1.3.1. With similar methods, one can also find qubit resource states

that have a local entropy smaller than unity.

1.3.5 Percolation ideas to make use of imperfect resources

For completeness, we mention yet another kind of resource: This is an imperfect cluster

state where some edges are missing. Such a setting is clearlyrelevant in a number of

physical situations: If the underlying quantum gates building up the cluster state are

fundamentally probabilistic, such as in linear optical architectures, then one very natu-

rally arrives at this situation when one aims at minimizing the need for feed-forward. A
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similar situation is encountered in cold atoms in optical lattices, when in a Mott state

exhibiting hole defects some atoms are missing. We do not present details of such ar-

guments, which have been considered in Ref. [68], based on ideas ofedge percolation

and renormalization [44]. We merely state the result for completeness. Note also that

results that may be similar to these ones have been announcedin Ref. [109].

We consider the setting where one starts from a 2-D or 3-D cubic lattice of sizen×n.

Two neighboring vertices on the lattice are connected with an edge with probabilityp.

The stochastic variables deciding whether or not an edge is present are assumed to be

uncorrelated. Ifp > p2 = 1/2 holds, then it is not difficult to see that one can extract

a 2-D renormalized lattice of smaller size: This means that one can find a function

n 7→ m(n), such that one arrives at a cubicm(n) × m(n) array almost certainly as

n → ∞, with the following property: Within each of the elements ofthis array, there

is a central site that is connected to the central site of the neighboring array. Since all

the additional sites can be removed by means ofZ-measurements, we can treat this

resource effectively as a 2-D cluster state of dimensionm(n) × m(n), and refer to

this as aperfect sublattice. This state will not necessarily be exactly a cluster state,

as it may contain vertices having a vertex degree of three, but which will nevertheless

function as a graph state resource just as the cluster state does (for details, see Ref. [68]).

Also,n/m(n) is arbitrarily close to being linear inn asymptotically. However, an even

stronger statement holds:

Observation 9 (Percolation). Wheneverp > p3 = 0.249, for anyε > 0, one can find

a functionn 7→ m(n) with the following property: Starting from a sublattice of a3-

D cubic lattice of sizen × n × 2n/m(n), one can almost certainly prepare a perfect

sublattice of sizem(n) ×m(n). The asymptotic behavior ofm can be chosen to satisfy

n/m(n) = O(nε). (1.106)

That is, with an overhead that is arbitrarily close to the optimal scaling, one can ob-

tain a perfect resource state out of an imperfect one, even ifone is merely above the per-

colation threshold for a three-dimensional lattice, and not only for the two-dimensional

lattice, see Fig. 1.6. The latter argument is technically more involved than the former,

for details, see Ref. [68]. This shows, however, with methods unrelated to the ones con-
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Figure 1.6: Cubic lattice of a graph state corresponding to the situation where some
edges are missing in a cluster state. If the probabilityp of having an edge is sufficiently
high the processes independent, then a renormalized perfect sublattice can be found al-
most certainly, giving rise to a cluster state of smaller size. If p > p2 = 1/2, wherep2 is
the percolation threshold for edge percolation in 2-D cubiclattices, then a renormalized
lattice can be found almost certainly. Interestingly, evenif 1/2 > p > p3, p3 = 0.249
denoting the percolation threshold in 3-D, one can almost certainly construct a perfect
sublattice, using an overhead that is arbitrarily close to being quadratic.

sidered primarily in the present work, that also random aspects in the resource as such

can be dealt with.

1.4 One-way computation using encoded systems

In the final section of this work, we will show that one can find resource states for

MBQC that differ substantially from the cluster in various entanglement properties. This

will be done by encoding each system of a resource into several physical particles. We

will not develop any new computational models and make no useof the computational

tensor network formalism introduced before. The study of encoded resource states was

initiated in Ref. [6] and later pursued more systematicallyin Ref. [107].

More concretely, the following statements will be proved:

Observation 10(Resources with weak capabilities for state preparation). There exists

a family of universal resource states such that

• The local entropy of entanglement is arbitrarily small,

• The localizable entanglement is arbitrarily small

and, more strongly,
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• The probability of succeeding in distilling a maximally entangled pair out of the

resource is arbitrarily small, even if one does not a priori fix the two sites between

which the pair will be established.

In particular, the resource cannot be used as a state preparator.

We start from a cluster state vector onn× n systems, denoted by|Cln×n〉, referred

to as logical qubits. As in Ref. [6], we want to “dilute” the cluster state, i.e. encode it

into a larger system, by means of invoking the codewords

|0̃〉 := |0〉⊗k, |1̃〉 := |Wk〉 (1.107)

for some parameterk. The argument relies only on the choice of|Wk〉 as a code word in

that we focus on its implications on the localizable entanglement, and for that argument,

the state vector|Wk〉 has the desired properties of small local entropy and permutation

invariance. However, for encoded one-way computation to bepossible, any state vector

orthogonal to|0〉⊗k may be taken, compare also Ref. [107]. Every qubit of the cluster

is subjected to the encoding operation

V := |0̃〉〈0| + |1̃〉〈1| (1.108)

yielding thediluted cluster|Dn,k〉. A set of physical qubits corresponding to one clus-

ter bit will be called ablock. As before, by alocal measurement schemewe mean a

sequence of adaptive local projective measurements, localto the physical systems.

Let us first show again in more detail that such an encoding constitutes no obsta-

cle to universal quantum computation. Each of the code wordsis orthogonal, and for

computation to be possible, we need to do local dichotomic measurements in the logi-

cal space. By Ref. [118], any two pure orthogonal multi-partite states onk qubits can

be deterministically distinguished using LOCC. By making use of the construction of

Ref. [118], this can be done by an appropriate ordered sequence of adapted projective

measurementsπ1 ⊗ · · · ⊗ πk on the sites of each codeword, giving rise to an arbitrary

projective dichotomic measurement with Kraus operators

A1 := |ψ〉〈ψ|, A2 := |ψ⊥〉〈ψ⊥| = 1− |ψ〉〈ψ| (1.109)
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in the logical space,|ψ〉 = α|0〉 + β|1〉 and|ψ⊥〉 = −β∗|0〉 + α∗|1〉. Hence, one can

translate any single-site measurement on a cluster state into an LOCC protocol for the

encoded cluster. This shows that|Ψ〉 is universal for deterministic MBC. This is the

argument of Ref. [6] (see also Ref. [107] for a more detailed and extensive discussion

on one-way computing based on encoded systems).

In the following we are going to show in more detail that despite this property, we

are heavily restricted to use this resource to prepare states with a significant amount

of entanglement between two constituents. In fact, we can not even distill a perfect

maximally entangled qubit pair beyond any given probability of success. This means

that these states are universal resources, but on the level of physical systems utterly

useless for state preparation. The given resource is, needless to say, not meant as a

particularly feasible resource. Instead, we aim at highlighting to what extent as such the

entanglement properties can be relaxed, giving a guidelineto more general settings.

Note first that the localizable entanglementEL in these resources can easily be

shown to be arbitrarily small: The entropy for a measurementin the computational

basis readsHb(3/(4k + 2)), whereHb : [0, 1] → [0, 1] is the standard binary entropy

function. Using the concavity of the entropy function, we find

EL(|Dn,k〉〈Dn,k|) ≤ Hb(3/(4k + 2)), (1.110)

such thatlimk→∞EL(|Dn,k〉〈Dn,k|) = 0. This means that for two fixed sites, the rate

at which one can distill maximally entangled pairs by performing measurements on the

remaining systems is arbitrarily small.

This can be seen as follows. We will aim at preparing a maximally entangled state

between any two constituents of two different blocks. It is easy to see that within the

same block, the probability of success can be made arbitrarily small. We hence look

at a LOCC distillation scheme, ameasurement-based scheme, taking the inputρ and

producing outputs

ρ 7→ KjρK
†
j (1.111)

with probability pj = tr(KjρK
†
j ), j = 1, . . . , J . This corresponds to a LOCC pro-

cedure, where each of the measurements may depend on all outcomes of the previous
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local measurements. Let us assume that outcomes labeled1, . . . , S for someS ≤ J are

successful in distilling a maximally entangled state.

We start by exploiting the permutation symmetry of the code words. Choose a block

i of |Dn,k〉. Assume there exists a measurement-based scheme with the property that

with probability p, the scheme will leaveat least onesystem of blocki in a state of

maximal local entropy. Then there exists a scheme such that with probability p, the

scheme will leavethe firstsystem of blocki in a state of maximal local entropy. At

some point of time the scheme is going to perform the first measurement on thei-th

block. Because of permutation invariance, we may assume that it does so on thek-th

system of the block. The remaining state is still invariant under permutations of the

first k − 1 systems. Hence there is no loss of generality in assuming that the next

measurement on thei-th block will be performed on thek − 1-st system. If the local

entropy of any of the unmeasured systems is now maximal, thenthe same will be true

for the first one – once again, by permutation invariance.

Also, it is easy to see that the probabilityp that a measurement-based scheme will

leave any system of blocki in a locally maximally mixed state is bounded from above

by

p < 2/k. (1.112)

Let p1 be the initial probability of obtaining the outcome|1〉 for aZ measurement on

this qubit,p1 = |〈1|Dn,k〉|2. Clearly,

p1 < 1/k. (1.113)

We consider now a local scheme potentially acting on all qubits except this distinguished

one, with branches labeledj = 1, ..., J , aiming at preparing this qubit in a maximally

mixed state. Letps be the probability of the qubit ending up in a locally maximally

mixed state. In case of success, so in case of the preparationof a locally maximally

entangled state, we have thatp1(s) = 1/2, in case of failurep1(f) ≥ 0. Combining

these inequalities, we get

1/k > p1 = psp1(s) + (1 − ps)p1(f) = ps/2. (1.114)
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We can hence show that there exists a family of universal resource states such that the

probability that a local measurement scheme can prepare a maximally entangled qubit

pair (up to l.u. equivalence) out of any element of that family is strictly smaller than

ε > 0.

Let pi be the probability that a site of blocki will end up as a part of a maximally

entangled pair. This means that when we fix the procedure, andlabel as before all

sequences of measurement outcomes withj = 1, ..., J , one does not perform measure-

ments on all constituents. LetI denote the index set labeling the cases where somewhere

on the lattice a maximally entangled pair appears, so the probability p for this to happen

is bounded from above by

p ≤
∑

i∈I

pi. (1.115)

According to the above bound,pi < 2/k, giving a strict upper bound ofp ≤ 2n2/k for

the overall probability of success. The family

|Ψn〉 := |Dn,k(n)〉, (1.116)

for k(n) := 2ε−1n2 is clearly universal, involves only a linear overhead as compared to

the original cluster state and satisfies the assumptions advertised above.

1.5 Conclusions

In this work, we have shown how to construct a plethora of novel models for measure-

ment-based quantum computation. Our methods were taken from many-body theory.

The new models for quantum computation follow the paradigm of locally measuring

single sites – and hence abandoning any need for unitary control during the computa-

tion. Other than that, however, they can be quite different from the one-way model. We

have found models where the randomness is compensated in a novel manner, the length

of the computation can be random, gates are performed by routing flows of quantum

information towards one another, and logical information may be encoded in many cor-

relation systems at the same time. What is more, the resourcestates can in fact be

radically different from the cluster states, in that they may display correlations as typi-

61



1.6 Appendix

cal in ground states, can be weakly entangled. A number of properties of resource states

that we found reasonable to assume to be necessary for a stateto form a universal re-

source could be eventually relaxed. So after all, it seems that much less is needed for

measurement-based quantum computation than one could reasonably have anticipated.

This new degree of flexibility may well pave the way towards tailoring computational

model towards many-body states that are particularly feasible to prepare, rather than

trying to experimentally realize a specific model.

1.6 Appendix

1.6.1 Computing correlations functions

What is the value of the two-point correlation function〈ZiZi+k〉 − 〈Zi〉 〈Zi+k〉? In this

work, we have only introduced the behavior of the correlation system when subject

to a local measurement of a rank-one observable. However, inorder to evaluate the

correlation function, we need “measure the identity” on theintermediate systems or,

equivalently, trace them out. Without going into the general theory [35], we just state

that tracing out a system will cause the completely positivemap

Φ : ρ 7→
∑

i

A[i]ρA[i]† (1.117)

to act on the correlation system.

For the cluster state, using the fact that the bases{|0〉, |1〉} and{|+〉, |−〉} are un-

biased, we can easily show thatΦ2 is the completely depolarizing channel, sending any

ρ to 2−11. This causes any correlation function to vanish fork > 2. How does the

situation look like for the state vector defined by Eq. (1.102)? We compute:

Φ : ρ 7→
∑

s=0,1

tr(ρG|s〉〈s|G†) |0〉〈0|, (1.118)

so fors ∈ {0, 1}:

Φ(|s〉〈s|) = p|s〉〈s| + (1 − p)|s̄〉〈s̄| (1.119)
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where0̄ := 1, 1̄ := 0 andp := |〈0|G|0〉|2 = sin2(π/m). In other words: when acting

on the computational basis,Φ implements a simple two-state Markov process, which

remains in the same state with probabilityp and switches its state with probability(1−
p). Now, 〈ZiZi+k〉 equals+2 if an even number of state changes occurred and−2 if

that number is odd. So for the expectation value we find

〈ZiZi+k〉 = 2
k+1
∑

l=0

(

k

l

)

pk−l(1 − p)k(−1)k (1.120)

= 2(2p− 1)k = 2(2 sin2(π/m) − 1)k.

1.6.2 Hamiltonian of the AKLT-type state

In Section 1.3.1 we discussed an AKLT-type matrix product state. It was claimed that

the state constitutes the unique ground-state of a spin-1 nearest neighbor frustration free

gapped Hamiltonian. It must be noted that in this work, we have not introduced the

technical tools needed to cope with boundary effects at the end of the chain. There are

at least three ways to make the above statement rigorous: a) treat the statement as being

valid asymptotically in the limit of large chains, b) work directly with infinite-volume

states [35], or c) look at sufficiently large rings with periodic boundary conditions [84].

Once one chooses one of the options outlined above, the proofof this fact proceeds

along the same lines as the one of the original AKLT state, as presented in Example 7

of Ref. [35] (see also Ref. [84]). Indeed, using the notions of Refs. [35, 84] one verifies

that

Γ2 : B(C2) → C2 ⊗ C2, (1.121)

B 7→∑3
i1,i2=1 tr(BA[i1]A[i2])|i1, i2〉 (1.122)

is injective. Further, ifG2 := range Γ2, it is checked by direct computation thatdim(G2⊗1 ∩ 1⊗ G2) = dimG2. All claims follow as detailed in Refs. [35, 84].

63



1.6 Appendix

In particular, leth be a positive operator supported on the vector space spannedby:

{|1, 1〉, |2, 2〉,−(1/4)|0, 0〉+ |1, 2〉 + |2, 1〉, (1.123)

−(1/
√

8)|0, 0〉 + |0, 2〉 + |2, 0〉,
−(1/

√
8)|0, 0〉 + |0, 1〉 + |1, 0〉}.

SetH :=
∑

i τi(h), whereτi translates its argumenti sites along the chain. ThenH is

a non-degenerate, gapped, frustration free, nearest neighbor Hamiltonian (calledparent

Hamiltonianin Ref. [84]), whose energy is minimized by the state at hand.
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Computational quantum wires as prim-

itives in measurement-based schemes
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2.1 Introduction

In this chapter, we aim to give a complete classification of a natural primitive of mea-

surement-based computation. Our approach is best motivated by considering the cluster

state. The state comes in two versions, defined on a one-dimensional or on a two-

dimensional lattice respectively. In order to prove universality of the cluster, it is expe-

dient to first understand how one-dimensional states can be used to transport and process

one logical qubit. Then, in a second step, one proves that these one-dimensional “com-

putational wires” can be coupled in a suitable fashion, to form a fully universal 2-D

resource.

= +

Figure 2.1: In this chapter, we are concerned with universalresource states which can
be decomposed states into horizontal chains of quantum systems (representing logical
qubits) and couplings between these chains (mediating non-local logical interactions).

We will turn this convenient property into an axiom. All states considered below

can be prepared in a two-step process (see Fig. 2.1). First, one entangles horizontal

lines of physical systems. Each of these lines will represent a logical qubit during

the measurement-based calculation. We are interested in states of these chains which

are “universal”. Roughly, this means that by means of local measurements alone, one

should be able to transport and process one qubit worth of quantum information. This

concept – which is somewhat stronger than demanding the lines have maximal localiz-

able entanglement [88] – will be made more precise below.

We will refer to such states on a 1-D chain of quantum systems as computational

quantum wires. At this step, we actually aim for complete generality: we will character-

ize all qubit computational wires which can be built up by nearest-neighbor entangling

operations.

In a second step, it will be shown how to couple several wires together, in order

to form a truly universal state on a 2-D lattice. The couplingwill be facilitated by a

66



2.1 Introduction

controlled-phase type operation.

For simplicity, this paper focuses on qubits and translationally invariant states. Nei-

ther requirement is, however, crucial for the techniques detailed below.

2.1.1 Technical setup

The main mathematical tool used in this chapter are matrix product states (MPS), as

introduced in detail in Chapter 1. Some further technical details are discussed in Sec-

tion 2.4.2.

All states we will be concerned with are of the form

|Ψn〉 =

1
∑

x1,...,xn=0

〈R|A[xn] . . . A[x1]|L〉 |x1, . . . , xn〉. (2.1)

for two 2 × 2-matricesA[0/1] and appropriate boundary conditions|L〉, |R〉.
We recall the basic tenet of Chapter 1. To that end, let

|φ1〉 ⊗ · · · ⊗ |φn〉

be a product vector. Set

A[φi] = 〈φi|0〉A[0] + 〈φi|1〉A[1]. (2.2)

It is elementary to verify that

(〈φ1| ⊗ . . . 〈φn|)|Ψ〉 = 〈R|A[φn] . . . A[φ1]|L〉. (2.3)

One can hence explicitly compute the overlap of|Ψn〉 with any local projection operator

and therefore the probability of obtaining the associated outcome when performing local

projective measurements. Now, if one performs a projectivemeasurement on theith site

and obtains a measurement outcome corresponding toφi, then one causes the operator

A[φi] to act on the correlation space in Eq. (2.3). Depending on thestate and on the

measurement basis, this operator might be unitary. Hence, alocal measurement on an

MPS may be understood as giving rise to a “formal single-qubit computation in the
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correlation space”. As detailed Chapter 1, this formal intuition can be made precise:

measurement-based computation takes place in correlationspace.

So in order to evaluate the computational usefulness of a given state|Ψn〉, one should

derive its MPS representation and then check which unitary operations can be realized in

correlation space by means of appropriate local measurements. This is the programme

carried out below.

2.2 Computational quantum wires

By acomputational wirewe mean a family of pure states|Ψn〉, where

(i) |Ψn〉 is defined on a 1-D chain ofn qubits,

(ii) |Ψn〉 is preparable from the product state

|0n〉 = |0〉 ⊗ · · · ⊗ |0〉 ∈ (C2)⊗n

by the sequential action of a nearest-neighbor unitary gateU :

|Ψn〉 = U (n,n−1) . . . U (3,2) U (2,1) |0n〉, (2.4)

(iii) in the limit of largen, the entropy of entanglement between the left half and the

right half of the chain approaches one ebit.

These axioms may seem surprisingly weak. Indeed, in the introduction, we loosely

characterized computational wires as states with the powerto “transport and process

one logical qubit by means of local measurements”. It is one central result of this work

that any state fulfilling(i) – (iii) is automatically useful for information processing, as

made precise below.

Note that the 1-D cluster states|Cln〉 are computational wires. In this case, the

entangling nearest-neighbor unitaryU is given by the controlled-Z gate.

2.2.1 Summary of results

The following main results are obtained in this chapter.
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• Discounting local basis changes, there is a three-parameter family of computa-

tional wires, which can be explicitly parameterized.

• For any wire, there is a one-parameter set of measurement bases, such that the

operation implemented on correlation space is unitary, irrespective of the mea-

surement outcome.

• Except for a set of measure zero, all computational wires allow for the implemen-

tation of any unitary transformation∈ SU(2) in its correlation space.

• A quantum wire may be specified by(i) an “always-on operation”W ∈ SU(2),

which acts on the correlation space after any step, independent of the basis chosen

or measurement outcome obtained, and(ii) a “by-product angle”φ, specifying

how sensitive the resource is to the inherent randomness of quantum measure-

ments.

• There are “universal” computational wires, which are locally arbitrarily close to

a pure state. Previously explored resources with low local entanglement were

obtained by using non-local encodings (see Chapter 1) of maximally entangled

resource states. In the case of the states considered here, the effect is inherent.

• One-dimensional computational wires may be easily coupledusing controlled-Z

type entangling operations. Non-local gates between the logical qubits carried in

each 1-D strand can be implemented by means of local measurements.

2.2.2 Characterization of all computational wires

The first step is to realize that any computational wire automatically has a simple MPS

representation with bond dimension two. This is a convenient state of affairs: in the

previous chapter, we had to restrict generality by focusingon states with simple MPS

representations – here, this feature emerges naturally.

Lemma 11. If a state|Ψn〉 fulfills points (i), (ii) above, then it has an MPS representa-
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tion

|Ψn〉 (2.5)

=
∑

x1,...,xn=0,1

(

〈0|B[xn]A[xn−1] . . . A[x1]|0〉
)

|x1, . . . , xn〉,

whereA[0], A[1] are2 × 2-matrices andB[x] = |0〉〈x|.

Note that thenth qubit plays a special role in Eq. (2.5), thus breaking the transla-

tional invariance of the MPS representation found in Eq. (2.1). Physically, it is clear

that the final qubit is distinguished: it is the only site which does not occur as the in-

put ofU in Eq. (2.4). Fortunately, this inhomogeneity turns out to be irrelevant for our

computational scheme.1 We will hence ignore it in what follows.

Proof. SetU (i,j)
(k,l) = 〈i, j|U |k, l〉 and define

A[x]ij = U (x,i)
(j,0).

Then, using Eq. (2.4) and implying summation over repeated indices,

〈x1, . . . , xn|Ψn〉
= U (xn,xn−1)

(0,yn−1) . . . U
(x2,y2)

(0,y1) U
(x1,y1)

(0,0)

= A[xn−1]
xn

yn−1
. . . A[x2]

y2
y1
A[x1]

y1
0

= 〈0|(|0〉〈xn|)A[xn−1] . . . A[x1]|0〉
= 〈0|B[xn]A[xn−1] . . . A[x1]|0〉,

proving the claim.

As indicated before, local measurements in a basis{|φ〉, |φ⊥〉} can directly be in-

terpreted as a quantum computation in correlation space if the associated operators

A[φ], A[φ⊥] are unitary (up to normalization). For a general MPS, such a local basis

need not exist. For computational wires, however, this is always true as shown in the

1To make that claim manifest, one could measure out thenth qubit in the computational basis. Denote
the result of the measurement byx ∈ {0, 1}. The resulting state on sites1, . . . , n−1 has the homogeneous
form of Eq. (2.1), where〈R| = 〈0|B[x].
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next Lemma. This finding is a precise statement of the earlierclaim that wires are good

for the “transport of one logical qubit” in correlation space.

Lemma 12. Let |Ψn〉 be a computational wire. Then – after a suitable local basis

change – it admits an MPS representation as in Eq. (2.5), where

A[0] = sin γ U0, (2.6)

A[1] = cos γ U1

for some realγ and unitariesUi ∈ U(2).

Proof. Let A[0], A[1] be the matrices defining the MPS representation of|Ψn〉 as in

Lemma 11. By Section 2.4.2, Lemma 23 and Lemma 27, the channelÊ : ρ 7→ A[0]ρA[0]† + A[1]ρA[1]†

has Kraus operatorsA′[0/1] of the form given in Eq. (2.6). There exists a unitary matrix

V relating the two sets of Kraus operators:

sin γU0 = A′[0] = V 0
0A[0] + V 0

1A[1]

cos γU1 = A′[1] = V 1
0A[0] + V 1

1A[1].

By Eqs. (2.2,2.3),

A′[0] = A[V |0〉], A′[1] = A[V |1〉]

so that the primed matrices give the MPS representation of|Ψn〉 in the basis{V |0〉, V |1〉}.

The MPS representation of a state vector is not unique. In thefollowing, we use

various degrees of gauge freedom to identify the relevant set of parameters defining

computational wires.

We will make repeated use of theφ-phase gate

S(φ) = diag(e−iφ/2, eiφ/2) ∈ SU(2).
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Theorem 13. A computational wire is described by

• an “always-on evolution”W ∈ SU(2) and

• a “by-product rotation angle”φ ∈ R
in the sense that it allows for an MPS representation where

A[0] = 2−1/2W, (2.7)

A[1] = 2−1/2W S(φ).

What is more, there is no loss of generality in assuming thatW is of the form

W = ei sinα/2(sin βX+cos βZ) ∈ SU(2).

for suitableα, β ∈ R.

Proof. A matrix product state does not change when we conjugate bothdefining matri-

ces with the same unitary. With this realization in mind, andarguing as in Lemma 12,

the result follows from Lemma 25.

Equation (2.7) goes a long way towards understanding the structure of computa-

tional wires. Assume that we measure site by site in the computational basis. Then at

every step the operationW will be applied to the correlation system, irrespective of the

measurement outcome. We will refer toW as thealways-on operation. However, some

tribute must be paid to the random nature of quantum measurements. This comes in the

form of theby-productoperationS(φ), which acts on the correlation system in case the

“wrong” measurement outcome (“1”, instead of “0”) is obtained. It is remarkable that

this penalty is fully described by a single parameter: theby-product angleφ.

The cluster state serves as the paradigmatic example. Here,the always-on operation

isW = H, the Hadamard gate. The by-product angle isπ, so that a “wrong” measure-

ment outcome will cause an extraS(π) ∝ Z operation to be applied. Note thatH is

already in the form given in Eq. (2.29); withα = π andβ = π/4.

It turns out that there is a second normal form for computational wires, which is

equally insightful. Indeed, we have:
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Theorem 14. A computational wire is described by

• an “always-on evolution”W ′ ∈ SU(2) and

• a “bias parameter”γ ∈ R
in the sense that it allows for an MPS representation where

A[0] = sin γ W ′, (2.8)

A[1] = cos γ W ′ S(π).

What is more, there is no loss of generality in assuming thatW ′ is of the form

W ′ = ei sinα/2(sinβX+cos βZ) ∈ SU(2).

for suitableα, β ∈ R.

Proof. As in Theorem 13, employing Lemma 24.

The relationship between the by-product angle and the bias angle characteristic of

the two normal forms above is simplyφ = 4γ, as will be shown in Lemma 21.

From Theorem 14 we conclude that by measuring in an appropriate basis, we may

always assume that the by-product operator isS(π) ∝ Z, as is the case for the cluster

state. However, the probability of obtaining the one outcome or the other is no longer

1/2, but given bysin2 γ andcos2 γ respectively (see also Sec. 2.2.4). This is a remark-

able fact: when using a computational wire to process unknown quantum states by local

measurements, we must take care not to learn any informationabout the correlation sys-

tem, as this would obviously destroy the coherence of the process. For the cluster state,

it is manifestly true that no information is obtained, as thelocal measurements yield

completely random outcomes. The theory of more general computational wires shows

that “oblivious quantum information processing” by local measurements is not tied to

completely random outcomes.

Also, it becomes clear that in general computational wires,the local sites are not

maximally entangled with respect to the rest of the lattice.This phenomenon will be

explored quantitatively in Section 2.2.6.
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From now on, we will always assume that computational wires are in the “φ −W -

normal form” introduced in Theorem 13.

It remains to prove the converse of Theorem 13. Is it the case that there exists a le-

gitimate computational wire for every choice ofW,φ? In principle, the answer is “yes”.

There is one subtlety, however. As explained in Section 2.4.2, a matrix product state is

(asymptotically2) completely specified by the defining matricesA[0/1] independently

of the boundary conditions only if the channelÊ : ρ 7→ A[0]ρA[0]† + A[1]ρA[1]†

has a spectral gap. By Lemma 27,Ê fails to have a spectral gap if and only if eitherW ′

is diagonal orW ′ = X. In order to avoid technical difficulties, we will often exclude

this case from our analysis by invoking the following assumption.

Assumption 15. Assume that̂E has a spectral gap. Equivalently, assume thatW ′ is

neither diagonal nor equal toX.

Interestingly, it turns out that the wires excluded by this assumption would anyway

not allow us to implement arbitrarySU(2)-rotations on correlation space as shown in

Section 2.2.4. Hence, no relevant cases are lost.

Lemma 16. Let |Ψn〉 be an MPS of the form given in Eqs. (2.5,2.6). Under Assump-

tion 15, it holds that|Ψn〉 is a computational wire.

Proof. We have to verify properties(ii) and(iii) .

To construct a preparation procedure for the state, we reverse the first step of the

proof of Lemma 11 and define

U (x,i)
j,0 = A[x]ij.

This set of numbers can be completed to a unitary matrix if andonly if the jth column

U (x,i)
j,0 with elements labeled byx, i form an orthonormal system. But this can easily

2Many properties of computational quantum wires can easily be calculated explicitly in the limit
of long chains, when the boundary conditions cease to play any role. Fortunately, their influence is
suppressedexponentiallyin the distance from the boundary (see Section 2.4.2), so that the “asymptotic”
behavior becomes relevant even for relatively small chains.
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be checked:

∑

x,i

U (x,i)
j,0Ū

(x,i)
j′,0 =

∑

i

(

A[0]ijĀ[0]ij′ + A[1]ijĀ[1]ij′
)

= δj,j′ sin
2 β + δj,j′ cos2 β

= δj,j′,

having made use of the assumption thatA[0/1] are proportional to unitaries.

The mapÊ is clearly unital and it is gapped by assumption. So the fact that the

entropy of entanglement becomes maximal in the limit of largen is just the content of

Proposition 28.

2.2.3 Examples

Cluster state

The paradigmatic example of a computational wire is the cluster state. Note that in

the original definition of the cluster, one has to measure local sites in theX-eigenbasis

in order to transport information along the chain, whereas we have chosen to use the

computational basis for that purpose. Obviously, the two definitions differ only by the

local transformationH⊗n. It has already been mentioned that the parameters of the

cluster state

W = H, φ = π.

The by-product angleπ is the highest possible value.

The T -resource

Theπ/2-phase gateS(π/2) is sometimes denoted byT . It is of interest partly because

T andH generate a finite group: the 12-element single-qubit Clifford group. This fact

will help us to compensate the randomness of measurement outcomes, as detailed in

Section 2.2.7. We will refer to the computational wire with parameters

W = H, φ = π/2
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as theT -resource, the name referring to its by-product operator.

Superficially, theT -resource seems very close to the cluster state, differing from

the well-known state only in the by-product angle. However,there is an important

physical difference: the entropy of entanglement of a single site with respect to the rest

of the chain is not maximal! (Note that this does not contradict property(iii) of the

definition of a computational wire). We will prove this fact in Section 2.2.6, where the

entanglement of a single site as a function ofφ is made explicit. In any case, the fact

has a simple intuitive explanation. Note that unlikeS(π) ∝ Z, the gateS(π/2) = T

does not have the power to orthogonalize an input vector:

|〈ψ|T |ψ〉| > 0, ∀ |ψ〉.

Now consider a measurement of a given site in the computational basis. Because the

by-product operatorT is “close” to the identity, the state of the correlation system after

the measurement depends only “weakly” on the outcome. Henceany given site has only

“little power” to change the state on the remainder of the lattice. In other words: the

entanglement is low.

It is perhaps remarkable that universal transformations may be realized in the cor-

relation space of such a computational wire, even though anysingle measurement only

has a weak impact (this will be proved in Section 2.2.4).

Correlations

The following wire has been introduced in Chapter 1 to show that universal quantum

computation is possible even when the two-point correlators

〈Zi〉 〈Zi+k〉 − 〈Zi ⊗ Zi+k〉

between distant sites never vanish. The parameters are

W = eiπ/mX , φ = π.
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The absolute value of the correlation function above is given by (cos π
m

)k (c.f. Chap-

ter 1).

2.2.4 Operations on correlation space

In order toprocessinformation in the correlation space – rather than justtransportingit

– we need some freedom to choose which operation to apply. Let

|α(θ, ǫ)〉 = sin θ|0〉 + eiǫ cos θ|1〉

be a general state vector and consider the associated correlation space operation

A[α(θ, ǫ)] = sin θA[0] + eiǫ cos θA[1] (2.9)

= W
(

sin θ 1+ eiǫ cos θ S(φ)
)

.

Here, we have employed the normal form of Eq. (2.7). It is easyto see that the operation

in parenthesis (and henceA[α(θ, ǫ)]) is unitary if and only ifeiǫ = ±1.

Here, we are lucky twice. Firstly we have found that wheneverthere isonemea-

surement basis which allows for unitary transport, there isa one-parameter setof such

bases (corresponding the different values ofθ). Secondly, this one-parameter set is

closed under passing to the orthogonal measurement outcome

θ 7→ π/2 − θ, α 7→ α + π.

This observation is of sufficient interest to warrant the introduction of a new notation

(c.f. Ref. [29])

|0θ〉 := sin θ|0〉 + cos θ|1〉
|1θ〉 := cos θ|0〉 − sin θ|1〉

for the family of bases giving rise to unitary evolution.

Observation 17. For any computational wire, a measurement in any basis from the
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one-parameter set{|0θ〉, |1θ〉} induces a unitary evolution in correlation space.

We proceed to analyze the operatorsA[xθ]. Recall thatA[xθ] is justproportionalto

a unitary matrix: in general, its operator norm‖A[xθ]‖ is smaller than one. The norm

turns out to have a simple interpretation. Its square specifies the probability with which

the operation can be realized.

Lemma 18. In the limit of largen, the probability of obtaining the outcome|xθ〉 as a

result of a local measurement on a quantum wire is given by‖A[xθ]‖2.

Here, “in the limit of largen” means that the statement is true for sites far away

from the boundaries of the chain.

Proof. SettingS = |xθ〉〈xθ| in Eq. (2.39), we find that the relevant probability is given

by

tr
(ES(ρ∞)

)

= tr
(

A[xθ](1/21)A[xθ]
†
)

= ‖A[xθ]‖2.

Let us take a closer look at the operations

A[0θ] = 2−1/2W
(

sin θ1 + cos θS(φ)
)

.

The non-trivial bit is the operator in parenthesis

U(θ, φ) := sin θ1 + cos θS(φ).

Clearly,U(θ, φ) is a diagonal unitary with eigenvalues

λ± := sin θ + cos θe±iφ/2 =
(

sin θ + sin
φ

2

)

± i cos
φ

2
, (2.10)

visualized in Fig. 2.2.

Let

δ = arg(λ+), p = abs(λ+)2,
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Figure 2.2: Location of the eigenvaluesλ+, λ− of U(θ, φ) in the complex plane. One
can read off thatU(θ, φ) = c S(−2δ).

thenU(θ, φ) is proportional toS(−2δ) and can be implemented with probability of

success equal top. We may thus visualize the set of operations one can realize when

varying θ by drawing the trajectory ofλ+(θ, φ) in the complex plane. The result for

φ = π andφ = π/4 is shown in Fig. 2.3. Apparently, the trajectories are ellipses. This

can be verified explicitly:

(

Reλ+(θ, φ), Imλ+(θ, φ)
)T

= (sin θ + cos θ cosφ/2, cos θ sinφ/2)T

=





1 cosφ/2

0 sin φ/2









sin θ

cos θ



 . (2.11)

Varyingθ, the final equation describes the image of a circle under a linear transformation

(hence an ellipse).

The important lesson to learn is:

Observation 19. In any computational wire, anarbitrary phase gateS(δ) can be imple-

mented in a single step. The probability of success may depend onδ.

For the cluster state the corresponding result is well-known. Here, measuring in the

{|0θ〉, |1θ〉}-basis results in the operationHS(θ) on the correlation space. So in this

case, the correspondence between the angleθ of the measurement basis and the angle

79



2.2 Computational quantum wires

Figure 2.3: Trajectory of all operations forφ = π (circle) andφ = π/2 (ellipse). Every
pointc eiδ on the curve corresponds to the operationS(−2δ) which can be realized with
probabilityp = c2.

of the correlation space phase gateS(θ) is trivial. Also, the probability of success does

not depend on the phaseθ. The same situation clearly holds for general wires with

φ = π. In all other instances, one must resort to Eqs. (2.10,2.11)in order to work out

the relation betweenγ andθ.

One should take a note that the by-product operator

U(π/2 − θ, φ)U(θ, φ)†

does in general depend onθ. It is manifestly equal toS(φ) only for θ = 0.

Let us dis-regard the issue of randomness for a moment and seewhich unitary trans-

formations may be implemented in a computational wire afterseveral steps. Obviously,

that is the set of unitaries which can be written in the form

U = WS(δn)WS(δn−1) . . .WS(δ1) (2.12)

for somen. We claim that whenever Assumption 15 holds, allU ∈ SU(2) may be

approximated arbitrarily well by unitaries of the form in Eq. (2.12).

Proof. Let A be the closure of the set of unitaries of the form in Eq. (2.12). For any

ǫ > 0, there is ak ∈ N such that‖W k −W †‖ < ǫ. Hence bothS(δ) andWS(δ)W †

are inA. Recall thatSU(2) ≃ SO(3) and that any rotation can be written as a product

of three rotations about any two fixed distinct axes. ButS(δ) corresponds to a rotation
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about theZ-axis andWS(δ)W † rotates about a different one, as long as Assumption 15

holds.

It is easily seen that wires not fulfilling Assumption 15 do not allow for universal

operations in their correlation spaces. Indeed, ifW is diagonal, so isW U(θ, φ) for all

θ, φ. If, on the other hand,W = X, then all operations in Eq. (2.12) are elements of an

infinite dihedral group. Both situations corresponds to proper subgroups ofSU(2).

2.2.5 Preparation and read-out

A quantum computation consists of three steps: 1. preparation of the system in a known

state, 2. unitary evolution, and 3. readout of the result. Weknow how to implement the

second step in a computational wire, but have yet to address preparation and readout.

Recall the definition

|α(θ, ǫ)〉 = sin θ|0〉 + eiǫ cos θ|1〉

from Sec. 2.2.4. Forθ = π/4 andǫ = φ/2 + π one finds

A[α(π/4, φ/2 + π)] =
1

2
W
(1− eiφ/2S(φ)

)

=
1

2
W (1 − eiφ)|1〉〈1|,

which has rank one. Clearly, implementing a rank-one operator on correlation space is

equivalent to preparing it in the state proportional to the operator’s range (in this case

W |1〉). The operation associated with the orthogonal outcome

A[π/4, φ/2] =
1

2
W
(1+ eiφ/2S(φ)

)

=
1

2
W
(

2|0〉〈0| + (1 + eiφ)|1〉〈1|
)

,

has rank one if and only ifφ = π. Hence in the general case, the preparation procedure

may fail to set the correlation system to a definite state. In this case, a new attempt can

be started in the next step. The probability of failing to prepare the correlation system

successfully is exponentially suppressed in the number of trials.

81



2.2 Computational quantum wires

To prove that read-out is possible, we must show that one can physically decide

whether the correlation system is in one of two given orthogonal states|φ0〉, |φ1〉. This

is possible, where again the probability of failing is exponentially small in the number

of local sites measured.

Indeed, employing Eq. (2.42), the task is equivalent to distinguishing the two (asymp-

totically) orthogonal many-body vectors|Φ0〉 and|Φ1〉 by means of local measurements.

A well-known result [118] states that this is always possible deterministically.

For short wires, the states|Φ0/1〉 may fail to be orthogonal. However, by repeating

the computation several times if necessary, it is always efficiently possible to distinguish

the two cases.

As an example, consider theT -resource (c.f. Section 2.2.3) with boundary condition

|R〉 = |0〉. Assume that only one single site has not been measured and that we aim to

decide whether the correlation system is in the state|0〉 or |1〉. Applying Eq. 2.42 shows

that

|Φ0〉 = 2−1/2(|0〉 + |1〉), |Φ1〉 = 2−1/2(|0〉 − i|1〉).

These two states may be distinguished by means of unambiguous state discrimination

with a heralded probability of success of1/2 per trial.

2.2.6 Local properties

We can employ Eq. (2.40) to work out the reduced density matrix of a single site in a

computational wire. The results are

ρ = 1/2





1 cosφ/2

cosφ/2 1



 (2.13)

for states in the normal form of Theorem 13 and

ρ =





sin2 γ 0

0 cos2 γ



 (2.14)

for the normal form given in Theorem 14. Note that the respective always-on operations

W,W ′ do not affect the local properties of the state.
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As a quantitative measure of entanglement, we can compute the purity of a single

site as a function ofφ explicitly:

tr(ρ2) =
1

4
(3 + cosφ) = sin4 γ + cos4 γ

(see Fig. 2.4). An intuitive explanation for this behavior has been given in Section 2.2.3.

Figure 2.4: Purity of a local site as a function of the by-product angleφ.

Observation 20. Computational wires with arbitrarily low local entanglement exist.

The density matrices in Eqs. (2.13,2.14) allows us to work out the relationship be-

tween the two normal forms Theorem 13, Theorem 14 explicitly. Indeed, the matrix in

Eq. (2.13) is diagonal in the{|+〉, |−〉}-basis with eigenvalues

1/2 {1 + cos(
φ

2
), 1 − cos(

φ

2
)} = {cos2(

φ

4
), sin2(

φ

4
)}

We find:

Lemma 21. The two normal forms of Theorem 13 and Theorem 14 are related via the

relationγ = φ/4 and a basis change of the form

|0〉 7→ |+〉, |1〉 7→ eiα|−〉,

for a suitable phaseα.

2.2.7 Compensating randomness

Due to the presence of by-product operators, there is no way to control which exact

operation will be implemented on correlation space as a result of a local measurement.
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In order to give a scheme for universal computation, we must devise methods of dealing

with the inherent randomness of quantum measurements.

If the always-on termW and the by-product operatorS(φ) generate a finite group,

there is a simple and efficient possibility to cope with randomness. This method was

first introduced in Chapter 1 and will be sketched briefly below.

Define theby-productgroup to beB = 〈W,S(φ)〉. Measuring several consecutive

sites in the computational basis, we effectively implementa random walk on the finite

groupB on correlation space. This random walk will visit any element of B after a finite

expected number of steps.

Now assume we want to implement the operationS(ǫ) on correlation space. Sec-

tion 2.2.4 provides us with a way of finding an angleθ such thatA[0θ] = W S(ǫ). The

orthogonal outcome will causeA[1θ] = W S(ǫ′) to act on the correlation space. As-

sume the first outcome has been obtained. We proceed to measure the following sites in

the computational basis, which will implementW−1 ∈ B after a fixed expected number

of steps, leaving us withW−1WS(ǫ) = S(ǫ) as desired. In case of a measurement

outcome corresponding to|1θ〉, we also teleport the state forward untilW−1 appears on

correlation state. So we have effectively implementedS(ǫ′). One can than re-start the

protocol forS(−ǫ+ ǫ′).

By the above paragraph, one can implementS(ǫ) and any element ofB in a finite

expected number of steps. In particular, it is possible to perform S(ǫ) andWS(ǫ)W †.

But – as long asW is neither diagonal nor equal toX – these two families of unitaries

are enough to create anyU ∈ SU(2).

We have seen in Theorem 14 that for any given wire, the always-on operationW

and the by-product angleφ take on different values in different basis – if one allows for

general weightssin γ, cos γ for the defining matrices. So if a wire does not fulfill the

above criterion in a given basis, it may still be susceptibleto the finite group method by

passing to a different basis.

In particular, if a wire given in the normal form of Theorem 14fulfills the criterion

that〈W,S(π)〉 is finite, then the same is true for the one-parameter family of computa-

tional wires with the same always-on operationW but different bias-anglesγ.

This observation may be used to construct continuous families of computational
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wires in which randomness can be compensated. For example setting W = H with

arbitraryγ gives a one-parameter family of deformed cluster states with arbitrarily low

local entanglement.

2.3 A coupling scheme

Up to this point, we have analyzed computational wires as “measurement-based ana-

logues of a single qubit”. Naturally, all these results are only interesting as long as it is

possible to “couple wires together” to form a truly universal resource for measurement-

based computation. Fortunately, this can be done.

Here’s the physical recipe for coupling the two computational wires defined on sites

{1, 2, 3} and{5, 6, 7} respectively.

In the diagram below, let sites{1, 2, 3} and sites{5, 6, 7} belong to two computa-

tional wires. Assume that a further qubit in the state2−1/2(|0〉 + |1〉) has been placed

on site 4.
// 1 // 2 // 3 //

4

// 5 // 6 // 7 //

To entangle the resource, first perform a controlled-Z gate between sites2 and4. Then,

apply a controlled-Z ′ gate between4 and6. Here,Z ′ is aZ gate acting in the “prepara-

tion basis” (see Section 2.2.5) on site6:

Z ′ = U Z U †, U =
1√
2





1 1

eiφ/2 −eiφ/2



 .

We need to show that using local measurements, it is possibleto either de-couple

the wires – i.e. undo the entangling operations to recover the original wires, up to some

local corrections – or to implement a logical entangling gate between the correlation

systems.

De-coupling is actually trivial: just measure the central site 4 in the computational

basis. The two entangling operations above were both controlled unitaries: if the state

on the central site is|0〉, they act as the identity. If, on the other hand, site4 is in |1〉, a
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Z will be applied to site2 and aUZU † to site6. In particular, the controlled unitaries

commute with a measurement in the computational basis on thecentral site. So if that

measurement yields an outcome of|0〉, we just recover the original wires without any

modification. If the outcome is|1〉, local unitaries act on sites4 and6 – which can be

counter-acted by a mere change of basis for subsequent measurements.

We work out the tensor network representation of the state resulting from the entan-

gling operations. For system2, set

// A2[i] //
OO = A[i]l→r ⊗ 〈i|d,

for i ∈ {0, 1}. Likewise, for system4

A4[0]

OO

OO
= |+〉u 〈+|d, A4[1]

OO

OO
= |−〉u 〈−|d,

so that

A4[X]

OO

OO
= Zx.

Finally, for 6, we first transform into the basis

|ψ〉0 = U |0〉 = 1/
√

2(|0〉 + eiφ/2|1〉)

|ψ〉1 = U |1〉 = 1/
√

2(|0〉 − eiφ/2|1〉)

to obtain

// A6[ψ0]

OO

// = A[ψ0]l→r ⊗ |0〉u

=
(1

2
W (1 − eiφ)|1〉r〈1|l

)

⊗ |0〉u

=
(

W |1〉r〈1|l
)

⊗
(1

2
(1 − eiφ)|0〉u

)

,
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and, likewise,

// A6[ψ1]

OO

// = A[ψ1]l→r ⊗ |1〉u

=
(

W |0〉r〈0|l +
1

2
(1 + eiφ)W |1〉r〈1|l

)

⊗ |1〉u,
=

(

W |0〉r〈0|l) ⊗ |1〉u +
(

W |1〉r〈1|l) ⊗
(1

2
(1 + eiφ)|1〉u

)

,

having made use of the computations of Section 2.2.5. We transform back into the

computational basis, drop a global factor of2−1/2 on the way and consider the result

under the input of a computational basis state:

|0〉 // A6[0]

OO

// ∝ |0〉 // A6[ψ0]

OO

// + |0〉 // A6[ψ1]

OO

//

= W |0〉r ⊗ |1〉u,

|1〉 // A6[0]

OO

// ∝ |1〉 // A6[ψ0]

OO

// + |1〉 // A6[ψ1]

OO

//

= W |1〉r ⊗
1

2

(

(1 − eiφ)|0〉 + (1 + eiφ)|1〉
)

u
,
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and,

|0〉 // A6[1]

OO

//

∝ e−iφ

(

|0〉 // A6[ψ0]

OO

// − |0〉 // A6[ψ1]

OO

//

)

= W |0〉r ⊗
(

− e−iφ|1〉u
)

,

|1〉 // A6[1]

OO

//

∝ e−iφ

(

|1〉 // A6[ψ0]

OO

// − |1〉 // A6[ψ1]

OO

//

)

= W |1〉r ⊗
e−iφ

2

(

(1 − eiφ)|0〉r − (1 + eiφ)|1〉u
)

.

The outputs for the measurement result “0” and “1” differ a) in a global factor ofe−iφ

and b) in the application of aZ operator on the upper correlation space. We drop the

phase factor a), as it can be gauged away by a local basis change prior to the measure-

ment.

Now, measuring site6 in the computational basis and site4 in theX-eigenbasis

yields:

A4[X]

OO

|0〉 // A6[Z]

OO

//

=
(

W |0〉
)

r
⊗
(

(−1)z6 |1〉u
)

, (2.15)

A4[X]

OO

|1〉 // A6[Z]

OO

//

=
(

W |1〉
)

r
⊗ 1

2

(

(1 − eiφ)|0〉 + (−1)x4+z6(1 + eiφ)|1〉
)

u

=
(

W |1〉
)

r
⊗
(

eiǫ sin γ|0〉 + (−1)x4+z6 cos γ|1〉
)

u
, (2.16)

for suitableγ, ǫ.
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Now, assumex4 + z6 is even. Chooseδ as in Lemma 22. We measure site2 in the

following basis:

ψ0 = (e−iǫ sin δ, cos δ), ψ1 = (−e−iǫ cos δ, sin δ).

For the first outcome, we get

|0〉l 7→ W |0〉 ⊗
(

cos δ A[1]
)

,

|1〉l 7→ W |1〉 ⊗
(

sin δ sin γ A[0] + cos δ cos γA[1]
)

.

Recall thatA[0] = 2−1/21, A[1] = 2−1/2S(φ), andS(φ) = diag(e−iφ/2, eiφ/2). Hence

operator

sin δ sin γ A[0] + cos δ cos γA[1]

is unitary and has operator norm equal to2−1/2| cos δ|. The same is obviously true for

cos δ A[1]. We conclude that in this particular case, the dynamics in the correlation

space is unitary. But by Lemma 22, the same is true for the orthogonal outcome. Also,

the case wherex4 + z6 is odd is treated similarly.

We can thus deterministically implement an entangling unitary between the compu-

tational wires.

Lemma 22. For all φ, γ ∈ R, there is aδ ∈ R such that

| cos(δ)| = | sin(δ) sin(γ) + cos(δ) cos(γ)eiφ/2|. (2.17)

What is more, wheneverφ, γ, δ fulfill the relation above, it is also true that

| sin(δ)| = | − cos(δ) sin(γ) + sin(δ) cos(γ)eiφ/2|. (2.18)

Proof. The first part is obvious:δ 7→ | cos(δ)| for δ ∈ [0, π/2] is a continuous function

with | cos(0)| = 1 and | cos(π/2)| = 0. The right hand side of Eq. (2.17) is also a

continuous function, taking values| sin(γ)| and | cos(γ)| at 0 andπ/2, respectively.

Hence, the two functions intersect in at least a single point.
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To show the second claim compute

cos2(δ) = (sin(δ) sin(γ) + cos(δ) cos(γ) cos(φ/2))2

+ (cos(δ) cos(γ) sin(φ/2))2

= sin2(δ) sin2(γ) + cos2(δ) cos2(γ)

+ 2 sin(δ) sin(γ) cos(δ) cos(γ) cos(φ/2). (2.19)

Hence,

1 − cos2(δ) = (sin2(γ) + cos2(γ))(sin2(δ) + cos2(δ))

− sin2(δ) sin2(γ) − cos2(δ) cos2(γ)

− 2 sin(δ) sin(γ) cos(δ) cos(γ) cos(φ/2)

= sin2(γ) cos2(δ) + cos2(γ) sin2(δ)

− 2 sin(δ) sin(γ) cos(δ) cos(γ) cos(φ/2)

= (− cos(δ) sin(γ) + sin(δ) cos(γ) cos(φ/2))2

+ (sin(δ) cos(γ) sin(φ/2))2

= | − cos(δ) sin(γ) + sin(δ) cos(γ)eiφ/2|2. (2.20)

This proves the claim.

2.4 Proofs and technicalities

2.4.1 Qubit channels

We recall some basic facts about qubit channels from Ref. [12, 93]. In what follows,Λ

is a (trace-preserving) qubit channel. Viewed as a linear map, we may express it as a

matrix with respect to the Pauli basisσi, i = 0, . . . , 3. As Λ is trace-preserving (i.e. the

dual channelΛ∗ is unital), the matrix representation takes the form

T =





1 0

t T



 , (2.21)
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wheret ∈ R3 andT a real3 × 3 matrix.

There are unitariesU, V such that the channel

Λ′ : ρ 7→ V Λ(UρU †)V † (2.22)

is represented by

T
′ =















1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3















, (2.23)

where〈1, |λ1|, |λ2|, |λ3|〉 are the singular values ofT . The channel is unital if and only

if t = 0.

Let

|Φ〉 = 2−1/2(|00〉 + |11〉). (2.24)

TheChoi matrixof Λ is given by

CΛ = (Λ ⊗ 1) (|Φ〉〈Φ|) (2.25)

It is true [12] that if (a unital)Λ is of the form

Λ(ρ) =
3
∑

i=0

pi σiρσi, (2.26)

then

spec(CΛ) = 〈p0, . . . , p3〉. (2.27)

TheKraus rankof a channelΛ is the smallest numberk such that

Λ(ρ) =

k
∑

i=1

A[i]ρA[i]†

for suitableKraus operatorsA[i].

Below, we will derive various normal forms for qubit channels of Kraus rank two.
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Lemma 23. LetΛ be a unital qubit channel of Kraus rank two. Then there are unitaries

U0, U1 and a numberγ ∈ R such thatΛ may be represented by means of the Kraus

operators

A[0] = sin γ U1, A[1] = cos γ U2.

Note that Lemma 23 is slightly stronger than the well-known known fact that unital

qubit channels are random unitary channels (it could a priori be that more unitaries than

the Kraus rank ofΛ are needed in such a representation).

Proof. Let Λ′ be the diagonalized channel as in Eqs. (2.22,2.23). Manifestly, rankCΛ′

is not larger than the Kraus rank ofΛ′. Using Eqs. (2.26,2.27), one finds

Λ(ρ) =
∑

i,pi 6=0

pi(V
†σiU

†)ρ(V †σiU
†)†, (2.28)

which implies the claim.

We say that two channelsΛ1,Λ2 areconjugateif there exists a unitaryU such that

Λ1(ρ) = UΛ2(U
†ρU)U †

for all ρ.3

Lemma 24. Let Λ be a unital qubit channel of Kraus rank two. ThenΛ is conjugate to

a channel with Kraus operators

A[0] = sin γ W, A[1] = cos γ WS(π),

for γ ∈ R andW ∈ SU(2) of the form

W = ei sinα/2(sinβX+cos βZ). (2.29)

3Our notion of “being conjugate” coincides with the meaning used in linear algebra. It should not be
confused with the way the term is used in Ref. [69]. Channels called “conjugate” in [69] are referred to
as “complementary” below, consistent with Ref. [57].
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Proof. We read off Eq. (2.28) thatΛ can be represented by Kraus operators

A[0] = sin γV †σiU
†, A[1] = cos γV †σjU

†

for somei 6= j, suitableU, V ∈ SU(2) andγ such thatsin2 γ = pi, cos2 γ = pj.

Conjugating byU , we get

A′[0] = sin γUV †σi,

A′[1] = cos γUV †σj = cos γ(UV †σi) σ
†
iσj .

There exists a unitaryX such thatXσ†
jσiX

† = Z. Conjugate the primed Kraus opera-

tors byX to obtain

A′′[0] = sin γW, A′′[1] = cos γWZ (2.30)

for W = XUV †X. As every element ofSU(2),W is of the form

W = ei(r1X+r2Y+r3Z)

for some real unit vectorr. Conjugating theA′′[0/1]’s with a suitable phase gateS(ǫ),

we can setr2 to zero, without affecting the form of Eq. (2.30).

Lemma 25. Let Λ be a unital qubit channel of Kraus rank two. ThenΛ is conjugate to

a channel with Kraus operators

A[0] = 2−1/2W, A[1] = 2−1/2WS(φ)

for φ ∈ R andW ∈ SU(2) of the form

W = ei sinα/2(sinβX+cos βZ). (2.31)

Note that the unitaryW in Lemma 24 and the one in Lemma 25 need not be identi-

cal.

Proof. Start with the Kraus operators of Lemma 24. Using the unitaryambiguity of the
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Kraus representation, one concludes that

A′[0] = W
(

sin θA[0] + cos θA[1]
)

, (2.32)

A′[1] = W
(

cos θA[0] − sin θA[1]
)

is another set of Kraus operators realizingΛ. Because Eq. (2.32) defines a unitary

transformation in Hilbert-Schmidt space,

‖A′[0]‖2
2 + ‖A′[1]‖2

2 = ‖A[0]‖2
2 + ‖A[1]‖2

2 = 1.

By the intermediate value theorem, there is a value ofθ such that‖A′[0]‖2
2 = ‖A′[1]‖2

2 =

1/2.

Set

W ′ = W (sin θ1 + cos θS(π)).

ThenA′[0] = 2−1/2W ′ and

A′[1]

= 2−1/2W ′
[

(sin θ1+ cos θS(π))−1(cos θ1− sin θS(π))
]

.

The operator in square brackets is of the formS(φ) for someφ, completing the proof.

We conclude with two statements relating the normal forms described above to the

spectrum of the channel.

Lemma 26. Let Λ be a unital qubit channel of Kraus rank two. Letγ be the number

introduced in Lemma 24. Then the singular values ofΛ are1 and| sin2 γ−cos2 γ|, both

occurring with multiplicity two.
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Proof. The channelΛ′(ρ) = W †Λ(ρ)W maps1 7→ 1,
Z 7→ Z,

X 7→ (sin2 γ − cos2 γ)X,

Y 7→ (sin2 γ − cos2 γ)Y,

as can be readily verified.

Lemma 27. Let Λ be a qubit channel of Kraus rank not larger than two. Assume the

dual channelΛ∗ has an eigenvectorA 6= 1 with eigenvalueλ of absolute value|λ| = 1.

ThenΛ is unital. Further, exactly one of the following situation occurs:

1. Λ is the identity channel,

2. Λ is a non-trivial unitary channel,

3. Λ has Kraus rank two. In the language of Lemma 24, one of two possibilities is

realized:

(a) W is diagonal. In this caseλ = 1 and the invariant eigenspace ofΛ consists

of the set of diagonal operators.

(b) W = X. It follows thatλ = −1 with unique eigenvectorA = Z.

Proof. Let

A =
3
∑

i=0

ciσi

be the expansion ofA in the Pauli basis. In the language of Eq. (2.21) the eigenvalue

equationΛ∗(A) = λA reads





1 t

0 T ∗



 c = λ c.

Hence the trace-less parta

a =
3
∑

i=1

ciσi
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of A is an eigenvector ofT ∗ with eigenvalueλ. As theλi’s appearing in Eq. (2.23) are –

up to signs – the singular values ofT [93], one has that|λi| = 1 for at least onei. It then

follows from the general theory [93] thatt = 0 and hence thatΛ is unital. In particular,

the spectrum and the eigenvectors ofΛ are the same as the one ofΛ∗. Also, Lemmas 24

and 26 are applicable. We will make use of the channelΛ′ introduced in the proof of

Lemma 26.

We assume first that(sin2 γ − cos2 γ) = ±1. If the sign is positive, thanΛ′ is the

identity channel. In case of a negative sign,Λ′ = X · X. In either case,Λ is a unitary

channel.

Now consider the case where| sin2 γ − cos2 γ| < 1. We have that‖Λ′(B)‖ ≥ ‖B‖
for some operatorB if and only ifB is a linear combination of1 andZ. Thus,Λ has a

non-trivial (i.e. 6= 1) eigenvector of absolute value1 if and only if the channelW † · W
has a non-trivial eigenvector with eigenvalueλ in the space spanned by1 andZ. Since1 is a fixed point, this situation occurs if and only ifW † ZW = ±Z. The positive sign

is realized for diagonal operationsW . Among theW ’s of the form given in Lemma 26,

the negative sign is possible only forW = X.

2.4.2 MPS tools

In this section, we translate some basic facts about finitelycorrelated states/MPS from

[35] into our language (see also [35]). The basic object of study is the family of MPS

of the form

|Ψn〉 =

1
∑

x1,...,xn=0

〈R|A[xn] . . . A[x1]|L〉 |x1, . . . , xn〉

for A[0/1] complex2 × 2 matrices. Let us denote the Hilbert space of a physical qubit

byA ≃ C2 and the correlation space byB ≃ C2.

Clearly,

|Ψn〉〈Ψn|
=

∑

x,y

〈R|A[xn] . . .A[x1]|L〉 〈L|A[y1]
† . . . A[yn]

†|R〉

|x1〉〈y1| ⊗ · · · ⊗ |xn〉〈yn|. (2.33)
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It is always possible to find matricesA[0], A[1] and boundary conditions|L〉, |R〉 such

that

A[0]†A[0] + A[1]†A[1] = 1 (2.34)

without changing the state|Ψn〉 [84]. We will assume this normal form from now on.

DefineV : B → A⊗B by

V = |0〉A ⊗ A[0]B + |1〉A ⊗ A[1]B.

It follows that

V †V = A[0]†A[0] + A[1]†A[1] = 1,
so thatV is an isometry. It holds that

V |L〉〈L|V † =
∑

x1,y1

|x1〉〈y1| ⊗ A[x1]|L〉〈L|A[y1].

Plugging the preceding formula recursively into Eq. (2.33), we get

|Ψn〉〈Ψn|
= 〈R|V . . . V |L〉〈L|V † . . . V †|R〉

= trB
(

|R〉〈R|V . . . V |L〉〈L|V † . . . V †
)

.

Now, letSi be an observable on theith copy ofA. DefineESi
(ρ) := trA

(

SiV ρV
†
)

=
∑

xi,yi

(

〈yi|Si|xi〉
)

A[xi]ρA[yi]
†

and, in particular, Ê(ρ) := E1(ρ) =
∑

x

A[x]ρA[x]†. (2.35)
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The super-operatorsESi
allow us to compute expectation values as in

tr
(

S1 ⊗ · · · ⊗ Sn |Ψn〉〈Ψn|
)

(2.36)

= trB
(

|R〉〈R|ESn . . .ES1
(|L〉〈L|)

)

.

Equation (2.35) shows manifestly thatÊ is a quantum channel. By Eq. (2.34),1 is

an eigenvector of the dual channelÊ∗(X) =
∑

x

A[x]†XA[x]

with eigenvalue1 (meaning that̂E is trace-preserving).

We now distinguish two cases:

1. The map̂E∗ has a spectral gap. Hence1 is the only eigenvector with an eigenvalue

of absolute value 1.

2. There is an eigenvectorA 6= 1 of Ê∗ with eigenvalueλ of absolute value|λ| = 1.

The theory of MPS is much better-behaved in the first case [35]on which we will

concentrate in what follows. This does not sacrifice too muchgenerality: Lemma 27

gives a complete classification of the set of measure zero forwhich Ê does not have a

spectral gap.

Restricting attention to case 1. above, note thatspec(Ê) = spec(Ê∗)∗, and that

right-eigenvectors of̂E are left-eigenvectors of̂E∗ and vice-versa. It follows that there

is a unique invariant stateρ∞ of Ê and further thatÊn(|L〉〈L|) → tr(|L〉〈L|) ρ∞ (2.37)

exponentially fast asn→ ∞.

Now, choose the normalization of|L〉, |R〉 such that

tr
(

|L〉〈L|
)

= 1, tr
(

|R〉〈R| ρ∞
)

= 1. (2.38)
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Employing Eq. (2.36) we find that

lim
n→∞

tr
(

|Ψn〉〈Ψn|
)

= lim
n→∞

tr
(

|R〉〈R| Ên(|L〉〈L|))
= tr

(

|R〉〈R| ρ∞
)

tr(|L〉〈L|) = 1,

so that the choice (2.38) is asymptotically compatible withthe requirement that|Ψn〉 be

normalized.

We continue by computing

lim
n→∞

tr
(1⊗n ⊗ S ⊗ 1⊗n |Ψ2n+1〉〈Ψ2n+1|

)

(2.39)

= tr
(ES(ρ∞)

)

.

Hence, manifestly, the outcomes of measurements on sites sufficiently far away from

the boundaries of the chaindo not depend on the boundary conditions|L〉, |R〉. What

is more, their influence is suppressed exponentially fast inthe distance to the boundary.

We may thus speak of “the state associated with the matricesA[0], A[1]”.

SettingS = |i〉〈j|, one can use Eq. (2.39) to derive the reduced density matrixρ of

a single site in the chain:

ρ = tr[−n,−1],[1,n] |Ψ2n+1〉〈Ψ2n+1| (2.40)

→ 1

2

∑

i,j

tr
(

A[i]†A[j]
)

|i〉〈j| (2.41)

asn→ ∞.

Lastly, let

ρ∞ = λ1|φ1〉〈φ1| + λ2|φ2〉〈φ2|

be the spectral decomposition of the invariant state. As a consequence of Eq. (2.36) one

finds that

tr[n/2+1,...n] |Ψn〉〈Ψn| → λ2
1|Φ1〉〈Φ1| + λ2

2|Φ2〉〈Φ2|
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asn→ ∞. Here,

|Φi〉 =
1
∑

x1,...,xn/2=0

〈R|A[xn] . . . A[x1]|φi〉 |x1, . . . , xn〉. (2.42)

One may easily check that the|Φi〉’s are (asymptotically) normalized. It is also true that

the |Φ0〉 is (asymptotically) orthogonal to|Φ1〉. Indeed, by Eq. (2.37),̂En converges to

the completely depolarizing channel asn → ∞. By Theorem 3 of [73], the comple-

mentary channel converges to the noiseless channel. But|Φi〉 is just the output of that

complementary channel acting on|φi〉. Because the|φi〉’s are orthogonal, so must the

|Φi〉.
Clearly then, the entropy of entanglement between the two half-chains converges to

one bit if and only if

λ1 = λ2 ⇔ ρ∞ ∝ 1.
Thus:

Proposition 28. If Ê has a spectral gap, then the entropy of entanglement betweentwo

half-chains is maximal if and only if̂E is unital.
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Too entangled to be useful: measure-

ment-based computation on generic states
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3.1 Introduction

A classical computer endowed with the power to perform measurements on certain en-

tangled many-body states is thought to be exponentially more powerful than a classi-

cal machine alone. For example, a computer with access to local measurements on a

cluster state can find factors of a large integer in an amount of time polynomial in the

number of digits of that integer [82, 102]. The best-known classical algorithm requires

super-polynomial runtime and it is strongly believed that no substantial improvement is

possible. It is in this sense that certain many-body states possess strong computational

powers.

How common is this property? There are at least two reasons for believing that

typical pure quantum states are powerful resources.

Firstly, this belief may be based on an intuition akin to Feynman’s famous argument:

because simulating quantum mechanics seems to be too hard for a classical computer,

it must conversely be true that the laws of quantum mechanicsoffer superior compu-

tational power. Now, predicting the results of local measurements even on a quantum

state which has a simple classical characterization (e.g. in terms of a preparation proce-

dure, or a local Hamiltonian for which it is the ground state)is tremendously difficult

in general. What is more, a typical state is described by exponentially many parameters

– so it cannot even be efficiently represented in the memory ofa classical computer, let

alone be subject to an efficient simulation. One would hence expect it to be a potent

computational resource, if only a suitable scheme could be devised to utilize its power.

Secondly, one may recall that generic states are extremely highly entangled from

many points of view [53]. For example, a typical state is an excellent resource for

quantum teleportation with respect to any partition of its systems into two parties. Why

then shouldn’t such a state also be an equally excellent resource for measurement-based

computation? What is more, all previous results (the authoris aware of) which rule out

universality for certain states do so by proving that the statesare not entangled enough

to support a universal quantum calculation [79, 108, 109].

Both arguments turn out to be fallacies. We show below that families of states with

a very highgeometric measureof entanglement cannot be universal. Recall that the
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geometric measure [9, 101, 122] of a state vector|Ψ〉 is defined as

Eg(|Ψ〉) = − log sup
α

|〈α|Ψ〉|2,

the supremum being over all product vectors|α〉.1 We proceed to show that the criterion

is fulfilled by generic states: they are too entangled to be useful in this sense. The

fraction ofn qubit states subject to this problem will be shown to be at least1 − e−n
2

.

The intuition behind the argument is that most states are so “skew” to the set of

product states, that the results of local measurements convey very little information.

The (mild) technical difficulty one needs to overcome in order to make the statement

rigorous, is to establish that for most given states,any possible measurement scheme

fails to yield useful information – even if one has complete knowledge about the state

and the capability of adjusting future measurement bases conditioned on previous out-

comes.

The observations presented in this chapter should be interesting in the context of

the broad question asking to which extend “entanglement” isresponsible for a quantum

computational speed-up [65].

3.2 Statement of results

We will show that certain highly entangled states cannot enhance the power of a classical

computer to solve NP problems. (For definiteness, one may think of the paradigmatic

factoring problem.)

Theorem 29(Classical simulation of highly entangled states). Let |Ψn〉 be ann qubit

state with geometric measure of entanglement

Eg(|Ψn〉) > n− δ.

Consider a classical computer which has the power to performlocal measurements on

|Ψn〉. Assume this joint system is capable of finding a solution to an NPproblemP after

t time steps, with probability of success at least1/2.

1In this chapter,log is the base 2 logarithm andln the natural logarithm.
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Then there exists apurely classicalalgorithm which identifies a solution toP after

2C(n) ln
1

pf
2δ

time steps with probability of success at least1 − pf . Here,C(n) is the time it takes to

verify that a proposed solution toP is valid.

Note thatC is a polynomial function ofn (this being the defining property of NP

problems).

The theorem implies that a family of states|Ψn〉 cannot provide a super-polynomial

speedup whenever their geometric measure is of the formEg(|Ψn〉) = n − O(logn).

A priori it is unclear that states with such an extreme geometric entanglement exist at

all. It turns out that not only do they exist, but that this property is shared by the vast

majority of all many-body states.

Theorem 30(Typical geometric entanglement). The fraction of state vectors onn ≥ 11

qubits with geometric measure of entanglement less than(n − 2 logn − 3) is smaller

thane−n
2

.

Corollary 31 (MBQC-uselessness is typical). Use the notions of Theorem 29. The frac-

tion of pure states onn qubits which have the power to speed up a classical computer

by more than a factor of

16C(n) ln
1

pf
n2

is smaller thane−n
2

.

Can we thus conclude that families of highly entangled states are not universal for

measurement-based quantum computing? The answer is “yes”,up to a standard as-

sumption. Indeed, Theorem 29 pertains only to NP problems. While highly unlikely,

there is currently no way of ruling out that quantum computers offer super-polynomial

speedups over their classical counterparts for some problems, but fail to do so for any

problem in NP. Recall, however, that Shor’s algorithm [102]assures that quantum com-

puters can factor integers in polynomial time. It is very strongly suspected that classical

machines alone require super-polynomial time for the same task.
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Therefore, it is extremely reasonable to assume that there is some NP problem for

which quantum computation offers a super-polynomial speedup (so NP∩ BQP 6= BPP

[121]).2 Under this assumption, we may state:

Theorem 32(Criterion for MBQC-uselessness). Let {|Ψn〉}n be a family of quantum

states, where|Ψn〉 is defined onn qubits. If

Eg(|Ψn〉) > n− O(logn),

then the family is not universal for measurement-based computation.

3.3 Proofs

Proof of Theorem 29.We assume that the classical part of the algorithm is determinis-

tic. This entails no loss of generality, since any probabilistic parts may be implemented

by using quantum measurements as coins.3 In the course of the calculation, the com-

puter will perform up ton local measurements, obtaining one of2n possible sequences

of outcomes. There is a setG of “good” outcomes, which will cause the computer to

output a valid solution to the problemP after t time steps. By assumption, the proba-

bility of obtaining an outcome from the setG is larger than1/2. Each element ofG is

labeled by a product state|α〉 in the obvious way. Clearly, the probability of the event

associated with|α〉 to occur is

|〈α|Ψ〉|2 ≤ 2
−Eg

“|Ψ〉”

≤ 2−n+δ.

Hence

1/2 ≤ Prob(G) < |G| 2−n+δ ⇒ |G| > 2n−δ−1.

Thus the ratio of good outcomes to the total number obeys|G|/2n > 2−δ−1.

2Failure of this assumption to hold would result in far more profound problems for the field of quantum
information theory than the existence of a vacuous statement in a PhD thesis.

3In fact, this seems to be the only way to introduce true randomness into an otherwise classical (and
hence deterministic) setup.
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To simulate the procedure on a classical probabilistic computer, use the following

algorithm: Choose the outcome of the measurements randomlyusing a fair coin. If the

random string causes the classical part of the computation to output a result aftert time

steps, check whether it solves the problemP . If the result is valid, output it and abort.

Otherwise – or if the computer fails to terminate aftert time steps – repeat the procedure

with another random string.

The probability of not having obtained a valid outcome afterk trials is bounded

above by

(1 − 2−δ−1)k < e−k 2−δ−1

.

Setk = ln(1/pf)2
δ+1 to achieve a probability of failure smaller thanpf . The claim is

now immediate.

Lemma 33 (Measure concentration on the sphere). Let |α〉 be a normalized vector in

Cd, let |Ψ〉 be drawn from the unit sphere according to Haar measure. Then

Prob{|〈α|Ψ〉|2 ≥ ǫ} < exp{−(2d− 1)ǫ}.

Proof. The cumulative distribution function

Prob{2d |〈α|Ψ〉|2 ≥ x} =
(

1 − x

2d

)2d−1

can be found in [56, 86] (the factor2 in front of the dimension is a result of working in

a complex space as explained in the appendix). We setǫ = x/(2d) and compute

(1 − ǫ)2d−1 = exp{ln(1 − ǫ)(2d− 1)} ≤ exp{−ǫ(2d− 1)},

having made use of the concavity ofln.

Lemma 34 (Nets). On the set of pure product states onk qubits, there is anǫ-netNǫ,k

where

|Nǫ,k| ≤
(

5k

ǫ

)4k

.
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More specifically,

sup
α

inf
α̃

∣

∣

∣

∣|α〉 − |α̃〉
∣

∣

∣

∣

2
< ǫ/2 (3.1)

⇒ sup
α

inf
α̃

∣

∣

∣

∣|α〉〈α| − |α̃〉〈α̃|
∣

∣

∣

∣

1
< ǫ (3.2)

⇔ sup
α

sup
α̃

|〈α|α̃〉|2 ≥ 1 − ǫ2

4
, (3.3)

where the optimizations are over all product states|α〉 and all elements|α̃〉 of the net

Nǫ,k.

Proof. For the second part, see Lemma II.4 in [52] (see also Ref. [77]).

As for the first part, let|αi〉 ∈ C
2 such that|α〉 =

⊗

i |αi〉. LetM be an(ǫ/k)-net

in the set of qubit states. Hence, for everyi, there exists|α̃i〉 ∈ M, such that

|〈αi|α̃i〉|2 ≥ 1 − ǫ2

4k
.

It follows that

|〈α|α̃〉|2 ≥
(

1 − ǫ2

4k

)k

≥ 1 − ǫ2

4
,

where the final inequality can be checked by differentiatingwith respect tok.

To conclude, setNǫ,k to be the set of allk-fold tensor products of elements inM
and use the upper bound for the cardinality ofM from [52].

Proof of Theorem 30.Let ǫ = 2−l for some yet to be determined numberl. LetNǫ,n be

anǫ-net on the set of product vectors onn qubits. By Lemma 33 and the union bound,

Prob{ sup
|α̃〉∈Nǫ,n

|〈α̃|Ψ〉|2 ≥ 2−l}

< exp{−(2n+1 − 1)2−l}
∣

∣Nǫ,n

∣

∣

< exp{−2n−l + 2nl ln 2 + 4n ln(5n)}

< exp{−2n−l + 2nl} (3.4)

< exp{−2n−l + 2n2} (3.5)
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where the estimate (3.4) is valid if

2nl(1 − ln 2) > 4 ln(5n). (3.6)

Choosingl = n− log(3n2), the condition above is satisfied whenn ≥ 11. Further, Eq.

(3.5) becomesexp{−n2}.

Now let |α〉 be a general product vector and|α̃〉 be the closest element in theǫ-net.

Then

∣

∣|〈α|Ψ〉|2 − |〈α̃|Ψ〉|2
∣

∣ =
∣

∣ tr
(

(|α〉〈α| − |α̃〉〈α̃|)|Ψ〉〈Ψ|
)∣

∣

≤
∣

∣

∣

∣|α〉〈α| − |α̃〉〈α̃|
∣

∣

∣

∣

∞

≤
∣

∣

∣

∣|α〉〈α| − |α̃〉〈α̃|
∣

∣

∣

∣

1

≤ ǫ = 2−l.

It follows that

sup
|α〉

|〈α|Ψ〉|2 ≤ 2−l+1 = 2−n+2 logn+log 3+1 < 2−n+2 logn+3

with probability larger than1 − e−n
2

.

The proofs of Corollary 31 and Theorem 32 should now be obvious.

3.4 Outlook

The results sketched in this chapter can be greatly strengthened. For example, one can

show that typical states still fail to be universal in some sense, even if one assumes nature

would allow us tochoosethe outcomes of local measurements should we so desire.

While this scenario is incredibly powerful for some states (linked to the complexity

class PostBQP= PP [1]), it turns out that postselected measurements on typical states

once more fail to allow for universal measurement-based computation in some sense.
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3.5 Appendix: Real vs. complex vector spaces

The proof of Lemma 33 depends on a concentration phenomenon of the Haar measure

on real spheres [56, 86]. Obviously, we are concerned with state vectors drawn from a

complexd-sphere. In this section, we will briefly state the relation between the respec-

tive notions of Euclidean distance and Haar measure on the real and complex sphere.

Supposex ∈ Cd is of the forma + ib for a, b ∈ Rd. We use the usual (R-linear)

mapping

ι : x 7→





a

b





from Cd to R2d. Then

〈x, x′〉 (3.7)

= 〈a, a′〉 − i〈b, a′〉 + i〈a, b′〉 + 〈b, b′〉 (3.8)

=
(

ι(x), ι(x′)
)

+ i
[

ι(x), ι(x′)
]

, (3.9)

where〈·, ·〉 is the canonical scalar product inCd, (·, ·) the Euclidean one inR2d and[·, ·]
the symplectic product inR2d. In particular,

〈x, x〉 = (x, x) ⇒ ‖x‖Cd = ‖ι(x)‖R2d .

Henceι preserves Euclidean distances.

Now define a measureµC onCd in terms of the Haar measureµR by

µC(A) = µR(ι(A)).

From Eq. (3.9) it is clear that the effect of a unitary operation onA corresponds to an

orthogonal and symplectic operation onι(A). HenceµC isU(d)-invariant and must thus

be the Haar measure.
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Discrete phase spaces
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3.6 Introduction

The termphase spaceoriginates in classical mechanics. Here, the state of a single

particle in one spatial dimension is completely specified bytwo real parameters: its

position and its momentum. The two-dimensional real vectorspace spanned by the

position and the momentum axes is referred to as the particle’s phase space. Likewise,

the state of a single continuous-value quantum system may bespecified by a quasi-

probability distribution on phase space – namely the particle’s Wigner function.

The Wigner function shares many properties of classical probability distributions,

except for the fact that it can take negative values. Quantumphase space methods are

employed heavily in some areas of physics, such as quantum optics [95], the investiga-

tion of a “quantum-classical correspondence” [66, 124], orrepresentation theory of the

canonical commutation relations [36, 85], to name a few.

Considerable work has been undertaken to explore Wigner functions for finite-

dimensional quantum systems [24, 39, 46, 71, 74, 78, 94, 116,117, 126]. It is fair

to say that discrete phase space tools have been studied mainly for their mathematical

appeal. The author is not aware of any technical problem thathas been solved using

discrete Wigner functions that could not – or only in a considerably less convenient way

– have been treated without resorting to phase space methods(see, however, Chapter 5).

In Chapter 4 we give an in-depth introduction into discrete quantum phase spaces.

Beyond the Wigner function as such, we treat a whole array of related structures such

as Weyl-Heisenberg operators (or generalized Pauli operators), the Clifford group, and

stabilizer states. All these mathematical objects fit seamlessly into the phase space

formalism.

The analogy between Wigner functions and probability-distributions is spoiled by

the fact that the former may become negative. It is hence natural to ask whether there

are quantum states for which this problem does not occur. Themain technical result of

Chapter 4 pertains to this question: We show that, on a Hilbert space of odd dimension,

the only pure states to possess a non-negative Wigner function are stabilizer states. The

Clifford group is identified as the set of unitary operationswhich preserve positivity.

The result can be seen as a discrete version of Hudson’s Theorem. Hudson established
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that for continuous variable systems, the Wigner function of a pure state has no neg-

ative values if and only if the state is Gaussian. Turning to mixed states, it might be

surmised that only convex combinations of stabilizer states give rise to non-negative

Wigner distributions. We refute this conjecture by means ofa counter-example.

Chapter 5 presents a technical application of the methods derived before. We use it

to quantize the Margulis expander map – a well-known structure in classical computer

science. The result is a quantum expander which acts on discrete Wigner functions in

the same way the classical Margulis expander acts on probability distributions. The con-

struction is the only instance known to the author where finite phase space techniques

facilitate the simple solution of an otherwise non-trivialproblem. What is more, appli-

cations based on discrete and continuous phase spaces can bedeveloped in complete

analogy.
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A discrete Hudson’s theorem
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4.1 Introduction

4.1.1 General Introduction

The Wigner distribution establishes a correspondence between quantum mechanical

states and real pseudo-probability distributions on phasespace. ’Pseudo’ refers to the

fact that, while the Wigner function resembles many of the properties of probability

distributions, it can take on negative values. This phenomenon has been linked to non-

classical features of such quantum states (see Ref. [66] foran exposition of literature

on that problem). It is naturally of interest to characterize those quantum states that are

classical in the sense of giving rise to non-negative phase space distributions.

For the case of pure states described by vectors inH = L2(R), the resolution of

this problem was given by Hudson in Ref. [60]. Later, Soto andClaverie generalized

Hudson’s result to states of multi-particle systems (Ref. [104]).

Theorem 35. (Hudson, Soto, Claverie)Letψ ∈ L2(Rn) be a state vector. The Wigner

function ofψ is non-negative if and only ifψ is aGaussian state.

By definition, a vector is Gaussian if and only if it is of the form

ψ(q) ∝ e2πi(qθq+xq),

whereq, x ∈ Rn andθ is a symmetric matrix with entries inC 1.

It is our objective to prove that the situation for discrete quantum systems is very

similar, at least when the dimension of the Hilbert space is odd. Before stating the

result, we pause for a brief overview of its main ingredients: discrete Wigner functions

and stabilizer states.

The Wigner function [125] of a pure stateψ ∈ L2(R) is computed as

Wψ(p, q) = π−1

∫

ξ∈R e−2πiξp ψ̄(q − 1

2
ξ)ψ(q +

1

2
ξ). (4.1)

Equivalently,Wψ is the (symplectic) Fourier transform of thecharacteristic function

1Note that the boundedness ofψ ∈ L2(Rn) implies thatθ has positive semi-definite imaginary part.
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Ξψ, which in turn is defined by

Ξψ(p, q) = tr(w(p, q)†|ψ〉〈ψ|).

Here,w(p, q) = ei(pX̂−qP̂ ) are the well-knownWeylor displacement operators[36, 119].

Partly triggered by the advent of quantum information theory, considerable work has

been undertaken to explore Wigner functions for finite-dimensional quantum systems

[24, 39, 46, 71, 74, 78, 94, 116, 117, 126]. Two approaches might be identified in

the literature on that subject. The first one aims to cast thedefinitionof the Wigner

function into a form that can be interpreted for both continuous variable and discrete

systems [46, 78, 116, 117]. The second approach – introducedby Gibbons, Hoffman,

and Wootters in Ref. [39] – focuses on thepropertiesof Eq. (4.1). The authors imposed

a set of axioms which a candidate definition of a discrete Wigner function would have

to fulfill in order to resemble the well-known continuous counterpart.

We will argue that, for odd dimensionsd,

Wψ(p, q) = d−1
∑

ξ∈Zd

e−
2π
d
iξp ψ̄(q − 2−1ξ)ψ(q + 2−1ξ)

is the most sensible analogue of Eq. (4.1), judged in terms ofeither of these approaches.

Here,p, q are elements ofZd = {0, . . . , d−1} and2−1 = (d+1)/2 is the multiplicative

inverse of2 modulod. Indeed, the definition given above is the discrete symplectic

Fourier transform of the discrete characteristic functionand will be shown to be the

uniquechoice to mimic certain desirable properties of the continuous Wigner function.

Stabilizer states were originally defined by Gottesman in Ref. [40] as the joint eigen-

vectors of certain sets of elements of the qubit Pauli group.Exceeding the case of qubits,

stabilizer states for higher-dimensional quantum systemshave been treated in the litera-

ture (see, e.g. Refs. [42, 59, 72, 96]). Such states find manifold applications in quantum

information theory, ranging from quantum error correction[82] to Cluster state quantum

computation [91]. Although displaying complex features such as multi-particle entan-

glement [55], stabilizer states allow for an efficient classical description. In particular, a

quantum computer that operates only with stabilizer statescan offer no principal advan-

tage over classical methods of computing [82]. The latter statement is sometimes called
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Gottesman-Knill Theorem.

Using that language, we intend to show:

Theorem 36. (Discrete Hudson’s Theorem)Let d be odd andψ ∈ L2(Znd) be a state

vector. The Wigner function ofψ is non-negative if and only ifψ is astabilizer state.

Given thatψ(q) 6= 0 for all q, a vectorψ is a stabilizer state if and only if it is of the

form

ψ(q) ∝ e
2π
d
i(qθq+xq),

whereq, x ∈ Znd andθ is a symmetric matrix with entries inZd.
Theorem 36 should convey two central messages. Firstly, if the right definitions are

employed, the continuous and the discrete case behave very similarly (even though the

methods of proof are completely different). Secondly, it adds further evidence to what

might be called a piece of folk knowledge in the field of quantum information theory:

namely that stabilizer states are the natural finite-dimensional analogue of Gaussian

states.

The paper is organized as follows. We survey previous work onthe subject in Sec-

tion 4.1.2. Section 4.2 is devoted to a superficial, yet self-contained introduction to Weyl

operators, characteristic functions, Wigner distributions and stabilizer states. The main

theorem is proven in Section 4.3. Sections 4.5 to 4.7 addressvarious related topics. The

results of these last three sections do not rely on each other. Concretely, we comment

on the relation between stabilizer states and Gaussian states in Section 4.4; we consider

mixed states with positive Wigner functions in Section 4.5 and use Section 4.7 for a

discussion of Hilbert spaces whose dimension is the power ofa prime.

Readers interested only in the structure of the proof, but not in its full generality, are

deferred to Ref. [3], where a particularly simple special case of the main result is laid

out.

4.1.2 Previous Results

Recently, Galvaoet. al. took a first step into the direction of classifying the quantum

states with positive Wigner function [38]. To explain the relationship of their results to

the present paper, we have to comment on an axiomatic approach to discrete Wigner
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functions and, further, on stabilizer states in dimensionsthat are the power of a prime

number.

In Ref. [39], Gibbons, Hoffmann, and Wootters listed a set ofrequirements which

should be met by any definition of a discrete Wigner functionW . Denoting the dimen-

sion of the Hilbert space byd, their axioms amount to

1. (Phase space)W is a linear mapping sending operators to functions on ad × d

lattice, called thephase space.

2. (Translational covariance)The Wigner function is covariant under the action of

the Weyl operators (in the sense of Theorem 41).

3. (Marginal probabilities)There exists a functionQ(λ) that assigns a pure quantum

state to every lineλ in phase space. Ifψ is state vector, then the sum of its Wigner

function alongλ must be equal to the overlap|〈Q(λ)|ψ〉|2.

Let us call functions that fall into this classgeneralized Wigner functions. This term is

justified, as the characterization does not specify a uniquesolution: for ad-dimensional

Hilbert space, there existdd+1 distinct generalized Wigner functions. Note also that the

construction has been described only for the case whered = pn is the power of a prime,

because only then the notion of aline in phase space has a well-defined meaning.

We turn to the second remark, concerning stabilizer states.Consider a composite

system, built ofn d-level particles. We are free to conceive it as a singledn-dimensional

object. The two points of view give rise to different definitions of stabilizer states, the

’single-particle’ one being starkly reduced as compared tothe multiple-particle one. In

Section 4.7, we show that the set of single-particle stabilizer states is strictly contained

in the set of multi-particle ones. Indeed, the ratio of the respective cardinalities of the

two sets grows super-exponentially inn. As an example, the generalized Bell and GHZ

states

d−n/2
∑

i

|i〉 ⊗ |i〉, d−n/2
∑

i

|i〉 ⊗ |i〉 ⊗ |i〉,

arguably the best-known multi-particle stabilizer states, do not belong to the respective

single-particle sets.

The result of Ref. [38] concerns quantum states in prime-power dimensions that are

non-negative with respect toall possible definitions of generalized Wigner functions.
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These states are shown to be mixtures of single-particle stabilizer states, as described

above. The authors aim to establish necessary requirementsfor quantum computational

speedup. Indeed, if the Wigner function of a quantum computer is positive at all times,

then it operates only with stabilizer states and hence offers no advantage over classical

computers, by the Gottesman-Knill Theorem.

Thus for the case of non-qubit pure states, Theorem 36 implies the results of Ref.

[38] and goes further in two essential ways. Firstly, it suffices to look at a single defini-

tion of the Wigner function, as opposed todn(dn+1) generalized ones. Secondly, quantum

computation and the Gottesman-Knill Theorem are naturallyset in the context ofmul-

tiple particles. Our definition assigns positive Wigner functions to all multiple-particle

stabilizer states, while Ref. [38] effectively relies on the single-particle definition2. On

the other hand, our main theorem does not address qubits or mixed states, which Galvao

et. al.do.

4.2 Phase Space Formalism

The termphase space formalismencompasses the ideas and tools in relation to theWeyl

representation, to be defined shortly. We will give a concise introduction inthis section.

Many of the results presented can be found in the literature,but some, e.g. the Clifford

covariance of the Wigner function in non-prime dimensions,seem to be new.

4.2.1 Weyl representation

We start by considering ad-dimensional quantum system,d odd. In its Hilbert spaceH,

we choose a basis{|0〉, . . . , |d− 1〉}, labeled by elements ofZd. Henceforth,Zd will

be referred to as theconfiguration spaceand abbreviated byQ.

The pivotal objects in the phase space formalism are theWeyl operators(also known

as thegeneralized Pauli operators), as constructed below. Letχ(q) = e
2π
d
iq. The

relations

x̂(q)|x〉 = |x+ q〉, ẑ(p)|x〉 = χ(px)|x〉 (4.2)

2Up to equivalence under Clifford operations.
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4.2 Phase Space Formalism

define theshift andboostoperators respectively. The Weyl operators are given by

w(p, q) = χ(−2−1pq) ẑ(p)x̂(q), (4.3)

for p, q, t ∈ Q. The specific choice of phases will prove useful later on3. The set of

Weyl operators is closed under multiplication, up to phase factors. Direct computation

shows that the composition law is given by

w(p, q)w(p′, q′) (4.4)

= χ(2−1









p

q



 ,





p′

q′







)w(p+ p′, q + q′).

The square brackets denote the standardsymplectic inner productonZ2
d:









p

q



 ,





p′

q′







 :=





p

q





T

J





p′

q′



 (4.5)

where

J =





0 1

−1 0



 . (4.6)

We writew(v) = w(vp, vq) for elementsv = (vp, vq) ∈ Z2
d. The spaceV := Q × Q

with inner product given by Eq. (4.5) will be calledphase spacein the sequel, owing to

its analogy to the phase space known in classical mechanics.

The preceding constructing generalizes naturally to multiple particles. Indeed, the

configuration space of ann-particle system is given byQ = Znd . Multiplication between

two elementsp, q ∈ Q is understood as the usual inner productpq =
∑

i piqi. The

Hilbert space is again spanned by{|q〉}q∈Q and the Weyl operators are defined to be the

3The choice of phase factors ensures that the symplectic inner product Eq. (4.5) appears in the com-
position law Eq. (4.4) thus making the connection between the Weyl operators and symplectic geometry
manifest. Other definitions in use, e.g.w(p, q) = ẑ(p)x̂(q) carry the same dependence in a less obvious
manner. See also Refs. [36, 117].
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tensor products

w(p, q) = w(p1, . . . , pn, q1, . . . , qn) (4.7)

= w(p1, q1) ⊗ · · · ⊗ w(pn, qn).

Equations (4.4), (4.5) remain valid in the multiple-particle setting, if we substitute the

matrixJ by its multi-dimensional version

J =





0n×n 1n×n
−1n×n 0n×n



 .

We end this section with some miscellaneous remarks.

A state vector|ψ〉 can be identified with a complex function on configuration space

by settingψ(q) = 〈q|ψ〉. We will use both representations interchangeably.

The continuous Weyl operatorsw(p, q) = ei(pX̂−qP̂ ), p, q ∈ R fulfill exactly the

same composition law as stated in Eq. (4.4), ifχ is set toχ(q) = eiq and the other

symbols are interpreted in the obvious way. In fact, Eq. (4.4) is then equivalent to the

fundamentalWeyl commutation relations[36]. Having this analogy in mind,p andq

will sometimes be calledmomentumandpositioncoordinates respectively.

For future reference, note the two simple relations

(w(p, q)ψ) (x) = χ(−2−1pq + px)ψ(x− q), (4.8)

trw(p, q) = dn δp,0δq,0. (4.9)

It remains yet to justify the name Weylrepresentation. For v ∈ V, t ∈ Zd, define

w(v, t) = χ(t)w(v). Equation (4.4) takes on the form

w(v1, t1)w(v2, t2) = w(v1 + v2, t1 + t2 + 2−1[v1, v2]).

The setV × Zd, equipped with the above composition law is called theHeisenberg

groupH(Znd), the Weyl matrices constituting a unitary representation of H(Znd) [36].

This point of view on Weyl operators will be needed only in Appendix 4.8.1.
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4.2.2 Clifford group

The Clifford group is the subset of the unitary operators that map Weyl operators to

multiples of Weyl operators under conjugation:

Uw(v)U † = c(v)w(S(v)) (4.10)

for some mapsc : V → C andS : V → V [40]. The structure of the Clifford group is

described in the following theorem4.

Before stating the theorem, we have to comment on a re-appearing issue: namely

that things are more involved ifd is not a prime number. For prime values ofd, Zd
has the structure of afinite algebraic field, Znd is afinite vector spaceand most of the

intuitions we have about vector spaces continue to be true. Among the more severe

deficiencies of the general case is the fact that not every elementa of Zd possesses a

multiplicative inverse modulod. But even if the analogue of a theorem about vector

spaces holds for non-prime values ofd, it is often difficult to find a proof in the litera-

ture. Appendices 4.8.3 and 4.8.4 contain a collection of statements of this kind. Less

technically inclined readers will not loose much by skipping these sections.

For the sake of clarity of language, we call functionsf onQwhich fulfill f(λa+b) =

λf(a)+f(b) linear, disregarding the fact thatQmight fail to be a linear space. Similarly,

a subsetS of Q that is closed under addition and multiplication by elements ofZd is

referred to as asubspace. We define a functionS to besymplecticif it is linear and

preserves the symplectic form:[S · , S · ] = [ · , · ].
4Note that the “Clifford group” which appears in the context of quantum information theory [40] has

no connection to the group by the same name used e.g. in the representation theory ofSO(n).
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Theorem 37. (Structure of the Clifford group)

1. For any symplecticS, there is a unitary operatorµ(S) such that

µ(S)w(v)µ(S)† = w(S v).

2. µ is aprojective representationof the symplectic group, that is

µ(S)µ(T ) = eiφµ(ST )

for some phase factoreiφ.

3. Up to a phase, any Clifford operation is of the form

U = w(a)µ(S)

for a suitablea ∈ V and symplecticS.

The representationµ is called theWeilor metaplecticrepresentation [36, 123]. The-

orem 37 is could be called a discrete version of the celebrated Stone-von Neumann

Theorem[36]. Its proof is not essential for understanding the further argument and has

therefore been moved to Appendix 4.8.1.

Note that a Clifford operation is connected to a vectora and a linear mappingS. This

should remind us of a well-known structure on linear spaces:affine transformations. An

affine mappingA is of the formA(b) = S b+ a whereS is an invertible linear operator

anda a vector. Let us callA symplectic if its linear partS is.

We will frequently use the ’dot notation’ to define functionsof one parameter; for

example writingS · + a for A.

Lemma 38. (Clifford group and affine transformations)The mapping

S · + a 7→ w(a)µ(S)

is a projective representation of the group of symplectic affine transformations.
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Proof. All we need to do is to compare the composition law of the affinegroup

(S · +a) ◦ (T · +b) = S(T · +b) + a

= ST · +(Sb+ a)

to the composition law of the representation

w(a)µ(S) w(b)µ(T ) = w(a) µ(S)w(b)µ(S)† µ(S)µ(T )

= w(a)w(Sb)µ(S)µ(T )

∝ w(Sb+ a)µ(S T )

which proves the assertion.

The correspondence established by the last lemma will find a very tangible manifes-

tation in Section 4.2.4, when we will see that the Clifford group induces affine transfor-

mations of the Wigner function.

4.2.3 Fourier Transforms

LetQ = Znd andf : Q→ C be a complex function onQ. The Fourier transform off is

(Ff)(p) = f̂(p) = |Q|−1/2
∑

q∈Q

χ̄(pq)f(q). (4.11)

In the course of the main proof we will be confronted with Fourier transforms of

functions which are defined only on a subspace ofQ. If d is prime, then any subspace

of Q = Znd is of the formZn′

d , for somen′ ≤ n, so no new situation arises.

For non-prime dimensions, however, subspaces may not be as well-behaved. Con-

sider as an example{0, 3, 6} ⊂ Z1
9. The set is closed under addition and multiplication,

but can clearly not be written asZn′

9 .

To cope with this problem, we will cast Eq. (4.11) into a form that is well-defined

for functionsf on more general spaces. The construction is presented below. It can be

found in any textbook on harmonic analysis (e.g. Ref. [92]).

A characterof Q is a functionζ : Q → C such thatζ(a+ b) = ζ(a)ζ(b). Any
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character ofQ is of the formζ(q) = χ̄(xq) for an appropriatex ∈ Q (see Appendix

4.8.3). We can hence conceive the Fourier transformation defined in Eq. (4.11) as a

function of the characters ofQ:

f̂(ζ) = |Q|−1/2
∑

q

ζ(q)f(q). (4.12)

We denote the set of characters ofQ by Q∗. With these notions, Eq. (4.12) defines a

functionQ∗ → C. If, now, S is any subspace ofQ andf a function onS, the Fourier

transform

f̂ : S∗ → S f̂(ζ) = |S|−1/2
∑

s

ζ(s)f(s)

is well-defined.

Forf : V → C, we define thesymplectic Fourier transformas

(FSf)(a) = |V |−1/2
∑

b∈V

χ̄([a, b])f(b). (4.13)

Finally, take a note that the normalization in Eqs. (4.11) and (4.12) has been chosen

in such a way thatParzeval’s Theorem||f || = ||f̂ || holds, where||f ||2 =
∑

q |f(q)|2.

4.2.4 Definition and properties of the Wigner function

Employing Eq. (4.9) in conjunction with the composition lawEq. (4.4), one finds that

the Weyl operators{w(p, q)} form an orthonormal basis in the space of operators onH
with respect to the trace scalar productd−n tr( · † · ). Thecharacteristic functionΞρ of

an operatorρ is given by its expansion coefficients with respect to the Weyl basis:

Ξρ(ξ, x) = d−n tr(w(ξ, x)†ρ). (4.14)

We mentioned in the introduction that the continuous Wignerfunction is the sym-

plectic Fourier transform of the characteristic function [36, 119]. The two latter con-

cepts have been defined for finite-dimensional systems in thepreceding paragraphs. We

can now state, in complete analogy to the continuous case:
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Definition 39. (Wigner function)Let d be odd,Q = Znd for somen. Let V,H be as

usual and letρ be a quantum state onH.

TheWigner functionWρ associated withρ is the symplectic Fourier transformation

of the characteristic functionΞρ.

An explicit calculation yields, for alla ∈ V ,

(FS Ξρ) (a) = d−2n
∑

b∈V

χ̄([a, b]) tr(w(b)†ρ)

= d−n tr(

(

d−n
∑

b

χ̄([a, b])w(b)†

)

ρ)

=: d−n tr(A(a)ρ), (4.15)

where we have implicitly defined thephase space point operatorA(a) [39].

Theorem 40 lists a selection of properties of the Wigner function. For a more thor-

ough discussion, the reader is deferred to Refs. [46, 117].

Theorem 40. (Properties of the Wigner function)

1. The phase space point operators have unit trace and form anorthonormal basis

in the space of Hermitian operators onH. Hence the Wigner function of an

Hermitian operator is real, and further, theoverlap

d−n tr(ρσ) =
∑

v∈V

Wρ(v)Wσ(v),

andnormalizationrelations

∑

v

Wρ(v) = tr ρ

hold.

2. For a pure stateψ, the Wigner functionWψ := W|ψ〉〈ψ| equals

Wψ(p, q) =

d−n
∑

ξ∈Q

χ̄(ξp)ψ̄(q − 2−1ξ)ψ(q + 2−1ξ).
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3. When computing marginal probabilities, the Wigner function behaves like a clas-

sical probability distribution:

∑

p∈Q

Wψ(p, q) = |ψ(q)|2.

4. The multi-particle phase space point operators factor:

A(p1, . . . , pn, q1, . . . , qn) =
n
⊗

i

A(i)(pi, qi)

(and hence so does the Wigner function).

5. It holds thatA(0)|q〉 = | − q〉. In other words, the phase space point operator at

the origin equals theparity operator.

6. The Wigner functionWρ σ of an operator product is given by the⋆-product(also

known as theGroenewoldor Moyal product[45]):

Wρ σ(u) = (Wρ ⋆ Wσ)(u)

:= d−n
∑

v,w

Wρ(u+ v)Wσ(u+ w)χ̄([v, w]).

Proof. The proofs are all straight-forward; we give only hints on how to conduct them.

It will be essential to recall the well-known relation

∑

x∈Zn
d

χ(xy) = dn δy,0, (4.16)

for all y ∈ Znd .

Indeed, the first claim can be proven by using Eq. (4.16) together with the definition

of the phase space point operators Eq. (4.15). Employ Definition 39 and Eq. (4.16) to

establish the second assertion, which in turn implies the third one. Theorem 40.4 makes

use of the fact that̄χ(pq) =
∏

i χ̄(piqi); see also Section 4.7 for a very similar and more

explicit calculation. The validity of the fifth statement isbest shown using Eqs. (4.8),

(4.16).
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Let us lastly turn to Claim 6. We have noted that the phase space point operators

form an orthonormal system. Hence we can expand an operatorρ in terms of its Wigner

function asρ =
∑

vWρ(v)A(v). Substitutingρ andσ by their respective expansions in

Wρσ(v) = d−n tr(A(v)ρσ) yields the desired formula with the help of Lemma 63.

The following statement will be vital to the proof of the maintheorem. It assigns an

elegant geometric interpretation to the Clifford group.

Theorem 41. (Clifford Covariance)Let U = w(a)µ(S) be a Clifford operation. Let

ρ′ := UρU † for some Hermitian operatorρ. The Wigner function iscovariantin the

sense that

Wρ(v) = Wρ′(S v + a).

Proof. We compute the action of the Clifford group on the phase spacepoint operators.

w(a)µ(S)A(b)µ(S)†w(a)†

= d−n
∑

v∈V

χ̄([b, v])w(a)µ(S)w(v)µ(S)†w(a)†

= d−n
∑

v

χ̄([b, v])w(a)w(S v)w(a)†

= d−n
∑

v

χ̄([b, v])χ([a, S v])w(S v)

= d−n
∑

v′:=S v

χ̄([b, S−1v′])χ̄([a, v′])w(v′)

= d−n
∑

v′

χ̄([S b+ a, v′])w(v′) = A(Sb+ a).

The claim follows by use of Eq. (4.15).

Our definition of the discrete Wigner function coincides with the ones used in Refs.

[46, 116, 117, 126]. It is further equal to Leonhardt’s version [74], up to a permutation

of points in phase space; it corresponds to choice (a) in Ref.[71] and lastly toG = Znd
in Ref. [24]. One can show thatW , as defined here, fulfills the axioms of Ref. [39]

which had been laid out in Section 4.1.2. Put differently, itis an element of the set

of generalized Wigner functions. Gibbonset. al. remarked in Ref. [39] that among

the generalized Wigner functions, some stand out by their high degree of symmetry.

In our language, this symmetry is an incarnation of the Clifford covariance established
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in Theorem 41. Naturally, it is now interesting to ask how much freedom is left in the

definition of a Wigner function, once one requires Clifford covariance to hold. We show

in Appendix 4.8.2 that the definition used here is virtually unique in that regard.

4.2.5 Stabilizer States

Using the composition law of the Heisenberg group Eq. (4.4),it is easy to see that two

Weyl operatorsw(v1), w(v2) commute if and only if[v1, v2] = 0. Now consider the

image of an entire subspaceM under the Weyl representationw. The set

w(M) = {w(m)|m ∈M}

consists of mutually commuting operators if and only if the symplectic form vanishes

onM :

[m1, m2] = 0, for all mi ∈M.

Spaces of that kind are calledisotropic. Clearly, if M is isotropic, then the opera-

torsw(M) can be simultaneously diagonalized. We will see that if|M | = dn, the

eigenspaces become non-degenerate and can thus be used to single out state vectors in

the Hilbert space. A subspaceM of V is said to bemaximally isotropicif its cardinality

equalsdn. See Appendix 4.8.3 for a justification of that nomenclature.

Lemma 42. (Stabilizer States)Let M be a maximally isotropic subspace ofV . Let

v ∈ V . Up to a global phase, there is a unique state vector|M, v〉 that fulfills the

eigenvalue equations

χ([v,m])w(m) |M, v〉 = |M, v〉

for all m ∈M .

Proof. Existence: It is elementary to check that

|M |−1
∑

m∈M

χ([v,m])w(m) (4.17)

is a rank one projection operator fulfilling the eigenvalue equations.
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Uniqueness: According to Appendix 4.8.3, there arepn characters ofM , each giv-

ing rise to a distinct projection operator as defined in the last paragraph. Two distinct

operators of that kind are mutually orthogonal, because they belong to different eigen-

values of at least one of the Weyl operators. ButdimH = |Q| = pn and thus there is no

space for more than one-dimensional solutions to the given set of equations.

The state vector|M, v〉 is called thestabilizer stateassociated toM andv. For obvi-

ous reasons, one refers to the set of operators{χ([v,m])w(m)|m ∈M} as thestabilizer

of |M, v〉. Due to the isotropicity ofM , the stabilizer is closed under multiplication and

thus constitutes a group. Occasionally, we write|M〉 for |M, 0〉. To specify a stabilizer

state, we need to specify a maximally isotropic spaceM . This is best done by giving a

basis{m1, . . . , mk} of M . It is convenient to assemble the basis vectors as the columns

of a2n×k-matrix, which is generally referred to as thegenerator matrix. As the choice

of a basis is non-unique, so is the form of the generator matrix.

A stabilizer state|M〉 is agraph stateif it possesses a generator matrix of the form





ϑ1n×n  , (4.18)

whereϑ is a symmetricn × n-matrix [55]. The designation stems from the fact thatϑ

can be interpreted as the adjacency matrix of a graph. Many properties of|M〉 are de-

scribable in terms of that graph alone [55]. Some authors require the diagonal elements

ϑii to vanish (equivalently, no vertex of the graph should be linked to itself), but we will

not impose that restriction. Note that there exist considerably more general definitions

of graph states [96].

Obviously, we will be concerned with Wigner functions of stabilizer states. Lemma

43 clarifies their structure.

Lemma 43. (Wigner functions of stabilizer states)The Wigner function of a stabilizer

state|M, v〉 is theindicator functiononM + v. More precisely,

W|M,v〉(a) =
1

dn
δM+v(a) =

1

dn







1 a ∈M + v

0 else.
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Proof. The representation given in Eq. (4.17) of|M, v〉 determines the characteristic

function

Ξ|M,v〉(b) = d−n χ([v, b])δM(b).

We compute the symplectic Fourier transformation:

(

FS Ξ|M,v〉

)

(a) = d−2n
∑

b∈V

χ̄([a, b])χ([v, b])δM (b)

= d−2n
∑

b∈M

χ̄([a− v, b])

= d−n δM⊥(a− v).

Where

M⊥ = {v ∈ V |[m, v] = 0 for all m ∈M}

is thesymplectic complementof M in V . But M is a maximally isotropic space and

henceM = M⊥ (see Appendix 4.8.3).

In particular we know now that the Wigner function of stabilizer states is non-

negative. The next sections are devoted to the proof of the converse.

4.3 Discrete Hudson’s Theorem

4.3.1 Bochner’s Theorem

Define theself correlation function

Kψ(q, x) = ψ(q + 2−1x)ψ̄(q − 2−1x)

and note that the Wigner function fulfills

W (p, q) =
1

dn

∑

x∈Q

χ̄(px)Kψ(q, x). (4.19)

Fix a q0 ∈ Q. Designating the functionp 7→ W (p, q0) by W ( · , q0), Eq. (4.19) says

thatW ( · , q0) is the Fourier transform ofK(q0, · ). Therefore,W is non-negative if and
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only if thedn functionsK(q0, · ) have non-negative Fourier transforms.

In harmonic analysis, the set of functions with non-negative Fourier transforms is

characterized via a theorem due to Bochner. It is usually proven either in the context

of Fourier analysis on the real line or else, in full generality, for harmonic analysis on

– not necessarily abelian – locally compact groups. While the former statement is not

general enough for our purpose, the latter is not easily accessible. However, it turns out

that in the discrete abelian setting an elementary proof canbe given. It is stated in the

next theorem, along with a variation for subsequent use.

Theorem 44. (Variations of Bochner’s Theorem)LetM be a subspace ofQ. Let f :

M → C. It holds that

1. The Fourier transform off is non-negative if and only if the matrix

Axq = f(x− q) (x, q ∈ M)

is positive semi-definite.

2. The Fourier transform off has constant modulus (i.e.|f̂(x)| = const) if and only

if f is orthogonal to its translations:

〈f, x̂(q)f〉 =
∑

x∈M

f̄(x)f(x− q) = 0

for all non-zeroq ∈M .

Proof. The following computation is a variant of a well-known fact concerning circulant

matrices. We claim that any characterζ of M is an eigenvector ofA with eigenvalue

λ = |M |−1/2 f̂(ζ). Indeed, plugging in the definitions yields

(Aζ)(x) =
∑

q

Axq ζ(q)

=
∑

q

f(x− q)ζ(q)

=
∑

q

f(q)ζ̄(q) ζ(x)

=
√

|M |f̂(ζ) ζ(x).
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There exist|M | characters and thus equally many eigenvectors ofA. Therefore,A can

diagonalized. All its eigenvalues are non-negative if and only if f̂ is non-negative.

By the same argument,A is proportional to a unitary matrix if and only if|f̂(q)|
is constant. But a matrix is unitary if and only if its rows form an ortho-normal set of

vectors.

From here, the proof proceeds in two steps. Section 4.3.2 harvests Theorem 44.1 to

gain information on the pointwise modulus|ψ(q)| of a vector with non-negative Wigner

function. Building on these finding, we will analyze the properties of such Wigner

functions in Section 4.3.3.

4.3.2 Supports and Moduli

Lemma 45. (Modulus Inequality)Let ψ be a state vector with non-negative Wigner

function.

It holds that

|ψ(q)|2 ≥ |ψ(q − x)| |ψ(q + x)|

for all q, x ∈ Q.

Proof. Fix a q ∈ Q. AsWψ is non-negative, so is the Fourier transform ofKψ(q, · ).
Bochner’s Theorem implies that the matrixAxy = K(x− y, q) is positive semi-definite

which in turn implies that all principal sub-matrices are psd. In particular the determi-

nant of the2 × 2 principal sub-matrix





Kψ(q, 0) Kψ(q, 2x)

Kψ(q,−2x) Kψ(q, 0)





=





|ψ(q)|2 ψ(q + x)ψ̄(q − x)

ψ̄(q + x)ψ(q − x) |ψ(q)|2





must be non-negative. But this means

|ψ(q)|4 − |ψ̄(q + x)ψ(q − x)|2 ≥ 0,

which proves the theorem.
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We will call the setsuppψ of points where a state-vector is non-zero itssupport.

S = suppψ has the property to contain themidpointof any two of its elements. Indeed,

if a, b ∈ S, then settingq = 2−1(a + b) andx = 2−1(a − b) in the Modulus Inequality

shows that

|ψ(2−1(a+ b))| ≥ |ψ(a)| |ψ(b)| > 0,

hence2−1(a+ b) ∈ S. Let us refer to sets possessing this quality as beingbalanced.

The following lemma clarifies the structure of balanced sets. Recall that a subsetA

of V is affineif A = M + v for a subspaceM and some vectorv. An affine space is a

subspace if and only if it contains the origin0.

Lemma 46. (Balanced sets)A subsetS of Q is balanced if and only ifS is an affine

space.

Proof. We show the ’only if’ part, the other one being simple.

As both the characterizations of balancedness and affinity are invariant under trans-

lation, there is no loss of generality in assuming that0 ∈ S. We have to establish thatS

is closed under both addition and scalar multiplication.

Let a ∈ S. We claim that

2−lλ a ∈ S (4.20)

for all l ∈ N andλ ≤ 2l. The proof is by induction onl. Suppose Eq. (4.20) holds for

somel. If λ ≤ 2l+1 is even, then2−l−1λ a = 2−l(λ/2)b ∈ S. Else,

2−l−1λ a = 2−1
(

2−l
λ− 1

2
a + 2−l

λ+ 1

2
a
)

∈ S,

which shows the validity of Eq. (4.20).

There exists an integerl > d such that2l = 1 mod d. Indeed, by Euler’s Theorem,

2φ(d) = 1 mod d, whereφ is Euler’s totient function. Sol = dφ(d) satisfies the

requirements. Insertingl into Eq. (4.20), we conclude thatλ a ∈ S for all λ ≤ 2d. Thus

certainlyλ a ∈ S for all λ ∈ Zd and we have proved closure under scalar multiplication.

If a, b ∈ S then, by the last paragraph2a, 2b ∈ S and hence2−1(2a + 2b) ∈ S,

establishing closure ofS under addition.
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4.3 Discrete Hudson’s Theorem

Lemma 47. (Constant Modulus)Letψ be a state vector with non-negative Wigner func-

tion. Then|ψ( · )| is constant on the support ofψ.

Proof. Pick two pointsx, q ∈ suppψ and suppose|ψ(q)| > |ψ(x)|.
Lettingz = x− q, the assumption reads|ψ(q)| > |ψ(q+ z)|. The Modulus Inequal-

ity, centered atq + z, gives

|ψ(q + z)|2 ≥ |ψ(q)| |ψ(q + 2z)|. (4.21)

As suppψ is affine, we know thatψ(q + kz) 6= 0 for all k ∈ Zd. Hence Eq. (4.21),

together with the assumption implies

|ψ(q + z)|2 > |ψ(q + z)| |ψ(q + 2z)|
⇔ |ψ(q + z)| > |ψ(q + 2z)|.

By inducting on this scheme, we arrive at

|ψ(q)| > |ψ(q + z)| > |ψ(q + 2z)| > · · ·

and therefore|ψ(q)| > |ψ(q + dz)| = |ψ(q)|, which is a contradiction.

Thus |ψ(q)| ≤ |ψ(x)|. Swapping the roles ofx and q proves that equality must

hold.

At this point, we have full knowledge of the pointwisemodulusof a state vector with

non-negative Wigner function. Thephasesof ψ( · ) are, however, completely unknown.

The section to come addresses this problem indirectly, by studying non-negative Wigner

functions.

4.3.3 Non-negative Wigner functions

To motivate the following, assume for a moment thatψ has a non-negative Wigner

function and further, thatψ(q) 6= 0 for all q. Choose aq0 ∈ Q and consider the function

W ( · , q0). Lemma 47 implies thatKψ(q0, · ) has constant modulus and hence – by

Theorem 44.2 –W ( · , q0) must be orthogonal to its translations. Clearly, a non-negative
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4.3 Discrete Hudson’s Theorem

function possesses this property if and only if it is supported on at most a single point.

There hence exists ap0 ∈ Q such thatW (p, q0) ∝ δp,p0. This observation starkly

reduces the possible forms of positive Wigner functions; itwill be generalized to state

vectors with arbitrary support in the next lemma.

Lemma 48. Letψ be a state vector. IfWψ is non-negative, then it is of the form

Wψ(v) = d−n δT (v)

whereT ⊂ V is a set of cardinalitydn.

What is more, if0 ∈ T , then the set of elements ofT with vanishing position coordi-

nates

{(p, 0) ∈ T | p ∈ Q}

is a subspace ofV .

Proof. Let S = suppψ. Again, we may assume thatS is a subspace ofQ, for else we

replaceψ byw(−s)ψ for somes ∈ S. It follows thatsuppKψ = S × S. Indeed,

Kψ(q, x) 6= 0 ⇔ q ± 2−1x ∈ S

⇔ q ∈ S ∧ x ∈ S.

Denote byS⊥ = {q ∈ Q|sq = 0 for all s ∈ S} the orthogonal complement ofS 5.

We will adopt the common notation[p] = p + S⊥ for cosets ofS⊥. It should be clear

that [p] is nothing other but theaffine spacewith directional vector space given byS⊥

and base vectorp. The setS∗ of characters ofS can be identified withQ/S⊥. Certainly,

s 7→ χ(ps) defines a character ofS for everyp ∈ Q. Further,χ(ps) = χ(p′s) for all

s ∈ S if and only if p − p′ ∈ S⊥. That indeed all elements ofS∗ can be obtained this

way is shown in Corollary 60.

DefineK ′
ψ to be the restriction ofKψ to its supportS × S. For the rest of the proof,

5For subsetsS of Q, S⊥ denotes theorthogonalcomplement, while for subsetsS of V the same
symbol refers to thesymplecticcomplement. This notation is natural, as for bothQ andV only one
respective inner product has been defined.
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4.3 Discrete Hudson’s Theorem

we fix aq0 ∈ S. Now consider

W (p, q0) = d−n
∑

x∈Q

χ̄(px)K(q0, x)

= d−n
∑

x∈S

χ̄(px)K ′(q0, x).

Viewed as a function inp,W (p, q0) has constant values on cosets ofS⊥. Therefore,

W ′([p], q) := dn|S|−1/2W (p, q) (4.22)

is a well-defined function onS∗. The considerations of the previous paragraph allow us

to identifyW ′([ · ], q0) as the Fourier transform ofK ′(q0, ·).
We can now repeat the argumentation presented just before the current lemma. In-

deed, the modulus ofK ′(q0, [ · ]) is constant andW ′ is non-negative. Furthermore, by

definition ofq0,K ′(q0, [ · ]) is non-zero and we may thus conclude thatp 7→ W ′([p], q0)

is supported on exactly one coset[p0].

Normalization ofψ implies|ψ( · )| = |S|−1/2. Hence|K ′
ψ(q0, · )| = |S|−1 and

||K ′
ψ(q0, · )||2 =

∑

x

|K ′
ψ(q0, x)|2 = |S|−1.

By Parzeval’s Theorem,||W ′([ · ], q0)||2 = |S|−1 as well. It follows thatW ′([p0], q0) =

|S|−1/2.

Inverting Eq. (4.22) gives

W (p, q) = d−n







1 [p] = [p0]

0 else
(4.23)

which proves the first claim of the lemma. The cardinality ofT is fixed by the normal-

ization of the Wigner function (Theorem 40.40).

Now supposeW (0, 0) = W ′([0], 0) 6= 0. Clearly, thenW (p, 0) is non-zero if and

only if p ∈ [0] ⇔ p ∈ S⊥. The last assertion of the lemma follows, sinceS⊥ is a

subspace ofQ.

So a non-negative Wigner function is the indicator functions of some setT . This
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4.3 Discrete Hudson’s Theorem

finding is compatible with Lemma 43, which describes the structure of Wigner functions

of stabilizer states. The next two lemmas verify thatT has indeed all the properties of

the sets that appear in Lemma 43.

Lemma 49. Letψ be a state vector. IfWψ is of the form

Wψ(v) = d−n δT (v),

thenT is an affine space.

Proof. The proof proceeds similar to the one of Lemma 46. There is no loss of gener-

ality in assuming that0 ∈ T .

First, we show thatT is closed under scalar multiplication. To this end, pick a point

a ∈ T . There exists a symplectic mappingS that sendsa to a vectora′ of the form

(a′p, 0) wherea′p ∈ Q (see Appendix 4.8.4). The setT ′ = S T is the support of the

Wigner function ofµ(S)ψ. By the second assertion of Lemma 48,λa′ ∈ S T for every

λ ∈ Zd. HenceS−1(λa′) = λa ∈ T .

Turning to closedness under addition, leta, b ∈ T . By the last paragraph,2a, 2b ∈ T .

Arguing as before, note that the setT − 2a is the support of the Wigner function of

w(−2a)ψ and thus closed under multiplication. As2b − 2a ∈ T − 2a, we know that

b− a ∈ T − 2a and henceb+ a ∈ T .

Lemma 50. Letψ be a state vector such thatWψ is of the form

Wψ(v) = d−nδT (v).

If T is a subspace, then it is isotropic.

Proof. The vectorψ describes a pure state, henceWψ ⋆ Wψ = Wψ (recall the Moyal

product, introduced in Theorem 40). Letu ∈ T . Plugging in the definitions gives

Wψ ⋆ Wψ(u)

= d−n
∑

v,w∈V

Wψ(u+ v)Wψ(u+ w)χ̄([v, w])

= d−3n
∑

v,w∈T

χ̄([v, w]).
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4.4 Discrete Gaussians

Note that
∑

w∈T χ̄([v, w]) ≤ |T | = dn with equality if and only if[v, w] = 0 for all w.

Hence

Wψ ⋆ Wψ(u) ≤ d−n = Wψ(u).

For the left-hand and the right-hand side to be equal,T must be isotropic.

ThereforeT , as defined above, is of the formT = M + v whereM is an isotropic

space of cardinalitydn. But then,Wψ is the Wigner function of a stabilizer state, by

Lemma 43. We have proven:

Theorem 51. (Main Theorem)Letψ ∈ L2(Znd) be a state vector. If the Wigner function

ofψ is non-negative, thenψ is a stabilizer state.

4.4 Discrete Gaussians

It has long been realized that the coefficients of stabilizerstate vectors are described

by quadratic forms. However, the current literature eitherneglects the non-prime case

(Refs. [30, 42, 96]) or is less explicit (Ref. [59]) than the following lemma in showing

the tight relation between Gaussian states and stabilizer states.

We will concentrate on stabilizer states with full support.This constitutes only a

modest restriction of generality. Indeed, letψ be a general stabilizer state, letQ′ :=

suppψ. Let us for the sake of simplicity assume thatd is prime andQ′ is a subspace of

Q. The restriction of the coordinate functionψ(q) toQ′ can be thought of as defining a

vectorψ′ of a quantum state of ann′ := dimQ′ particle system. It is now possible to

check thatψ′ is a stabilizer state. In this way any stabilizer state can beviewed as one

with full support, possibly on a smaller system. We will, however, not take the time to

make this construction precise nor will we rely on it in this paper.

Lemma 52. Letψ be a state vector. The following statements are equivalent.

1. ψ is a stabilizer state andψ(q) 6= 0 for all q ∈ Q.

2. Up to the action of a Weyl operator,ψ is a graph state.
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4.4 Discrete Gaussians

3. There exists a symmetricn× n-matrixθ and anx ∈ Q such that

ψ(q) = ωqθq+xq.

Proof. (1⇒ 2). By assumption|ψ〉 = |M, v〉 for some maximal isotropic spaceM and

a vectorv. We claim that there is no non-zerop ∈ Q such that(p, 0) ∈ M .

For suppose there exists such ap. Then

〈q|w(p, 0)|M〉 = χ(−pq)〈q|M〉.

On the other hand,

〈q|w(p, 0)|M〉 = χ̄([v, (p, 0)]) 〈q|M〉,

by the definition of|M, v〉. Hencesupp |M〉 must be contained within a hyper-surface

of Q specified bypq = const, which contradicts the assumption thatsuppψ = Q.

There aredn elements inM . By the last paragraph, no two of them have the same

position coordinates. As there exist onlydn = |Q| possible choices for the position

coordinates, one can find for everyq ∈ Q ap ∈ Q such that(p, q) ∈ M . Let e1, . . . , en

denote the canonical basis ofZnd . Choosem1, . . . , mn ∈ M such that the position part

of mi equalsei. The span of{mi}i=1,...,n has clearly cardinalitydn, so we have found a

basis ofM . By construction, the generator matrix composed of these basis vectors has

the form shown in Eq. (4.18) with somen× n-matrix θ. It is not hard to see thatM is

isotropic if and only ifθ is symmetric, establishing that|M〉 is a graph state. Theorem

41 and Lemma 43 show thatw(v)|M〉 = |M, v〉 = |ψ〉.
(2 ⇒ 3). Let M be an isotropic space which possesses a generator matrix of the

form given in Eq. (4.18). Letmi = (ϑi, ei) be theith column of that matrix. We need

to establish the existence of a symmetric matrixθ and anx ∈ Q such that

〈q|M, v〉 = ωqθq+xq =: ψ(q).

Indeed, choose

θ = 2−1ϑ, xi = [v,mi].
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4.5 Mixed States

Using Eq. (4.8), one can then check by direct computation that ψ fulfills the defining

eigenvalue equations

χ([v,mi])w(mi)ψ = ψ

and hence|ψ〉 = |M, v〉, by Lemma 42.

(3 ⇒ 1). Reverting the previous proof shows thatψ is a graph state. It has maximal

support by definition.

The claimed analogy between stabilizer states and Gaussianstates is apparent when

comparing statement 3 to Theorem 35.

4.5 Mixed States

It is natural to ask how the results obtained before generalize to mixed states. Certainly,

mixtures of stabilizer states are non-negative on phase space and it might be surmised

that all such quantum states are convex combinations of stabilizer ones. In the context

of continuous variable systems, Bröcker and Werner refuted an analogous conjecture

by giving a counter-example [17]. Again, the situation is similar in the finite setting, as

will be shown now.

As a consequence of Theorem 40.5,A(0) can be decomposed asA(0) = P+ + P−,

whereP± denotes the projector onto the symmetric and antisymmetricstate vectors

respectively. SinceP+ + P− = 1, we have thatP− = 1/2(1 − A(0)). Because we

know the Wigner functions of both1 (W (v) = d−n) and ofA(0) (W (v) = δv,0), we

immediately obtain

WP−
(v) =

1

2







d−n − 1 v = 0

d−n else.
(4.24)

For a single three-dimensional quantum system there existsa unique antisymmetric

state vector|ψ−〉 = 2−1/2(| + 1〉 − | − 1〉), henceP− = |ψ−〉〈ψ−|. Figure 4.2 depicts

the Wigner function of the stateρ, obtained by mixing the pure states

|ψ−〉, w(−1, 0)|ψ−〉, w(−1,−1)|ψ−〉
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4.5 Mixed States

Figure 4.1: Wigner function of the antisymmetric vector|ψ−〉.

Figure 4.2: Wigner function of the equal mixture of the vectors |ψ−〉, w(−1, 0)|ψ−〉
andw(−1,−1)|ψ−〉. White squares stand for a value of1/6, black squares for0.

with equal weights.

The Wigner function of a single-particle stabilizer state is a line in the two-dimensional

phase space, according to Lemma 43. There ared(d + 1) such lines and hence equally

many stabilizer states. Assume these states have been brought into some order and de-

note the associated projection operators byP1, . . . , Pd(d+1). Let ρ =
∑d(d+1)

i λiPi be a

convex decomposition ofρ in terms these operators. If there is a pointv in phase space

whereWρ(v) = 0 andWPi
(v) 6= 0, then clearlyλi must vanish. By exhaustively listing

all 12 lines inZ2
3, one finds thatρ can have non-zero coefficients only with respect to

the stabilizer states whose Wigner functions are shown in Figure 4.3.

But ρ admits no convex decomposition in terms of these three lines. Indeed, no

two of them cover all the points in the support ofWρ, so only a mixture of all three

lines could potentially suffice. Now notice that the point(1,−1) is an element only of

Figure 4.3: The white squares mark all lines inZ2
3 that do not intersect any point where

the Wigner function shown in Fig. 4.2 vanishes.
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4.6 Dynamics

the third line, while(1, 0) is contained in both the second and the third one. Therefore

any mixture of these three lines takes on a higher value on(1, 0) than on(1,−1). The

distributionWρ, on the other hand, is constant on its support.

4.6 Dynamics

Having established which quantum states give rise to non-negative phase space distri-

butions, the next step is to characterize the set of operations that preserve this property.

We have seen in Section 4.2.4 that Clifford unitaries implement permutations in phase

space and thus manifestly preserve positivity. They are unique in that regard, as will be

shown now.

By the results of Section 4.3, it is apparent that a unitary operationU can preserve

positivity only if it sends stabilizer states to stabilizerstates. One can reasonably conjec-

ture that only Clifford operations possess this feature andin the case of single-particles

in prime-power dimensions, a proof of this fact has been given in Ref. [38]. The gen-

eral case, however, poses surprising difficulties which have forced us to take a less direct

route.

Let us shortly pause to clarify our objectives. We aim to characterize the set of

unitariesU that satisfy statements of the kind:WUρU† is non-negative wheneverWρ

is. We can require the above statement to hold forany Hermitian operatorρ, or just

wheneverρ is a quantum state. In the former case the restrictions onU are much

stronger than in the latter one. Indeed, by considering the image of the phase space point

operatorsA(a) under the action ofU and making use of Lemma 63, it is straight-forward

to prove that only Clifford operations can preserve positivity of the Wigner functions

of general Hermitian operators. The following theorem is slightly more ambitious in

considering only the action ofU on quantum states.

Theorem 53.(Only permutations preserve positivity).LetU be unitary. If, for all quan-

tum statesρ with non-negative Wigner function, it holds thatWUρU† is non-negative,

thenU is Clifford.

Proof. Firstly, take a note that substituting ’quantum state’ by ’positive operator’ in

the above theorem, only amounts to a change of normalizationand does not alter the
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4.6 Dynamics

statement. Set

µ(ρ) := min
v∈V

Wρ(v),

ν(ρ) := minargWρ := {v ∈ V |Wρ(v) = µ(v)}.

Let ρ be such thatµ(ρ) < 0. We claim thatµ(ρ) = µ(ρ′), whereρ′ = UρU †. In

other words:U preserves minimal values.

Indeed, there exists positive constantsλ1,2 such that

λ1µ(ρ′) + λ2d
−n = 0.

Henceσ := λ1ρ + λ21 has a non-negative Wigner function. The assumptionµ(ρ′) <

µ(ρ) yields

WUσU†(v) = λ1µ(ρ′) + λ2d
−n < 0

for everyv ∈ ν(ρ′), which contradicts the defining property ofU . Thusµ(ρ′) ≤ µ(ρ).

SubstitutingU byU−1 shows that equality ofµ(ρ) andµ(ρ′) must hold.

Now set

ρ(a) := (1 − d−n)−1w(a)P−w(a)†

for all a ∈ V . We haveµ(ρ(a)) = µ(ρ′(a)) = −1 andν(ρ) = {a}. The crucial obser-

vation lies in the fact thatν(ρ′) contains only a single point as well. So,U preserves the

’pointed’ shape ofWρ(a). To see why that is the case, suppose there is aa0 such that

|ν(ρ(a0)
′)| > 1. There ared2n operatorsρ(a)′ and equally many points in phase space,

so there exists ana1 such thatν(a0) andν(a1) intersect in at least one pointv. Define

σ = 1/2(ρ(a0) + ρ(a1)). It holds thatµ(σ) > −1/2, whereasWσ′(v) = −1 which is

a contradiction. There is hence a well-defined functionS which sendsa to the unique

element ofν(ρ(a)′).

Finally, letσ be any density matrix. The idea is to mixσ very weakly toρ(a), so that

the positions of the minima of the mixture are still determined byρ(a). Indeed, there
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4.7 Prime power dimensions

exists anǫ > 0 such that

ν(ρ(a) + ǫσ) = {a}

µ(ρ(a) + ǫσ) = −1 + ǫWσ(a);

ν(ρ(a)′ + ǫσ′) = {S(a)}

µ(ρ(a)′ + ǫσ′) = −1 + ǫWσ(S(a)).

HenceWσ′(Sa) = Wσ(a). We have established thatU acts as a permutation in phase

space and is therefore Clifford by Lemma 63.

4.7 Prime power dimensions

Wigner functions for quantum systems with prime power dimensions have received

particular attention in the literature (most prominently in Ref. [39]). Once again, this is

due to the fact that a finite field of orderd exists exactly whend is the power of a prime

and that the field’s well-behaved geometrical properties facilitate many constructions.

The present section briefly addresses the relationship between three natural approaches

to Wigner functions for such systems. We assume the reader isalready familiar with the

definition of Weyl operators over Galois fields; a thorough introduction can be found in

Refs. [39, 46].

Let d = pk for some prime numberp. There are three natural ways of associating a

configuration space toH. These are

1. ann-dimensional vector space overZp,
2. a one-dimensional module overZpn or

3. a one-dimensional vector space over the Galois fieldFpn of orderpn.

The first and the second of these points of view have manifestly been covered in this

paper. So far we neglected case 3, because – as we will see – it can be completely

reduced to the first one.

Let us quickly gather some well-known facts on finite fields. If p is prime andn a

positive integer,Fpn denotes the unique finite field of orderd = pn. The simplest case
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4.7 Prime power dimensions

occurs forn = 1, whenFp ≃ Zp. For n > 1, fieldsFpn are realized byextendingFp, which is then referred to as thebase field. Extension fields contain the base field

as a subset. The extension field possesses the structure of ann-dimensional vector

space over the base field. A set of elements ofFpn is abasisif it spans the entire field

under addition andFp-multiplication. After having chosen a basis{b1, . . . , bn}, we can

specify any elementf =
∑

i f
ibi by its expansion coefficients{f i}. The operation

Trf =
n−1
∑

k=0

f p
k

takes on values in the base field and isFp-linear. Therefore,

〈f, g〉 7→ Tr(fg)

defines anFp-bilinear form. For any basis{bi}, there exists adual basis{bi} fulfilling

the relationTr(bibj) = δi,j (we do not use Einstein’s summation convention). From now

on, we assume that a basisbi and a dual onebi have been fixed.

Repeating the construction put forward in Section 4.2, we introduce the Hilbert

spaceH = L2(Fpn), in other words,H is the span of{|q〉|q ∈ Fpn}. The choice of a

basis induces a tensor structure onH via

|q〉 = |
∑

i

qibi〉 7→
⊗

i

|qi〉.

We obtain a character ofFpn by settingχpn(f) = χp(Trf). Note that forn = 1,

χpn = χp. Expanding momentum coordinatesp =
∑

j pjb
i, the character factors:

χ(pq) = χp
(

∑

i,j

pjq
iTr(bib

j)
)

=
∏

i

χp(piq
i).
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Similarly, the shift and multiply operators factor with respect to this tensor structure:

x
(

∑

i

qibi
)

|
∑

j

xjbj〉 =
⊗

i

x(i)(qi)|xi〉

z
(

∑

i

pib
i
)

|
∑

j

xjbj〉 =
∏

i

χp(pix
i)|
∑

j

xjbj〉

=
⊗

i

z(i)(pi)|xi〉,

wherex(i) andz(i) act on theith p-dimensional subsystem. A straight-forward compu-

tation along the lines just presented shows that both the Weyl operators and the phase

space point operators factor:

w(p, q) =
⊗

i

w(i)(pi, q
i) = w(p1, . . . , pn, q

1, . . . , qn)

A(p, q) =
⊗

i

A(i)(pi, q
i) = A(p1, . . . , pn, q

1, . . . , qn).

The above result thus states that the Wigner function induced by the choiceQ = Fpn

coincides – up to re-labeling of the phase space points – withthe one forQ = Fnp . In

particular, both definitions give rise to the same set of states with a non-negative phase

space distribution.

For stabilizer states, however, the situation is not as easy, as will be discussed sub-

sequently. The preceding discussion suggests defining a mapι : F2
pn → F2n

p by

(p, q) 7→ (p1, . . . , pn, q
1, . . . , qn)

(see Refs. [46, 87]). LetM be a maximal isotropic subspace ofF2
pn . It is readily verified

thatι(M) ⊂ F2n
p is again isotropic and a subspace. Further, we have shown that the sets

of Weyl operatorsw(M) andw(ι(M)) coincide and hence so do the stabilizer states

|M〉 and|ι(M)〉.
The converse is not true.ι−1 does not necessarily mapF2n

p subspaces to those ofF2
pn. More precisely, ifM ⊂ F2n

p is a subspace, thenι−1(M) can easily be proven to

be closed under addition, but will in general fail to be closed underFpn-scalar multipli-
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cation. This proves the remark made in the introduction, namely that the set of ’single-

particle’ (i.e.F2
pn) stabilizer states is a true subset of corresponding ’multi-particle’ set.

The following subsection gives a quantitative account of the relation of the sets.

4.7.1 Counting stabilizer codes

We are going to count the number of stabilizer states of a system composed ofn d-level

particles. In fact, the computation given below is slightlymore general in that it gives

the number ofk-dimensionalstabilizer codes[40].

Stabilizer codes are generalizations of stabilizer states. Recall Eq. (4.17), where we

showed that summing Weyl operatorsw(m) over the elementsm of a maximal isotropic

subspaceM of V yields a one-dimensional projection operator. It can be shown that if

the requirement of maximality is dropped, the sum still evaluates to a projector. The

range of this operator is thestabilizer codedefined byM . The dimensionm of M and

the dimensionk of the stabilizer code are related byk = dn−m.

Theorem 54. (Number of isotropic subspaces)Let V be a2n-dimensional symplectic

vector space overFd, whered is the power of a prime. The number ofm-dimensional

isotropic subspaces ofV is given by

Iso(n,m, d) =

[

n

m

]

d

m−1
∏

i=0

(dn−i + 1),

where the square brackets denote theGaussian coefficients

[

n

m

]

d

=
m−1
∏

i=0

dn−i − 1

dm−i − 1
.

Proof. The proof is inspired by a method employed in Ref. [22] to solve a related

problem. We count the number of linearly independentm-tuples consisting of mutual

orthogonal vectors. Indeed, as the first vectorv1 we are free to choose any non-zero

element ofV . There ared2n − 1 such choices. The second vector must lie in the

symplectic complement of the span of the first vector〈v1〉⊥. Hence,v2 can be chosen

from a 2n − 1-dimensional vector space, the only restriction being thatv2 6∈ 〈v1〉. It
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follows that there existd2n−1 − d1 possibilities forv2. Inducting on this scheme gives

m−1
∏

i=0

(d2n−i − di) (4.25)

such tuples.

However, since two different tuples might correspond to thesame isotropic space,

Eq. (4.25) over-counted the subspaces. To take that fact into account, we must divide

by the number of bases within anm-dimensional space. Arguing in a similar fashion

as before, we arrive at
∏m−1

i=0 (dm − di) for the sought-for number (see also Ref. [22]).

Division gives

Iso(n,m, d) =
m−1
∏

i=0

d2n−i − di

dm − di
=

m−1
∏

i=0

d2(n−i) − 1

dm−i − 1
.

Expandingd2(n−i) − 1 = (dn−i− 1) (dn−i + 1) and using the definition of the Gaussian

coefficients concludes the proof.

Corollary 55. The number ofdn−m-dimensional stabilizer codes defined onn d-level

systems is

Stabs(n,m, d) = dm
[

n

m

]

d

m−1
∏

i=0

(dn−i + 1).

In particular, the number of stabilizer states is

Stabs(n, n, d) = dn
n
∏

i=1

(di + 1).

Proof. We only need to justify the pre-factordm. The defining Eq. (4.17) generates a

projector onto a stabilizer code given an isotropic spaceM and a characterχ([v, · ]) on

M . If dimM = m, then there are|M | = dm distinct such characters (see Appendix

4.8.3).

We can now compare the number of stabilizer states forn particles of dimensiond

148



4.8 Appendix

to the corresponding number for a singledn-dimensional system:

Stabs(n, n, d)

Stabs(1, 1, dn)
=

∏n
i=1(d

i + 1)

dn + 1
=

n−1
∏

i=1

(di + 1)

≥ d
Pn−1

i=1
i = d

1

2
(n2−n).

This is the super-exponential scaling mentioned in the introduction.

4.8 Appendix

4.8.1 Discrete Stone-von Neumann Theorem

This section generalizes well-known results for prime-power dimensions (see e.g. Ref.

[80] and citations therein) to all oddd. The proof is based on some simple observations

employing group representation theory. We state a preparing lemma beforehand.

Lemma 56. The Weyl representation is irreducible.

Proof. We compute

1

|H(Znd)| ∑a∈V,
t∈Zd

| trw(a, t)|2 = d−(2n+1)
∑

t

| trw(0, t)|2

= d−(2n+1)
∑

t

d2n = 1

which establishes irreducibility by a well-known criterion from group representation

theory (see any textbook on that topic, e.g. [103]).

Proof. (of Theorem 37)By the composition law Eq. (4.4) it is clear thatw′(p, q, t) :=

w(S(p, q), t) is a representation of the Heisenberg group which affords the same char-

acter (i.e. trw(a, t) = trw′(a, t)). The preceding lemma yields thatw andw′ are

equivalent and thus the existence ofµ(S) follows. Further,

µ(S)µ(T )w(p, q)µ(T )†µ(S)† = µ(S)w(T (p, q))µ(S)†

= w(S T (p, q))

= µ(ST )w(p, q)µ(ST )†.
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Because the Weyl matrices span the set of all operators, the last line fixesµ(ST ) modulo

a phase and we have proven the second assertion.

We turn to the last claim. LetS andc be as defined in Eq. (4.10). Using the com-

mutation relations Eq. (4.4) and the fact that conjugation by unitaries leaves the center

χ(t)1 of the Weyl representation invariant, it is easy to see thatS must be an isometry

in the sense that[Sa, Sb] = [a, b]. To proceed, consider the following calculation. On

the one hand

Uw(a)w(b)U † = Uw(a+ b, 2−1[a, b])U † (4.26)

= w(S(a+ b), 2−1[a, b])c(a+ b),

while on the other hand,

Uw(a)w(b)U † = Uw(a)U †Uw(b) (4.27)

= w(Sa)w(Sb)c(a)c(b)

= w(Sa+ Sb, 2−1[Sa, Sb])c(a)c(b).

Comparing the last lines of Eqs. (4.26) and (4.27) one finds thatS must be compatible

with addition inZ2n
d meaning thatS(a + b) = Sa + Sb. BecauseZd is cyclic the

preceding property implies thatS is also compatible with scalar multiplication:

S(λa) = S(a+ · · ·+ a) = S(a) + · · · + S(a) = λS(a).

HenceS is linear and therefore symplectic. Lastly, again using lines (4.26) and (4.27),

we have thatc(a+b) = c(a)c(b) and conclude thatc is a character. By Lemma 58, there

exists ana0 ∈ V such thatc( · ) = χ([a0, S · ]). Thus:

w(a0)µ(S)w(a)µ(S)†w(a0)
† = w(a0)w(Sa)w(−a0)

= χ([a0, Sa])w(Sa)

= c(a)w(Sa).
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4.8.2 Axiomatic Characterization of the Wigner function

The discussion in Section 4.2.4 should suggest that Definition 39 yields ’the’ natural

analogue of the original continuous Wigner function. However, to bolster that claim

with more objective arguments, we establish that – at least in prime dimensions – the

form is virtually determined by the property of Clifford covariance (Theorem 41).

Theorem 57. (Uniqueness)Let d be an odd prime. LetQ, V,H be as usual. Consider

a mappingW ′ that fulfills the following axioms.

1. (Phase space)W ′ is a linear mapping sending operators to functions on the phase

spaceV .

2. (Clifford covariance)W ′ is covariant under the action of the Clifford group, in

the sense of Theorem 41.

ThenW ′
ρ(p, q) = λ1Wρ(p, q) + λ2 for two constantsλ1,2. If further,

3. (Marginal probabilities)W ′ gives the correct marginal probabilities, as stated in

Theorem 40.3,

thenW ′(p, q) = W (p, q).

Proof. Consider an alternative definitionρ 7→ W ′
ρ of a Wigner function. Linearity im-

plies the existence of a set of operators{A′(v)} such thatW ′(v) = d−n tr(A′(v)ρ). W ′

is covariant under the action of the Weyl operators if and only if A′(v) = w(v)A′(0)w(v)†.

So the only degree of freedom left in the definition ofW ′ is the choice ofA′(0). Again,

one must requireA′(S v) = µ(S)A(v)µ(S) if Theorem 41 is to hold. In particular,

because the origin0 is a fixed point of any linear operation,A′(0) must commute with

all µ(S).

As a consequence, the old, unprimed Wigner functionWA′(0) of A′(0) stays fixed

under any symplectic operationS. Since any two non-zero points ofV can be mapped

onto each other by a suitable symplectic matrixS, WA′(v) must be constant on all such

points. So there are only two parameters free to be chosen:WA′(0)(0) andWA′(0)(v), v 6=
0. Clearly, the set of all operators that comply with these constraints is spanned by1
andA(0):

A′(0) = λ1 1+ λ2A(0). (4.28)
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The above decomposition implies the first statement of the Theorem.

As for the second claim, choose ana ∈ V . The projection operator|a〉〈a| is invariant

under the action of Weyl operators of the formw(p, 0). Thus, due to Clifford covariance,

the Wigner functionW ′
|a〉 must bep-shift invariant:W ′

|a〉(p + p′, q) = W ′
|a〉(p, q). We

required Theorem 40.3 to hold, hence

∑

p∈Q

W ′
|a〉(p, 0) = dnW ′(0, 0) = δa,0.

By Eq. (4.28) and Theorem 40.5 it follows thatW ′(0, 0) = d−n(λ1 + λ2δa,0), yielding

λ1 = 0, λ2 = 1.

4.8.3 Characters and Complements

Consider a spaceR = Znd with a bilinear form〈 · , · 〉 : R×R → Zd. For anys ∈ R the

functionr 7→ χ(〈s, r〉) defines a character ofR. The form is said to benon-degenerate

if 〈s, · 〉 6= 〈s′, · 〉 for distincts, s′. The two spaces we are concerned with areQ with

the canonical scalar product andV with the symplectic scalar product. Both can easily

be checked to be non-degenerate.

The following lemma states a basic fact about spaces with non-degenerate forms.

We repeat it for completeness.

Lemma 58. LetR = Znd with non-degenerate bilinear form〈 · , · 〉. Any characterζ of

R is of the formζ(r) = χ([s, r]) for some uniques ∈ R.

Proof. Addition givesV the structure of a finite abelian group. Therefore,V ≃ V ∗,

as is well-known (see e.g. Ref. [92]). So there are|V | different characters ofV , but

equally many of the formχ([v, · ]).

If d is prime andM a subspace ofV , the well-known relationdimM + dimM⊥ =

dimV holds [61]. It is, however, no longer true in the general case. A counter-example

can be constructed along the same lines as in Section 4.2.3. Still, an analogue exists as

demonstrated below.

Theorem 59. LetR = Znd with non-degenerate bilinear form〈 · , · 〉. If M denotes a

subspace ofR, then the ’complementarity relation’|M | |M⊥| = |R| holds.
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Proof. We will show that

M⊥ ≃
(

V/M
)∗
. (4.29)

Form ∈M⊥, the relation[v] 7→ χ([m, v]) defines a character ofV/M , as can easily

be verified. Let us denote the mapm 7→ χ([m, · ]) by ι1.

Conversely, given an elementζ of
(

V/M
)∗

, v 7→ ζ([v]) is a character ofV . By

Lemma 58 there exists a uniquew ∈ V such thatζ([v]) = χ([w, v]). If m ∈ M , then

ζ([m]) = ζ([0]) = 1 and hencew ∈ M⊥. Using the notions just introduced, we can

defineι2 :
(

V/M
)∗ →M⊥ by ζ 7→ w.

It is simple to check thatι2 = ι−1
1 . In particular,ι1 is invertible and Eq. (4.29)

follows.

With the help of Lagrange’s Theorem, we can compute

∣

∣M⊥
∣

∣ =
∣

∣

(

V/M
)∗∣
∣ = |V/M | = |V |/|M |,

which concludes the proof.

Corollary 60. Let V,Q be defined as usual. LetM be an isotropic subspace ofV and

S be any subspace ofQ.

1. (Maximally isotropic spaces)M is equal to its symplectic complementM⊥ if and

only if |M | = dn.

2. (Characters of subspaces)Any characterζ of S can be written asζ(s) = χ(qs)

for a suitableq ∈ Q.

Proof. Claim 1 follows immediately from Theorem 59 and the fact thatisotropic spaces

are contained in their symplectic complement:M ⊂M⊥.

We turn to the second statement. In Lemma 48 we have argued that the characters

of S which are expressable asχ(qs) stand in one-to-one correspondence to cosets in

Q/S⊥. But |Q/S⊥| = |S| and hence all characters are of that form.

4.8.4 A geometric note

The proof of the Main Theorem makes use of the fact that for anyvectorv ∈ V , there

exists a symplectic operationS that sendsv to a vector of the form(p, 0). Indeed, ifd is
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prime, any two vectors are similar, in the sense that they canbe mapped onto each other

by a symplectic matrix. Technically, this is a trivial incarnation of Witt’s Lemma (see

Ref. [8] for a formulation that is applicable in our context).

Once again the non-prime case poses additional difficulties. Recall that theorder

of a v ∈ V is the least positiveλ ∈ Zd such thatλ v = 0. It is easy to see that the

order of a vector is left invariant by the action of invertible linear mappings. Ifd is a

composite number (i.e. not prime), thenV = Z2n
d contains elements of different orders

which cannot be related by a linear operation. However, one might conjecture that any

two vectors of equal order are similar. This is the content ofthe following lemma. Some

concepts used in the proof can be found in Refs. [61, 128].

Lemma 61. (Similarity) Let V = Z2n
d . Let a1, a2 ∈ V be two vectors with the same

order. Then there exists a symplectic matrixS such thatSa1 = a2.

Proof. We can slightly weaken the assumptions made aboutV . All we require for this

proof is thatV is a finiteZd-module with non-degenerate symplectic form[ · , · ]. It

need not be of the formZ2n
d .

Let v ∈ V be a vector of orderd. As v 7→ χ([v, · ]) implements an isomorphism,

V → V ∗, ord
(

χ([v, · ])
)

= ord(v) = d. There hence exists aw ∈ V such that

[v, w] = λ has orderd. Any such number possesses a multiplicative inverseλ−1 moduloZd and hencew′ = λ−1 fulfills [v, w′] = 1. Vectors satisfying such a relation are said to

behyperbolic couples. Denote their span〈{v, w′}〉 asH.

SetV ′ := H⊥. By Theorem 59|V | = |H| |V ′|. Further, it is easy to see that

H⊥ ∩ H = {0} and henceV = H⊥©V ′, where⊥© denotes theorthogonal direct sum.

We claim that the symplectic inner product is non-degenerate onV ′. Indeed, suppose

there is a non-zerov′ ∈ V ′ such that[v′, w′] = 0 for all w′ ∈ V ′. Then, by definition of

V ′, [h, w′] = 0 for all h ∈ H and thereforev′ would be orthogonal on all vectors ofV .

Hence such av′ cannot exist by the non-degeneracy of[ · , · ].
Note thatV ′ fulfills the assumptions made aboutV at the beginning of the proof and

has strictly smaller cardinality. Thus, we can induct on|V | to obtain a decomposition

V = H1⊥© . . . ⊥©Hn
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of V in terms of two-dimensional subspaces spanned by hyperbolic couples{vi, w′
i}.

We arrange these vectors as the columns of a matrixS = (v1, . . . , vn, w
′
1, . . . , w

′
n).

The construction of the couples{vi, w′
i} ensures thatS is symplectic, as can easily be

verified.

Now leta1, a2 ∈ V be two vectors with maximal order. By the preceding discussion,

there exists symplectic matricesSi havingai as their respective first column. Clearly,

thenS2S
−1
1 a1 = a2.

Lastly, supposeord(ai) = k ≤ d. It is easy to see thata′i = kai/d are elements of

V with maximal order. Further, ifS mapsa′1 to a′2, then alsoa1 to a2.

Corollary 62. (Transitive action)Let |M1, v1〉, |M2, v2〉 be stabilizer states. If their

respective associated isotropic subspacesM1,M2 are spanned by vectors of maximal

order, then there exists a Clifford operation relating these state vectors.

Proof. Let {m(i)
1 , . . . , m

(i)
n }, i = 1, 2 be bases ofM1 andM2 respectively. Assume that

all vectors have maximal order. It is simple to adapt the previous proof for constructing

a symplectic matrixS sendingm(1)
i tom(2)

i .

4.8.5 Some properties of the phase space point operators

Lemma 63. (Properties of the phase space point operators)The phase space point op-

erators fulfill the following relations

A(a) = w(2a)A(0),

A(a)A(b) = w(2a− 2b),

tr(A(u)A(v)A(w)) = χ([v, u] + [u, w] + [w, v]).

Further, ifU permutes the phase space point operators under conjugation

UA(v)U † = A(v′)

for all v ∈ V, thenU is Clifford.

Proof. Clifford covariance (Theorem 41) impliesA(a) = w(a)A(0)w(a)†. Using The-
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orem 40.5 it is easy to see thatA(0)w(a)A(0) = w(−a) andA(0)2 = 1. Hence

A(a) = w(a)A(0)w(−a)A(0)A(0) = w(2a)A(0)

proving the first relation. The second one follows.

For the proof of the third equation, we abbreviateA(0) asA. Then

tr (A(u)A(v)A(w))

= tr(w(2u)Aw(2v)Aw(2w)A)

= tr(w(2u)w(−2v)w(2w)A3)

= χ([u,−v] + [u− v, w]) tr(w(2(u− v + w))A)

= χ([v, u] + [u, w] + [w, v]) tr(A(u− v + w)).

It has been noted in Theorem 40.40 that phase space point operators have unit trace,

which concludes the proof.

Lastly, suppose the action ofU permutes phase space point operators. For any

a ∈ V , we have

Uw(a)U † = Uw(2 2−1(a− 0))U †

= UA(a)U U †A(0)U †

= A(a′)A(0′)

= w(2(a′ − 0′))

for suitablea′, 0′ ∈ V . HenceU maps Weyl operators to Weyl operators and is thus

Clifford by definition.
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5.1 Introduction

Motivated by the prominent role expander graphs play in theoretical computer science

[58], quantum expanders have recently received a great dealof attention [5, 10, 11, 48,

50, 51, 67]. In chapter, we present an observation which allows for the simple explicit

construction of such quantum expanders. The method relies heavily on quantum phase

space techniques: Once familiar with this techniques, the result is an almost trivial

corollary of the analogous classical statement. We furtherdiscuss continuous analogues

of quantum expanders, where again, phase space methods render this an obvious gen-

eralization. Hence, the present note can equally be regarded as the presentation of a

simple quantum expander, as as a short exposition of the strengths of the phase space

formalism as such.

5.2 Preliminaries

5.2.1 Expanders

Expander graphs turn up in various areas of combinatorics and computer science (for

all claims made in this section, the reader is referred to theexcellent survey article

Ref. [58]). They often come into play when one is concerned with a property which

“typically” holds, but defies systematic understanding. A simple example is given by

classical error correction codes. One can show that a randomly chosen code is extremely

likely to have favorable properties, but it seems very difficult to come up with a deter-

ministic construction of codes which are “as good as random”. Expander graphs can

be explicitly constructed, but capture some aspects of generic graphs. It turns out that

this property can be used to de-randomize, e.g., the construction of codes or certain

probabilistic algorithms.

The formal definition is straightforward. Consider a graphG with N verticesV ,

each havingD neighbors (we allow for multiple links and self-links). There is an ob-

vious way to define a random walk on the graph: At each time step, a particle initially

located on a vertexv will be moved to one of theD neighbors ofv with equal probabil-

ity. The resulting Markov process is described by anN×N doubly stochastic matrixA.
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The largest eigenvalue ofA is λ1 = 1, corresponding to the “totally mixed” eigenvec-

tor (1, . . . , 1)/N . Let λ be the absolute value of the second largest (by absolute value)

eigenvalue. A small value ofλ means that the Markov process is strongly mixing, i.e.,

converges rapidly to the totally mixed state. We callG an (N,D, λ) expanderif it is

described by these parameters. The goal is to find families ofexpander graphs with

arbitrarily many verticesN , but constant (and small) degreeD andλ.

While the notion of an expandergraphseems hard to quantize (see, however, Ref.

[51]), it makes sense to look for quantum analogues of strongly mixing Markov pro-

cesses with low degree. Indeed, we call a completely positive mapΛ a (N,D, λ)-

quantum expanderif Λ can be expressed in terms ofD Kraus operators acting onB(CN)

and the absolute value of its second largest singular value is bounded from above byλ

(here,B(H) denotes the space of linear operators acting on a linear space H). Once

more: The intuition is to have a quantum channel which can be written using few Kraus

operators, but which rapidly sends any input to the completely mixed state under re-

peated invocation.1

Quantum expanders have been introduced independently in Ref. [50] for the purpose

of constructing states of spin-chains with certain extremal entanglement and correlation

properties, and in Ref. [11], where the problem was approached from a computer sci-

ence perspective. Very recently, randomized [51] and explicit [10, 11, 48, 50] construc-

tions of expanders have appeared in the literature.

The basic idea is implicit in earlier work [5].

5.2.2 Margulis expander

Margulis provided the first explicit construction of a family of expander graphs [76].

Their expansion properties can be verified by elementary (iftedious) means [58].

The vertices of Margulis’ graph are given by the points of aN × N-lattice.2 We

label the axes of the lattice by the elements ofZN = {0, . . . , N − 1}. Now consider the

1It follows directly from the definition of an(N,D, λ)-quantum expander that

‖ΛN(ρ) − 1/N‖2 ≤ λ‖ρ− 1/N‖2, (5.1)

that is, each invocation of the quantum expander contracts the2-norm distance to the maximally mixed
state inCN by at leastλ.

2Note a slight inconsistency in our notation: the number of vertices in this case isN2, notN .
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0 1 2 3

Figure 5.1: Phase space distributions resulting from threeapplications of the Margulis
expander acting on a configuration initially concentrated at the origin of a7 × 7 lattice.
The starting distribution can be interpreted either as a classical particle with a well-
defined position on a two-dimensional lattice, or as the quantum phase space operator
A(0, 0) (see text for definition).

four affine transformations onZ2
N given by

T1 : v 7→ S1 v, (5.2)

T2 : v 7→ S1 v + (1, 0)T ,

T3 : v 7→ S2 v,

T4 : v 7→ S2 v − (0, 1)T ,

where

S1 =





1 2

0 1



 , S2 =





1 0

2 1



 .

All operations are moduloN . Let S be the set of these four operations, together with

their inverses. In Margulis’ construction, two vertices are considered adjacent if and

only if they can be mapped onto each other by an operation inS.

One finds thatλ is bounded above by
√

2 5/8, independent ofN [37, 58]. An

instance of a random walk on the Margulis graph is visualizedin Fig. 5.1.

5.2.3 Discrete phase space methods

Discrete quantum phase spaces have been discussed in detailin Chapter 4. In order to

keep the present chapter as self-contained as possible, we give a very brief summary of

the relevant methods.

The present section can be approached from a purely mathematical, or from a phys-

ically-oriented point of view. To make the argument more accessible, we will briefly

outline both approaches before going into details.
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Mathematically, one starts by noting that the operationsTi used in the construction

of the Margulis graph (Eq. (5.2)) are affine transformationsonZ2
N , where in addition

the linear partSi has unit-determinant. The functions of this kind form a finite group,

which we will refer to asGN . Two facts will be established below. Firstly,

• there is a (projective) unitary representation

T 7→ UT

of GN onCN .

This representation facilitates the quantization of the expander. Indeed, the quantum

Margulis expander will be defined as the c.p. mapΛN , which applies one of the unitaries

UT , T ∈ S at random. To prove that this construction defines an expander, we will need

a second fact:

• LetN be odd. There areN2 hermitian operatorsA(a) ∈ B(CN ), labeled by the

pointsa ∈ Z2
N , such that

1. The operators form an orthonormal basis with respect to the Hilbert-Schmidt

inner product:
1

N
tr
(

A(v)A(w)
)

= δv,w. (5.3)

2. The basis thus defined is compatible with the unitary representation ofGN

in that

UT A(v)U †
T = A(T (v)), (5.4)

for T ∈ GN , v ∈ Z2
N .

In order to analyze the action ofΛN on a density operatorρ, we will use Eq. (5.3) to

expandρ in terms of theA(a)’s and then Eq. (5.4) to reduce the problem to the classical

case (see Section 5.3).

Physicallyspeaking, we will employ a phase space description of the quantum sys-

tem. Recall that the termphase spaceoriginates in classical mechanics. Here, the state

of a single particle in one spatial dimension is completely specified by two real param-

eters: its position and its momentum. The two-dimensional real vector space spanned
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by the position and the momentum axes is referred to as the particle’s phase space.

Likewise, the state of a single quantum system can be specified by a quasi-probability

distribution on phase space, namely the particle’s Wigner function. The Wigner func-

tion shares many properties of classical probability distributions, except for the fact that

it can take negative values (see Chapt. 4).

In the context of continuous-variable systems, affine volume-preserving transfor-

mations of the phase space are known ascanonical transformations. Let ρ be a density

matrix and denote byWρ(v) the associated Wigner function. It is well-known [13] that

for every canonical transformationT , there is a unitary operatorUT which implements

the mapT in the sense that

WUT ρU
†
T
(v) = Wρ(T (v)).

As detailed below, a similar relation holds for finite-dimensional quantum systems, as-

sociated with discrete phase spaces. Indeed, the Wigner function of a density operator

ρ turns out to be nothing but the collection of expansion coefficients ofρ with respect

to the basis given in Eq. (5.3); canonical transformations are elements ofGN ; and the

correspondenceT 7→ UT is just the representation mentioned in the first paragraph of

this section.

So in this physical language, the basic realization is that the building blocks of the

Margulis scheme (Eq. (5.2)) are canonical transformationsof a discrete phase space.

To make all this more precise, letN be odd3, H = CN and assume that some basis

{|0〉, . . . , |N − 1〉} in H has been chosen. Letω = e
2π
N
i be anN th root of unity. We

define theshiftandboostoperators as the generalizations of theX andZ Pauli matrices

by

x(q)|k〉 = |k + q〉, z(p)|k〉 = ωpk|k〉 (5.5)

(arithmetic is moduloN). TheWeyl operatorsare

w(p, q) = ω−2−1pqz(p)x(q), (5.6)

3We restrict attention to odd dimensions, as the theory of discrete Wigner functions is much more
well-behaved in this case.
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where2−1 = (N + 1)/2 is the multiplicative inverse of2 moduloN . For vectors

a = (p, q) ∈ Z2
N , we writew(a) for w(p, q). Let

A(0, 0) : |x〉 7→ | − x〉 (5.7)

be theparity operatorand denote byA(p, q) its translated version,

A(p, q) = w(p, q)A(0, 0)w(p, q)†. (5.8)

We will refer to theA(p, q)’s asphase space operators. One can check by direct cal-

culation that Eq. (5.3) holds. TheWigner functionof an operatorρ is the collection

of the expansion coefficients ofρ with respect to the basis formed by the phase space

operators. Formally:

Wρ(p, q) =
1

N
tr
(

A(p, q) ρ
)

. (5.9)

There are two symmetries associated with a phase space: translations and volume-

preserving linear operations. We shortly look at both in turn. Firstly, it is simple to

verify that fora, b ∈ Z2
N

w(a)A(b)w(a)† = A(a + b). (5.10)

Hence, Weyl operators implement translations on phase space. Secondly, letS be a

unit-determinant matrix with entries inZN . It turns out (c.f. Chapt. 4) that there exists

a unitary operatorµ(S) such that, for alla ∈ Z2
N the relation

µ(S)A(a)µ(S)† = A(S a) (5.11)

holds4.

It follows immediately that for every affine transformationT of the type given in

4The operatorµ(S) is themetaplectic representationof the symplectic matrixS. In quantum infor-
mation theory, the set{w(a)µ(S) : a ∈ Z2

N
, det(S) = 1} is called theClifford group[40], which must

to be confused with the Clifford group appearing in the context of Fermions or representation theory of
SO(n).
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5.3 A quantum Margulis expander

Eq. (5.2), there exists a unitary operatorUT such that

WUT ρU
†
T
(a) = Wρ(T

−1(a)). (5.12)

Hence, one can unitarily implement the building blocks of Margulis’ random walk.

5.3 A quantum Margulis expander

With these preparations, it is obvious how to proceed. Definethe completely positive

mapΛN by

ΛN(ρ) =
1

|S|
∑

T∈S

UT ρU
†
T , (5.13)

where we have used the notation defined in Eq. (5.12) above. One immediately gets:

Observation 64(Quantum Margulis expander). For oddN , the mapΛN (Eq. (5.13))

acts on Wigner functions in the same way the Margulis expander acts on classical prob-

ability distributions. In particular, its degree and its spectrum are identical to the ones

of the Margulis random walk. The Wigner functions ofΛ’s eigen-operators are the

eigen-distributions of the classical random walk.

Proof. Let Λ(C)
N be the stochastic matrix associated with the random walk on the classi-

cal Margulis graph. Forv ∈ Z2
N , let e(v) be the function onZ2

N , which takes the value

1 at v and 0 else. Clearly, the set{e(v)}v∈Z2

N
spans the space of all functions on the

lattice. Also,

Λ
(C)
N (e(v)) =

1

|S|
∑

T∈S

e(T (v)).

Using Eqs. (5.12, 5.13), we get for the quantum version

ΛN(A(v)) =
1

|S|
∑

T∈S

A(T (v)).

Hence the action of the classical and the quantum expanders are identical on a basis.

The claims follow.
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5.4 Efficient implementation

Consider a quantum expander which acts on a tensor-product Hilbert space(Cd)⊗n ≃CN for N = dn. The expander isefficientif it can be realized usingpoly(n) single-

qudit or two-qudit quantum gates. So far, only two efficient constructions have been

published [10, 48]. The Margulis expander adds to this list.

Theorem 65 (Efficient implementation). The quantized Margulis expander acts effi-

ciently on(Cd)⊗n.

To establish the claim, we need to clarify how we introduce a tensor product struc-

ture inCN . Every0 ≤ j ≤ N−1 can be expressed in ad-adic expansion asj = j1 . . . jn

for 0 ≤ jl ≤ d. More precisely,j =
∑n

l=1 jld
n−l. The tensor product structure is now

given by|j〉 = |j1〉 ⊗ · · · ⊗ |jn〉.

Lemma 66(Efficient constituents). LetN = dn. The following operators act efficiently

onCN :

1. The quantum Fourier transform

F : |j〉 7→ N−1/2
N−1
∑

k=0

exp
(

i
2π

N
jk
)

|k〉.

2. The Weyl operatorsw(1, 0) andw(0, 1).

3. The operatorsµ(T1) andµ(T2).

Proof. The first statement is well-known. See Chapter 5 in Ref. [82] for the qubit

version, which can easily be adapted to generald. Next, considerw(1, 0) = z(1). We

have

z(1)|j〉 = exp
(

i
2π

dn
j
)

|j1, . . . , jn〉

= exp
(

i2π

n
∑

l=1

jld
−l
)

|j1, . . . , jn〉

=
⊗

l

exp
(

i2π jld
−l
)

|jl〉.
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5.4 Efficient implementation

Hencez(1) is actually local. One confirms thatx(1) = F z(1)F † and thusx(1) is

efficient.

To conclude the proof, we need to borrow three statements from the theory of meta-

plectic representations. Firstly,µ is a projective representation5, i.e.,

µ(ST ) = eiφ(S,T ) µ(S)µ(T )

for some phaseφ(S, T ) (c.f. Chapt. 4). Secondly,

F = µ
(





0 1

−1 0





)

,

and thirdly,

U± = µ
(





1 ±2

0 1





)

is given by

U±|j〉 = exp(i2π/N (∓j2)) |j〉.

The last two statements can be found in Theorem 4.1 of [80] (strictly speaking only for

the case of primeN , but the proofs work for any odd value) or in Lemma 2 to Lemma

4 of [7]. The claim becomes easy to verify:

U±|j〉 = exp
(

i2π (∓
n
∑

l,l′=1

jljl′d
n−l−l′)

)

|j〉

=
∏

l,l′

R(l, l′)|j〉,

where we have introduced the diagonal two-qudit unitary

R(l, l′)|jl, jl′〉 = exp(i2π (∓jljl′dn−l−l
′

)) |jl, jl′〉.
5Actually,µ is even afaithful representation, but that fact is irrelevant for our purposes.
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ThusU± – and therefore in particularµ(T1) – are efficient. Finally,

T2 =





0 1

−1 0









1 −2

0 1









0 1

−1 0





3

,

which implies thatµ(T2) ∝ FU−F
3 is efficient.

The proof of Theorem 65 is now immediate, as all theUT ’s which appear in the

construction ofΛ can be implemented by combining the unitaries treated in theabove

lemma and their inverses.

5.5 Continuous variable systems

The quantum phase space terminology of Section 5.2.3 has originally been introduced

in the context of continuous variable systems (see e.g. Ref.[85]. In particular, if we

re-interpret the affine transformationsS given in Eq. (5.2) as operations onR2, we

immediately obtain a completely positive mapΛ∞ acting on the infinite-dimensional

Hilbert space of a single mode. Does it constitute a quantum expander? After reviewing

some definitions in Section 5.5.1, we will give an affirmativeanswer in Section 5.5.2.

The action of expanders on second moments is discussed in Section 5.5.3.

5.5.1 Continuous phase space methods

In the continuous case, the phase space is given byR2. LetX andP be the canonical

position and momentum operators. The Weyl operators [13, 34, 85] are now

w(p, q) = exp(iqP − ipX). (5.14)

As in Eq. (5.7), the parity operatorA(0, 0) acts on state vectorsψ ∈ L2(R) as

(A(0, 0)ψ)(x) = ψ(−x).
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We define the phase space operatorsA(p, q) for (p, q) ∈ R2 exactly as in Eq. (5.8). The

Wigner function becomes

Wρ(p, q) = π−1 tr (A(p, q) ρ)

c.f. Eq. (5.9). The obvious equivalents of Eqs. (5.10,5.11)hold for a ∈ R2 andS ∈
Sp(2,R), the group of unit-determinant transformations of the two-dimensional real

plane. Hence it is plain how to interpret Eq. (5.12) and finally how to turn Eq. (5.13)

into a definition ofΛ∞, the infinite-dimensional quantum Margulis map.

5.5.2 A continuous quantum Margulis expander

A slight technical problem arises when transferring the definition of an expander to

the infinite-dimensional case: both the invariant distribution f(v) = 1 of a classical

expander and the invariant operator1 of a quantum expander map are not normalizable.

Hence, if we define e.g. the action of a completely positive map Λ on the set of trace-

class operatorsT 1(H), the would-be eigenvector with eigenvalue 1 is not even in the

domain of definition. In the light of this problem, we switch to the following definition

of a quantum expander, which is compatible with the notion used up to now.

Definition 67. Let N ≤ ∞ and setH = CN . A completely positive mapΛ is an

(N,D, λ)-quantum expanderif, for all traceless operatorsX ∈ T 1(H),

||Λ(X)||2 ≤ λ ||X||2.

The definition above is best understood in terms of the Heisenberg picture:

| tr(Λn(ρ)X)| = | tr(ρ (Λ†)n(X))| ≤ λn

for all normalized (||X||2 = 1), traceless observablesX. Thus the state becomes “fea-

tureless” exponentially fast when being acted on byΛ. Let λM be the second largest

eigenvalue of the finite Margulis expanders. Then:

Observation 68 (Continuous quantum expander). The infinite-dimensional quantum

Margulis mapΛ∞ is an(∞, 8, λM)-quantum expander.
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5.5 Continuous variable systems

Note that by the previous section, we know there are(N, 8, λM) quantum expanders

for arbitrary highN . A priori, however, this does not imply the existence of a solution

for N = ∞.

Once more, by switching to the phase-space picture, the proof of Observation 68

can be formulated completely in classical terms. The intuition behind the argument is

simple to state. Take an elementT of S, e.g.

T : v 7→





1 2

0 1



 v. (5.15)

The inverse is given by

T−1 =





1 −2

0 1



 , (5.16)

regardless of whether the matrix is interpreted as acting onR2,Z2 orZ2
N . As the same is

true for all other elements ofS, the action of the classical Margulis map “looks similar”

on continuous, infinite discrete and on finite phase spaces – at least as long as it acts

on distributions which are concentrated close to the origin, so that the cyclic boundary

conditions ofZ2
N do not come into play. Using this insight, the following lemma reduces

the continuous to the finite case.

Lemma 69. Let f ∈ C0
0(R2) be a continuous function with compact support, such that

∫R2

f(v)dv = 0. (5.17)

Let A : L1(R2) → L1(R2) be the classical Margulis map acting on distributions onR2. Then

||A(f)||2 ≤ λM ||f ||2. (5.18)

Proof. We discretize the problem by partitioningR2 into a net of squares with side

lengthδ. More specifically, for(x, y) ∈ Z2, let

Qδ(x, y) = [(x− 1/2)δ, (x+ 1/2)δ] × [(y − 1/2)δ, (y + 1/2)δ]

be the square with edge lengthδ centered around(x δ, y δ) ∈ R2. The discretized
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version off is fδ : Z2 → C defined by

fδ(x, y) =
1

δ2

∫

Qδ(x,y)

f(v)dv.

Note that
∑

x,y fδ(x, y) = 0. OnZ2, we use theδ-dependent norm

||fδ||2 =
(

δ2
∑

x,y

|fδ(x, y)|2
)1/2

(the factorδ2 corresponds, of course, to the volume of the squaresQδ(x, y)). Now, let

T be one of the affine transformations inS. We can interpretT as an operation onZ2

and define its action onfδ accordingly by

(T (fδ))(x, y) = fδ(T
−1(x, y)).

For small enoughδ, the approximation is going to be arbitrarily good: using the uni-

form continuity off , and the fact that allT ∈ S are continuous and volume-preserving,

one finds that for everyε > 0, there is aδ > 0 such that simultaneously

∣

∣ ||fδ||2 − ||f ||2
∣

∣ < ε/2, (5.19)
∣

∣ ||A(fδ)||2 − ||A(f)||2
∣

∣ < ε/2. (5.20)

As the support off is compact, there is anR ∈ N such thatfδ(x, y) andA(fδ)(x, y)

are equal to zero whenever|x| ≥ R or |y| ≥ R. This enables us to pass fromZ2 to the

finite latticeZ2
N for N > 2R. Indeed, when we re-interpretfδ as a functionZ2

N → C
and theT ∈ S as affine transformations onZ2

N , the values of||fδ||2 and ||A(fδ)||2
remain unchanged. But we know thatA is an(N, 8, λM)-expander for every finiteN .

Hence

||A(fδ)||2 ≤ λM ||fδ||2,

implying (by Eqs. (5.19,5.20))

||A(f)||2 ≤ λM ||f ||2 − ε.
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This proves the claim, as the right hand side can be chosen to be arbitrarily small.

(of Observation 68).Once again, the quantum Margulis mapΛ∞ acts on the Wigner

functionWX of any operatorX in the same way the classical Margulis scheme acts on

distributions onR2. Now, X ∈ T 1(H) impliesWX ∈ L2(R2). BecauseC0
0 (R2) is

dense inL2(R2) andΛ∞ is continuous, Lemma 69 suffices to establish the claim.

5.5.3 Action on second moments

In physics, one often measures the concentration of a phase space distribution by its

second moments with respect to canonical coordinates. Thus, it may be interesting to

look for signatures of the strong mixing properties of a quantum expander in its action

on second moments.

More precisely, first moments are the expectation values of the position and mo-

mentum operators(〈X〉, 〈P 〉)T (where〈A〉 = tr(ρA) for an operatorA). The second

moments are defined as the entries of thecovariance matrix:

γ = 2 Re





〈X2〉 − 〈X〉2 〈XP 〉 − 〈X〉〈P 〉
〈PX〉 − 〈X〉〈P 〉 〈P 2〉 − 〈P 〉2



 .

As the action of the continuous quantum expander in state space is defined via the

metaplectic representation, the change in second moments can be computed explicitly.

In particular, anyS ∈ Sp(2,R) gives rise to a congruenceγ 7→ SγST for second

moments. More generally, it is not difficult to see that for arbitrary convex combinations

of states subject to affine transformations, the output’s first and second moments depend

only on the same moments of the input.

Under the Margulis random walk, one obtains for the first moments

〈X〉 7→ 1

|S|
∑

T∈S

xT , 〈P 〉 7→ 1

|S|
∑

T∈S

pT

with (xT , pT )T = T (〈X〉, 〈P 〉)T . For the second moments:

γ 7→ f(γ) :=
2
∑

i=1

(

TiγT
T
i + T−1

i γ(T−1
i )T

)

+ 2G, (5.21)
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where the matrixG is given by

G =





∑

T
x2

T

|S| − (
∑

T
xT

|S|)
2

∑

T
xT pT

|S| −∑T,T ′

xT pT ′

|S|2 ,
∑

T
xT pT

|S| −∑T,T ′

xT pT ′

|S|2

∑

T
p2T
|S| − (

∑

T
pT

|S|)
2



 .

The latter matrix is evidently positive: Just writeG asG = AAT with A ∈ R2,|S| with

entries

A1,T =
xT

|S|1/2 −
∑

T ′

x′T
|S|1/2 , (5.22)

A2,T =
pT

|S|1/2 −
∑

T ′

p′T
|S|1/2 . (5.23)

To show that the main diagonal entries off (n)(γ) diverge exponentially in the number

n of applications of the mapf , it is hence sufficient to consider the map

γ 7→ g(γ) =
2
∑

i=1

(

TiγT
T
i + T−1

i γ(T−1
i )T

)

,

since

f (n)(γ) ≥ g(n)(γ).

A simple calculation yields

γ =





a b

b c



 7→ g(γ) =





a + 2c b

b c+ 2a



 .

Let γ(n) = g(n)(γ) be the covariance matrix aftern iterations ofg and defineα =

(a+ c)/2, andβ = (a− c)/2 to simplify notation. Then

γ(n) =





3nα + (−1)nβ b

b 3nα− (−1)nβ



 .
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This means that

1

n
log3(γ

(n)) →





1 0

0 1



 (n→ ∞).

Thus, the elements of the main diagonal – and therefore alsotr(f (n)(γ)), det(f (n)(γ)),

andspec(f (n)(γ)) – diverge exponentially in the numbern of iterations.

5.6 Summary and Outlook

Employing phase space methods, we were able to quantize a well-established combina-

torial structure with almost no technical effort.

The unitaries which appear in the construction of expandershave randomization

properties which are in some sense extremal. It would be interesting to see whether

connections to other extremal sets of unitaries – e.g.,unitary designs[28],[4] – can

be found. Also, more practical applications may be anticipated, e.g., when one aims

at initializing quantum systems in the maximally mixed state with few (i.e. D) oper-

ations, under repeated invocation of the same completely positive mapΛ. Lastly, the

programme may improve the understanding of iteratedrandomization procedures, as

the one discussed in Ref. [106].
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