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Chapter 0

Introduction

Historically, linear algebra started with the study of the properties of physical space. As an
introduction, we’ll have a brief look at this approach. If you find this chapter confusing,
just skip ahead to Chap. 1, where we will restart from zero and introduce the theory in
more general (but also more abstract) terms.

0.1 Vectors as translations in real space

In physical space, vectors can be defined geometrically, as translations (Fig. 0.1).

Definition 1. A geometric vector is an operation that translates each point in space by a
fixed distance along a fixed direction.

Geometric vectors can be visualized by an arrow from some point to its translate.
Two geometric vectors can be combined, by performing one translation after the other.

The result is again a translation. If v, w are geometric vectors, we write v + w for the
geometric vector that corresponds to “first translate by w, then by v”. It is an empirical
fact that in physical space, the order does not matter: I.e. addition of vectors is commutative

v + w = w + v (1)

in the sense that both sides define the same translation.

Remark. OK, strictly speaking, commutativity fails in curved spaces, like on the surface of earth
or in space-time as described by general relativity in the presence of gravitation. But “reasonably
small” translations commute to great approximation. In the mathematical idealization we are
concerned with here, we may assume this property to hold exactly.

There is a “trivial translation”, which displaces points by a distance of 0. We use the
symbol 0 not just for the number zero, but also for the trivial vector.

Given a geometric vector v, the vector that translates points by the same distance but
along the inverted direction is denoted as −v. Because translating a point along v and then
back again along −v returns it to its initial position, we have that v + (−v) = 0.

You may note that we have verified all the properties that turn the set of translations
into an Abelian group, with composition given by + and 0 as the neutral element.

There’s an additional operation on geometric vectors: They can be “scaled”. If v is
a geometric vector and λ a non-negative number, then one defines λv to be the map that
translates points in the same direction as v, but by a distance that’s λ times the distance of
v. Sending v to λv is called scalar multiplication.

3

https://en.wikipedia.org/wiki/Curvature#Generalizations


CHAPTER 0. INTRODUCTION 4

A
A

Figure 0.1: (i) A geometric vector is a translation of points in space. These can be visual-
ized by an arrow from any point to its translate. (ii) When performing two translates after
one another, the order does not matter.

Remark. Don’t confuse scalar multiplication with scalar products (Sec. 1.3). A “scalar” is
quantity that can be described by a single number. “Scalar multiplication” is multiplication by a
scalar, (namely λ). A “scalar product” turns two vectors into a scalar.

Addition and scalar multiplication fulfill a number of geometrically obvious compati-
bility conditions. For example, take a geometric vector v, real numbers λ, µ, and consider
λv + µv. It displaces points along the direction of v, first by µ units and then by λ units.
Geometrically, it is clear that this sequence is equivalent to displacing along the direction
of v by λ+ µ units. That is, we have the distributivity property

(λv + µv) = (λ+ µ)v. (2)

0.1.1 Coordinate

Calculations with vectors are usually performed in coordinates: Choose three geometric
vectors e1, e2, e3 that displace points by the same distance, but along mutually orthogonal
directions. Then for any choice of real numbers x1, x2, x3, the geometric vector v =
x1e1 + x2e2 + x3e3 translates points by xi units along ei. It is another empirical fact that
any translation in real space can be realized in this way, for a suitable choice of numbers.
One says that real space is three-dimensional.

It is then convenient to organize the numbers that define a geometric vector into a
vertically written array, called a column vector, like so:

x =

x1

x2

x3

 .

The numbers are called the components, elements or entries of the column vector. We tend
to use boldface lower-case letters for column vectors.

Note that we are now working with two strongly related but distinct objects: The
geometric translation v and its representation x with respect to the basis {e1, e2, e3}.

It is then natural to ask how the operations on geometric vectors that we discussed
above are expressed in coordinates. In particular, if v, w are geometric vectors with rep-
resentations x,y respectively, what is the representation of v + w? Let’s work it out.
Plugging in the definition and using commutativity (1) and distributivity (2):

v + w = x1e1 + x2e2 + x3e3 + y1e1 + y2e2 + y3e3

= (x1e1 + y1e1) + (x2e2 + y2e2) + (x3e3 + y3e3)

= (x1 + y1)e1 + (x2 + y2)e2 + (x3 + y3)e3.
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In other words: The sum v + w of geometric vectors is represented in coordinates by the
component-wise sum

x+ y =

x1 + y1
x2 + y2
x3 + y3


of the column vectors. Likewise, in coordinates, scalar multiplication by λ corresponds to
multiplying every component of the column vector by λ.

0.1.2 Euclidean length

We have distinguished between the direction and the distance of a translation. Given a
column vector representation x of a translation v, it turns out that its distance (in units of
the length of the basis vectors) can be computed by this expression:

∥x∥ =
√
x2
1 + x2

2 + x2
3. (3)

It is called the Euclidean length, or norm, of x.

0.2 Who cares?

The notions introduced above are sufficient to study large swaths of geometry. But let’s
admit it: “translations in physical space” aren’t the most inspiring objects. Who cares?

Fundamental reasons to care

It turns out that the concept of a “geometric vector” can be fruitfully generalized, and these
generalizations turn up e v e r y w h e r e.

Example.
• In mechanics, quantities like velocity, acceleration, or force are naturally associated with

a “direction in real space” and a magnitude. They are thus closely related to translations,
and are also considered vectors in a more general sense.

• In quantum mechanics, the state of a system is described by a vector with complex-valued
components. These vectors have absolutely nothing to do with physical space. In the QM
course, we’ll discuss how to use abstract linear algebra manipulations to extract physical
predictions from these vectors.

• Now turn to analysis. Recall that the derivative f ′(x) of a function f can be interpreted
in terms of its tangent at x. Tangents sure look like the kind of straight lines that describe
translations. And, indeed, it turns out that “differentiating” turns functions that send points
to points into linear maps that send vectors to vectors. You don’t need to understand this
now, but be assured that one cannot do any kind of advanced calculus without a thorough
understanding of linear algebra. This really opens the floodgates, because differentials are
central to large parts of math: Geometry, optimization theory, the study of symmetries...

• Functions themselves can be seen as vectors, e.g. by re-interpreting the argument as an
index “f(x) = fx”. From this point of view, linear differential equations (Newton’s,
Maxwell’s, Schrödinger’s, Dirac’s...) can all be treated using tools from linear algebra.
The same is true for signal analysis on functions that represent e.g. sound waves or images.
We’ll see how this works when we look at the Fourier transform later in this course.
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• Finally, let’s mention discrete vector spaces that provide models for bit strings. They
are used to solve combinatorial problems in in computer science, with applications e.g.
for fault-tolerant communications. These objects have not been traditionally studied in
physics, but this is changing rapidly through the rise of quantum information theory.

Pragmatic reasons to care

In all these examples, objects that aren’t obviously vectors turn out to be vectors after all,
if one generalizes the notion sufficiently. But there is a second, more subtle reason for why
linear algebra permeates all of science.

Remember how in high school and undergraduate classes, you always get simple-
looking exercise problems that have somewhat simple solutions? Well, here’s a piece of
dirty truth: That’s a bit of a lie by omission perpetrated by your teachers. In reality, almost
any math problem is wayyy too hard to be treated analytically (“with pen and paper”) or
even on a computer. We, as a species, can do basically nothing.

Bummer.
But you know which kind of problems we can solve? Linear algebra problems! In

particular, there are extremely efficient computer algorithms for many of them.
Thus, when faced with a complicated real-world issue, it is common for scientists to

hit it and shake it, until after many reformulations and simplifications, it can be shoehorned
into a linear algebra problem. This is then solved. If the process fails, more often than not,
we just give up and don’t talk about it any more. Thereby, over time, “science” comes to
encompass the subset of reality for which linear algebra methods work.

So, linear algebra is to math and science what peeling vegetables is to cooking. Not
always glorious, but omnipresent and a skill you can’t do without. “Who cares?” – You
better do!

The good news

Linear algebra is kinda easy as far as mathematical theories go. That’s the good news!

https://sketchplanations.com/looking-under-the-lamppost


Chapter 1

Vector spaces

1.1 Definition

Wrap you head around this: The general theory does not actually tell you what a vector is.
It only says how to recognize one.

Mathematicians call this an axiomatic characterization. That is to say, we will define
“vector spaces” abstractly, as objects that satisfy a list of properties, or axioms.

Every day, mathematicians and scientists come up with novel examples that fit the
definition. But the theory is so general that there’s no expectation that we could ever
describe all realizations.

The disadvantage of this strategy is that we’ll be working with abstract objects, which
may be hard to develop an intuition for. But it’s a price considered worth paying in return
for the wide applicability of its results. (Also, even abstract LA isn’t actually that difficult).

Remark.
• Def. 2 involves the notion of a field F. Don’t worry in case you momentarily forgot what

that means. For physics applications, you can think of F as a placeholder forR orC.

• While Def. 2 is central to the theory, and you should definitely get a feeling for it, there’s
no need to memorize it!

• In fact, here’s the tl;dr. A vector space is a collection of objects that can be added and
scaled. The rest are just natural compatibility conditions.

With these preparations, here’s he central definition of linear algebra:

Definition 2. Let F be a field. A vector space over F is a set V on which two operations
are defined:

1. Addition, which assigns to each pair v, w ∈ V an element v + w ∈ V and which
turns V into an Abelian group.

2. Scalar multiplication: For λ ∈ F and v ∈ V , there is an element λv ∈ V .

The operations must fulfill the following compatibility conditions: For all α, β ∈ F and

7
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all v, w ∈ V , it must hold that

1v = v (multiplicative neutral element leaves vectors invariant)

(αβ)v = α(βv) (associativity of scalar multiplication)

(α+ β)v = αv + βv (distributivity with respect to addition in the field)

α(v + w) = αv + αw (distributivity with respect to addition of vectors).

Example.
• For any field F and any n ∈ N, the set of column vectors with n entries from F forms a

vector space, denoted by Fn. Addition and scalar multiplication are defined component-
wise. We have already met the special case R3. Another special case is F1 = F. That’s
right: a field is a vector space over itself.

• The set of all complex-valued functions on R, with addition and scalar multiplication
defined point-wise, is a vector space over C. “Point-wise” means that for functions f, g,
we define their sum f + g by (f + g)(x) := f(x) + g(x). Likewise, (λf)(x) := λf(x).

• More generally, if M is any set and F any field, then the set of functions M → F is a
vector space under point-wise addition and scalar multiplication.

– Taking M = {1, . . . , n}, we recover the set of column vectors with n components.

– For M = N, the construction gives the vector space of infinite sequences with
values in F.

• A rectangular array of numbers with m rows and n columns is an m × n-matrix. Here’s
a 2× 3-matrix overR:

M =

(
1 2 3
4 5 6

)
.

The set Fm×n of matrices with m rows, n columns, and entries in a field F is a vector
space under element-wise addition and scalar multiplication. We will not distinguish be-
tween an m×1-matrix and a column vector with m components. Likewise, 1×n-matrices
are called row vectors.

• The set of vectors (shown in Fig. 1.1)

1⊥ =
{
x ∈ R3

∣∣∣ 3∑
i=1

xi = 0
}

whose components sum to 0 forms a vector space. (We’ll come back to it as a simple
example of a space without a “canonical basis”).

• The space ℓ2 (“ell two”) of square-summable complex sequences is

ℓ2 =
{
x : N→ C

∣∣∣ ∥x∥2 :=

∞∑
i=1

|xi|2 ≤ ∞
}
.

The space plays a central role in quantum mechanics. (The condition that the series ∥x∥2
converges to a finite number allows one to define a probability distribution by setting
pi = |xi|2/∥x∥2. We’ll give a physical interpretation in the QM lecture.) Verifying that
component-wise operations turn ℓ2 into a vector space isn’t completely trivial. One has to
show that for x, y ∈ ℓ2, the sum

∑
i |xi + yi|2 converges to a finite number.
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Figure 1.1: The space 1⊥ of vectors in 3D whose components sum to 0. The red arrow is
the vector (1, 1, 1)t. Left: The {v1,v2} basis. Right: The orthonormal basis {w1,w2}.

• The set F2 = {0, 1} is a field with addition and multiplication defined “modulo 2”:

+ 0 1
0 0 1
1 1 0

,

× 0 1
0 0 0
1 0 1

.

Column vectorsFn2 overF2 are a finite set that form a vector space: |Fn2 | = 2n. Elements
x ∈ F

n
2 can be interpreted as bit strings of length n. As such, they are important in

computer science and information theory. Finite vector spaces used to not matter much in
physics, but this is changing with the rise of quantum information theory.

Remark. The high school definition of a vector is “a quantity with a direction and a length”.
But Def. 2 makes no mention of “length”. That’s because there are vector spaces for which that
notion does not make sense. Example: In Hamiltonian mechanics, the state of a point particle is
given in terms of its position and momentum. Collect this information in a column vector

(
x
p

)
. If

you naively try to compute its Euclidean length as
√

x2 + p2, you run into trouble, as x2 and p2

have different units and can’t be added. Remember: Not every vector has a length!

Computer algebra systems have extensive support for LA. We will often show examples in the
Julia language. It uses square brackets for arrays and semicolons to separate rows:

julia> M = [1 2 3; 4 5 6] # A matrix
2×3 Matrix{Int64}:
1 2 3
4 5 6

julia> v = [1; 2; 3] # A column vector
3-element Vector{Int64}:
1
2
3

julia> 2M+[1 1 1; 0 0 0] # Scalar mult., addition
2×3 Matrix{Int64}:
3 5 7
8 10 12

We can now answer the question “What is a vector?” in the abstract theory. An abstract
vector is an element of a vector space. Not more, not less.

Remark. Unfortunately, instead of “column vector”, people commonly say “vector”. And in-
stead of “abstract vector”, they also say “vector”. Thus if person A claims

• “A function on the real line is not a vector”,

then they are right! (Because they mean “not a column vector”). And if person B states

• “A function on the real line is a vector”,

https://julialang.org/
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Figure 1.2: The span of three non-zero vectors in R3 can be a line, a plane, or the entire
space. The latter happens if none of the vectors is a linear combination of the two others.

then they are also right! (Because they mean “abstract vector”). Often, person A and person B
are the same person.

Mathematical language is pretty precise, but not as precise as e.g. programming languages.
So there remains a lot of ambiguity that you will have to learn to deal with. In fact, we will from
now on drop the clarifying attributes ourselves. To prepare you for math “as found in the wild”.

1.2 Basic constructions

In the following, let V be a vector space over a field F.

1.2.1 Linear combinations

Take a finite set of vectors v1, . . . , vr ∈ V , and scalars x1, . . . , xr ∈ F. The sum∑r
i=1 xivi is called a linear combination of the vi.
For a set S ⊂ V of a vectors, the set span(S) of all linear combinations of vectors

from S is the span or linear hull of S. The set S is complete if its linear hull equals V .

Example.
• For examples inR3, see Fig. 1.2.

• Choose a field F. A polynomial is a function of the form

p : F→ F, p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0, (1.1)

for coefficients ci ∈ F. Its degree is the largest power of x with a non-zero coefficient.
Write Pn(F) for the set of all polynomials with degree ≤ n and P(F) =

⋃∞
n=0 Pn(F)

for all polynomials over F. Then P(F) is the linear hull of the monomials {xn}n∈N.

1.2.2 Subspaces

A subset W of a vector space V is a subspace if any linear combination of elements of W
lies again in W .

Example.
• For subspaces inR3, see Fig. 1.3

• For any n ∈ N, the set Pn(F) of polynomials of degree ≤ n forms a subspace of P(F).
Non-example: The set of polynomials of degree exactly n does not form a subspace!

• The solutions to the wave equation(
∂2
t + ∂2

x + ∂2
y + ∂2

z

)
u(t, x, y, z) = 0
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Figure 1.3: A subspace in R3 can be have dimension 0 (a point), dimension 1 (a line),
dimension 2 (a plane), or dimension 3 (the entire space, not shown).

form a subspace of the space of twice-differentiable functions onR. In the context of wave
equations and of quantum mechanics, linear combinations are also called superpositions
and the statement just made is the superposition principle.

Exercise.
1. The intersection of two subspaces is a subspace.

2. The union of two subspaces is generally not a subspace!

3. To show that W ⊂ V is a subspace, it suffices to verify that for all v, w ∈ W and λ ∈ F
it holds that v + w ∈ W (“W is closed under addition”) and λv ∈ W (“W is closed
under scalar multiplication”).

4. For any set S ⊂ V of vectors, span(S) is a subspace of V .

5. A subspace W ⊂ V is a vector space by itself.

1.2.3 Linear independence, bases, dimension

Let S ⊂ V be a set of vectors. The elements of S are linearly independent (LI) if no
element of S can be written as a linear combination of the other elements of S. Otherwise,
they are linearly dependent.

Exercise: S is linearly independent if and only if

x1v1 + · · ·+ xrvr = 0 vi ∈ S, xi ∈ F (1.2)

implies x1 = · · · = xr = 0. Phrased differently: S is linearly independent if only trivial
linear combinations are zero.

A set B ⊂ V of vectors is a basis if B is complete and linearly independent.
The space V is n-dimensional if it has a basis with n ∈ N elements. Otherwise, it is

infinite-dimensional.

Example.
• Let ei be the column vector whose i-th element is 1 and all other elements are 0. (The

total number of elements must be inferred from context). Then {e1, . . . , en} is a basis
for Fn. It is called the standard basis. The space Fn is therefore n-dimensional.

• The set {1, i} ⊂ C forms a basis of V = C, interpreted as a vector space over F = R.
Attention: The set {1} ⊂ C forms a basis of V = C, interpreted as a vector space over
F = C. The same set can thus be a vector space in different ways! Oof.
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• Consider the space 1⊥ of vectors v ∈ R3 with
∑3
i=1 vi = 0. Here are two bases:

v1 =

 0
1
−1

 , v2 =

 1
0
−1

 ; w1 =
1√
2

 0
1
−1

 , w2 =
1√
6

 2
−1
−1

 . (1.3)

The second is more complicated, but has the advantage of being orthonormal (Sec. 1.3.5).

• A basis of the vector space of 2× 2-matrices overC is given by the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.4)

They are very important in the quantum-mechanical theory of spin. And for fault-tolerant
quantum computers. And for the representation theory of relativistic space-time transfor-
mations. Did I mention the theory of quaternions, with applications e.g. in robotics and
attitude control for spacecraft? Look, the Pauli matrices are kind of important.

• The monomials {xn |n ∈ N} form a basis for the space of polynomial function P(F).
Completeness is clear from the definition of P(F). Independence is less obvious. There-
fore, P(F) is an infinite-dimensional space.

• A non-example: f is analytic (around 0) if it can be represented by a Taylor series

f(x) =

∞∑
k=0

ckx
k, ck =

1

k!

∂k

(∂k)k
f(0).

One could be forgiven to conclude that the monomials are a basis for the space of analytic
functions. This would be wrong, though, because linear combinations are defined in terms
of finite sums, whereas the series is defined as a limit involving infinitely many terms.
We’ll later generalize the notion of a basis to cover infinite series, too.

Here are two important statements about bases, which we will not prove.

• [Dimension is unique] A priori, it could be that there is a vector space V that has
two bases with a different number of elements. In R3, it is geometrically intuitive
that this problem does not arise: A line is a line and a plane a plane, i.e. “dimension”
is an intrinsic property of a space. And fortunately, it is not difficult to prove that
uniqueness of dimension does hold for all vector spaces. (FK 14.6.4).

• [Basis extension theorem] The basis extension theorem says that any set of linearly
independent vectors can be extended to a basis. In other words, bases can be built
“iteratively”: Starting with the empty set, just add linearly independent vectors until
you arrive at a collection that spans the space. It cannot happen that this process
runs into a “dead-end” where one would be forced to backtrack and make different
choices. Again, this is intuitive inR3. (FK 14.6.5).

Remark. [Every vector space has a basis (trust me, bro!)] Many textbooks say “One can prove
that any vector space has a basis.” Hm, OK. That’s not wrong. But, boy, does it underplay the
stakes. Trying to decide this statement leads to a rabbit hole that ends in meta-mathematical
questions of what “truth” and “provability” mean in the first place. In the early 20th century, the
titans of math fought bitter fights about this and related questions. If you want to waste some
time in the lecture, ask me about it. But, yeah, whatever, I guess every vector space has a basis.

1.2.4 Coordinate representation of vectors

Bases allow us to work with arbitrary vector spaces in terms of column vectors.
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Let B be a basis. We assume that there is a discrete index set I such that the vectors in
the basis can be labeled by elements i ∈ I . To indicate this, we’ll write B = {bi}i∈I or
B = {bi}i or just B = {bi}. Usually, I = {1, . . . , n} or I = N.

By the completeness condition in the definition of basis, every vector v ∈ V can be
written as a linear combination

v =
∑
i

xibi, xi ∈ F.

This is called a basis expansion of v. The numbers xi are the expansion coefficients or
coordinates of v w.r.t. B.

The linear independence condition guarantees that expansions are unique:∑
i

xibi =
∑
i

yibi ⇒ xi = yi.

Proof. Compute:

0 =
∑
i

xibi −
∑
i

yibi =
∑
i

(xi − yi)bi.

By Eq. (1.2), xi − yi = 0.

Assume now for simplicity that B = {b1, . . . , bn}, i.e. that V is has dimension n < ∞.
Then any v ∈ V can be mapped to a unique column vector

v =

n∑
i=1

xibi 7→

x1

...
xn

 =: ϕB(v) (1.5)

composed of the coordinates of v w.r.t. B.
Arguing as in Sec. 0.1.1, we see that the coordinates of a sum are the sum of the coor-

dinates, and the coordinates of a scalar multiple is the scalar multiple of the coordinates:

ϕB(v + w) = ϕB(v) + ϕB(w), ϕB(λv) = λϕB(v).

A one-to-one map between two vector spaces that commutes with addition and scalar
multiplication is called a (linear) isomorphism. Two vector spaces are isomorphic if there
is a linear isomorphism between the two.

Because linear algebra is concerned only with the effects of addition and scalar multi-
plication, a linear isomorphism ϕ preserves all “linear algebraic properties”. For example:

• A set S ⊂ V of vectors is complete or linearly independent if and only if ϕ(S) is.

• Two isomorphic spaces have the same dimension.

1.3 Scalar products

In some vector spaces, it makes sense to assign a length to every vector, and an angle to
every pair. Such geometric notions are derived from a scalar product, introduced next.
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1.3.1 Euclidean spaces

In the special case of V = R3, the standard scalar product is

⟨v,w⟩ = v1w1 + v2w2 + v3w3.

The Euclidean length (or 2-norm or the norm induced by the scalar product) is

∥v∥ :=
√
⟨v,v⟩ (1.6)

and the angle ϕ enclosed by two vectors v,w is (Fig. 1.4)

ϕ = arccos

(
⟨v,w⟩
∥v∥ ∥w∥

)
. (1.7)

We now face the same situation as in Sec. 1.1: One could develop a concrete and
intuitive theory of scalar products in R3. But soon, we will need to assign notions of
“length” and “angles” to more general vectors, e.g. to elements of function spaces that
appear in QM. Thus, as before, we will take the more abstract axiomatic route.

Definition 3 (Scalar product over R). Let V be a vector space over R. A scalar product
is a function ⟨·, ·⟩ : V × V → R that is

1. bilinear:

⟨u+ λv,w⟩ = ⟨u,w⟩+ λ⟨v, w⟩
⟨u, v + λw⟩ = ⟨u, v⟩+ λ⟨u,w⟩,

2. symmetric:

⟨u, v⟩ = ⟨v, u⟩,

3. and positive definite:

⟨u, u⟩ > 0

for all u ̸= 0.

A real vector space with a scalar product is called a Euclidean space.

Example.
• The standard inner product onRn:

⟨v,w⟩ = v1w1 + · · ·+ vnwn. (1.8)

• For an interval [a, b] ⊂ R, let C0([a, b],R) be the real vector space of continuous func-
tions [a, b] → R. Then

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx (1.9)

is a scalar product. Continuity implies that the integral is well-defined and that the scalar
product is definite (why?).
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• Consider a collection of N classical point particles of masses mi moving in one dimension
with velocity vi. The kinetic energy is given by in terms of their momenta pi = mivi by

K =
∑
i

1

2
miv

2
i =

∑
i

1

2mi
p2i ,

which is the squared norm (p,p)m with respect to the scalar product

⟨p, q⟩m :=
1

2m1
p1q1 + · · ·+ 1

2mN
pNqN .

• Consider a 3D rigid body with mass distribution ρ(x). The inertia tensor is

Ikl =

∫
ρ(x)

(
∥x∥2δij − xixj

)
d3x. (1.10)

It defines a scalar product via

⟨v,w⟩I :=
∑
kl

vkIklwl. (1.11)

Exercise: Show that (1.11) is positive definite. (Hint: Use Cauchy-Schwartz).
Physical interpretation: The rotational motion of a rigid body can be described in terms
of a vectorial angular velocity ω ∈ R3. One can then show that the kinetic energy of the
rotation is given by Krot = ⟨ω,ω⟩I .

• The standard Gaussian probability density is ρ(x) = (2π)−1/2e−
1
2
x2 . Given a function

f(x), its expectation value with respect to ρ(x) is

E[f ] =

∫
f(x)ρ(x) dx.

On the space of continuous functions with finite expectation values,

⟨f, g⟩ = E[fg]

is a scalar product. It appears in probability theory, and in the context of Hermite polyno-
mials, with applications to the quantum theory of the harmonic oscillator.

1.3.2 Hermitian spaces

In quantum mechanics, we’ll work with complex vector spaces and interpret the squared-
norm of a vector as a probability. For this to make sense, the norm needs to be non-
negative. But because i2 = −1, a naive extension of Eq. (1.8) does not define a positive
definite form. But because for any z ∈ C, it is true that z̄z = |z|2 ≥ 0, it follows that

⟨v,w⟩ =
n∑

i=1

v̄iwi (1.12)

does fulfill ⟨v,v⟩ ≥ 0.
Here’s the general definition for a scalar product on a complex vector space:

Definition 4 (Scalar product overC). Let V be a vector space overC. A scalar product is
a function ⟨·, ·⟩ : V × V → C that is

https://en.wikipedia.org/wiki/Angular_velocity
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Hermite_polynomials#Definition
https://en.wikipedia.org/wiki/Hermite_polynomials#Definition
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1. sesquilinear:

⟨u+ λv,w⟩ = ⟨u,w) + λ̄(v, w⟩
⟨u, v + λw⟩ = ⟨u, v) + λ(u,w⟩,

2. conjugate symmetric:

⟨u, v⟩ = ⟨v, u⟩,

3. and positive definite:

⟨u, u⟩ > 0

for all u ̸= 0.

A complex vector space with a scalar product is called a Hermitian space.

Remark.
• “Sesqui” in “sesquilinear” apparently means one-and-a-half.

• In physics, Hermitian scalar products are defined to be anti-linear in the first, and linear in
the second argument. In math, it’s the other way round. Oh dear.

• If v,w ∈ C
n happen to have real coefficients, the sesquilinear scalar product (1.12)

reduces to the bilinear scalar product (1.8). The two cases are thus closely related, and it
shouldn’t be surprising that we can treat their properties simultaneously.

• You may have heard the term Hilbert space. A Hilbert space is a Hermitian space with an
extra property (“completeness”) – we’ll get there later.

Example. A Hermitian scalar product on continuous functions [a, b] → C is

⟨f, g⟩ =
∫ b

a

f̄(x)g(x) dx.

In the following, V is a Euclidean or a Hermitian space.

1.3.3 Inequalities

Two important inequalities are (Fig. 1.4):

|⟨v, w⟩| ≤ ∥v∥ ∥w∥ Cauchy-Schwartz inequality,
∥v + w∥ ≤ ∥v∥+ ∥w∥ Triangle inequality.

Cauchy-Schwartz is tight (i.e. “holds with equality”) iff v = λw with λ ∈ R. The triangle
inequality is tight iff v = λw with λ > 0.

By the Cauchy-Schwartz inequality,
∣∣∣ ⟨v,w⟩
∥v∥ ∥w∥

∣∣∣ ≤ 1, so that the inverse cosine in (1.7)
is well-defined and can be used to define the notion of an angle in general (Fig. 1.4).

1.3.4 Projection onto a vector

A vector v ∈ V is normalized if ∥v∥ = 1. For any v ̸= 0, the vector v
∥v∥ is normalized.

For a normalized v, the (orthogonal) projection onto v is

Pv : w 7→ v ⟨v, w⟩

(Fig. 1.4). Its length equals the inner product ⟨v, w⟩.
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Figure 1.4: (i) The triangle inequality says that a direct path is the shortest connection
between two points. (ii) The geometry of two vectors v, w, the decomposition of w into
components parallel Pv(w) and orthogonal P⊥

v (w) to v, as well as the relation between
the angle ϕ and the length of the projection.

1.3.5 Orthogonality

Two non-zero vectors v, w ∈ V are orthogonal if ⟨v, w⟩ = 0. In this case, we write v ⊥ w.
A set {bi} of vectors is an orthonormal system if its elements are normalized and

mutually orthogonal, i.e. if

⟨bi, bj⟩ = δij .

An orthonormal system that’s also a basis is called an orthonormal basis or ONB.
ONBs are particularly easy to work with. Indeed, let {bi} be an ONB and consider a

basis expansion

v =
∑
i

xibi.

In general, given a vector v and a basis {bi}, it isn’t trivial to find the expansion coefficients
xi. But for an ONB, the coefficients are just given by inner products with the basis vectors:

⟨bi, v⟩ =
∑
j

xj⟨bi, bj⟩ =
∑
j

xjδij = xi ⇒ v =
∑
i

bi ⟨bi, v⟩ =
∑
i

Pbi(v).

You will be using these formulas a lot!

Examples & exercises.
• The standard basis (1.12) is an ONB forRn andCn.

• The set {w1,w2} defined in Eq. (1.3) is an ONB for 1⊥.

• Consider the space C0([−π, π],R) with the scalar product defined in (1.9). The set

B =

{
cos (kx)√

π

}∞

k=0

∪
{
sin (kx)√

π

}∞

k=1

forms an orthonormal system.
We will see later that the system is in fact also complete in some sense. The expansion
coefficients of a function f(x) w.r.t. this ONB is a variant of the Fourier transform.

• Show that an orthonormal system is automatically linearly independent.

• Show Parseval’s identity, which generalizes the Pythagorean theorem. It says that for an
orthonormal system {bi},

v =
∑
i

xibi ⇒ ∥v∥2 =
∑
i

|xi|2.
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For a normalized v, define

P⊥
v : w 7→ w − Pv(w). (1.13)

It maps w to a vector that is orthogonal to v:

⟨v, P⊥
v (w)⟩ = ⟨v, w⟩ −

〈
v, (v ⟨v, w⟩)

〉
= ⟨v, w⟩ − ⟨v, w⟩⟨v, v⟩ = 0.

By definition, w = Pv(w) + P⊥
v (w). We have thus decomposed w into a component

Pv(w) parallel to v, and a component P⊥
v (w) orthogonal to v (Fig. 1.4).

1.3.6 Gram-Schmidt algorithm

ONBs are nice to work with. Thus, given a set of linearly independent vectors S = {vi},
it’d be good if we could convert them into an ONB B = {bi} for span({vi}).

This is achieved by the Gram-Schmidt algorithm. You will very rarely perform a Gram-
Schmidt process manually. But it’s still important to have seen it once: It is related to
the QR decomposition, a central tool in numerical linear algebra. It is also used in the
construction of orthogonal polynomials that play an important role in the quantum theory
of orbital angular momentum and the excited states of the harmonic oscillator.

From {vi}, we will iteratively build an orthogonal system {wi} and an orthonormal
system {bi}. The first step is special:

• Set

w1 = v1, b1 =
w1

∥w1∥
.

Then b1 is normalized and, obviously,

span({w1}) = span({b1}) = span({v1}).

The meat is in the following step:

• We need w2 to be orthogonal to w1, so choose

w2 = v2 − b1⟨b1, v2⟩.

By (1.13), w2 a linear combination of v1, v2 with non-zero coefficients. By linear
independence, it is non-zero. Therefore, it can be normalized, and we set

b2 =
w2

∥w2∥
.

At the end of this step:

{w1, w2} is orthogonal,
{b1, b2} is orthonormal,

and, because we can express v1, v2 as a linear combination of {w1, w2} or {b1, b2},

span({w1, w2}) = span({b1, b2}) = span({v1, v2}).

Gram-Schmidt just repeats the previous construction for the remainder of the vi:

https://en.wikipedia.org/wiki/QR_decomposition
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• At the i-th step, set

wi = vi −
i−1∑
j=1

bj⟨bj , vi⟩ “orthogonalize”,

bi =
wi

∥wi∥
“normalize”.

Arguing as before, one then shows by induction that

{w1, . . . , wi} is orthogonal,
{b1, . . . , bi} is orthonormal,

span({w1, . . . , wi}) = span({b1, . . . , bi}) = span({v1, . . . , vi}).



Chapter 2

Linear maps

A map L : V → W between two vector spaces V,W over the same field F is linear if it
commutes with vector addition and scalar multiplication

L(u+ λv) = L(u) + λL(v) u, v ∈ V, λ ∈ F.

For linear maps, it is common to omit the parentheses around the argument: Lv = L(v).
Linear maps are also called (linear) operators. In math, this term is associated with maps
on infinite-dimensional vector spaces, but physicists aren’t as discerning.

Example.
1. For examples on V = W = R2, see Fig. ??.

2. The identity map 1 : v 7→ v is linear, as is the zero map 0 : v 7→ 0.

3. If V is a Euclidean space and b ∈ V , then v 7→ ⟨b, v⟩ is linear.

4. If V is a Hermitian space and b ∈ V , then v 7→ ⟨b, v⟩ is linear, but the function F : v 7→
⟨v, b⟩ is not linear, because it does not commute with scalar multiplication:

F (λv) = ⟨λv, b⟩ = λ̄⟨v, b⟩ = λ̄F (v).

5. Related, f 7→
∫ b
a
f(x) dx is linear on the space of integrable functions.

6. In a vector space of functions, every element x of the domain of definition defines a linear
function f 7→ f(x), called the evaluation map.

7. Let p =
∑n
k=0 ckx

k be a polynomial. Then the multiplication operator Mp that sends a
function f to Mpf where (Mpf)(x) = p(x)f(x) is linear. With p, we an also associate
the differential operator

Dp : f 7→
n∑
k=0

(−i)k
∂k

(∂x)k
f

which is a linear function on the vector space of n-times differentiable functions f . E.g.,
the squared norm p = x2 + y2 + z2 gives rise to Dp = −∆, the negative Laplacian,
which describes kinetic energy in QM. What’s up with the funky factor of (−i)k? We’ll
see that it turns Mp and Dp into each others’ Fourier transforms.

8. LetRϕ be the rotation matrix of (2.5). Define Uϕ on functionsR2 → C by

(Uϕf)(x) = f(R−1
ϕ x).

The linear map Uϕ is central to the quantum theory of orbital angular momentum.

9. Some maps that are not linear: Translations v 7→ v+w, the norm v 7→ ∥v∥2, or complex
conjugation of the components of column vectors v 7→ v̄.

20
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2.1 Matrix representations

Let A = {vj} be a basis of V . Then

L(v) = L
(∑

j

xjvj

)
=
∑
j

xjL(vj). (2.1)

It follows that a linear map is determined once we know its values L(vj) on a basis. Now
choose a basis B = {wi} of W . Then there are expansion coefficients aij ∈ F such that

L(vj) =
∑
i

aij wi. (2.2)

If n = dimV,m = dimW are finite, the aij are usually presented as an m× n matrix

ϕB
A(L) :=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
. . .

...
am1 am2 . . . amn

 . (2.3)

The numbers aij are called the matrix elements of L (with respect to the bases A,B). The
notation (aij) refers to the entire matrix in (2.7). We will also use bold upper-case symbols
for matrices, as in (aij) = A.

Remark.
• Confusion alert! In 2D geometry, we specify the horizontal coordinate first, “(x, y)”.

Matrix elements are indexed by their vertical coordinate first!

• If W = V , we usually choose B = A and sometimes write ϕA instead of ϕA
A.

• One says that (2.1) linearly extends L from {vj} to all of V .

Example.
• The zero map 0 : v 7→ 0 has matrix representation

ϕB
A(0) =

0 . . . 0
...

. . .
...

0 . . . 0

 = 0 ∈ Fm×n

with respect to any choice of bases A,B.

• For V = W , the identity map has matrix representation

ϕA
A(1) =


1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0
0 0 . . . 0 1

 = 1n ∈ Fn×n (2.4)

with respect to any choice of basis A. In other words, the matrix elements are aij = δij .

• Let A = {e1, e2} be the standard basis ofR2. The matrix representationRϕ of a rotation
Rϕ by an angle ϕ is

Rϕ = ϕA
A(Rϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (2.5)
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The representation of a reflection Sx about the x-axis is

ϕA
A(Sx) =

(
1 0
0 −1

)
.

Another basis is B = {f1,f2} where f1 = e1 + e2,f2 = e1 − e2. Then

ϕB
B(Sx) =

(
0 1
1 0

)
.

• Let A = {x0, x1, x2, . . . } be the basis of monomials for the space of polynomial func-
tions. On the subspace P3 of polynomials of degree at most 3, the differential operator ∂x
has matrix representation

ϕA
A(∂x) =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 . (2.6)

In Julia, the element aij of an array A is indexed as A[i,j]. Entire rows and columns can be
accessed using the slice notation, where a colon represents all values an index can take:

julia> A = [1 2 3; 4 5 6]
2×3 Matrix{Int64}:
1 2 3
4 5 6

julia> A[1,1] # Julia indices start at 1 (unlike Python / C)
1

julia> A[:,1] # First column
2-element Vector{Int64}:
1
4

julia> A[1,:] # First row
3-element Vector{Int64}:
1
2
3

2.1.1 Matrix-vector multiplication

Choose bases A = {vi} for V and B = {wi} for W . Given v ∈ V , what is the relation
between the coordinate representations

x = ϕA(v) of the vector v,

A = ϕB
A(L) of the linear map L, and

y = ϕB(Lv) of the image Lv?

Using (2.2),

L(v) = L
(∑

j

xjvj

)
=
∑
i

(∑
j

aijxj

)
wi ⇒ yi =

∑
j

aijxj . (2.7)

This is the simple, but enormously important matrix-vector multiplication formula. The
sum is called a contraction of the two indices labeled by j’s. We abbreviate Eq. (2.7) as

y = Ax.
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I’m afraid you’ll have to memorize those:

The i-th element ofAx is the contraction of the i-th row ofA with x. (2.8)
The j-th column of a matrix is the image of the j-th standard basis vector. (2.9)

Multiplication by an m × n matrix defines a linear map Fn → Fm. Conversely,
every linear map between column vector spaces is given by multiplication with a matrix.
It is common not to distinguish these two concepts. For example, a matrix is said to be
“invertible” if the corresponding linear map is.

Remark. Equation (2.7) is one of the most practically important relation in all of science and
engineering. A significant percentage of all operations in scientific computing and machine
learning / inference is spent evaluating matrix-vector products.

Example. (Differentiation, the linalg way). Let’s apply (∂x−1) : p 7→ p′+p to p = 5x2+3x.
Instead of working with functions directly, we’ll use matrix/column vector representations w.r.t.
the monomial basis of P3. Combine (2.4) with (2.6) to get ϕB

B(∂x − 1) and conclude
−1 1 0 0
0 −1 2 0
0 0 −1 3
0 0 0 −1



0
3
5
0

 =


3
7
−5
0

 = ϕB(−5x2 + 7x+ 3).

2.2 Composition of maps and matrix-matrix multiplication

The composition K ◦L of two linear maps K,L is linear (why?). Recall: K ◦L is the map
that sends v to K(L(v)). In the linear case, one typically writes KL for K ◦ L.

Example.
• OnR2, let K the rotation by ϕ, and L be the reflection about the x-axis. Then

KL :

(
x1

x2

)
7→

(
cosϕ − sinϕ
sinϕ cosϕ

) ((
1 0
0 −1

)(
x1

x2

))
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x1

−x2

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)(
x1

x2

)
.

so KL is described by a rotation matrix with the signs of the second column inverted.

• The gradient is a linear map from the space of scalar functions on R3 to the space of
vector-valued functions. The divergence is a linear map from the vector-valued functions
to the scalar functions. Their composition

div(grad f) = div

∂xf
∂yf
∂zf

 = ∂2
xf + ∂2

yf + ∂2
zf = ∆f

is the Laplacian ∆. (All functions are assumed to be twice differentiable).

Let’s work out the composition of matrix representations. For matricesA,B, we want
to find the matrix C such that Cx = A(Bx) for all x. Using (2.9):

• Cej is the j-th column of C. So it suffices to ensure Cej = A(Bej) for all j.
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• ButBej is the j-th column ofB,

• soA(Bej) is the matrix-vector product ofA and the j-th column ofB.

Therefore:

The j-th column of C = AB is the product ofA and the j-th column ofB.

Expressed in terms of the matrix elements:

cik =
∑
j

aijbjk. (2.10)

“Contract right index ofA with left index ofB”.

Exercise. Rotations in 2D by an angle ϕ are realized by the matrix Rϕ given in Eq. (2.5). It is
intuitive thatRϕRψ = Rϕ+ψ . Prove that, using matrix multiplication and this useful page.

2.2.1 The algebra of linear maps

If V,W are vector spaces over some field F, then the set of linear maps V → W is itself
a vector space. It is denoted as L(V,W ), or, if W = V , just as L(V ).

Remark. This can be iterated. The set L
(
L(V )

)
of linear maps on linear maps is again a vector

space. In QM, it is sometimes called the space of superoperators. Sounds bombastic, doesn’t it?

The extra structure L(V ) has compared to a generic vector space is that elements of
L(V ) can be multiplied with each other. Such spaces are called algebras.

The most important property of the algebra of linear maps is that it is not commutative:
The commutator [K,L] = KL−LK between two linear maps does not, in general, vanish.

Example.
• Remember the Pauli matrices from (1.4)? They anti-commute in the sense that

σiσj = −σjσi ∀ i ̸= j ∈ {1, 2, 3}.

• On differentiable functions, define the multiplication and the differentiation operator by

(Xf)(x) = xf(x), (Pf)(x) = −i
∂

∂x
f(x).

Their commutator is extremely important in QM. Letting it act on a function f , one finds

[X,P ] = i1.

• Let diag((ai)) be the matrix that has ai as its i-th diagonal element and is zero else. Then
diag((ai)) diag((bi)) = diag((aibi)). It follows that diagonal matrices commute with
each other.

Composition of maps (linear or not) is associative: K(LM) = (KL)M . We can
therefore write KLM without ambiguity.

https://en.wikipedia.org/wiki/List_of_trigonometric_identities
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2.3 Linear forms

A linear map L : V → F is called linear form, (linear) functional, or covector.

Example. Examples 3 – 6 in Sec. 2 are linear functionals.

Remark. Confusion alert: In other contexts, a functional is a function acting on functions, linear
or not. This use is common in the calculus of variation, in particular in Lagrangian mechanics.

Choose a basis A = {vi} for V . The one-dimensional space F has a canonical basis
given by B = {1}. Therefore, the coordinate representation

ϕA(L) := ϕ
{1}
A (L) =

(
L(v1) . . . L(vn)

)
∈ F1×n (2.11)

of a linear form is a row vector. Its elements are the values of L on the basis.
Some definitions:

• The space L(V,F) of linear forms is denoted by V ∗ and called the dual space of V .

• Let ϵi ∈ F1×n be the row vector with 1 in the i-th column and 0 else. The set {ϵi}
is the standard dual basis. It fulfills ϵi ej = δij .

• Let B = {vj} be a basis in V . Define the linear form νi by linear extension of
νi(vj) = δij . Then {νi} is the dual basis associated with {vj} and ϕB(νi) = ϵi.

Example. For a linear form L and a vector v with coordinate representations

ϕA(L) =
(
α1 . . . αn

)
, ϕA(v) =

x1

...
xn

 ,

an application of the formula (2.7) for matrix-vector multiplication gives

L(v) =
(
α1 . . . αn

)x1

...
xn

 =
∑
i

αixi.

In coordinates, the evaluation of a linear form on a vector corresponds to a product between a
row and a column vector, which in turn is the contraction

∑
i αixi of their coefficients.

2.3.1 Transpose and adjoint of column vectors

The transpose of an m × n matrix A = (aij) is the n ×m matrix At = (bij) with rows
and columns interchanged: bij = aji. In particular, the transpose of a column vector is a
row vector with the same components.

OnRn, the inner product with a vector w is

v 7→ ⟨w,v⟩ =
∑
i

wivi = w
tv.

Thus: The inner product with w is the linear form represented by the row vector wt.
Likewise, the adjoint of a matrixA isA† = Āt, the conjugate-transpose (pronounced

“A dagger”). On Cn with the standard Hermitian scalar product, we have

v 7→ ⟨w,v⟩ =
∑
i

w̄ivi = w
†v.
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In computer algebra systems, the standard Euclidean / Hermitian scalar products are often
implemented this way. In Julia, where an apostrophe (') denotes the adjoint:

julia> v=[1;im] # Column vector. 'im' is the imaginary unit i.
2-element Vector{Complex{Int64}}:
1 + 0im
0 + 1im

julia> v' # Its adjoint is a row vector. Note the conjugation.
1×2 adjoint(::Vector{Complex{Int64}}) with eltype Complex{Int64}:
1+0im 0-1im

julia> v'*v # Standard Hermitian norm squared
2 + 0im

Remark. The adjoint of a vector v is denoted by v† in physics. In analysis, it’s v∗. In Julia, v′.
In QM, vectors are written as “kets” |v⟩ and their adjoints as “bras” ⟨v|. In covariant notation,
taking the transpose corresponds to “lowering the index”: vi 7→ vi. In geometry, one writes v♭

(because the musical symbol ♭ denotes the... wait for it... lowering of the pitch). Madness.

2.4 Differentials

Let f : Rn → Rm be differentiable. Its first-order Taylor expansion around p ∈ Rn is

fi(p+ x) ≃ fi(p) +
∑
j

∂fi(p)

∂pj
xj , i = 1, . . . , n.

We see that changing the argument from p to p + x produces, to first order, a change in
the function value that is given by a matrix-vector product. We can write it as

dpf : Rn → R
m, y 7→ Jfpx, where Jfp =


∂f1(p)
∂p1

. . . ∂f1(p)
∂pn

...
. . .

...
∂fm(p)
∂p1

. . . ∂fm(p)
∂pn

 .

Jp is the Jacobian matrix, and the linear map dpf it defines is the differential, of f at p.
The differential is thought of as a “linearization” of the function f around a given point.

Remark.
• For m = 1, i.e. for scalar functions f onRn, the differential is a linear form

dpf : x 7→
(
∂f(p)
∂p1

. . . ∂f(p)
∂pn

)x1

...
xn

 ∈ R. (2.12)

In physics, this is more commonly written as the inner product between the gradient

grad f =


∂f(p)
∂p1

...
∂f(p)
∂pn


and the deviation x. Mathematically, the differential is the more fundamental notion: It
can also be defined on spaces that do not have a scalar product to change the column
vector grad f to the row vector representing the linear form that’s actually meant.
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• Let’s be a bit flexible with notation. Use xi to denote, depending on context, (1) the
function Rn → R that maps a column vector to its ith component; (2) the result xi =
xi(v) ∈ R of that function acting on a vector; (3) a “variable name” which indicates
that ∂

∂xi
refers to the partial derivative w.r.t. the ith argument. As a function, xi has a

differential dpxi. Because ∂xi
∂xj

= δij , it is represented by the standard dual basis element
ϵi. Expanding (2.12) in that basis (and suppressing p) gives

df =

n∑
i=1

∂f

∂xi
dxi.

This formula can be read in two ways: (1) Intuitively, as relating “infinitesimal” changes of
the arguments to those of the function value. (2) Mathematically rigorous, as an equation
between well-defined linear maps.

• The chain rule of differentiation states

∂(f ◦ g)i
∂xk

=
∑
j

∂fi
∂gj

∂gj
∂xk

. (2.13)

That sure looks like a matrix product! And indeed, if one decodes the terse notation (the
“flexibility” sketched above now also applies to fi, gj), Eq. (2.13) says that the Jacobian
Jf◦g
p of a composition is the matrix product of the individual Jacobians:

Jf◦g
p = Jf

g(p)J
g
p and thus d(f ◦ g) = (df)(dg).

2.5 Kernels and images

2.5.1 Affine subspaces

Take a subspace S ⊂ V and a vector a0 ∈ V . Now consider
the “shifted subspace”

A = a0 + S := {a0 + s | s ∈ S}.

A set of this form is called an affine subspace of V .

Elementary facts:

1. One can recover S from A as

S = A−A := {a1 − a2 | a1, a2 ∈ A}.

It is called the directional vector space of A.

2. A set A ⊂ V is affine if and only if A−A is a linear subspace.

Examples are considered in the next section.

2.5.2 Kernels and images

With a linear map L : V → W , associate the sets

imgL := {Lv | v ∈ V } ⊂ W the image or range of L,
kerL := {v ∈ V |Lv = 0} ⊂ V the kernel or null space of L.
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Both the image and the kernel are linear spaces.
A not insignificant part of your time as a scientist will be spent solving (inhomoge-

neous) linear equations: Given L, f , find u such that

Lu = f. (2.14)

The set of solutions to (2.14) is an affine space with directional vector space equal to kerL.

Proof. If u1 and u2 are solutions, then L(u1 − u2) = f − f = 0, so that u1 − u2 ∈ kerL.
Conversely, if u is a solution and v ∈ kerL, then L(u+ v) = L(u) = f is a solution.

Example. Driven harmonic oscillator. Newton’s equation for the position u(t) of a harmonic
oscillator with frequency ω subject to a driving force mf(t) is(

∂2
t + ω2)u = f.

The kernel of L = ∂2
t + ω2 on the space of bounded functions has basis {cos(ωt), sin(ωt)}.

Thus the set of solutions is of the form u(t) = u0(t) +A cos(ωt) +B sin(ωt), where u0 is any
particular solution, and A,B are constants. Finding a u0 given f is considerably harder.

Consider, e.g., a driving force acting on an oscillator at t = 0.

If the system was previously at rest, it will then start oscillating (left). If it was moving before,
then, with a bit of luck, the driving force will exactly cancel the upwards momentum (center).
The difference between the two solutions is a free oscillation (right).

We’ll talk about practical ways for solving linear equations in Sec. 3.6.2.
The discussion implies that L is injective if and only if kerL = {0}.

2.5.3 Rank-nullity theorem, down to earth approach

If L : V → W and V is finite-dimensional, then

dim imgL+ dimkerL = dimV. (2.15)

The dimension of the image of L is the rank of L. The dimension of the kernel of L is
sometimes called the nullity of L. Thus (2.15) is also known as the rank-nullity theorem.

The textbook by Fischer and Kaul contains this fig-
ure, illustrating the “no-expansion-of-dimension” prop-
erty of linear maps, which is made precise by the rank-
nullity theorem. I mean, (2.15) is an equation relating
three natural numbers, so I’m not sure it really needs
a visualization per se. But then again, F&K are much
more experienced in teaching this material than I am.
And, gotta admit, the figure has a certain memetic je ne
sais quoi, so I didn’t want to withhold it from you.

Proof. Choose a basis {b1, . . . , bs} of kerL. By the basis extension theorem, one can com-
plete it to a basis {b1, . . . , bs, c1, . . . , cr} of V . Then s+ r = dimV and s = dimkerL.
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The set B = {Lci}si=1 spans imgL. It is also linearly independent (hence a basis):∑
i

xiL(ci) = L
(∑

i

xici

)
,

so if the left hand side is 0, then v =
∑

i xici ∈ kerL. But the bi form a basis of kerL, so
that also v =

∑
i yibi. By the uniqueness of basis expansions, all the xi must be 0.

Thus we have dim imgL = s, proving the claim.

Remark. Confusion alert (English, German): rank = Rang ̸= range = Bild.

Example. Let V be Euclidean or Hermitian, 0 ̸= v ∈ V . Consider the projection Pv . Then
imgPv consists of the multiples of v, thus rankPv = 1. The kernel kerPv is the space v⊥ =
{w ∈ V | ⟨v, w⟩ = 0} of vectors orthogonal to v (its orthocomplement). One can extend v to
a basis and use Gram-Schmidt to obtain an orthogonal basis {w1 = v, w2, . . . }. Then B =
{w2, . . . } is a basis of v⊥. If dimV = n < ∞, then |B| = n− 1, compatible with (2.15).

2.5.4 Optional: Rank-nullity, what’s actually going on

Quotient spaces

Fix a subspace S ⊂ V . Remarkably, the set of affine subspaces with directional vector
space S is itself a vector space, the quotient space V up to S, denoted by V/S.

Addition and scalar multiplication between sets are defined as

A+B = {a+ b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A}.

We need to verify: (1) If A,B are affine subspaces with directional vector space S, then
the same is true for their sum and scalar multiples; and (2) These operations satisfy Def. 2.

Associate with every element v ∈ V the affine subspace it lies in:

v 7→ [v]S := v + S.

Claim: This map commutes with addition and scalar multiplication

[v + w]S = [v]S + [w]S , λ[v]S = [λv]S . (2.16)

Proof. Using that S, as a subspace, is closed under addition and scalar multiplication,

λ[v]S = λ(v + S) = λv + λS = λv + S = [λv]S

[v + w]S = (v + w) + S = (v + w) + S + S = (v + S) + (w + S) = [v]S + [w]S .

Then condition (1) follows immediately, and condition (2) is an easy exercise.
The map v 7→ [v]S is called the canonical projection from V to V/S.

Rank-nullity revisited

Isomorphic vector spaces have the same dimension. It’d be cool if we could associate a
vector space with each side of rank-nullity theorem, and prove that the two are isomorphic.
This would “explain the equality in a deeper way”.

Not only is this possible, but this formulation also works in infinite dimensions (and
analogous constructions exist in group theory and in non-commutative algebra).

The central claim is (Fig. ??): imgL is isomorphic to the quotient space V/ kerL.
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Proof. Write K = kerL. Define a linear map L̃ from V/K to imgL by

L̃[v]K = Lv.

L̃ is well-defined, because any v′ ∈ [v]K differs from v by an element of K, so that
Lv′ = Lv. It is surjective, because if u = Lv ∈ imgL, then L̃[v]K = u. It is injective,
because if L̃[v1]K = L̃[v2]K , then 0 = L̃[v1 − v2]K = L(v1 − v2) so that (v1 − v2) ∈ K
and thus [v1 − v2]K = [0]K .

In the special case where V is finite-dimensional, the proof in the previous section can
be re-read to show that

dimV/K = dimV − dimK,

so we recover the rank-nullity theorem in the re-arranged way

dim imgL = dimV − dimkerL.

2.6 Inverse maps

If L : V → W is invertible, then the inverse function L−1 : W → V is also linear.

Proof. Given w ∈ W , let v = L−1(w). By linearity, L(λv) = λw. Applying L−1 to both
sides gives L−1(λw) = λv = λL−1(w).

Showing that L−1 commutes with addition works analogously.

If V,W are finite-dimensional, then the rank-nullity theorem implies:

1. L can be invertible only if dimV = dimW .

2. If dimV = dimW , then:

L is invertible
⇔ dimkerL = 0, i.e. the nullity of L is 0, or L is injective
⇔ dim imgL = dimW, i.e. the rank of L is maximal, or L is surjective.

Remark. These equivalences do not hold in infinite dimensions. Take V = W = P(C), the
space of polynomials. The multiplication operator p 7→ xp injective. But it is not surjective,
because the constant function p(x) = 1 is not in its range. The differentiation operator p 7→ ∂xp
is surjective. But it is not injective, because its kernel contains all constant functions.

Example. Let V be the vector space of all functions onR. Let m be a function without a zero:
m(x) ̸= 0. The inverse of the multiplication operator (Mmf)(x) = m(x)f(x) is M1/m.

Taking the inverse reverses compositions: (KL)−1 = L−1K−1. Proof:(
L−1K−1

)
(KL) = L−1(K−1K)L = L−1L = 1.

2.6.1 Inverse matrices

Now assume that V,W are both n-dimensional, and that bases have been chosen.
If L is represented by a matrixA, thenB is a matrix representation of L−1 if and only

ifAB = 1. In this case, we writeB = A−1, the inverse matrix ofA.
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Example.
• IfA = diag((ai)) is diagonal with non-zero entries, thenA−1 = diag((a−1

i )).

• The Pauli matrices (1.4) square to identity σ2
i = 1. Hence σ−1

i = σi.

• Let f : Rn → R
n be invertible. By Sec. 2.4, the Jacobi matrices fulfill

(
Jf
p

)−1
= Jf−1

f(p).

• A real square matrix O is orthogonal if OtO = 1, i.e. if O−1 = Ot. Orthogonal
matrices preserve the Euclidean scalar product—we’ll look at them in detail later.

For 2× 2-matrices, there is an explicit formula for the matrix inverse (check it!):(
a b
c d

)−1

=
1

ad− cb

(
d −b
c a

)
.

There are a few more classes of matrices for which the inverse can be easily found. But
in general, computing matrix inverses is painful for humans and even computers are only
moderately good at it, with speed and numerical stability being issues. Experience has it
that problems that seem to require a matrix inverse can often be re-formulated to avoid it.

2.7 Coordinate changes

2.7.1 General case

We start with a few remarks on coordinates in general, not just linear ones on vector spaces.

Manifolds

Let M be a set of points on which we want to do physics. For example, M could be
Euclidean space, or a model of the surface of the earth or of the entire universe. (In the
mathematical theory, these sets go by the pleasant-sounding name of manifolds).

Coordinate functions

In order to talk about the elements of M concretely, it is helpful to choose coordinates. A
coordinate function is an invertible function from (a subset of) M to Rn. With respect to
a coordinate function ϕ, a point p ∈ M is represented by the column vector x = ϕ(p).

For example, if M models earth, it contains a point
p∧∧ corresponding to the center of Cologne. If ϕ :
M → R2 assigns to each point their latitude and longi-
tude in degrees, then ϕ(p∧∧) = ( 50.9335946.961899 ).

If one has chosen two different coordinate systems
ϕ,ψ, one can ask which function converts the first type
to the second type. Read off the figure: Starting with
x = ϕ(p), move up ϕ−1 to get to p, and then down
again along ψ, reaching y = ψ(p). Thus, the coordi-
nate change is given by ψ ◦ϕ−1. In the other direction,
it’s ϕ ◦ψ−1.
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Curves

In the mechanics of point particles, you will study
curves γ : R → M , where γ(t) is the position of a
particle at time t. Particles have traced out trajectories
long before humans started choosing reference systems,
so γ exists independently of any coordinates. But if we
want to, we can consider representations

γϕ := ϕ ◦ γ : R→ R
n, or

γψ := ψ ◦ γ : R→ R
n.

These can be converted into each other using the coordinate changes described above:

(ψ ◦ ϕ−1) ◦ γϕ = ψ ◦ ϕ−1 ◦ ϕ ◦ γ = ψ ◦ γ = γψ. (2.17)

Scalar functions
Another important set of objects are scalar functions f : M →
R. Think of, say, temperature or a potential, that take a real
value at every point. A coordinate representation fϕ of f maps
coordinates x = ϕ(p) of a point p ∈ M to the value f(p). Thus:

fϕ = f ◦ ϕ−1 (2.18)

(“start from x, move up through ϕ−1 to p, then apply f”).

A very important lesson:

Coordinate representations of functions to M depend on ϕ directly.
Coordinate representations of functions on M depend on the inverse ϕ−1.

And indeed, converting fϕ to fψ involves the inverse of the map encountered in (2.17):

fϕ ◦ (ϕ ◦ψ−1) = f ◦ ϕ−1 ◦ ϕ ◦ψ−1 = f ◦ψ−1 = fψ.

Curves and scalar functions can be concatenated to f ◦ γ : R → R, describing the
evolution of f as t is varied, without referencing any coordinates.

(2.19)
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Transformations
Consider a map g : M → M , describing, e.g., a rotation. In coordi-
nates

gϕ = ϕ ◦ g ◦ ϕ−1. (2.20)

(“Start with x, crawl up ϕ−1 to get to p, slide along g, then down
again through ϕ, thereby reaching y = ϕ(g(p)).”) Because g is both
a function on M and to M , its coordinate representation depends on
ϕ and ϕ−1.

Changing coordinates:

(ψ ◦ ϕ−1) ◦ gϕ ◦ (ϕ ◦ψ−1)

=ψ ◦ ϕ−1 ◦ ϕ ◦ g ◦ ϕ−1 ◦ ϕ ◦ψ−1 = gψ.

Passive transformations

Ever been confused about whether your train just started rolling out of the station, or
whether the one on the neighboring track began moving in the opposite direction?

Let g : M → M . Its action p 7→ g(p) on points is called active. If g is invertible, one
can also use it to act on coordinate systems (analogous to the reference system defined by
the neighboring train). This passive action takes a coordinate function ϕ and creates a new
coordinate function ψ := ϕ ◦ g−1.

The coordinate change from the original ϕ to the new system ψ is

ϕ ◦ g−1 ◦ ϕ−1. (2.21)

Formally, this is the inverse g−1
ϕ of the coordinate representation of the active action (recall

the opposite direction of motion of the reference train).

Remarks.
• “Passive transformation” sometimes refers to the map ϕ 7→ ϕ ◦ g−1 (as in our definition)

and sometimes, if ϕ is clear from context, to the coordinate change ϕ ◦ g−1 ◦ ϕ−1.

• All other objects encountered (M , curves, scalar functions, (active) transformations) exist
independently of coordinates. That’s obviously not the case for passive transformations.
It thus comes as no surprise that passive transformations are often seen in science and
engineering, but much less talked about in math, with its emphasis on canonic objects.

• Compare “If a physical process is possible, then so is any rotated version of it” to “The
equations of physics are invariant under rotations of the coordinate system”. These state-
ments express the same fact about reality, respectively from an active and a passive mind-
set.

Notation

We have encountered many objects in quick succession. In physics books, most of them are
not mentioned explicitly. Let me try to give a fair summary of the standard terminology:

https://funhtml5games.com/jslems/lemms.php
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concept math physics comment
point p ∈ M r
coordinate function ϕ : M → Rn r
different coordinate function ψ : M → Rn r′

coordinates of a point x = ϕ(p) r I’m sensing a pattern!
curve γ : R→ M r(t), r
position of curve at time t γ(t) r(t)
coordinate rep of curve γϕ = ϕ ◦ γ r(t), r
scalar function f : M → R f(r), f
coordinate rep of function fϕ = f ◦ ϕ−1 f(r), f
function along curve f ◦ γ f(t) Wait, where’s the curve?
coordinate change ψ ◦ ϕ−1 r′(r) I’m not making this up.

...
...

...
_
\_( ") )_/

_

As long as you can keep all the different meanings separated in your head, the terse physics
notation is extremely clean and efficient. But God help you should you ever get confused!

2.7.2 In linear algebra

In linear algebra, coordinates are derived from bases. For a basis B, recall that ϕB is the
linear maps V → Fn that gives the expansion coefficients w.r.t. B (Eq. (1.5)).

Vectors

Assume two bases B = {vi}ni=1 and B′ = {v′i}ni=1 have been chosen on a space V . There
are thus two sets of coordinates associated with every vector:

x = ϕB(v), x′ = ϕB′
(v).

The coordinate change

ϕB′
◦
(
ϕB)−1

: Fn → F
n (2.22)

is a linear function and thus realized by multiplication with an n× n-matrix. Denote it as
T B′

B , or, if the bases are clear from context, as T :

x′ = ϕB′
◦
(
ϕB)−1

(x) = Tx. (2.23)

Concretely,

Tei = ϕ
B′

◦
(
ϕB)−1

(ei) = ϕ
B′
(vi),

so the i-th column of T is the representation of the i-th old basis vector vi in terms of the
new basis.

Example. Take V = R
2 and vi = ei the standard basis. Then ϕB is just the identity map.

Now choose, say,

v′
1 =

(
2
0

)
v′
2 =

(
1
1

)
.

Expanding the old basis vectors in the new basis,

T =

(
1
2

− 1
2

0 1

)
.
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Relation (2.23) is called the contravariant transformation law.

Linear forms

Now let f : V → F be a linear form. By (1.9), it is represented by the row vectors

y = ϕB(f), y′ = ϕB′(f).

As in (2.18): With T the same matrix as above, they are related by

y′ = y T−1. (2.24)

Relation (2.24) is the covariant transformation law. As a consistency check, let’s verify
that the contraction between a co- and a contravariant quantity is invariant:

y′ x′ = y T−1 T x = y x.

This had better be the case, because both expressions describe the coordinate-independent
number f(v) (c.f. (2.19)).

Example. If T x = λx stretches vectors, then y T−1 = 1
λ
y shrinks to compensate.

Linear maps

Let L : V → V be a linear map with matrix representations

A = ϕB
B(L), A′ = ϕB′

B′(L).

As in (2.20),

A′ = T AT−1. (2.25)

One says that T acts on A by conjugation. Two matrices A,A′ that are related by conju-
gation with an invertible T are similar.

Consistency check, as above:

f(Lv) = y′A′x′ = (yT−1)(TAT−1)(Tx) = yAx = f(Lv).

Passive action

If L : V → V is invertible, it maps bases to bases:

B = {vi} 7→ B′ = L(B) = {Lvi}.

Then ϕL(B) = ϕB ◦ L−1, i.e. the action of invertible maps on bases gives rise to the
“passive action”.

Let T = ϕL(B) ◦ (ϕB)−1 be the matrix implementing the change from the old to the
new coordinate system. Formally, it equals the basis representation ϕB ◦ L−1 ◦ (ϕB)−1

of the inverse of L. “Rotating the basis to the right has the same effect on coordinates as
rotating all vectors to the left”:
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Eigenvalues and eigenvectors

Two matrix representationsA,A′ of a linear map are related by a similarity transformation
A′ = T AT−1 (c.f. (2.25)). Matrices that are “similar” in this technical sense can look
very different in practice. Given L, it is of great interest to find a basis w.r.t. which the
representation A is particularly simple. (In fact, in QM, “solving a system” has come
to mean “finding a basis in which the operator describing energy is diagonal”.) It is this
problem we’ll address in the present chapter.

We’ll first look at invariants of similarity transforms, i.e. functions of matrices that do
not change underA 7→ T AT−1, then turn to the discussion of eigenvectors.

3.1 The trace

The trace of a square matrix is the sum over its diagonal elements

trA =
∑
i

aii.

The trace has the following cyclicity property

trAB = trBA (3.1)

which implies

trA1A2 . . .Ak−1Ak = trA2A3 . . .AkA1 and trTAT−1 = trA. (3.2)

Proof. Homework.

If L is an abstract linear map, define trL := trA, where A = ϕB(L) is the matrix
representation w.r.t. some basis. By (3.2), the result does not depend on the basis chosen.

Example [Bloch representation]. The trace scalar product

⟨A,B⟩tr := trA†B.

is a Hermitian scalar product on the spaceCn×n of complex n× n-matrices.
The Pauli matrices { 1√

2
σi}3i=0 form an ONB forC2×2:

1

2
⟨σ†

i ,σj⟩ = δij .

36
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It follows that any 2× 2-matrix ρ can be written as

ρ =
∑
i

ciσi, ci =
1

2
trσ†

iρ.

The coefficient vector c is called the Bloch representation of ρ in quantum physics.

3.2 The determinant

The determinant is important in linear algebra and for multidimensional integration. In
Rn, it can be geometrically interpreted as measuring “oriented volume”. We’ll first explain
that interpretation inR2 and then treat the more abstract general case.

3.2.1 Oriented volume in two dimensions

Consider a pair of vectors (a1,a2) in R2. They span a parallelogram. It turns out (sur-
prisingly?) to be important to classify these according to their area and their orientation.

Some shapes, like shoes, gloves, or the letter R are not congruent to their mirror im-
ages. Roughly, “orientation” is the property that distinguishes the original from its reflec-
tion. For an ordered pair (a1,a2) of vectors inR2, define their orientation by

ori(a1,a2) = +1 if a1 lies to the right of the line through a2,

ori(a1,a2) = −1 if a1 lies to the left of the line through a2,

ori(a1,a2) = 0 if a1 lies on the line through a2.

Let the volume vol(a1,a2) be the area of the parallelogram spanned by a1,a2.
The determinant is the “oriented volume”

det(a1,a2) = ori(a1,a2) vol(a1,a2).

IfA is the matrix with columns a1,a2, one also writes detA for det(a1,a2).
Below, we will turn the geometric definition into a formula, in two steps:

(S1): The determinant is bilinear and alternating

det(a1,a2) = −det(a2,a1).

Bilinear functions are also called bilinear forms. Denote the set of alternating bilinear
forms by

∧2
(R2) (“wedge-2”). For the next statement, write

a1 =

(
a
c

)
, a2 =

(
b
d

)
, so that in matrix form (a1,a2) =

(
a b
c d

)
.

(S2):
∧2

(R2) is a 1-dimensional vector space. Any K ∈
∧2

(R2) fulfills

K(a1,a2) = (ab− cd)K(e1, e2). (3.3)

Interpret (3.3) this way: All alternating bilinear forms agree that the oriented volume of
a general parallelogram is (ab − cd) times the one of the unit square. But one is free to
“choose units” by assigning an arbitrary value K(e1, e2) to this reference shape. Because
the standard choice is 1, we get

det(a1,a2) = det

(
a b
c d

)
= ad− bc.
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Proof of the formula for the two-dimensional determinant

The following properties can be seen from (Fig. ??):

(P1): Exchanging a1 and a2...

• leaves the volume invariant, and

• flips the sign of the orientation.

(P2): Multiplying a1 or a2 by λ ∈ R...

• multiplies the volume by |λ|, and

• preserves orientation if λ > 0 and flips the sign of the orientation if λ < 0.

(P3): Adding a multiple of one vector to the other preserves both volume and orientation.

Proof of (S1). Property (P1) implies that det is alternating, (P2) gives homogeneity

det(λa1,a2) = λ det(a1,a2) = det(a1, λa2). (3.4)

Now assume that (a1,a2) are LI. Then any vector is of the form λa1 + µa2 and we have

det(a1 + (λa1 + µa2),a2) = det((1 + λ)a1,a2) by (P3),
= det(a1,a2) + λ det(a1,a2) by (3.4),
= det(a1,a2) + det(λa1 + µa2,a2) by (3.4), (P3).

The remaining cases are treated similarly.

Proof of (S2). Let K ∈
∧2

(R2). Using K(v,v) = −K(v,v) and hence K(v,v) = 0,

K(ae1 + ce2, be1 + de2)

=abK(e1, e1)︸ ︷︷ ︸
0

+cdK(e2, e2)︸ ︷︷ ︸
0

+adK(e1, e2) + cbK(e2, e1)︸ ︷︷ ︸
−K(e1,e2)

(3.5)

=(ad− cb)K(e1, e2).

3.2.2 The determinant in general

In R2 the determinant can be described equivalently in geometric terms as oriented vol-
ume, or in algebraic terms, as the unique alternating bilinear form that assigns +1 to the
standard basis. For general vector spaces Fn, the notions of “orientation” or “volume”
might not exist, but the algebraic approach does generalize.

Alternating forms

A function

K : V × · · · × V︸ ︷︷ ︸
k times

→ F

is a multilinear form if it is linear in each argument. A multilinear form is alternating if
it changes the sign whenever two arguments are swapped. Let

∧k
(Fn) be the space of

alternating k-linear forms on Fn.



CHAPTER 3. EIGENVALUES AND EIGENVECTORS 39

Permutations

In Eq. (3.3), we used the alternating property to map K(e2, e1) to −K(e1, e2). Below,
we’ll be dealing with expressions of the form K(ej1 , . . . , ejn). To track the sign changes
incurred when ordering the arguments, we need the concept of “permutations” and their
“sign”.

A permutation π of n letters is a re-arrangement 1 7→ π1, . . . , n 7→ πn of (1, . . . , n).
The set of all such permutations is Sn, the symmetric group on n letters. The sign of a
permutation is a number sign(π) ∈ ±1 computed as follows. Take π and sort its entries
iteratively, for i ranging from 1 to n: If πi ̸= i, find k such that πk = i and exchange
i ↔ k. Then signπ = +1 if an even number of swaps occurred, and −1 else.

Example.

(2, 3, 1) → (1, 3, 2) → (1, 2, 3) ⇒ sign(2, 3, 1) = +1.

(2, 1, 3) → (1, 2, 3) ⇒ sign(2, 1, 3) = −1.

The general definition

1. There is a unique alternating n-form on Fn that assigns +1 to the standard basis.
Def.: This form is the determinant. The determinant of an n × n matrix is the
determinant of its columns.

2. The determinant satisfies the Leibniz formula

det(A) =
∑
π∈Sn

(signπ) a1π1 . . . anπn . (3.6)

3. Any alternating n-form K ∈
∧n

(Fn) is proportional to it

K(a1, . . . ,an) = det(a1, . . . ,an)K(e1, . . . , en). (3.7)

Proof. From Eq. (3.6), det is multilinear, alternating, and evaluates to 1 on the standard
basis. Now use multilineraity and the alternating property to find

K
(∑

j1

a1j1ej1 , . . . ,
∑
jn

anjnejn

)
=

∑
j1,...,jn

a1j1 . . . anjnK
(
ej1 , . . . ejn

)
(3.8)

=
∑
π∈Sn

(signπ) a1π1
. . . anπn

K
(
e1, . . . en

)
.

Remark. The size of the symmetric group is n! = n · (n − 1) . . . 2 · 1, which is ginormous.
For n ≃ 60, the number of terms in (3.6) exceeds the number of hadrons in the universe. Thus,
(3.6) is useful for mathematical reasoning, but does not provide a practical algorithm for actually
computing det. See Sec. 3.6.2 for an efficient algorithm.

3.2.3 Properties of the determinant

Most importantly, det turns products of matrices into the product of numbers:

det(AB) = detA detB. (3.9)
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Proof. Write

det(AB) = det(Ab1, . . . ,Abn) =: K(b1, . . . , bn).

Then K is is multilinear and alternating, so that (3.7) implies (3.9) .

In particular, matrix inverses are mapped to inverse numbers:

1 = det(1) = det
(
T T−1

)
= det

(
T
)
det
(
T−1

)
(3.10)

⇒ det
(
T−1

)
= [det

(
T )]−1. (3.11)

It follows that det is indeed invariant under similarity transformations:

det
(
TAT−1

)
= det

(
T
)
det
(
A
)
det
(
T−1

)
= det(A).

Like we did for the trace, one can therefore define the determinant of an abstract L : V →
V as the determinant of any matrix representation detL := det

(
ϕB(L)

)
.

Another important consequence:

det(A) ̸= 0 ⇔ A is invertible. (3.12)

Proof. If A is invertible, then det(A) det(A−1) = 1, hence det(A) ̸= 0. If A is not
invertible, then there is a non-zero v such thatAv = 0. Let i be such that vi ̸= 0. Then

det(a1, . . . ,ai, . . . ,an) = v−1
i det

(
a1, . . . ,

∑
j

vjaj , . . . ,an

)
= v−1

i det(a1, . . . , 0, . . . ,an) = 0.

Remarks & Exercises.
1. det(λA) = λn det(A). (Not λdet(A), a common mistake!)

2. From the Leibniz formula, det(A) = det(At).

3. The determinant of a diagonal matrix is the product of the diagonal elements:
det

(
diag(ai)

)
= a1 . . . an.

4. Slightly less obvious: the determinant of an upper triangular matrix is also the product of
the diagonal elements.

5. For n = 3, the triple product (Spatprodukt) formula links det to the cross product:

det(a, b, c) = ⟨a× b, c⟩, where

a1

a2

a3

×

b1
b2
b3

 =

a2b3 − a3a2

a3b1 − a1b3
a1b2 − a2b2

 .

6. The array of numbers ϵj1...jn := det
(
ej1 , . . . ejn

)
is called the Levi-Civita symbol.

Expanding as in Eq. (3.8),

det(A) =
∑

j1,...,jn

a1j1 . . . anjn det
(
ej1 , . . . ejn

)
=

∑
j1,...,jn

a1j1 . . . anjnϵj1...jn .
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3.2.4 Volume and orientation in higher dimensions

InRn, one defines volume and orientation of a prallelepiped in terms of the determinant:

ori(a1, . . . ,an) := sign(det(a1, . . . ,an)),

vol(a1, . . . ,an) := |det(a1, . . . ,an)|.

The volume of an arbitrary body in Rn is defined by approximating it by parallelepipeds
(Fig. ??).

From this point of view, the product formula

det(Ab1, . . . ,Abn) = det(A) det(b1, . . . , bn)

says that

multiplying with the matrixA changes volume by a factor of |det(A)|,
multiplying with the matrixA changes orientation by sign(det(A)).

Examples.
1. Rotations preserve volume and orientation. Reflections about a coordinate plane preserve

volume, but invert orientation. And indeed:

det

(
cosϕ − sinϕ
sinϕ cosϕ

)
= cos2 ϕ+ sin2 ϕ = 1, det

(
1 0
0 −1

)
= −1.

We can now outline what determinants have to do with integration (though the detailed
theory is not part of this course). Assume we want to integrate f : Rn → R over a region
R ⊂ Rn. It might be that there is a coordinate change T such that T (R) = {Tx |x ∈ R}
is easier to describe. Rewriting the integral in terms of the new coordinates, we have to
insert a factor of |detT |−1 to compensate for the distortion of volume under T :∫

R

f(x) dnx =

∫
T (R)

f(T−1y) |detT |−1 dny.

3.3 Eigenvectors and eigenvalues

Let L : V → V be a linear map. An eigenvector of L is a non-zero v ∈ V such that

Lv = λv (3.13)

for some λ ∈ F. The number λ is the eigenvalue of L associated with v.

Examples.
1. The eigenvectors of a diagonal matrix are the standard basis vectors {ei}. The eigenvalue

associated with ei is the ith diagonal element. Every non-zero vector is an eigenvector of
1 with eigenvalue 1, and an eigenvector of the null matrix with eigenvalue 0.

2. A non-trivial rotation onR2 does not have any eigenvectors.

3. The eigenvectors of ( 0 1
0 0 ) are the vectors of the form v = ( λ0 ) for λ ̸= 0.
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4. On the space of differentiable functions R → C, the eigenvectors of ∂x are of the form
f(x) = µeλx for µ ̸= 0. Functions representing physical quantities are usually bounded
in the sense that for every f , there is a C ∈ R s.t. ∀x, |f(x)| ≤ C. The eigenfunctions
above are bounded iff λ = i|λ| is purely imaginary, in which case f is a plane wave.

5. The map L+ µ1 has the same eigenvectors as L, but all eigenvalues are shifted by µ.

While not every linear map has an eigenvector, some have entire bases of them! An
eigenbasis for L : V → V is a basis B = {vi} for V consisting of eigenvectors

Lvi = λivi ∀ i.

This concept is of great importance, because the representation of L w.r.t. an eigenbasis is
extremely simple. In particular, if V is finite-dimensional, we immediately have

B is an eigenbasis ⇔ ϕB
B(L) is diagonal.

In this case, the diagonal elements of ϕB(L) are nothing but the eigenvalues of L. If L has
an eigenbasis, it is said to be diagonalizable.

Let’s make this concrete for the case where L is given by a square matrixA. Because

TAT−1ei = λiei ⇔ A(T−1ei) = λi(T
−1ei),

TAT−1 is diagonal iff the columns of T−1 are an eigenbasis ofA.

Why this really matters. Given a linear L, it can be quite difficult to find an eigenbasis (as-
suming it exists). But once we have it, most problems involving L become trivial. For example:

• To decide whether L is invertible: Just check whether 0 is among the eigenvectors.

• To compute the inverse of L: Just invert the eigenvalues.

• To solve the linear equation Lu = f : For the representations f = ϕB(f), u = ϕB(u)
w.r.t. the eigenbasis, the solution is just ui = λ−1

i fi.

Also, eigenvectors/eigenvalues often have direct physical interpretations. Examples:
• The frequencies of the harmonics of a musical instrument are eigenval-

ues of a mechanical differential operator. The zeros of the eigenvectors
can be visualized as Chladni figures.

• The stable axes of rotation of a rigid body are the eigenvectors of the
inertia tensor associated with the largest & smallest eigenvalues.

• The spectral lines of atoms are the differences between eigenvalues of
the quantum mechanical energy operator.

Examples.
• The Fibonacci numbers are defined by the recursion relation Fk+2 = Fk+1 + Fk with

initial conditions F0 = 0, F1 = 1. Apparently, they describe mating rabbits... whatever.
To understand the asymptotic behavior, write the relation in matrix form(

Fk+1

Fk

)
︸ ︷︷ ︸

fk

=

(
1 1
1 0

)
︸ ︷︷ ︸

F

(
Fk

Fk−1

)
︸ ︷︷ ︸

fk−1

⇒ fk = F kf0, f0 =

(
1
0

)
.

The powers of the transfer matrix F are best computed in its eigenbasis {v+,v−}:

fk = F k(c+v+ + c−v−) = c+λ
k
+v+ + c−λ

k
−v−, f0 = c+v+ + c−v−, (3.14)

where c± are the expansion coefficients of f0 w.r.t. the eigenbasis. Thus, one only has to
find the eigenbasis of F to get a closed formula for Fk! Details are an exercise.

https://en.wikipedia.org/wiki/Ernst_Chladni#Chladni_figures
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• Eigenbases allow us to decouple systems of linear differential equations. This is one of
the major applications in physics.
First, consider a single pendulum. The restoring force is

F = −mg sin(ϕ).

For small deflections, the motion is approximately linear, with horizontal distance from
equilibrium given by r = l sin(ϕ). Newton’s equation mr̈ = F are thus solved by

r̈ = −g

l
r ⇒ r(t) = A sin(ωt+ ϕ0), ω =

√
g

l
.

Now consider two coupled pendulums. Writing the Hook constant as k = mκ, the forces
are

F1 = −mω2r1 +mκ(r2 − r1),

F1 = −mω2r2 +mκ(r1 − r2).

so that Newton’s equations can be written in matrix form(
r̈1
r̈2

)
=

(
−ω2 − κ κ

κ −ω2 − κ

)(
r1
r2

)
.

Now we are in trouble. To solve for r1(t), need to know r2(t), which in turn depends on
r1(t). It’s not obvious how to get out of this cyclic dependency.
However, any system of the form r̈ = Mr can easily be solved if M has an eigenbasis
{bi}. Just expand r =

∑
i cibi, plug it into r̈ =Mr to get∑

i

c̈ibi =
∑
i

λicibi ⇔ c̈i = λici,

where the final equivalence follows from the uniqueness of basis expansions. If all eigen-
values are negative, this is just a system of uncoupled harmonic oscillators with frequen-
cies ωi =

√
−λi. Hence, the solution to the system is

r(t) =
∑
i

Ai sin(ωi + ϕi) bi.

The ωi are called the eigenfrequencies of the system, and the bi the eigenmodes.
Back to the example. It’s easy to guess eigenvectors:(

−ω2 − κ κ
κ −ω2 − κ

)(
1
1

)
=

(
−ω2

−ω2

)
= −ω2

(
1
1

)
=: λ1b1,(

−ω2 − κ κ
κ −ω2 − κ

)(
1
−1

)
=

(
−(ω2 + 2κ)
(ω2 + 2κ)

)
= −(ω2 + 2κ)

(
1
−1

)
=: λ2b2.

Physical interpretation: The vector b1 is the center of mass mode. Here, the two particles
swing in unison. Because the frequency of small oscillations is independent of mass, the
eigenfrequency of the c.o.m. mode is just ω. The vector b2 describes an opposing motion
of the two masses. Because they have to work both against gravity and against the Hook
constant, the eigenfrequency is higher.
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3.3.1 Eigenspaces

If v, w are eigenvectors of L for the same eigenvalue λ, then

L(v + µw) = Lv + µLw = λ(v + µw).

Therefore, the set of all eigenvectors for λ, together with the null vector, form a subspace
Vλ of V . It is called the eigenspace for λ.

Rearranging the eigenvalue equation (3.13) gives

Lv = λv ⇔ (λ1− L)v = 0 ⇔ v ∈ ker(λ1− L) (3.15)

and thus Vλ = ker(λ1− L). The dimension dimVλ is called the (geometric) multiplicity
of λ. Eigenvalues with multiplicity larger than 1 are called degenerate.

Remark. If Lv = λv, then L(µv) = λ(µv). Thus, even if the eigenspace is non-degenerate,
eigenvectors are determined at most up to a non-zero factor µ ∈ F. In Euclidean/Hermitian
spaces, one often demands that eigenvectors be normalized. But this still leaves an ambiguity of
±1 or eiϕ, known as a “global phase” in QM.

Example
1. On Cn, consider the projection Pw : v 7→ w⟨w,v⟩ for a normalized w. Extend B =

{b1 = w, b2, . . . } to an ONB. Then Pw(b1) = b1 and Pw(bi) = 0 for i > 1. Thus B is
an eigenbasis. The eigenvalue 1 is non-degenerate, but 0 has multiplicity n− 1.

2. On the space of smooth bounded functions R → C, the eigenvalues of P = −i∂x are
the real numbers: The eigenspace associated with k ∈ R consists of the multiples of
fk(x) = eikx. All eigenvalues are hence non-degenerate.
The square P 2 = −∂2

x has the same eigenvectors. The eigenvalue of fk is now E := k2,
and thus fk and f−k belong to the same eigenspace of P 2. Therefore: E = 0 is non-
degenerate, but the positive eigenvalues have multiplicity 2.
In the quantum treatment of a particle in one dimension, P is associated with the particle’s
momentum, and P 2 with its kinetic energy. Physically, the degeneracy reflects the fact
that each non-zero value of kinetic energy is compatible with two directions of motion.

Let S = {vi} be a set of eigenvectors with distinct eigenvalues λi. Then S is LI.

Proof. By induction on |S| = k. Assume the statement holds for k − 1. If

0 =

k∑
i=1

civi then 0 = (λk1− L)

k∑
i=1

civi =

k−1∑
i=1

ci (λk − λi)︸ ︷︷ ︸
̸=0

vi.

Thus c1 = · · · = ck−1 = 0 by the induction hypothesis, and hence ck = 0 as well.

Thus: If dimV = n < ∞ and L has n distinct eigenvalues, then it has an eigenbasis.

Remark. If L has n distinct eigenvalues, there is therefore a basis, unique up multiplicative
factors, labeled by the eigenvalues. This is the basis of a concise notation used in QM. E.g.
“|E⟩” is the eigenvector with eigenvalue E for the “energy operator” H , i.e. the essentially
unique solution to H|E⟩ = E|E⟩.

Going even further, one sometimes uses the same letter for both the operator and its eigen-
values. To tell them apart, a “hat” is placed on top of the operator, like so: P̂ |p⟩ = p|p⟩. Four
p’s, three different meanings: “The operator P̂ acting on the eigenvector |p⟩ results in a factor of
p”. Got it?
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3.3.2 The characteristic polynomial

In this section, assume that dimV = n < ∞. By (3.15), λ is an eigenvalue iff det(L −
λ1) = 0. The degree-n polynomial

pL : x 7→ det(x1− L)

is the characteristic polynomial of L. Thus, the eigenvalues of L are among the roots of
its characteristic polynomial.

Example. For the rotation matricesRϕ, the characteristic polynomials and its roots are

pRϕ(x) = det

(
cosϕ− x sinϕ
− sinϕ cosϕ− x

)
= (cosϕ− x)2 + sin2 ϕ

solved by λ± = cosϕ± i sinϕ = e±iϕ. The roots are complex and thus are not eigenvalues of
Rϕ as a linear mapR2 → R

2.

If F = C, the characteristic polynomial factorizes

pL(x) =
n∏

i=1

(x− λi), λi ∈ C. (3.16)

Consequences:

• By the fundamental theorem of algebra, every polynomial has at least one root over
C. Therefore, over C, every L has at least one eigenvalue.

• If pL has n distinct roots, then L has an eigenbasis.

Example. If a real matrixA has no eigenbasis inRn, it may have one inCn. For example, the
choice T = 1√

2

(
1 i
1 −i

)
diagonalizes the 2D rotation matrices: TRϕT

−1 = diag(eiϕ, e−iϕ).
In Hamiltonian mechanics, the dynamics of a harmonic oscillator is a rotation in phase space,

i.e. the x-p-plane. In dimensionless coordinates:
(
x(t)
p(t)

)
= A

(
cos(−ωt+ϕ0)
sin(−ωt+ϕ0)

)
. By the above (or

directly by Euler’s formula), the dynamics is diagonalized by the complex coordinates(
a(t)

a†(t)

)
:= T

(
x
p

)
=

1√
2

(
x+ ip
x− ip

)
=

(
a(0) e−iωt

a†(0) eiωt

)
.

This formulation is central to the “algebraic solution” of the quantum harmonic oscillator.

The number of times a given value λ appears in the decomposition (3.16) is the alge-
braic multiplicity of the eigenvalue. Counting and using LI of different eigenspaces:

• If for all eigenvalues, the geometric multiplicity equals the algebraic multiplicty,
then L has an eigenbasis.

3.4 The Jordan Normal Form (and why it doesn’t matter)

The geometric multiplicity can be strictly smaller than the algebraic one. For example,

N :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ∈ Fm×m, det(x1−N) = xm. (3.17)

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Euler%27s_formula
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It “shifts components up, inserting 0 at the bottom”. The only eigenvalue is 0, and the
only vectors that get annihilated are the multiplies of e1. Thus the geometric multiplicity
is 1, compared to m for the algebraic one.

It then follows that

J = λ1+N :=


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λ

 , det(x1− J) = (x− λ)m. (3.18)

also has geometric multipicty 1, with λ being the unique eigenvalue. A matrix of the form
(3.18) is called a Jordan block. It is specified by an eigenvalue λ and multiplicity m.

Jordan blocks are “the most general” examples of a non-diagonalizable matrix, in the
following sense:

Jordan Normal Form (JNF): Let V be over C, dimV < ∞, and L : V → V . If the
roots of pL are elements of F, then there exists a basis B such that ϕB

B(L) is a block matrix

ϕB
B(L) =

J1
. . .

Jp

 ,

with each Ji a Jordan block. The map L has an eigenbasis iff all Jordan blocks are 1× 1.
The JNF is unique up to the order of the blocks.

Remark. The JNF is a spectacular mathematical result. It says that, up to choosing a basis, a
linear map is specified exactly by a set of eigenvalues and multiplicites {(λi,mi)}.

It also doesn’t matter much in practice.
One reason is that a matrix can fail to be diagonalizable over C only if two roots of the

characteristic polynomial fall together. But “λi = λj” is an unstable condition: The tiniest bit
of noise will cause all roots to become distinct. It thus doesn’t make sense to compute the JNF
of matrices whose entries represent noisy real-world quantities. Numerical computer programs
don’t usually even provide functions for the JNF, because floating point rounding errors would
lift the multiplicities (though computer algebra systems can find the JNF for matrices with exact
coefficients, e.g. specified as rational numbers).

Another reason is that many classes of matrices treated in physics are automatically diag-
onalizable, degeneracies or not. For example: Call a matrix normal A if it commutes with its
adjoint [A,A†] = 0. Examples include real symmetric matrices or complex self-adjoint ones.
We will show in Sec. 3.7 that all normal matrices can be diagonalized.

For these reasons, the JNF isn’t very prominent in physics.

Example. From (3.17), Nm = 0. A matrix with the property that a finite power is the null
matrix is called nilpotent. An example of a nilpotent matrix in physics is the Fermionic creation
operator a†

i , which “creates a particle in the ith state”. It fulfills (a†
i )

2 = 0. Why? That’s Pauli’s
exclusion principle at work: There can be only one Fermion in a given state.
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3.5 Functions of linear maps

Linear maps form an algebra: It makes sense to take powers and linear combinations of
them. Thus, if p(X) =

∑d
k=0 ckX

k a polynomial, it maps linear maps to linear maps via

p(L) =

d∑
k=0

ckL
k.

The same applies to functions f(x) =
∑∞

k=0 ckx
k that have a series expansion, assuming

that no convergence issues arise.

Remark. Under no circumstances should you confuse this with an application of p to matrix
elements. For example, for p(X) = X2 and L given by the σx Pauli matrix,(

p(0) p(1)
p(1) p(0)

)
=

(
0 1
1 0

)
̸= p(σx) = σ

2
x =

(
1 0
0 1

)
.

On the other hand, if Lv = λv, then

p(L)v =
∑
i

ciL
iv =

∑
i

ciλ
iv = p(λi)v.

That is: When applying L to eigenvectors, we can replace the possibly quite complicated
“function of linear map” with the generally much simpler “function of scalar”. And if L
has an eigenbasis {vi}, then p(L) is just the linear extension of vi 7→ p(λi)vi.

Now let f : F → F be any function, not necessarily polynomial. For a linear map L
with eigenbasis {vi}, define f(L) as the linear extension of vi 7→ f(λi)vi. This convention
is known as the functional calculus.

In particular, we get this recipe for evaluating f(A) for a diagonalizable matrixA:

Find T s.t.A = T−1 diag(λi)T . Then f(A) = T−1 diag(f(λi))T .

3.5.1 Matrix exponentials and linear differential equations

By far the most important application is to the exponential function et =
∑∞

k=0
1
k! t

k. From
the series, one directly verifies that eλt satisfies the differential equation f ′(t) = λf(t)
with boundary condition f(0) = 1.

Essentially the same argument applies to matrices:

M ′(t) = ΛM(t), M(0) = 1 ⇔ M(t) = etΛ =

∞∑
k=0

1

k!
(tΛ)k. (3.19)

While this looks pretty abstract, this type of differential equation is extremely important.
If the following list doesn’t convince you, I don’t know what to say:

• It describes the time evolution of any quantum system.

• It describes the behavior of continuous symmetries.

• It describes the time evolution of “linear” systems in classical mechanics.

• It approximately describes the behavior of any mechanical system for short times.
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Recall how we solved coupled differential equations by writing them in matrix form
an passing to an eigenbasis decomposition? Taking exponentials of matrices allows for a
more compact representation of this technique. We’ll have a brief look at this next.

Dynamical systems

Consider a dynamical system whose state is described by a vector x(t) ∈ Rn subject to
the equations of motion

ẋ = G(x) G : Rn → R
n.

It is called linear there is an n × n-matrix Λ such that G(x) = Λx. The solution is
(exercise!)

x(t) = etΛx(0). (3.20)

Sometimes, the powers Λk and hence the series expansion etΛ can be computed explicitly.
Alternatively, expanding in eigenbasis of Λ, we get the solution

x(0) =
∑
i

ci(0)bi ⇒ x(t) =
∑
i

ci(0)e
tλibi.

Linear system in mechanics

Let’s apply this to a mechanical system, whose configuration is given by a point r ∈ Rn.
Now Newton’s equations involve second derivatives. But they can easily be re-expressed
in terms of first-order time derivatives by introducing auxiliary variables. Indeed, with
every coordinate ri, associate its velocity vi = ṙi. Let x = (r,v) ∈ R2n be the phase
space vector that describes the position and velocities. Assume that the force

F (r,v) = Fx =
(
Fr Fv

)(r
v

)
is a linear function of the positions and the coordinates. Then

ẋ =

(
ṙ
v̇

)
=

(
0 1

Fr Fv

)
︸ ︷︷ ︸

Λ

(
r
v

)
,

and so we can solve it using (3.20). An example is on the exercise sheet.

Stability analysis

Now consider a mechanical system with forces F (r,v) that are not necessarily linear. An
equilibrium point x0 := (r0,v0) is one where the forces vanish

F (r0,v0) = 0.

To analyze the behavior of small perturbations around equilibrium, we may replace F
by its first-order Taylor expansion, i.e. its Jacobi matrix J . Then the dynamics of the
perturbations δ = x − x0 is governed by the approximate equations of motion δ̇ ≃ Jδ.
Using (3.20), we find that the equilibrium is stable iff Reλi < 1 for all i, and unstable iff
Reλi > 1 for at least one i. In this context, the λi, describing the reaction of a system to
small perturbations, are called Lyapunov exponents.
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Example. Here, we revisit the damped harmonic oscillator in the language of linear algebra. It
has velocity-dependent forces

F (r, v) = −ω2
0r − γv =

(
−ω2

0 −γ
)(r

v

)
.

Let’s compute the Lyaponuv exponents around the equilibrium point x0 =

(
0
0

)
:

ẋ =

(
ṙ
v̇

)
=

(
0 1

−ω2
0 −γ

)
︸ ︷︷ ︸

Λ

(
r
v

)
⇒ det(x1−Λ) = x2 + γx− ω2

0

and so the eigenvalues are

λ± = −1

2
γ ± 1

2

√
γ2 − 4ω2

0

which can be split into real and imaginary parts:

Reλ± =


0 γ = 0
− 1

2
γ γ ≤ 2ω0

λ± γ > 2ω0

, Imλ± =


±ω0 γ = 0

±
√

ω2
0 − γ2/4 γ ≤ 2ω0

0 γ > 2ω0

.

Interpretation: For γ > 0, the real part of the eigenvalues is strictly negative. We recover the
unsurprising result that the equilibrium is stable in the presence of a damping factor γ: Deviations
are exponentially suppressed with Lyapunov exponent −Reλ±. If γ ≤ 2ω0, the exponential
decay modulates oscillations with a frequency Imλ± that is reduced as compared to the γ = 0
case. For γ > 2ω, no oscillations take place anymore.

3.6 Algorithms

A key ingredient to the success of linear algebra is the existence of comparatively fast and
stable numerical algorithms for many important problems.

3.6.1 Iterative algorithms for finding eigenvalues and eigenvectors

See Exercise 8.

3.6.2 Gaussian elimination

Gaussian elimination is an efficient algorithm for solving inhomogeneous linear equations

solve Ax = y for x ∈ Fn, givenA ∈ Fm×n,y ∈ Fn.

Recall from Sec. (2.5.2) that the set of solutions is an affine space

{x |Ax = y} = {x0 + s |Ax0 = y, s ∈ kerA}.

By “solve”, we mean: find a particular solution x0 together with a basis {si}i of the
directional vector space kerA.

Some applications of linear equations:

1. Eigenvectors from eigenvalues. If λ is an eigenvector of a matrix A, then the
corresponding eigenspace is the set of solutions of (λ1−L)x = 0.
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2. Test for linear independence. The vectors {a1, . . . ,ak} are linearly independent
if and only if the only solution to the equation Ax = 0 is x = 0. Here, A is the
matrix with the vectors a1, . . . ,ak as its columns.

3. Inverting matrices. Given a matrix A, a matrix B with columns b1, . . . , bn is its
inverse if and only ifAbi = ei for i = 1, . . . , n.

4. Basis expansions. Given a basis B = {b1, . . . , bn} and a vector y ∈ Fn, the basis
representation c = ϕB(f) is the solution toBc = y, whereB has columns bi.

We’ll see that Gaussian elimination can also be used to compute the determinant of a
matrix without having to sum over n! terms.

Gaussian elimination has a status not unlike long division. It’s a fundamental algo-
rithm, that’s typically taught to students, but, these days, performed almost exclusively by
computers.1 For this reason, we’ll treat it only briefly here.

Start with a linear equation

A1,1u1 + · · ·+A1,nun = y1

...
Am,1u1 + · · ·+Am,nun = ym.

First, we’ll explain how to solve it in the spatial case where m = n and assuming that
certain coefficients are non-zero. We’ll remark on the general case later. Our running
example will be

x1 + 3x2 − 5x3 = 2,

3x1 + 11x2 − 9x3 = 4,

−x1 + x2 + 6x3 = 5.

To save ink, there’s a common shorthand notation

1 3 −5 2
3 11 −9 4
−1 1 6 5

,

where variable names and equality signs are suppressed.
Step 1: Row reduction. Our goal is to transform the system into an equivalent one

that is in row echolon form. This form is simple to visualize, but awkward to verbalize.
Examples:

Ã1,1 Ã1,2 Ã1,3 ỹ1
0 Ã2,2 Ã2,3 ỹ2
0 0 Ã3,3 ỹ3

or
Ã1,1 Ã1,2 Ã1,3 ỹ1
0 0 Ã2,3 ỹ2
0 0 0 ỹ3

.

In words: If in any row, the first k coefficients are zero, then in the next row, at least the
first k + 1 coefficients must be zero.

Every linear system can be brought row echelon form, like so:

1Though the current lecturer once constructed a custom variant of Gaussian elimination as part of an attack
on a cryptographic witness of quantum computational supremacy. So knowing about the algorithm might come
in handy in unexpected ways.

https://arxiv.org/abs/2312.10156
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Assume A11 ̸= 0. Add −A1,2/A1,1 times the first row to the second one. Example:

1 3 −5 2
3 11 −9 4
−1 1 6 5

7→
1 3 −5 2
0 2 6 −2
−1 1 6 5

Claim: This operation does not change the solution space. Indeed, if x is a solution for
the system on the left, it is also a solution of the system on the right. That’s because if an
equation (like x1 + 3x2 − 5x3 = 2) is true, then any multiple of it is also true; and if two
equations are true, then so is their sum. But the converse also holds, because we can go
back from the right to the left in the same way: Just add +A2,1/A1,1 times the first row to
the second one. The two systems are thus equivalent, as claimed.

We can apply the same logic to all rows: For i = 2 . . .m: Add −Ai,1/A1,1 times the
first row from the ith one. In the example, there’s only one more row left:

1 3 −5 2
0 2 6 −2
−1 1 6 5

7→
1 3 −5 2
0 2 6 −2
0 4 1 7

.

One says that the first column has been cleared.
Denote the coefficients of the transformed equivalent system by Ãi,j , ỹj .
Next, we clear the second column. Assume that Ã2,2 ̸= 0. For i = 3, . . . ,m, add

−Ãi,2/Ã2,2 times the second row from the ith one. Example:

1 3 −5 2
0 2 6 −2
0 4 1 7

7→
1 3 −5 2
0 2 6 −2
0 0 −11 11

.

In the example, we have now reached the row echelon form. In general, one consecutively
clears all columns j = 1, . . . , n− 1 this way.

Step 2: Back substitution A system in row echelon form is trivial to solve. Look at
the last line of the example. It depends only on a single variable, so we can immediately
conclude

−11x3 = 11 ⇔ x3 = −1.

The next-to-last line depends on two variables x2, x3. But we have already found x3, and
can thus solve easily for the remaining one:

2x2 + 6x3 = −2 ⇔ 2x2 − 6 = −2 ⇔ x2 = 2.

Likewise,

x1 + 3x2 − 5x3 = 2 ⇔ x1 + 6 + 5 = 2 ⇔ x1 = −9

and we are done.
In general, a few things can turn out differently from the example:

• We could encounter a row of the form

0 . . . 0 yj

for some non-zero yj . In this case, the system clearly has no solution.
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• More than one variable can disappear in a single step. For example, the row echelon
form could read

A1,1 A1,2 A1,3 y1
0 0 A2,3 y2

.

The first row gives just one equation for the two variables x1, x2. There are thus
infinitely many solutions: To label them, introduce a parameter t ∈ F and set x2 = t.
Then

x1 =
y1
A1,1

− t
A1,2

A1,1

and the full solution space is(
y1

A1,1
y2

A2,3

)
+ t

(
A1,2

A1,1

0

)
t ∈ F.

As expected, it is an affine space and we have found a base point and a basis for the
(one-dimensional) directional vector space.

• It can happen that a coefficient is zero, preventing us from clearing the column below
it. Example: A1,1 in

0 1 1
1 1 1

.

In this case, we would swap the first and second row – also an operation that clearly
does not change the solution space.

What’s the time complexity of Gaussian elimination? If L is an n × n matrix, then
about n columns will be cleared. Each time, about n2 coefficients are modified, for a total
of O(n3) operations. Not great, not terrible.

LU decomposition and computing the determinant

Let A be an n × n matrix. Recall that we often care about detA, but the only algorithm
available to us at the moment, a literal reading of the Leibniz formula, involves n! steps to
compute, which quickly exceeds the number of particles in the known universe.

In addition to solving linear systems, Gaussian elimination can also be used to find
determinants efficiently. The key insight is that the process of bringing the matrix A into
row echelon form Ã can be described as multiplying A by a normalized lower triangular
matrix Λ. (Lower triangular means that Λij ̸= 0 only if i > j, and normalized means that
Λii = 1, see below).

Indeed, assume for now that no swaps of rows are required. In the first step, the
Gaussian algorithm adds −A2,1

A1,1
=: Λ2,1 times the first row to the second row. This can be

expressed as the matrix multiplication

Ã =


1

Λ2,1 1
. . .

1

A.
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But all the Gaussian algorithm ever does is adding certain multiples of the jth row to the
ith one, for j < i. Therefore, we can express the final row echelon matrix U (for upper
triangular) as:

U =


U1,1 U1,2 . . . U1,n

U2,2
. . .

...
. . . Un−1,n

Un,n

 =


1

Λ2,1 1
...

. . . . . .
Λn,1 . . . Λn,n−1 1

A =: ΛA. (3.21)

Now the determinant of an upper or lower triangular matrix can be computed using the
Leibniz formula, because in this case, one easily sees that only one single term survives:
the product of the main diagonal. Applying this to both sides of (3.21) gives

detA =

n∏
i=1

Ui,i.

Remark. Applying Λ−1 =: L to both sides of (3.21) gives A = LU . The inverse matrix
L is again normalized lower triangular and can be computed using one more round of Gaussian
elimination. That’s because L is the solution to LΛ = 1, i.e. now Λ takes the role of the
coefficient matrix that is being brought into echelon form. Thus:

A =


1

L2,1 1
...

. . .
. . .

Ln,1 . . . Ln,n−1 1



U1,1 U1,2 . . . U1,n

U2,2

. . .
...

. . . Un−1,n

Un,n

 = LU . (3.22)

This form, which plays an important role in numerical analysis, is the LU factorization ofA

Remark. We arrived at Eqs. (3.21, 3.22) assuming that now row swaps are required to achieve
row reduced echelon form. It is not hard to see that the general case leads to PA = LU with
P a permutation matrix: Pei = eπi for some permutation π ∈ Sn. This form is called a LUP
decomposition. Taking determinants gives

detA = signπ
∏
i

Ui,i,

where signπ = (−1)k for k the number of row swaps.

3.7 Normal matrices

Recall how we didn’t bother too much with the Jordan normal form? One reason is that lin-
ear maps in physics often have a simple-to-check property called normalcy, which ensures
not only that they have an eigenbasis, but even an orthonormal one!

The condition is stated in terms of the adjoint of a matrix. The adjoint has appeared a
number of times in the lecture and the exercises. We quickly recap some of its properties.

Recap of the adjoint

LetA be a complex n×m-matrix. Its adjointA† is the complex conjugate of the transpose,
i.e. an m× n-matrix with components A†

ij = Āji. Then:
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• In terms of the standard Hermitian inner product, “the adjoint acts on the left argu-
ment as the matrix does on the right”:

⟨v,Aw⟩ =
m∑
i=1

n∑
j=1

v̄iAijwj =

m∑
i=1

n∑
j=1

Āijviwj = ⟨A†v,w⟩.

• Taking the adjoint of a product reverses the order:

(AB)† = B†A†.

• The adjoint of the adjoint is the original matrix: (A†)† = A.

• For a column vector v ∈ Cn, the adjoint v† is a row vector. As a linear functional,
it equals the inner product with v:

v†w =
∑
i

v̄iwi = ⟨v,w⟩.

3.7.1 Normal matrices have orthonormal eigenbases

A square matrixA is normal if it commutes with its adjoint [A,A†] = 0.
For concreteness, we mention two important classes of normal matrices:

• A matrixA is Hermitian or self-adjoint ifA† = A. Because every matrix commutes
with itself, Hermitian matrices are normal.

• A matrix U is unitary if U † = U−1. Because a matrix commutes with its inverse,
UU−1 = 1 = U−1U , unitary matrices are normal.

Examples
• The Pauli matrices are all Hermitian. Because the square to 1, they are also unitary

σσ† = σσ = 1 ⇒ σ† = σ−1.

• IfA is any n×m-matrix, then

(AA†)† = (A†)†A† = AA†

soAA† is Hermitian. In particular, for v ∈ Cn, the rank-one map vv† is Hermitian.

• The rotation matricesRϕ fulfill

R†
ϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)†

=

(
cosϕ − sinϕ
sinϕ cosϕ

)
= R−ϕ = R−1

ϕ

and are therefore unitary.

Here’s what makes normal matrices important:

A matrix is normal if and only if it has an ortho-normal eigenbasis. (3.23)
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Remark. The condition “A is normal” is almost trivial to verify: Take A, transpose-conjugate
it to getA†, compute two matrix productsAA†,A†A, subtract, check whether you got 0. Easy.

On the other hand, “A has an orthonormal eigenbasis” is a priori much more difficult to
check for any given A! You could find all the roots of the characteristic polynomial, solve the
linear equation for the eigenspaces, check whether you’ll find a basis at all, and if so, whether
Gram-Schmidt on degenerate spaces gives you an ONB. Near-impossible for large matrices!

Mapping something a priori difficult to something easy is what makes the statement useful.
This suggests that the implication “⇒” is the more difficult one to prove, which is indeed correct.

Proof. Claim: IfA is normal, then

Av = λv ⇒ A†v = λ̄v. (3.24)

Proof: We’ll show that ∥Av − λv∥2 = 0 implies ∥A†v − λ̄v∥2 = 0. Indeed:

∥A†v − λ̄v∥2 = ⟨A†v − λ̄v,A†v − λ̄v⟩
= ⟨v,AA†v⟩ − λ̄⟨v,Av⟩ − λ⟨v,A†v⟩+ λλ̄⟨v,v⟩
= ⟨v,A†Av⟩ − λ̄⟨v,Av⟩ − λ⟨v,A†v⟩+ λλ̄⟨v,v⟩ (by normality)

= ∥Av − λv∥2 = 0 (by assumption).

We now show by induction that a normal n×n-matrix has k orthonormal eigenvectors
{v1, . . . ,vk} for all k ≤ n.

Anchor: The statement is true for k = 1, because by the fundamental theorem of
algebra, every matrix has at least one eigenvector, which we can scale to be normalized.

Induction step: Now assume it is true for some k < n. Let U be the subspace of Cn

consisting of the vectors that are orthogonal to v1, . . . ,vk. If w ∈ U , then using (3.24),

⟨vi,Aw⟩ = ⟨A†vi,w⟩ = λi⟨vi,w⟩ = 0, i = 1, . . . k.

Hence Aw ∈ U , too. Therefore, the restriction of A to U defines a linear map U → U .
Invoking again the fundamental theorem of algebra, that map must have an eigenvector
vk+1, which we can scale to be normalized. By construction, vk+1 is also an eigenvector
ofA, and orthogonal to the v1, . . . ,vk.

We have shownA normal ⇒ it has an ortho-normal eigenbasis. Now for the converse.
AssumeA has an orthonormal eigenbasis {vi} with associated eigenvalues λi. We claim

A =
∑
i

λi viv
†
i .

Indeed, (∑
i

λi viv
†
i

)
vj =

∑
i

λi vi v
†
i vj︸︷︷︸
δij

= λjvj

so A and
∑

i λiviv
†
i act in the same way on the basis {vj}. They therefore define the

same linear map. But then

A† =
(∑

i

λi viv
†
i

)†
=
∑
i

λ̄i viv
†
i , (3.25)

which has the same eigenbasis asA, and thus commutes with it.
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In the proof, we have also shown

A is normal
⇔ A has an ortho-normal eigenbasis {vi}i with eigenvalues λi

⇔ A =
∑
i

λi viv
†
i with {vi}i an ONB. (3.26)

Equation (3.26) is called the spectral representation or eigendecomposition ofA.

Remark.
• “Spectrum” is a generalization of “the set of eigenvalues”. For matrices, the two terms

have the same meaning. They are different in infinite dimensions, though. Don’t worry
about this for now.

• Eq. (3.26) is very useful! It explicitly expresses the operator in terms of its eigenbasis
and eigenvalues. In QM, the very first step in calculations is typically to write down the
eigendecomposition (3.26) for any operator and take it from there.

• Syntax check! (After long discussion in the lecture on this point). The l.h.s. of (3.26) is a
matrix. The r.h.s. involves vectors. How does that even make formal sense? Well, viv†

i is
the product of an n × 1 matrix (i.e. column vector) and a 1 × n matrix (i.e. row vector).
Altogether, this gives an n× n-matrix, so (3.26) is at least syntactically correct.

3.7.2 Unitary and orthogonal matrices

We have defined that a matrix U is unitary if

U † = U−1. (3.27)

If the matrix has in addition real entries, then the adjoint can be replaced by a transpose.
A real matrixO is orthogonal if

Ot = O−1. (3.28)

Here’s the interpretation: Unitary matrices are to Cn, and orthogonal matrices to Rn,
what rotations are toR3.

There are many ways of characterizing “rotations” and likewise, many ways of char-
acterizing “unitarity” and “orthogonality”. Let’s look at some.

• Rotations preserve lengths and angles. Generalizing this property:

A complex matrix U is unitary if and only if it preserves Hermitian inner products

⟨Uv,Uw⟩ = ⟨v,w⟩ ∀v,w ∈ Cn. (3.29)

A real matrixO is orthogonal if and only if it preserves Euclidean inner products

⟨Ov,Ow⟩ = ⟨v,w⟩ ∀v,w ∈ Rn.

Proof.

• Rotations map the standard basis to an ONB. Generalizing this property:

A complex matrix U is unitary if and only if its columns form a Hermitian ONB.
A real matrixO is orthogonal if and only if its columns form a Euclidean ONB.
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Proof.

There’s one more, very important!, characterization of unitaries. Think of it this way:
A diagonal matrix U = diag((eiϕj )j) obviously preserves the Hermitian inner product
and is therefore unitary. By switching to the spectral decomposition of U , it is easy to see
that every unitary is of this form, if we allow for the phases being applied w.r.t. to a general
ONB, rather than just the standard basis.

• A complex matrix U is unitary if and only if it is normal and has eigenvalues λi =
eiϕi of absolute value equal to 1

U =
∑
i

eiϕiviv
†
i , ϕi ∈ R, {vi} an ONB of Cn. (3.30)

Proof.
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Below is work very much in progress.
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We can write (3.30) as

U = eiH , H :=
∑
i

ϕiviv
†
i . (3.31)

One says that U is generated byH .

Examples. Homework.

Remarks. If U and V both preserve inner products, then so do the composition UV and their
inverses. The set of unitary matrices onCn is therefore a group, the unitary group U(n).

The determinant of a unitary has absolute value 1. This follows from the fact that the
same is true for its eigenvalues, or more directly from

|detU | = detU detU † = detUU−1 = det1 = 1.

From the multipicativity property det(UV ) = detU detV of the determinant, it follows
that the set of unitaries with determinant 1 is a subgroup. It is called the special unitary
group SU(n).

Analogously, the set of orthogonal matrices from the orthogonal group O(n). Repeat-
ing the above calculation, |detO| = 1. But becauseO is real, we actually have det = ±1.
Because det is a continuous function, we thus see that it is not possible to continuously
deform an orthogonal matrix with positive determinant into one with negative determi-
nant. Therefore, O(n) has (at least, and in fact, exactly) two disconnected components.
The connected component that contains the identity is the subgroup SO(n) of proper ro-
tations. The connected component {O ∈ O(n) | detO = −1} is not subgroup (why?). It
contains e.g. the reflections about hyperplanes.

Let U ∈ U(n). From (3.31), there is a Hermitian matrix H such that U = eiH . Now
introduce a parameter t ∈ R and consider the family

U(t) = e−itH

(the minus sign is convention). We have found a continuous family of unitaries such that
U(0) = 1 and U(1) = U . Thus, unlike O(n), the unitary group is connected. What is
more,

U(t)U(s) = U(t+ s), i∂tU(t) =HU(t).

The first equation says that the U(t)’s form a (one parameter) group.

Example. In QM, the state of a system is represented by a complex vectorψ of norm ∥ψ∥2 = 1.
Time evolution ψ(t) has to preserve normalization. It is therefore not surprising that it is im-
plemented by a unitary ψ(t) = U(t)ψ(0). From the above, it is natural to look at the Her-
mitian H(t) that generated the unitary. For closed systems, it turns out to be time-independent
H(t) =H . The quantum-mechanical time evolution is therefore determined by

i∂tψ(t) = i∂tU(t)ψ(0) =HU(t)ψ(0) =Hψ(t),

which is the general form of the Schrödinger equation.
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3.7.3 Hermitian and symmetric matrices

We have defined that a matrixA is Hermitian if

A† = A.

If the matrix has in addition real entries, then the adjoint can be replaced by a transpose.
A real matrix S is symmetric if

St = S.

From (3.25), it follows that Hermitian (and hence symmetric) matrices have real eigen-
values.

Projections

There is a one-one relation between:

• Subspaces V ⊂ Cd, and

• projections P , i.e. matrices maps fulfilling P = P †, P 2 = P .

(see Fig. 3.1)

Figure 3.1: Orthogonal projection of u onto the x-y-plane.

→ Homework



Chapter 4

Tensors and multilinear algebra

• Good news: Tensors are conceptually really simple.

• Bad news: Many simple things happen at the same time, so one can easily get very
confused.

• Good news having the last word: It only takes a bit of practice to grok it.

4.1 Tensors as arrays of numbers

Let’s recap:

• A scalar is a single number λ from some field F.

• A concrete vector v is a linear array (vi) of numbers. Specifically, if v ∈ Fn, the
index i runs from 1 to n and the vi are elements of the field F.

• A concrete matrix M is a rectangular array of numbers Mij . Specifically, if M ∈
Fn×m, the index i runs from 1 to n, and the index j from 1 to m, and the Mij are
elements of the field F.

An obvious generalization suggests itself:

• A concrete tensor T is an array of numbers Ti1i2...is . Specifically,

– Fn1×···×ns is the set of arrays T with s indices, where

– i1 runs from 1 to n1,
..., and, ...
is runs from 1 to ns,

– each number Ti1...is lies in the field F.

We call s the order of the tensor and the numbers (n1, . . . , ns) its shape.

Remark. Unfortunately, the terminology around tensors is not standardized, and often very
confusing.

Instead of “order”, some authors use rank or dimension. That’s not ideal, because these terms
already have different meanings in linear algebra. (In German, we’ll use Stufe for order, which
seems more common than the literal translation “Ordnung”). The j-th index ij is sometime said
to correspond to the jth axis of the tensor. The Julia language, to add to the confusion, calls it
the jth dimension.

61
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Tensors (or “multidimensional arrays”) in Julia:

julia> T = [
1 2
3 4;;;
5 6
7 8
]

2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 2
3 4

[:, :, 2] =
5 6
7 8

julia> T[1,1,1]
1

julia> T[1,1,2]
5

julia> size(T) # the shape of T
(2, 2, 2)

A tensor of shape (n1, . . . , ns) is specified by
∏s

i=1 ni coefficients. If ni = n is
constant, this number grows exponentially with the order d = ns.

Remark. The exponential growth means that tensors of high order are difficult to handle on a
computer. That’s felt particularly acutely in quantum many-body theory, where states are spec-
ified by tensors, with the order corresponding to the number of degrees of freedom. Take for
example the simplest quantum system: a spin-1/2 particle. The state of a single one is described
by a vector in C2, i.e. by just two complex numbers. But the state of s spins is an element of
C

2×···×2, requiring 2s elements ofC. If we arrange spin-1/2 particles as a cube with side length
10 – a tiny system! – then s = 1000 and 2s ≃ 10300. This is such an absurdly large number that
even galactic references, like the number of hadrons in the universe, pale compared to it.

That’s bad news if you want to do computer physics: There’s patently no chance to even con-
sider putting all these numbers into computer memory. In some physically relevant situations, it
turns out that it suffices to work with low-dimensional subsets of all tensors (e.g. “tensor network
states”) to simulate the system – but, yes, in general, it means we just cannot simulate even such
simple situations. ...or, one can turn lemons into lemonade: Maybe, one could hope, it is possi-
ble to channel the computational power that Nature demonstrates when time-evolving a few-spin
system in order to perform useful computations that are beyond the reach of classical machines.
For all we know, this is indeed possible, and leads to the field of quantum computation.

4.2 Operations on tensors

4.2.1 Addition, scalar multiplication

Scalar multiplication and addition between tensors of the same shape are defined component-
wise:

(λT )i1,...,is = λTi1,...,is (T + S)i1,...,is = Ti1,...,is + Si1,...,is

In particular, the set Fn1×···×ns of tensors of given shape (n1, . . . , ns) and with elements
in some field F form a vector space.

It’s a good idea to think of a tensor T as a function which maps the s arguments
i1, . . . , is to F. Then the operations above are just the usual addition and scalar multipli-
cation of functions.

https://docs.julialang.org/en/v1/manual/arrays/


CHAPTER 4. TENSORS AND MULTILINEAR ALGEBRA 63

Tensor T as in previous example.

julia> S
2×2×2 Array{Int64, 3}:
[:, :, 1] =
1 1
1 1

[:, :, 2] =
0 0
0 0

julia> T + 5*S
2×2×2 Array{Int64, 3}:
[:, :, 1] =
6 7
8 9

[:, :, 2] =
5 6
7 8

4.2.2 Tensor product

More exciting is the tensor product which maps a tensor T of order t and a tensor S of
order s to their product T ⊗ S of order t+ s

(T ⊗ S)i1,...,it,it+1,...,it+s = Ti1,...,it Sit+1,...,it+s .

In the tensor-as-a-function-language:

The product of tensors is their product as functions, with independent arguments.

Example.
• If t = s = 1, the tensor product is just the outer product between vectors:

Mij = TiSj .

• Consider N dice, where the i-th dice shows j eyes with probability p
(i)
j . If the N dice are

cast one after the other, the joint probability Pi1,...,iN of the first dice showing j1 eyes,
the second dice j2 eyes, and so on, is

Pi1,...,iN = p
(1)
i1

p
(2)
i2

. . . p
(N)
iN

.

In other words: The joint distribution of independent events is the tensor product of the
individual distributions

P = p(1) ⊗ · · · ⊗ p(N).

A tensor T of order s is called a product tensor (or simple tensor or elementary tensor)
if there are vectors v1 . . .vs such that T = v1⊗· · ·⊗vs. (I.e. if the function T is product
function that only depend on one parameter each).

The number of parameters required to specify a product tensor is roughly
∑s

i=1 ni.
This is much smaller than the number of parameter

∏s
i=1 ni that specify a general tensor.

In this sense, “being a product tensor” is an exceptional property.
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Remark. Actshually... ...the number of parameters that specify a product tensor is
∑s
i=1 ni−1.

Why?

Remark. An order-2 tensor Tij is a product if and only if Tij = viwj for some vectors v,w,
i.e. if and only if all columns are proportional to each other, i.e. if and only if the matrix T has
rank one. This suggests to generalize the notion of “rank” to tensors. For example, one can define
the tensor rank of T to be the smallest number r such that T can be written as the of r product
tensors. Sounds good, no? Trouble is that there is no analogue of the Gaussian algorithm for most
tensorial problems. And indeed, there are natural order-3 tensors for which serious researchers
have been trying hard for decades to figure out their rank. Ask me for examples, if you want to
waste time.

Product bases

Recall the standard basis vectors ei with elements (ei)j = δij of Fn.
The tensor product ei1 ⊗ ei2 has components

(ei1 ⊗ ei2)j1j2 = (ei1)j1 (ei2)j2 = δi1,j1 δi2,j2 .

In other words: It is a matrix with all entries zero, except a one at the intersection of row
i1 and column i2. A matrixM = (Mi1,i2) can therefore be expanded as

M =
∑
i1,i2

Mi1,i2 (ei1 ⊗ ei2)

and so the set {ei1 ⊗ ei2}i1,i2 forms a basis for the space of matrices.
In exactly the same way one sees that for order-s tensors

T =
∑

i1,...,is

Ti1,...,is (ei1 ⊗ · · · ⊗ eis).

There are many notations in use for the elements of such product bases:

ei1 ⊗ · · · ⊗ eis = ei1 . . . eis = ei1,...,is = |i1, . . . in⟩.

4.3 Geometric meaning

Linear algebra started with column vectors... ...which we later interpreted as the basis rep-
resentation of abstract vectors. We then looked at matrices... ...which we later interpreted
as basis representations of linear maps.

So the question arises: What, if anything, do concrete tensors represent?

4.3.1 Multilinear forms

Recall: If V is a vector space over F, then a function K : V × · · · × V → F is a
multilinear form if it is linear in each argument. Let {ei} be a basis for V . Given vectors
v1, . . . , vs ∈ V , these can be expanded in terms of the basis as

vi =
∑
j

c
(i)
j ei
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and thus, using multilinearity,

K(v1, . . . , vs) = K
(∑

j1

c
(1)
j1

ej1 , . . . ,
∑
js

c
(s)
js

ejs

)
=

∑
j1,...,js

c
(1)
j1

. . . c
(s)
js

K
(
ej1 , . . . ejs

)︸ ︷︷ ︸
=:Rj1,...,jn

.
(4.1)

Therefore:

An s-linear form is described (with respect to a basis) by an order-s tensor.

We can introduce a new isomorphism from the space of s-linear forms over an n-
dimensional vector space V to the space of concrete tensors Fn×···×n:

ϕB,...,B(K) = R, Rj1,...,js = K
(
bj1 , . . . bjs

)
.

Examples.
• Recap: The concrete order-n tensor ϵ ∈ F

n×···×n with components ϵj1...jn :=
det

(
ej1 , . . . ejn

)
is called the Levi-Civita symbol. It is therefore the concrete tensor

representing the determinant in the standard basis.

• The standard Euclidean inner product is represented by the tensor gij = δij with respect
to the standard basis

⟨ei, ej⟩ = δij .

• The Minkowski inner product which describes the geometry of space-time in relativity is

ηij = ⟨ei, ej⟩ =
{

1 i = j = 1
−1 i = j ∈ {2, 3, 4} .

In general, an order-2 tensor associated with a bilinear form is called a metric tensor.

Remark. From a mathematical perspective, a linear map L : V → V and a bilinear form
K : V × V → F are completely different objects. Yet, in coordinates, they are both represented
by order-2 tensors. So if a two-indexed object pops up in a physics calculation, it may not be
immediately obvious what its geometric meaning is.

Even if one is disinterested in such questions for their own sake, it is important to distinguish
representations of maps from representations of forms. E.g. because the transformation rules
under coordinate changes differ. (c.f. Sec. ??).
Example. The 2× 2-determinant is represented w.r.t. the standard basis B = {e1, e2} by

(
ϕB,B(det)

)
ij

= det(ei, ej) =

(
0 −1
1 0

)
ij

.

A rotation R : e1 → e2, e2 → −e1 by 90 degrees is described by the same matrix:

(
ϕB
B(R)

)
ij

=

(
0 −1
1 0

)
ij

.

But now change the basis to B′ with elements

f1 =

(
1
0

)
, f2 =

(
1
1

)
.
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Then (
ϕB′,B′(det)

)
ij

=

(
0 −1
1 0

)
ij

, but
(
ϕB′

B′(R)
)
ij

=

(
−1 −2
1 1

)
.

Tensor product of forms

Recall: For a vector space V , the set of linear forms V → F is again a vector space, the
dual space V ∗.

Take two linear forms α, β ∈ V ∗. We define:

(α⊗ β)(v, w) = α(v)β(w).

Thus:

A tensor product of functionals is their product, with independent arguments.

Then α⊗ β is bilinear,

(α⊗ β)(v + λv′, w) = α(v + λv′)β(w) = α(v)β(w) + λα(v′)β(w)

and represented in coordinates by the tensor product of the representations of α and β:

(α⊗ β)(v, w) = (α⊗ β)(
∑
i

viei,
∑
j

wjej) =
∑
ij

viwj α(ei)β(ej)

and hence

ϕB,B(α⊗ β)︸ ︷︷ ︸
basis rep. of tensor product of forms

= ϕB(α)⊗ ϕB(β)︸ ︷︷ ︸
tensor product of basis rep. of forms

.

More generally, if given a multilinear form K on V with k arguments, and another
one, L with l arguments. Then one defines a multilinear form with k + l arguments by

(K ⊗ L)(v1, . . . , vk, vk+1, . . . , vk+1) = K(v1, . . . , vk)L(vk+1, . . . , vk+l).

Tensor product of dual spaces

Define the tensor product of dual spaces by

V ∗ ⊗ V ∗ := span{α⊗ β |α ∈ V ∗, β ∈ V ∗}.

By the above, the elements are bilinear forms. In fact, all bilinear forms arise this way!
Indeed, let K be a bilinear form. Choose a basis {ei} on V and let {ϵi} ⊂ V ∗ be the

dual basis, defined by ϵi(ej) = δij . Then(∑
ij

K(ei, ej) (ϵi ⊗ ϵj)
)
(ek, el) =

∑
ij

K(ei, ej) ϵi(ek)ϵj(el) = K(ek, el).

Thus, because ∑
ij

K(ei, ej) (ϵi ⊗ ϵj) and K (4.2)
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take the same values on a basis, they must be the same, and hence K ∈ V ∗ ⊗ V ∗.
More generally: For vector spaces V1, . . . , VN ,

V ∗
1 ⊗ · · · ⊗ V ∗

N := span{α1 ⊗ · · · ⊗ αN |αi ∈ V ∗
i }.

The tensor product of dual spaces is the linear span of the products of linear forms.

4.3.2 General geometric tensor products

We have worked out a coordinate-free description of tensor products of multilinear forms.
That was comparatively easy, because the product α ⊗ β has a natural interpretation (as
the product of functions with independent arguments).

Elements of a vector space V aren’t generally functions, so this simple definition
doesn’t work... ...or does it?

We now employ a trick that is conceptually simple, standard, and infamously confus-
ing on first encounter. The trick is to realize that elements of a space V are also linear
functionals – on V ∗. That’s right! For v ∈ V and α ∈ V ∗, define v(α) = α(v).

Really??
Q.: So, in terms of highschool math, for a point x and a function f , we have defined x(f) to
mean f(x)?
A.: You got it!

The resulting function is indeed linear:

v(α+ λβ) = (α+ λβ)(v) = α(v) + λβ(v) = v(α) + λv(β).

In other words, we have shown that V ⊂ (V ∗)∗.

Remark. In fact, every linear functional on V ∗ is realized by some element of V , i.e. V =
(V ∗)∗. Can you show it? (Hint: Use dual bases).

Now take two vectors v, w ∈ V . We can define their tensor product by interpreting
them as linear functionals. That is, the tensor product v ⊗ w is a bilinear function on V ∗

acting as

(v ⊗ w)(α, β) = α(v)β(w).

In general, we can mix and match primal and dual spaces. If V1 . . . , VN ,W1, . . . ,WM

are vector spaces, vi ∈ Vi vectors, and αi ∈ W ∗
i linear functionals, then

v1 ⊗ · · · ⊗ vN ⊗ α1 ⊗ · · · ⊗ αM (4.3)

is the multilinear functional that maps arguments βi ∈ V ∗
i , wi ∈ Wi to

β1(v1) . . . βN (vN )α1(w1) . . . αM (wM ).

Then tensor product of spaces

V1 ⊗ · · · ⊗ VN ⊗W ∗
1 ⊗ · · · ⊗W ∗

M

is the linear hull of product tensors of the form (4.3).
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In applications, we are mostly concerned with the case where all spaces are the same:
Vi = Wi = V . In this case, it is mildly annoying, but straight-forward to generalize the
argument around (4.2) to find that a tensor

K ∈ V ⊗ · · · ⊗ V︸ ︷︷ ︸
N×

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
M×

=: V ⊗N ⊗ (V ∗)⊗M

can be expanded with respect to some basis {ei} of V and dual basis {ϵj} of V ∗ as

K =
∑

i1,...,iN ;j1,...,jM

Ki1,...,iN ;j1,...,jM ei1 ⊗ · · · ⊗ eiN ⊗ ϵj1 ⊗ · · · ⊗ ϵjn . (4.4)

4.3.3 Contractions

Student remark from lecture. “Why do we want to produce functions with more arguments?
Doesn’t that make everything worse?”

Consider the tensor product α⊗v ∈ V ∗⊗V . There’s a natural way to turn this tensor into
a number. Because α is a linear form, which likes to eat vectors, and v is just such a thing,
can define

C : α⊗ v 7→ α(v) ∈ F.

This operation is called a contraction (Verjüngung). Contractions reduce the order of a
tensor by two.

With respect to a basis, we have

C :
∑
ij

Tij ϵi ⊗ ej 7→
∑
ij

Tij ϵj(ei) =
∑
i

cii.

Thus, a contraction corresponds in coordinates to the “diagonal sum” over the two indices
corresponding to the dual and the primal basis. We’ll give many more examples in the next
section.

4.4 Covariant notation

Physicists often employ a set of conventions known as covariant notation or Ricci calculus.
It’s like a cheat code for tensors, which allows one to perform meaningful calculations
without having to parse abstract non-sense like V ⊂ (V ∗)∗...

Start with a vector space V and choose a basis {ei}i of V , with associated dual basis
{ϵi}i of V ∗. We want to work with tensors in V ⊗N ⊗ (V ∗)⊗M . As in Eq. (4.4), a general
element of this space is of the form

K =
∑

i1,...,iN ;j1,...,jM

Ki1,...,iN ;j1,...,jM ei1 ⊗ · · · ⊗ eiN ⊗ ϵj1 ⊗ · · · ⊗ ϵjn .

From now on, we will

• write indices of expansion coefficients for vectors as superscripts and call them con-
travariant;

• write indices of expansion coefficients for linear forms as subscripts and call them
covariant;
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• use the opposite index placement for primal and dual basis elements; and

• sum over any index that appears both as a superscript and a subscript. (This is the
Einstein summation convention).

The above equation becomes

K = Ki1,...,iN
j1,...,jM

(
ei1 ⊗ · · · ⊗ eiN ⊗ ϵj1 ⊗ · · · ⊗ ϵjn

)
.

Next, we will use Ki1,...,iN
j1,...,jM to refer both

• to the individual elements of the tensor (i.e. treating the indices as concrete num-
bers), and

• to the entire tensor K (i.e. treating the indices as unspecified variables).

The equation we started with is now reduced to

K = Ki1,...,iN
j1,...,jM .

Users of the Ricci calculus will generally avoid talking about V , V ∗, or any basis
choice explicitly. Instead, they will say “Ki1,...,iN

j1,...,jM is an N -fold contravariant and
M -fold covariant tensor” and only ever work with such expansion coefficients.

Let’s go through the various operations of linear algebra, and see how they look through
this lens.

concept basis-free notation Ricci notation Ricci name
vector v ∈ V vi contravariant vector
linear form α ∈ V ∗ αi covariant vector
evaluation of form α(v) αiu

i contraction
bilinear form B ∈ V ∗ ⊗ V ∗ Bij twice contravariant tensor

metric tensor
evaluation of form B(v, w) Bijv

iwj contraction

Now let’s see how linear maps fit into this story. The tensor∑
ij

Li
j (ei ⊗ ϵj) ∈ V ⊗ V ∗

defines a linear map V → V by letting the form act on an argument:

w =
∑
k

wkek 7→
∑
ij

Li
j eiϵj(w) =

∑
i

∑
j

Li
jwj

 ei.

But any linear map V → V is of this form, for suitable coefficients Li
j . Thus, we have

seen that the space of linear maps V → V is the same as the “mixed tensor product”
V ⊗ V ∗. Extending the table:

concept basis-free notation Ricci notation Ricci name
linear map V → V L ∈ V ⊗ V ∗ Li

j mixed tensor
evaluation of linear map L(v) Li

jv
j contraction

trace trL Li
i contraction
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Finally, let’s talk about the operations of “raising and lowering the index”, a favorite
past-time e.g. of researchers in general relativity.

Let B ∈ V ∗ ⊗ V ∗ be a bilinear map, v ∈ V a vector. Then one can define a linear
form

w 7→ B(v, w).

If B is a Euclidean scalar product, then this form is the projection onto v. In the Ricci
calculus, the above reads

wi 7→ Bijv
jwi.

One then introduces the short-hand vi := Bijv
j , so that Bijv

jwi can be written as viwj .
In reference to its appearance in the Ricci calculus, the operation that sends a vector vi to
the linear functional vi projecting onto it is referred to as lowering the index.

If B is symmetric, as is often the case, then

B(v, w) = viw
i = viwi.

A bilinear form is non-degenerate if the map vi 7→ vi is invertible. In this case, one
defines Bij as the coefficients of the inverse matrix of Bij . It then follows that one can
recover the original vector from the associated linear form as

vi = Bijvj ,

a procedure unsurprisingly called raising the index.

Remark. No self-respecting mathematician would use such a terse notation as the Ricci calcu-
lus. However, in what passes for humor around here, some mathematicians have taken to using
the symbol “♭” for the isomorphism V → V ∗, v 7→ B(v, ·) that is furnished by a non-degenerate
bilinear form. Likewise, “♯” is used for the inverse, and the two are referred to as the musical
isomorphisms. Of course, this alludes to their original meaning of, uh, lowering or raising the
pitch of a musical note.

concept basis-free notation Ricci notation Ricci name
map V → V ∗, ♭ : v 7→ B(v, ·) vi 7→ vi = Bijv

j lowering index
(from bilinear form)

isomorphism V ∗ → V , ♯ = ♭−1 αi 7→ αi = Bijαj raising index
(from non-deg. bilinear form)

evaluation of symmetric form B(v, w) viw
j = viwj

4.4.1 Transformation laws

Now choose a new basis {ẽi} of V and associated dual basis {ϵ̃j} of V ∗. By Sec. 2.7.2,
there exists a matrix T that maps the old coordinates of a vector to the new coordinates
as in x̃ = Tx. Recall also that the coordinate change for linear forms is achieved by
right-multiplication with the inverse matrix: α̃ = T−1α.
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In Ricci calculus, the coordinate change matrix is represented by its matrix elements
T i

j , so that:

concept prior notation Ricci notation Ricci name
coordinate change of vector x̃ = Tx x̃i = T i

jx
j contravariant

transformation law

coordinate change of functional α̃ = αT−1 α̃i = αj(T
−1)ji covariant

transformation law

Consistency check:

α(x) = α̃ix̃
i = αj(T

−1)jiT
i
kx

k = αj(T
−1T )jkx

k = αjδ
j
kx

k = αjx
j = α(x),

so the contraction between a covariant and a contravariant vector is indeed invariant under
coordinate change.

The same way, one verifies that the new coordinates of an N -times contravariant and
M -times covariant tensor are given in terms of the old ones as

K̃i1,...,iN
j1,...,jM = T i1

k1
. . . T iN

kN
(T−1)l1 j1 . . . (T

−1)lM jM
Kk1,...,kN

l1,...,lM

(I never claimed it would be fun...).
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