Linear algebra

- Incomplete Notes -

David Gross
Institute for Theoretical Physics
University of Cologne

Illustration by TS, 10 . Originally presented to me as the cover of a self-made booklet with fun division exercises, intended to cheer me up when I was suffering from an annoying flu.

May the Rechenspaß get a hold of you, too.

APRIL 25, 2024

Contents

Contents 1
0 Introduction 3
0.1 Vectors as translations in real space 3
0.1.1 Coordinate 4
0.1.2 Euclidean length 5
0.2 Who cares? 5
1 Vector spaces 7
1.1 Definition 7
1.2 Basic constructions 10
1.2.1 Linear combinations 10
1.2.2 Subspaces 10
1.2.3 Linear independence, bases, dimension 11
1.2.4 Coordinate representation of vectors 12
1.3 Scalar products 13
1.3.1 Euclidean spaces 14
1.3.2 Hermitian spaces 15
1.3.3 Inequalities 16
1.3.4 Projection onto a vector 16
1.3.5 Orthogonality 17
1.3.6 Gram-Schmidt algorithm 18
$2 \quad$ Linear maps 20
2.1 Matrix representations 21
2.1.1 Matrix-vector multiplication 22
2.2 Composition of maps and matrix-matrix multiplication 23
2.2.1 The algebra of linear maps 24
2.3 Linear forms 25
2.3.1 Transpose and adjoint of column vectors 25
2.4 Differentials 26
2.5 Kernels and images 27
2.5.1 Affine subspaces 27
2.5.2 Kernels and images 27
2.5.3 Rank-nullity theorem, down to earth approach 28
2.5.4 Optional: Rank-nullity, what's actually going on 29
2.6 Inverse maps 30
2.6.1 Inverse matrices 30
2.7 Coordinate changes 31
2.7.1 General case 31
2.7.2 In linear algebra 34
3 Eigenvalues and eigenvectors 37
3.1 The trace 37
3.2 The determinant 38
3.2.1 Oriented volume in two dimensions 38
3.2.2 The determinant in general 39
3.2.3 Properties of the determinant 40
3.2.4 Volume and orientation in higher dimensions 42
3.3 Eigenvectors and eigenvalues 42
3.3.1 Eigenspaces 44
3.3.2 Characteristic polynomial 44
3.4 The Jordan Normal Form (and why it doesn't matter) 45
3.4.1 Functions of linear maps 46
3.5 Simultaneous diagonalizability 47
3.6 Algorithms 47
4 Tensors and multilinear algebra 48
5 Linear equations 49
5.1 Gaussian elimination 49
6 Matrix groups 50
6.1 Orthogonality \& unitarity 50
7 Fourier analysis 51
A The map is not the territory 52

Comments, discussions, and corrections are kindly acknowledged from: Albert Marks, Kai Meinerz.

Chapter 0

Introduction

Historically, linear algebra started with the study of the properties of physical space. As an introduction, we'll have a brief look at this approach. If you find this chapter confusing, just skip ahead to Chap. 1, where we will restart from zero and introduce the theory in more general (but also more abstract) terms.

0.1 Vectors as translations in real space

In physical space, vectors can be defined geometrically, as translations (Fig.0.1.
Definition 1. A geometric vector is an operation that translates each point in space by a fixed distance along a fixed direction.

Geometric vectors can be visualized by an arrow from some point to its translate.
Two geometric vectors can be combined, by performing one translation after the other. The result is again a translation. If v, w are geometric vectors, we write $v+w$ for the geometric vector that corresponds to "first translate by w, then by v ". It is an empirical fact that in physical space, the order does not matter: I.e. addition of vectors is commutative

$$
\begin{equation*}
v+w=w+v \tag{1}
\end{equation*}
$$

in the sense that both sides define the same translation.
Remark. OK, strictly speaking, commutativity fails in curved spaces, like on the surface of earth or in space-time as described by general relativity in the presence of gravitation. But "reasonably small" translations commute to great approximation. In the mathematical idealization we are concerned with here, we may assume this property to hold exactly.

There is a "trivial translation", which displaces points by a distance of 0 . We use the symbol 0 not just for the number zero, but also for the trivial vector.

Given a geometric vector v, the vector that translates points by the same distance but along the inverted direction is denoted as $-v$. Because translating a point along v and then back again along $-v$ returns it to its initial position, we have that $v+(-v)=0$.

You may note that we have verified all the properties that turn the set of translations into an Abelian group, with composition given by + and 0 as the neutral element.

There's an additional operation on geometric vectors: They can be "scaled". If v is a geometric vector and λ a non-negative number, then one defines λv to be the map that translates points in the same direction as v, but by a distance that's λ times the distance of v. Sending v to λv is called scalar multiplication.

Figure 0.1: (i) A geometric vector is a translation of points in space. These can be visualized by an arrow from any point to its translate. (ii) When performing two translates after one another, the order does not matter.

Remark. Don't confuse scalar multiplication with scalar products (Sec. 1.3.). A "scalar" is quantity that can be described by a single number. "Scalar multiplication" is multiplication by a scalar, (namely λ). A "scalar product" turns two vectors into a scalar.

Addition and scalar multiplication fulfill a number of geometrically obvious compatibility conditions. For example, take a geometric vector v, real numbers λ, μ, and consider $\lambda v+\mu v$. It displaces points along the direction of v, first by μ units and then by λ units. Geometrically, it is clear that this sequence is equivalent to displacing along the direction of v by $\lambda+\mu$ units. That is, we have the distributivity property

$$
\begin{equation*}
(\lambda v+\mu v)=(\lambda+\mu) v . \tag{2}
\end{equation*}
$$

0.1.1 Coordinate

Calculations with vectors are usually performed in coordinates: Choose three geometric vectors e_{1}, e_{2}, e_{3} that displace points by the same distance, but along mutually orthogonal directions. Then for any choice of real numbers x_{1}, x_{2}, x_{3}, the geometric vector $v=$ $x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$ translates points by x_{i} units along e_{i}. It is another empirical fact that any translation in real space can be realized in this way, for a suitable choice of numbers. One says that real space is three-dimensional.

It is then convenient to organize the numbers that define a geometric vector into a vertically written array, called a column vector, like so:

$$
\boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

The numbers are called the components, elements or entries of the column vector. We tend to use boldface lower-case letters for column vectors.

Note that we are now working with two strongly related but distinct objects: The geometric translation v and its representation \boldsymbol{x} with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.

It is then natural to ask how the operations on geometric vectors that we discussed above are expressed in coordinates. In particular, if v, w are geometric vectors with representations $\boldsymbol{x}, \boldsymbol{y}$ respectively, what is the representation of $v+w$? Let's work it out. Plugging in the definition and using commutativity (1) and distributivity (2):

$$
\begin{aligned}
v+w & =x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3} \\
& =\left(x_{1} e_{1}+y_{1} e_{1}\right)+\left(x_{2} e_{2}+y_{2} e_{2}\right)+\left(x_{3} e_{3}+y_{3} e_{3}\right) \\
& =\left(x_{1}+y_{1}\right) e_{1}+\left(x_{2}+y_{2}\right) e_{2}+\left(x_{3}+y_{3}\right) e_{3} .
\end{aligned}
$$

In other words: The sum $v+w$ of geometric vectors is represented in coordinates by the component-wise sum

$$
\boldsymbol{x}+\boldsymbol{y}=\left(\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right)
$$

of the column vectors. Likewise, in coordinates, scalar multiplication by λ corresponds to multiplying every component of the column vector by λ.

0.1.2 Euclidean length

We have distinguished between the direction and the distance of a translation. Given a column vector representation \boldsymbol{x} of a translation v, it turns out that its distance (in units of the length of the basis vectors) can be computed by this expression:

$$
\begin{equation*}
\|\boldsymbol{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \tag{3}
\end{equation*}
$$

It is called the Euclidean length, or norm, of \boldsymbol{x}.

0.2 Who cares?

The notions introduced above are sufficient to study large swaths of geometry. But let's admit it: "translations in physical space" aren't the most inspiring objects. Who cares?

Fundamental reasons to care

It turns out that the concept of a "geometric vector" can be fruitfully generalized, and these generalizations turn uperywhere.

Example.

- In mechanics, quantities like velocity, acceleration, or force are naturally associated with a "direction in real space" and a magnitude. They are thus closely related to translations, and are also considered vectors in a more general sense.
- In quantum mechanics, the state of a system is described by a vector with complex-valued components. These vectors have absolutely nothing to do with physical space. In the QM course, we'll discuss how to use abstract linear algebra manipulations to extract physical predictions from these vectors.
- Now turn to analysis. Recall that the derivative $f^{\prime}(x)$ of a function f can be interpreted in terms of its tangent at x. Tangents sure look like the kind of straight lines that describe translations. And, indeed, it turns out that "differentiating" turns functions that send points to points into linear maps that send vectors to vectors. You don't need to understand this now, but be assured that one cannot do any kind of advanced calculus without a thorough understanding of linear algebra. This really opens the floodgates, because differentials are central to large parts of math: Geometry, optimization theory, the study of symmetries...
- Functions themselves can be seen as vectors, e.g. by re-interpreting the argument as an index " $f(x)=f_{x}$ ". From this point of view, linear differential equations (Newton's, Maxwell's, Schrödinger's, Dirac's...) can all be treated using tools from linear algebra. The same is true for signal analysis on functions that represent e.g. sound waves or images. We'll see how this works when we look at the Fourier transform later in this course.
- Finally, let's mention discrete vector spaces that provide models for bit strings. They are used to solve combinatorial problems in in computer science, with applications e.g. for fault-tolerant communications. These objects have not been traditionally studied in physics, but this is changing rapidly through the rise of quantum information theory.

Pragmatic reasons to care

In all these examples, objects that aren't obviously vectors turn out to be vectors after all, if one generalizes the notion sufficiently. But there is a second, more subtle reason for why linear algebra permeates all of science.

Remember how in high school and undergraduate classes, you always get simplelooking exercise problems that have somewhat simple solutions? Well, here's a piece of dirty truth: That's a bit of a lie by omission perpetrated by your teachers. In reality, almost any math problem is wayyy too hard to be treated analytically ("with pen and paper") or even on a computer. We, as a species, can do basically nothing.

Bummer.
But you know which kind of problems we can solve? Linear algebra problems! In particular, there are extremely efficient computer algorithms for many of them.

Thus, when faced with a complicated real-world issue, it is common for scientists to hit it and shake it, until after many reformulations and simplifications, it can be shoehorned into a linear algebra problem. This is then solved. If the process fails, more often than not, we just give up and don't talk about it any more. Thereby, over time, "science" comes to encompass the subset of reality for which linear algebra methods work.

So, linear algebra is to math and science what peeling vegetables is to cooking. Not always glorious, but omnipresent and a skill you can't do without. "Who cares?" - You better do!

The good news

Linear algebra is kinda easy as far as mathematical theories go. That's the good news!

Chapter 1

Vector spaces

1.1 Definition

Wrap you head around this: The general theory does not actually tell you what a vector is. It only says how to recognize one.

Mathematicians call this an axiomatic characterization. That is to say, we will define "vector spaces" abstractly, as objects that satisfy a list of properties, or axioms.

Every day, mathematicians and scientists come up with novel examples that fit the definition. But the theory is so general that there's no expectation that we could ever describe all realizations.

The disadvantage of this strategy is that we'll be working with abstract objects, which may be hard to develop an intuition for. But it's a price considered worth paying in return for the wide applicability of its results. (Also, even abstract LA isn't actually that difficult).

Remark.

- Def. 2 involves the notion of a field \mathbb{F}. Don't worry in case you momentarily forgot what that means. For physics applications, you can think of \mathbb{F} as a placeholder for \mathbb{R} or \mathbb{C}.
- While Def. 2 is central to the theory, and you should definitely get a feeling for it, there's no need to memorize it!
- In fact, here's the tl;dr. A vector space is a collection of objects that can be added and scaled. The rest are just natural compatibility conditions.

With these preparations, here's he central definition of linear algebra:
Definition 2. Let \mathbb{F} be a field. A vector space over \mathbb{F} is a set V on which two operations are defined:

1. Addition, which assigns to each pair $v, w \in V$ an element $v+w \in V$ and which turns V into an Abelian group.
2. Scalar multiplication: For $\lambda \in \mathbb{F}$ and $v \in V$, there is an element $\lambda v \in V$.

The operations must fulfill the following compatibility conditions: For all $\alpha, \beta \in \mathbb{F}$ and

all $v, w \in V$, it must hold that

$$
\begin{aligned}
1 v & =v & & \text { (multiplicative neutral element leaves vectors invariant) } \\
(\alpha \beta) v & =\alpha(\beta v) & & \text { (associativity of scalar multiplication) } \\
(\alpha+\beta) v & =\alpha v+\beta v & & \text { (distributivity with respect to addition in the field) } \\
\alpha(v+w) & =\alpha v+\alpha w & & \text { (distributivity with respect to addition of vectors). }
\end{aligned}
$$

Example.

- For any field \mathbb{F} and any $n \in \mathbb{N}$, the set of column vectors with n entries from \mathbb{F} forms a vector space, denoted by \mathbb{F}^{n}. Addition and scalar multiplication are defined componentwise. We have already met the special case \mathbb{R}^{3}. Another special case is $\mathbb{F}^{1}=\mathbb{F}$. That's right: a field is a vector space over itself.
- The set of all complex-valued functions on \mathbb{R}, with addition and scalar multiplication defined point-wise, is a vector space over \mathbb{C}. "Point-wise" means that for functions f, g, we define their sum $f+g$ by $(f+g)(x):=f(x)+g(x)$. Likewise, $(\lambda f)(x):=\lambda f(x)$.
- More generally, if M is any set and \mathbb{F} any field, then the set of functions $M \rightarrow \mathbb{F}$ is a vector space under point-wise addition and scalar multiplication.
- Taking $M=\{1, \ldots, n\}$, we recover the set of column vectors with n components.
- For $M=\mathbb{N}$, the construction gives the vector space of infinite sequences with values in \mathbb{F}.
- A rectangular array of numbers with m rows and n columns is an $m \times n$-matrix. Here's a 2×3-matrix over \mathbb{R} :

$$
\boldsymbol{M}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

The set $\mathbb{F}^{m \times n}$ of matrices with m rows, n columns, and entries in a field \mathbb{F} is a vector space under element-wise addition and scalar multiplication. We will not distinguish between an $m \times 1$-matrix and a column vector with m components. Likewise, $1 \times n$-matrices are called row vectors.

- The set of vectors (shown in Fig. 1.1)

$$
\underline{1}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \mid \sum_{i=1}^{3} x_{i}=0\right\}
$$

whose components sum to 0 forms a vector space. (We'll come back to it as a simple example of a space without a "canonical basis").

- The space ℓ_{2} ("ell two") of square-summable complex sequences is

$$
\ell_{2}=\left\{x:\left.\mathbb{N} \rightarrow \mathbb{C}\left|\|x\|^{2}:=\sum_{i=1}^{\infty}\right| x_{i}\right|^{2} \leq \infty\right\}
$$

The space plays a central role in quantum mechanics. (The condition that the series $\|x\|^{2}$ converges to a finite number allows one to define a probability distribution by setting $p_{i}=\left|x_{i}\right|^{2} /\|x\|^{2}$. We'll give a physical interpretation in the QM lecture.) Verifying that component-wise operations turn ℓ_{2} into a vector space isn't completely trivial. One has to show that for $x, y \in \ell_{2}$, the sum $\sum_{i}\left|x_{i}+y_{i}\right|^{2}$ converges to a finite number.

Figure 1.1: The space $\underline{1}^{\perp}$ of vectors in 3 D whose components sum to 0 . The red arrow is the vector $(1,1,1)^{t}$. Left: The $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ basis. Right: The orthonormal basis $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$.

- The set $\mathbb{F}_{2}=\{0,1\}$ is a field with addition and multiplication defined "modulo 2 ":

+	0	1				
0	0	1				
1	1	0	,\quad	\times	0	1
:---:	:---:	:---:				
0	0	0				
1	0	1	.			

Column vectors \mathbb{F}_{2}^{n} over \mathbb{F}_{2} are a finite set that form a vector space: $\left|\mathbb{F}_{2}^{n}\right|=2^{n}$. Elements $x \in \mathbb{F}_{2}^{n}$ can be interpreted as bit strings of length n. As such, they are important in computer science and information theory. Finite vector spaces used to not matter much in physics, but this is changing with the rise of quantum information theory.

Remark. The high school definition of a vector is "a quantity with a direction and a length". But Def. 2 makes no mention of "length". That's because there are vector spaces for which that notion does not make sense. Example: In Hamiltonian mechanics, the state of a point particle is given in terms of its position and momentum. Collect this information in a column vector $\binom{x}{p}$. If you naively try to compute its Euclidean length as $\sqrt{x^{2}+p^{2}}$, you run into trouble, as x^{2} and p^{2} have different units and can't be added. Remember: Not every vector has a length!
\therefore Computer algebra systems have extensive support for LA. We will often show examples in the \& Julia language. It uses square brackets for arrays and semicolons to separate rows:

```
julia> M = [1 2 3; 4 5 6] # A matrix
2\times3 Matrix{Int64}:
1 2 3
4 5 6
julia> v = [1; 2; 3] # A column vector
3-element Vector{Int64}:
1
2
julia> 2M+[1 1 1; 0 0 0] # Scalar mult., addition
2\times3 Matrix{Int64}:
3 5 7
8}10101
```

We can now answer the question "What is a vector?" in the abstract theory. An abstract vector is an element of a vector space. Not more, not less.

Remark. Unfortunately, instead of "column vector", people commonly say "vector". And instead of "abstract vector", they also say "vector". Thus if person A claims

- "A function on the real line is not a vector",
then they are right! (Because they mean "not a column vector"). And if person B states
- "A function on the real line is a vector",

Figure 1.2: The span of three non-zero vectors in \mathbb{R}^{3} can be a line, a plane, or the entire space. The latter happens if none of the vectors is a linear combination of the two others.
then they are also right! (Because they mean "abstract vector"). Often, person A and person B are the same person.

Mathematical language is pretty precise, but not as precise as e.g. programming languages. So there remains a lot of ambiguity that you will have to learn to deal with. In fact, we will from now on drop the clarifying attributes ourselves. To prepare you for math "as found in the wild".

1.2 Basic constructions

In the following, let V be a vector space over a field \mathbb{F}.

1.2.1 Linear combinations

Take a finite set of vectors $v_{1}, \ldots, v_{r} \in V$, and scalars $x_{1}, \ldots, x_{r} \in \mathbb{F}$. The sum $\sum_{i=1}^{r} x_{i} v_{i}$ is called a linear combination of the v_{i}.

For a set $S \subset V$ of a vectors, the set $\operatorname{span}(S)$ of all linear combinations of vectors from S is the span or linear hull of S. The set S is complete if its linear hull equals V.

Example.

- For examples in \mathbb{R}^{3}, see Fig. 1.2
- Choose a field \mathbb{F}. A polynomial is a function of the form

$$
\begin{equation*}
p: \mathbb{F} \rightarrow \mathbb{F}, \quad p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \tag{1.1}
\end{equation*}
$$

for coefficients $c_{i} \in \mathbb{F}$. Its degree is the largest power of x with a non-zero coefficient. Write $\mathcal{P}_{n}(\mathbb{F})$ for the set of all polynomials with degree $\leq n$ and $\mathcal{P}(\mathbb{F})=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}(\mathbb{F})$ for all polynomials over \mathbb{F}. Then $\mathcal{P}(\mathbb{F})$ is the linear hull of the monomials $\left\{x^{n}\right\}_{n \in \mathbb{N}}$.

1.2.2 Subspaces

A subset W of a vector space V is a subspace if any linear combination of elements of W lies again in W.

Example.

- For subspaces in \mathbb{R}^{3}, see Fig. 1.3
- For any $n \in \mathbb{N}$, the set $\mathcal{P}_{n}(\mathbb{F})$ of polynomials of degree $\leq n$ forms a subspace of $\mathcal{P}(\mathbb{F})$. Non-example: The set of polynomials of degree exactly n does not form a subspace!
- The solutions to the wave equation

$$
\left(\partial_{t}^{2}+\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}\right) u(t, x, y, z)=0
$$

Figure 1.3: A subspace in \mathbb{R}^{3} can be have dimension 0 (a point), dimension 1 (a line), dimension 2 (a plane), or dimension 3 (the entire space, not shown).
form a subspace of the space of twice-differentiable functions on \mathbb{R}. In the context of wave equations and of quantum mechanics, linear combinations are also called superpositions and the statement just made is the superposition principle.

Exercise.

1. The intersection of two subspaces is a subspace.
2. The union of two subspaces is generally not a subspace!
3. To show that $W \subset V$ is a subspace, it suffices to verify that for all $v, w \in W$ and $\lambda \in \mathbb{F}$ it holds that $v+w \in W$ (" W is closed under addition") and $\lambda v \in W$ (" W is closed under scalar multiplication").
4. For any set $S \subset V$ of vectors, $\operatorname{span}(S)$ is a subspace of V.
5. A subspace $W \subset V$ is a vector space by itself.

1.2.3 Linear independence, bases, dimension

Let $S \subset V$ be a set of vectors. The elements of S are linearly independent (LI) if no element of S can be written as a linear combination of the other elements of S. Otherwise, they are linearly dependent.

Exercise: S is linearly independent if and only if

$$
\begin{equation*}
x_{1} v_{1}+\cdots+x_{r} v_{r}=0 \quad v_{i} \in S, x_{i} \in \mathbb{F} \tag{1.2}
\end{equation*}
$$

implies $x_{1}=\cdots=x_{r}=0$. Phrased differently: S is linearly independent if only trivial linear combinations are zero.

A set $\mathcal{B} \subset V$ of vectors is a basis if \mathcal{B} is complete and linearly independent.
The space V is n-dimensional if it has a basis with $n \in \mathbb{N}$ elements. Otherwise, it is infinite-dimensional.

Example.

- Let \boldsymbol{e}_{i} be the column vector whose i-th element is 1 and all other elements are 0 . (The total number of elements must be inferred from context). Then $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is a basis for \mathbb{F}^{n}. It is called the standard basis. The space \mathbb{F}^{n} is therefore n-dimensional.
- The set $\{1, i\} \subset \mathbb{C}$ forms a basis of $V=\mathbb{C}$, interpreted as a vector space over $\mathbb{F}=\mathbb{R}$. Attention: The set $\{1\} \subset \mathbb{C}$ forms a basis of $V=\mathbb{C}$, interpreted as a vector space over $\mathbb{F}=\mathbb{C}$. The same set can thus be a vector space in different ways! Oof.
- Consider the space $\underline{1}^{\perp}$ of vectors $\boldsymbol{v} \in \mathbb{R}^{3}$ with $\sum_{i=1}^{3} v_{i}=0$. Here are two bases:

$$
\boldsymbol{v}_{1}=\left(\begin{array}{c}
0 \tag{1.3}\\
1 \\
-1
\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) ; \quad \boldsymbol{w}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \boldsymbol{w}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

The second is more complicated, but has the advantage of being orthonormal (Sec.1.3.5.

- A basis of the vector space of 2×2-matrices over \mathbb{C} is given by the Pauli matrices

$$
\boldsymbol{\sigma}_{0}=\left(\begin{array}{cc}
1 & 0 \tag{1.4}\\
0 & 1
\end{array}\right), \quad \boldsymbol{\sigma}_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

They are very important in the quantum-mechanical theory of spin. And for fault-tolerant quantum computers. And for the representation theory of relativistic space-time transformations. Did I mention the theory of quaternions, with applications e.g. in robotics and attitude control for spacecraft? Look, the Pauli matrices are kind of important.

- The monomials $\left\{x^{n} \mid n \in \mathbb{N}\right\}$ form a basis for the space of polynomial function $\mathcal{P}(\mathbb{F})$. Completeness is clear from the definition of $\mathcal{P}(\mathbb{F})$. Independence is less obvious. Therefore, $\mathcal{P}(\mathbb{F})$ is an infinite-dimensional space.
- A non-example: f is analytic (around 0) if it can be represented by a Taylor series

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}, \quad c_{k}=\frac{1}{k!} \frac{\partial^{k}}{(\partial k)^{k}} f(0)
$$

One could be forgiven to conclude that the monomials are a basis for the space of analytic functions. This would be wrong, though, because linear combinations are defined in terms of finite sums, whereas the series is defined as a limit involving infinitely many terms. We'll later generalize the notion of a basis to cover infinite series, too.

Here are two important statements about bases, which we will not prove.

- [Dimension is unique] A priori, it could be that there is a vector space V that has two bases with a different number of elements. In \mathbb{R}^{3}, it is geometrically intuitive that this problem does not arise: A line is a line and a plane a plane, i.e. "dimension" is an intrinsic property of a space. And fortunately, it is not difficult to prove that uniqueness of dimension does hold for all vector spaces. (FK 14.6.4).
- [Basis extension theorem] The basis extension theorem says that any set of linearly independent vectors can be extended to a basis. In other words, bases can be built "iteratively": Starting with the empty set, just add linearly independent vectors until you arrive at a collection that spans the space. It cannot happen that this process runs into a "dead-end" where one would be forced to backtrack and make different choices. Again, this is intuitive in \mathbb{R}^{3}. (FK 14.6.5).

Remark. [Every vector space has a basis (trust me, bro!)] Many textbooks say "One can prove that any vector space has a basis." Hm, OK. That's not wrong. But, boy, does it underplay the stakes. Trying to decide this statement leads to a rabbit hole that ends in meta-mathematical questions of what "truth" and "provability" mean in the first place. In the early 20th century, the titans of math fought bitter fights about this and related questions. If you want to waste some time in the lecture, ask me about it. But, yeah, whatever, I guess every vector space has a basis.

1.2.4 Coordinate representation of vectors

Bases allow us to work with arbitrary vector spaces in terms of column vectors.

Let \mathcal{B} be a basis. We assume that there is a discrete index set I such that the vectors in the basis can be labeled by elements $i \in I$. To indicate this, we'll write $\mathcal{B}=\left\{b_{i}\right\}_{i \in I}$ or $\mathcal{B}=\left\{b_{i}\right\}_{i}$ or just $\mathcal{B}=\left\{b_{i}\right\}$. Usually, $I=\{1, \ldots, n\}$ or $I=\mathbb{N}$.

By the completeness condition in the definition of basis, every vector $v \in V$ can be written as a linear combination

$$
v=\sum_{i} x_{i} b_{i}, \quad x_{i} \in \mathbb{F}
$$

This is called a basis expansion of v. The numbers x_{i} are the expansion coefficients or coordinates of v w.r.t. \mathcal{B}.

The linear independence condition guarantees that expansions are unique:

$$
\sum_{i} x_{i} b_{i}=\sum_{i} y_{i} b_{i} \quad \Rightarrow \quad x_{i}=y_{i}
$$

Proof. Compute:

$$
0=\sum_{i} x_{i} b_{i}-\sum_{i} y_{i} b_{i}=\sum_{i}\left(x_{i}-y_{i}\right) b_{i} .
$$

By Eq. (1.2), $x_{i}-y_{i}=0$.
Assume now for simplicity that $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$, i.e. that V is has dimension $n<\infty$. Then any $v \in V$ can be mapped to a unique column vector

$$
v=\sum_{i=1}^{n} x_{i} b_{i} \mapsto\left(\begin{array}{c}
x_{1} \tag{1.5}\\
\vdots \\
x_{n}
\end{array}\right)=: \phi^{\mathcal{B}}(v)
$$

composed of the coordinates of v w.r.t. \mathcal{B}.
Arguing as in Sec. 0.1.1, we see that the coordinates of a sum are the sum of the coordinates, and the coordinates of a scalar multiple is the scalar multiple of the coordinates:

$$
\phi^{\mathcal{B}}(v+w)=\phi^{\mathcal{B}}(v)+\phi^{\mathcal{B}}(w), \quad \phi^{\mathcal{B}}(\lambda v)=\lambda \phi^{\mathcal{B}}(v)
$$

A one-to-one map between two vector spaces that commutes with addition and scalar multiplication is called a (linear) isomorphism. Two vector spaces are isomorphic if there is a linear isomorphism between the two.

Because linear algebra is concerned only with the effects of addition and scalar multiplication, a linear isomorphism ϕ preserves all "linear algebraic properties". For example:

- A set $S \subset V$ of vectors is complete or linearly independent if and only if $\phi(S)$ is.
- Two isomorphic spaces have the same dimension.

Any coordinate map $\phi^{\mathcal{B}}$ is a linear isomorphism between V and \mathbb{F}^{n}. Does this mean that we can ditch the abstract theory of vector spaces and only ever work with concrete column vectors? That's a somewhat philosophical question, pondered in the somewhat philosophical Appendix A

1.3 Scalar products

In some vector spaces, it makes sense to assign a length to every vector, and an angle to every pair. Such geometric notions are derived from a scalar product, introduced next.

1.3.1 Euclidean spaces

In the special case of $V=\mathbb{R}^{3}$, the standard scalar product is

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} .
$$

The Euclidean length (or 2-norm or the norm induced by the scalar product) is

$$
\begin{equation*}
\|\boldsymbol{v}\|:=\sqrt{\langle\boldsymbol{v}, \boldsymbol{v}\rangle} \tag{1.6}
\end{equation*}
$$

and the angle ϕ enclosed by two vectors $\boldsymbol{v}, \boldsymbol{w}$ is (Fig. 1.4)

$$
\begin{equation*}
\phi=\arccos \left(\frac{\langle\boldsymbol{v}, \boldsymbol{w}\rangle}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}\right) . \tag{1.7}
\end{equation*}
$$

We now face the same situation as in Sec. 1.1. One could develop a concrete and intuitive theory of scalar products in \mathbb{R}^{3}. But soon, we will need to assign notions of "length" and "angles" to more general vectors, e.g. to elements of function spaces that appear in QM. Thus, as before, we will take the more abstract axiomatic route.

Definition 3 (Scalar product over \mathbb{R}). Let V be a vector space over \mathbb{R}. A scalar product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that is

1. bilinear:

$$
\begin{aligned}
& \langle u+\lambda v, w\rangle=\langle u, w\rangle+\lambda\langle v, w\rangle \\
& \langle u, v+\lambda w\rangle=\langle u, v\rangle+\lambda\langle u, w\rangle
\end{aligned}
$$

2. symmetric:

$$
\langle u, v\rangle=\langle v, u\rangle,
$$

3. and positive definite:

$$
\langle u, u\rangle>0
$$

for all $u \neq 0$.
A real vector space with a scalar product is called a Euclidean space.

Example.

- The standard inner product on \mathbb{R}^{n} :

$$
\begin{equation*}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=v_{1} w_{1}+\cdots+v_{n} w_{n} \tag{1.8}
\end{equation*}
$$

- For an interval $[a, b] \subset \mathbb{R}$, let $C^{0}([a, b], \mathbb{R})$ be the real vector space of continuous functions $[a, b] \rightarrow \mathbb{R}$. Then

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) \mathrm{d} x \tag{1.9}
\end{equation*}
$$

is a scalar product. Continuity implies that the integral is well-defined and that the scalar product is definite (why?).

- Consider a collection of N classical point particles of masses m_{i} moving in one dimension with velocity v_{i}. The kinetic energy is given by in terms of their momenta $p_{i}=m_{i} v_{i}$ by

$$
K=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\sum_{i} \frac{1}{2 m_{i}} p_{i}^{2}
$$

which is the squared norm $(\boldsymbol{p}, \boldsymbol{p})_{m}$ with respect to the scalar product

$$
\langle\boldsymbol{p}, \boldsymbol{q}\rangle_{m}:=\frac{1}{2 m_{1}} p_{1} q_{1}+\cdots+\frac{1}{2 m_{N}} p_{N} q_{N}
$$

- Consider a 3D rigid body with mass distribution $\rho(\boldsymbol{x})$. The inertia tensor is

$$
\begin{equation*}
I_{k l}=\int \rho(\boldsymbol{x})\left(\|\boldsymbol{x}\|^{2} \delta_{i j}-x_{i} x_{j}\right) \mathrm{d}^{3} \boldsymbol{x} \tag{1.10}
\end{equation*}
$$

It defines a scalar product via

$$
\begin{equation*}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{I}:=\sum_{k l} v_{k} I_{k l} w_{l} \tag{1.11}
\end{equation*}
$$

Exercise: Show that 1.11 is positive definite. (Hint: Use Cauchy-Schwartz).
Physical interpretation: The rotational motion of a rigid body can be described in terms of a vectorial angular velocity $\omega \in \mathbb{R}^{3}$. One can then show that the kinetic energy of the rotation is given by $K_{\mathrm{rot}}=\langle\boldsymbol{\omega}, \boldsymbol{\omega}\rangle_{I}$.

- The standard Gaussian probability density is $\rho(x)=(2 \pi)^{-1 / 2} e^{-\frac{1}{2} x^{2}}$. Given a function $f(x)$, its expectation value with respect to $\rho(x)$ is

$$
\mathbb{E}[f]=\int f(x) \rho(x) \mathrm{d} x
$$

On the space of continuous functions with finite expectation values,

$$
\langle f, g\rangle=\mathbb{E}[f g]
$$

is a scalar product. It appears in probability theory, and in the context of Hermite polynomials, with applications to the quantum theory of the harmonic oscillator.

1.3.2 Hermitian spaces

In quantum mechanics, we'll work with complex vector spaces and interpret the squarednorm of a vector as a probability. For this to make sense, the norm needs to be nonnegative. But because $i^{2}=-1$, a naive extension of Eq. 1.8) does not define a positive definite form. But because for any $z \in \mathbb{C}$, it is true that $\bar{z} z=|z|^{2} \geq 0$, it follows that

$$
\begin{equation*}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\sum_{i=1}^{n} \bar{v}_{i} w_{i} \tag{1.12}
\end{equation*}
$$

does fulfill $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$.
Here's the general definition for a scalar product on a complex vector space:
Definition 4 (Scalar product over \mathbb{C}). Let V be a vector space over \mathbb{C}. A scalar product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that is

1. sesquilinear:

$$
\begin{aligned}
& \langle u+\lambda v, w\rangle=\langle u, w)+\bar{\lambda}(v, w\rangle \\
& \langle u, v+\lambda w\rangle=\langle u, v)+\lambda(u, w\rangle
\end{aligned}
$$

2. conjugate symmetric:

$$
\langle u, v\rangle=\overline{\langle v, u\rangle},
$$

3. and positive definite:

$$
\langle u, u\rangle>0
$$

for all $u \neq 0$.
A complex vector space with a scalar product is called a Hermitian space.

Remark.

- "Sesqui" in "sesquilinear" apparently means one-and-a-half.
- In physics, Hermitian scalar products are defined to be anti-linear in the first, and linear in the second argument. In math, it's the other way round. Oh dear.
- If $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^{n}$ happen to have real coefficients, the sesquilinear scalar product 1.12 reduces to the bilinear scalar product 1.8 . The two cases are thus closely related, and it shouldn't be surprising that we can treat their properties simultaneously.
- You may have heard the term Hilbert space. A Hilbert space is a Hermitian space with an extra property ("completeness") - we'll get there later.

Example. A Hermitian scalar product on continuous functions $[a, b] \rightarrow \mathbb{C}$ is

$$
\langle f, g\rangle=\int_{a}^{b} \bar{f}(x) g(x) \mathrm{d} x
$$

In the following, V is a Euclidean or a Hermitian space.

1.3.3 Inequalities

Two important inequalities are (Fig. 1.4):

$$
\begin{array}{rrr}
|\langle v, w\rangle| & \leq\|v\|\|w\| & \text { Cauchy-Schwartz inequality, } \\
\|v+w\| & \leq\|v\|+\|w\| & \text { Triangle inequality. }
\end{array}
$$

Cauchy-Schwartz is tight (i.e. "holds with equality") iff $v=\lambda w$ with $\lambda \in \mathbb{R}$. The triangle inequality is tight iff $v=\lambda w$ with $\lambda>0$.

By the Cauchy-Schwartz inequality, $\left|\frac{\langle v, w\rangle}{\|v\|\|w\|}\right| \leq 1$, so that the inverse cosine in 1.7 , is well-defined and can be used to define the notion of an angle in general (Fig. 1.4).

1.3.4 Projection onto a vector

A vector $v \in V$ is normalized if $\|v\|=1$. For any $v \neq 0$, the vector $\frac{v}{\|v\|}$ is normalized.
For a normalized v, the (orthogonal) projection onto v is

$$
P_{v}: w \mapsto v\langle v, w\rangle
$$

(Fig. 1.4. Its length equals the inner product $\langle v, w\rangle$.

Figure 1.4: (i) The triangle inequality says that a direct path is the shortest connection between two points. (ii) The geometry of two vectors v, w, the decomposition of w into components parallel $P_{v}(w)$ and orthogonal $P_{v}^{\perp}(w)$ to v, as well as the relation between the angle ϕ and the length of the projection.

1.3.5 Orthogonality

Two non-zero vectors $v, w \in V$ are orthogonal if $\langle v, w\rangle=0$. In this case, we write $v \perp w$.
A set $\left\{b_{i}\right\}$ of vectors is an orthonormal system if its elements are normalized and mutually orthogonal, i.e. if

$$
\left\langle b_{i}, b_{j}\right\rangle=\delta_{i j} .
$$

An orthonormal system that's also a basis is called an orthonormal basis or ONB.
ONBs are particularly easy to work with. Indeed, let $\left\{b_{i}\right\}$ be an ONB and consider a basis expansion

$$
v=\sum_{i} x_{i} b_{i} .
$$

In general, given a vector v and a basis $\left\{b_{i}\right\}$, it isn't trivial to find the expansion coefficients x_{i}. But for an ONB, the coefficients are just given by inner products with the basis vectors:

$$
\left\langle b_{i}, v\right\rangle=\sum_{j} x_{j}\left\langle b_{i}, b_{j}\right\rangle=\sum_{j} x_{j} \delta_{i j}=x_{i} \quad \Rightarrow \quad v=\sum_{i} b_{i}\left\langle b_{i}, v\right\rangle=\sum_{i} P_{b_{i}}(v) .
$$

You will be using these formulas a lot!

Examples \& exercises.

- The standard basis (1.12\} is an ONB for \mathbb{R}^{n} and \mathbb{C}^{n}.
- The set $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$ defined in Eq. 1.3 is an ONB for $\underline{1}^{\perp}$.
- Consider the space $C^{0}([-\pi, \pi], \mathbb{R})$ with the scalar product defined in $\sqrt[1.9]{ }$. The set

$$
\mathcal{B}=\left\{\frac{\cos (k x)}{\sqrt{\pi}}\right\}_{k=0}^{\infty} \cup\left\{\frac{\sin (k x)}{\sqrt{\pi}}\right\}_{k=1}^{\infty}
$$

forms an orthonormal system.
We will see later that the system is in fact also complete in some sense. The expansion coefficients of a function $f(x)$ w.r.t. this ONB is a variant of the Fourier transform.

- Show that an orthonormal system is automatically linearly independent.
- Show Parseval's identity, which generalizes the Pythagorean theorem. It says that for an orthonormal system $\left\{b_{i}\right\}$,

$$
v=\sum_{i} x_{i} b_{i} \quad \Rightarrow \quad\|v\|^{2}=\sum_{i}\left|x_{i}\right|^{2}
$$

For a normalized v, define

$$
\begin{equation*}
P_{v}^{\perp}: w \mapsto w-P_{v}(w) \tag{1.13}
\end{equation*}
$$

It maps w to a vector that is orthogonal to v :

$$
\left\langle v, P_{v}^{\perp}(w)\right\rangle=\langle v, w\rangle-\langle v,(v\langle v, w\rangle)\rangle=\langle v, w\rangle-\langle v, w\rangle\langle v, v\rangle=0 .
$$

By definition, $w=P_{v}(w)+P_{v}^{\perp}(w)$. We have thus decomposed w into a component $P_{v}(w)$ parallel to v, and a component $P_{v}^{\perp}(w)$ orthogonal to v (Fig. 1.4.

1.3.6 Gram-Schmidt algorithm

ONBs are nice to work with. Thus, given a set of linearly independent vectors $S=\left\{v_{i}\right\}$, it'd be good if we could convert them into an ONB $\mathcal{B}=\left\{b_{i}\right\}$ for $\operatorname{span}\left(\left\{v_{i}\right\}\right)$.

This is achieved by the Gram-Schmidt algorithm. You will very rarely perform a GramSchmidt process manually. But it's still important to have seen it once: It is related to the $Q R$ decomposition, a central tool in numerical linear algebra. It is also used in the construction of orthogonal polynomials that play an important role in the quantum theory of orbital angular momentum and the excited states of the harmonic oscillator.

From $\left\{v_{i}\right\}$, we will iteratively build an orthogonal system $\left\{w_{i}\right\}$ and an orthonormal system $\left\{b_{i}\right\}$. The first step is special:

- Set

$$
w_{1}=v_{1}, \quad b_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}
$$

Then b_{1} is normalized and, obviously,

$$
\operatorname{span}\left(\left\{w_{1}\right\}\right)=\operatorname{span}\left(\left\{b_{1}\right\}\right)=\operatorname{span}\left(\left\{v_{1}\right\}\right)
$$

The meat is in the following step:

- We need w_{2} to be orthogonal to w_{1}, so choose

$$
w_{2}=v_{2}-b_{1}\left\langle b_{1}, v_{2}\right\rangle
$$

By (1.13), w_{2} a linear combination of v_{1}, v_{2} with non-zero coefficients. By linear independence, it is non-zero. Therefore, it can be normalized, and we set

$$
b_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}
$$

At the end of this step:

$$
\begin{aligned}
& \left\{w_{1}, w_{2}\right\} \text { is orthogonal, } \\
& \left\{b_{1}, b_{2}\right\} \text { is orthonormal, }
\end{aligned}
$$

and, because we can express v_{1}, v_{2} as a linear combination of $\left\{w_{1}, w_{2}\right\}$ or $\left\{b_{1}, b_{2}\right\}$,

$$
\operatorname{span}\left(\left\{w_{1}, w_{2}\right\}\right)=\operatorname{span}\left(\left\{b_{1}, b_{2}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)
$$

Gram-Schmidt just repeats the previous construction for the remainder of the v_{i} :

- At the i-th step, set

$$
\begin{aligned}
w_{i} & =v_{i}-\sum_{j=1}^{i-1} b_{j}\left\langle b_{j}, v_{i}\right\rangle & \text { "orthogonalize", } \\
b_{i} & =\frac{w_{i}}{\left\|w_{i}\right\|} & \text { "normalize". }
\end{aligned}
$$

Arguing as before, one then shows by induction that

$$
\begin{gathered}
\left\{w_{1}, \ldots, w_{i}\right\} \text { is orthogonal, } \\
\left\{b_{1}, \ldots, b_{i}\right\} \text { is orthonormal, } \\
\operatorname{span}\left(\left\{w_{1}, \ldots, w_{i}\right\}\right)=\operatorname{span}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right)=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{i}\right\}\right) .
\end{gathered}
$$

Chapter 2

Linear maps

A map $L: V \rightarrow W$ between two vector spaces V, W over the same field \mathbb{F} is linear if it commutes with vector addition and scalar multiplication

$$
L(u+\lambda v)=L(u)+\lambda L(v) \quad u, v \in V, \lambda \in \mathbb{F}
$$

For linear maps, it is common to omit the parentheses around the argument: $L v=L(v)$. Linear maps are also called (linear) operators. In math, this term is associated with maps on infinite-dimensional vector spaces, but physicists aren't as discerning.

Example.

1. For examples on $V=W=\mathbb{R}^{2}$, see Fig. ??.
2. The identity map $\mathbb{1}: v \mapsto v$ is linear, as is the zero map $0: v \mapsto 0$.
3. If V is a Euclidean space and $b \in V$, then $v \mapsto\langle b, v\rangle$ is linear.
4. If V is a Hermitian space and $b \in V$, then $v \mapsto\langle b, v\rangle$ is linear, but the function $F: v \mapsto$ $\langle v, b\rangle$ is not linear, because it does not commute with scalar multiplication:

$$
F(\lambda v)=\langle\lambda v, b\rangle=\bar{\lambda}\langle v, b\rangle=\bar{\lambda} F(v) .
$$

5. Related, $f \mapsto \int_{a}^{b} f(x) \mathrm{d} x$ is linear on the space of integrable functions.
6. In a vector space of functions, every element x of the domain of definition defines a linear function $f \mapsto f(x)$, called the evaluation map.
7. Let $p=\sum_{k=0}^{n} c_{k} x^{k}$ be a polynomial. Then the multiplication operator M_{p} that sends a function f to $M_{p} f$ where $\left(M_{p} f\right)(x)=p(x) f(x)$ is linear. With p, we an also associate the differential operator

$$
D_{p}: f \mapsto \sum_{k=0}^{n}(-i)^{k} \frac{\partial^{k}}{(\partial x)^{k}} f
$$

which is a linear function on the vector space of n-times differentiable functions f. E.g., the squared norm $p=x^{2}+y^{2}+z^{2}$ gives rise to $D_{p}=-\Delta$, the negative Laplacian, which describes kinetic energy in QM. What's up with the funky factor of $(-i)^{k}$? We'll see that it turns M_{p} and D_{p} into each others' Fourier transforms.
8. Let \boldsymbol{R}_{ϕ} be the rotation matrix of 2.5 . Define U_{ϕ} on functions $\mathbb{R}^{2} \rightarrow \mathbb{C}$ by

$$
\left(U_{\phi} f\right)(\boldsymbol{x})=f\left(\boldsymbol{R}_{\phi}^{-1} \boldsymbol{x}\right) .
$$

The linear map U_{ϕ} is central to the quantum theory of orbital angular momentum.
9. Some maps that are not linear: Translations $v \mapsto v+w$, the norm $v \mapsto\|v\|^{2}$, or complex conjugation of the components of column vectors $\boldsymbol{v} \mapsto \overline{\boldsymbol{v}}$.

2.1 Matrix representations

Let $\mathcal{A}=\left\{v_{j}\right\}$ be a basis of V. Then

$$
\begin{equation*}
L(v)=L\left(\sum_{j} x_{j} v_{j}\right)=\sum_{j} x_{j} L\left(v_{j}\right) . \tag{2.1}
\end{equation*}
$$

It follows that a linear map is determined once we know its values $L\left(v_{j}\right)$ on a basis. Now choose a basis $\mathcal{B}=\left\{w_{i}\right\}$ of W. Then there are expansion coefficients $a_{i j} \in \mathbb{F}$ such that

$$
\begin{equation*}
L\left(v_{j}\right)=\sum_{i} a_{i j} w_{i} . \tag{2.2}
\end{equation*}
$$

If $n=\operatorname{dim} V, m=\operatorname{dim} W$ are finite, the $a_{i j}$ are usually presented as an $m \times n$ matrix

$$
\phi_{\mathcal{A}}^{\mathcal{B}}(L):=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{2.3}\\
a_{12} & a_{22} & \ldots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) .
$$

The numbers $a_{i j}$ are called the matrix elements of L (with respect to the bases \mathcal{A}, \mathcal{B}). The notation $\left(a_{i j}\right)$ refers to the entire matrix in 2.7. We will also use bold upper-case symbols for matrices, as in $\left(a_{i j}\right)=\boldsymbol{A}$.

Remark.

- Confusion alert! In 2D geometry, we specify the horizontal coordinate first, " (x, y) ". Matrix elements are indexed by their vertical coordinate first!
- If $W=V$, we usually choose $\mathcal{B}=\mathcal{A}$ and sometimes write $\phi_{\mathcal{A}}$ instead of $\phi_{\mathcal{A}}^{\mathcal{A}}$.
- One says that 2.1 linearly extends L from $\left\{v_{j}\right\}$ to all of V.

Example.

- The zero map $0: v \mapsto 0$ has matrix representation

$$
\phi_{\mathcal{A}}^{\mathcal{B}}(0)=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right)=0 \in \mathbb{F}^{m \times n}
$$

with respect to any choice of bases \mathcal{A}, \mathcal{B}.

- For $V=W$, the identity map has matrix representation

$$
\phi_{\mathcal{A}}^{\mathcal{A}}(\mathbb{1})=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \tag{2.4}\\
0 & 1 & \ldots & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)=\mathbb{1}_{n} \in \mathbb{F}^{n \times n}
$$

with respect to any choice of basis \mathcal{A}. In other words, the matrix elements are $a_{i j}=\delta_{i j}$.

- Let $\mathcal{A}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ be the standard basis of \mathbb{R}^{2}. The matrix representation \boldsymbol{R}_{ϕ} of a rotation R_{ϕ} by an angle ϕ is

$$
\boldsymbol{R}_{\phi}=\phi_{\mathcal{A}}^{\mathcal{A}}\left(R_{\phi}\right)=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \tag{2.5}\\
\sin \phi & \cos \phi
\end{array}\right) .
$$

The representation of a reflection S_{x} about the x-axis is

$$
\phi_{\mathcal{A}}^{\mathcal{A}}\left(S_{x}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Another basis is $\mathcal{B}=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$ where $\boldsymbol{f}_{1}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}, \boldsymbol{f}_{2}=\boldsymbol{e}_{1}-\boldsymbol{e}_{2}$. Then

$$
\phi_{\mathcal{B}}^{\mathcal{B}}\left(S_{x}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Let $\mathcal{A}=\left\{x^{0}, x^{1}, x^{2}, \ldots\right\}$ be the basis of monomials for the space of polynomial functions. On the subspace \mathcal{P}_{3} of polynomials of degree at most 3 , the differential operator ∂_{x} has matrix representation

$$
\phi_{\mathcal{A}}^{\mathcal{A}}\left(\partial_{x}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \tag{2.6}\\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

\therefore In Julia, the element $a_{i j}$ of an array A is indexed as A [i, j]. Entire rows and columns can be accessed using the slice notation, where a colon represents all values an index can take:

```
julia> A = [lllllllll
2\times3 Matrix{Int64}:
12 3
4 5 6
julia> A[1,1] # Julia indices start at I (unlike Python / C)
julia> A[:,1] # First column
2-element Vector{Int64}:
4
julia> A[1,:] # First row
3-element Vector{Int64}:
1
```


2.1.1 Matrix-vector multiplication

Choose bases $\mathcal{A}=\left\{v_{i}\right\}$ for V and $\mathcal{B}=\left\{w_{i}\right\}$ for W. Given $v \in V$, what is the relation between the coordinate representations

$$
\begin{aligned}
\boldsymbol{x} & =\phi^{\mathcal{A}}(v) & & \text { of the vector } v, \\
\boldsymbol{A} & =\phi_{\mathcal{A}}^{\mathcal{B}}(L) & & \text { of the linear map } L, \text { and } \\
\boldsymbol{y} & =\phi^{\mathcal{B}}(L v) & & \text { of the image } L v ?
\end{aligned}
$$

Using (2.2),

$$
\begin{equation*}
L(v)=L\left(\sum_{j} x_{j} v_{j}\right)=\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) w_{i} \quad \Rightarrow \quad y_{i}=\sum_{j} a_{i j} x_{j} . \tag{2.7}
\end{equation*}
$$

This is the simple, but enormously important matrix-vector multiplication formula. The sum is called a contraction of the two indices labeled by j 's. We abbreviate Eq. 2.7) as

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

I'm afraid you'll have to memorize those:
The i-th element of $\boldsymbol{A x}$ is the contraction of the i-th row of \boldsymbol{A} with \boldsymbol{x}.
The j-th column of a matrix is the image of the j-th standard basis vector.

Multiplication by an $m \times n$ matrix defines a linear map $\mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$. Conversely, every linear map between column vector spaces is given by multiplication with a matrix. It is common not to distinguish these two concepts. For example, a matrix is said to be "invertible" if the corresponding linear map is.

Remark. Equation (2.7) is one of the most practically important relation in all of science and engineering. A significant percentage of all operations in scientific computing and machine learning / inference is spent evaluating matrix-vector products.

Example. (Differentiation, the linalg way). Let's apply $\left(\partial_{x}-1\right): p \mapsto p^{\prime}+p$ to $p=5 x^{2}+3 x$. Instead of working with functions directly, we'll use matrix/column vector representations w.r.t. the monomial basis of \mathcal{P}_{3}. Combine $\sqrt{2.4)}$ with 2.6 to get $\phi_{\mathcal{B}}^{\mathcal{B}}\left(\partial_{x}-1\right)$ and conclude

$$
\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
3 \\
5 \\
0
\end{array}\right)=\left(\begin{array}{c}
3 \\
7 \\
-5 \\
0
\end{array}\right)=\phi^{\mathcal{B}}\left(-5 x^{2}+7 x+3\right) .
$$

2.2 Composition of maps and matrix-matrix multiplication

The composition $K \circ L$ of two linear maps K, L is linear (why?). Recall: $K \circ L$ is the map that sends v to $K(L(v))$. In the linear case, one typically writes $K L$ for $K \circ L$.

Example.

- On \mathbb{R}^{2}, let K the rotation by ϕ, and L be the reflection about the x-axis. Then

$$
\begin{aligned}
K L:\binom{x_{1}}{x_{2}} & \mapsto\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}\right) \\
& =\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\binom{x_{1}}{-x_{2}}=\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
\sin \phi & -\cos \phi
\end{array}\right)\binom{x_{1}}{x_{2}} .
\end{aligned}
$$

so $K L$ is described by a rotation matrix with the signs of the second column inverted.

- The gradient is a linear map from the space of scalar functions on \mathbb{R}^{3} to the space of vector-valued functions. The divergence is a linear map from the vector-valued functions to the scalar functions. Their composition

$$
\operatorname{div}(\operatorname{grad} f)=\operatorname{div}\left(\begin{array}{l}
\partial_{x} f \\
\partial_{y} f \\
\partial_{z} f
\end{array}\right)=\partial_{x}^{2} f+\partial_{y}^{2} f+\partial_{z}^{2} f=\Delta f
$$

is the Laplacian Δ. (All functions are assumed to be twice differentiable).
Let's work out the composition of matrix representations. For matrices $\boldsymbol{A}, \boldsymbol{B}$, we want to find the matrix \boldsymbol{C} such that $\boldsymbol{C} \boldsymbol{x}=\boldsymbol{A}(\boldsymbol{B} \boldsymbol{x})$ for all \boldsymbol{x}. Using 2.9):

- $C e_{j}$ is the j-th column of \boldsymbol{C}. So it suffices to ensure $\boldsymbol{C} \boldsymbol{e}_{j}=\boldsymbol{A}\left(\boldsymbol{B} \boldsymbol{e}_{j}\right)$ for all j.
- But $B e_{j}$ is the j-th column of \boldsymbol{B},
- so $\boldsymbol{A}\left(\boldsymbol{B e} e_{j}\right)$ is the matrix-vector product of \boldsymbol{A} and the j-th column of \boldsymbol{B}.

Therefore:
The j-th column of $\boldsymbol{C}=\boldsymbol{A B}$ is the product of \boldsymbol{A} and the j-th column of \boldsymbol{B}.

Expressed in terms of the matrix elements:

$$
\begin{equation*}
c_{i k}=\sum_{j} a_{i j} b_{j k} \tag{2.10}
\end{equation*}
$$

"Contract right index of \boldsymbol{A} with left index of \boldsymbol{B} ".
Exercise. Rotations in 2D by an angle ϕ are realized by the matrix \boldsymbol{R}_{ϕ} given in Eq. 2.5. It is intuitive that $\boldsymbol{R}_{\phi} \boldsymbol{R}_{\psi}=\boldsymbol{R}_{\phi+\psi}$. Prove that, using matrix multiplication and this useful page.

2.2.1 The algebra of linear maps

If V, W are vector spaces over some field \mathbb{F}, then the set of linear maps $V \rightarrow W$ is itself a vector space. It is denoted as $L(V, W)$, or, if $W=V$, just as $L(V)$.

Remark. This can be iterated. The set $L(L(V))$ of linear maps on linear maps is again a vector space. In QM, it is sometimes called the space of superoperators. Sounds bombastic, doesn't it?

The extra structure $L(V)$ has compared to a generic vector space is that elements of $L(V)$ can be multiplied with each other. Such spaces are called algebras.

The most important property of the algebra of linear maps is that it is not commutative: The commutator $[K, L]=K L-L K$ between two linear maps does not, in general, vanish.

Example.

- Remember the Pauli matrices from (1.4? They anti-commute in the sense that

$$
\boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{j}=-\boldsymbol{\sigma}_{j} \boldsymbol{\sigma}_{i} \quad \forall i \neq j \in\{1,2,3\} .
$$

- On differentiable functions, define the multiplication and the differentiation operator by

$$
(X f)(x)=x f(x), \quad(P f)(x)=-i \frac{\partial}{\partial x} f(x)
$$

Their commutator is extremely important in QM. Letting it act on a function f, one finds

$$
[X, P]=i \mathbb{1}
$$

- Let $\operatorname{diag}\left(\left(a_{i}\right)\right)$ be the matrix that has a_{i} as its i-th diagonal element and is zero else. Then $\operatorname{diag}\left(\left(a_{i}\right)\right) \operatorname{diag}\left(\left(b_{i}\right)\right)=\operatorname{diag}\left(\left(a_{i} b_{i}\right)\right)$. It follows that diagonal matrices commute with each other.

Composition of maps (linear or not) is associative: $K(L M)=(K L) M$. We can therefore write $K L M$ without ambiguity.

2.3 Linear forms

A linear map $L: V \rightarrow \mathbb{F}$ is called linear form, (linear) functional, or covector.
【 Example. Examples 3-6in Sec. 2 are linear functionals.
Remark. Confusion alert: In other contexts, a functional is a function acting on functions, linear or not. This use is common in the calculus of variation, in particular in Lagrangian mechanics.

Choose a basis $\mathcal{A}=\left\{v_{i}\right\}$ for V. The one-dimensional space \mathbb{F} has a canonical basis given by $\mathcal{B}=\{1\}$. Therefore, the coordinate representation

$$
\phi_{\mathcal{A}}(L):=\phi_{\mathcal{A}}^{\{1\}}(L)=\left(\begin{array}{lll}
L\left(v_{1}\right) & \ldots & \left.L\left(v_{n}\right)\right) \tag{2.11}
\end{array}\right) \in \mathbb{F}^{1 \times n}
$$

of a linear form is a row vector. Its elements are the values of L on the basis.
Some definitions:

- The space $L(V, \mathbb{F})$ of linear forms is denoted by V^{*} and called the dual space of V.
- Let $\boldsymbol{\epsilon}_{i} \in \mathbb{F}^{1 \times n}$ be the row vector with 1 in the i-th column and 0 else. The set $\left\{\epsilon_{i}\right\}$ is the standard dual basis. It fulfills $\boldsymbol{\epsilon}_{i} \boldsymbol{e}_{j}=\delta_{i j}$.
- Let $\mathcal{B}=\left\{v_{j}\right\}$ be a basis in V. Define the linear form ν_{i} by linear extension of $\nu_{i}\left(v_{j}\right)=\delta_{i j}$. Then $\left\{\nu_{i}\right\}$ is the dual basis associated with $\left\{v_{j}\right\}$ and $\boldsymbol{\phi}_{\mathcal{B}}\left(\nu_{i}\right)=\boldsymbol{\epsilon}_{i}$.

Example. For a linear form L and a vector v with coordinate representations

$$
\phi_{\mathcal{A}}(L)=\left(\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right), \quad \phi^{\mathcal{A}}(v)=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

an application of the formula (2.7) for matrix-vector multiplication gives

$$
L(v)=\left(\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\sum_{i} \alpha_{i} x_{i} .
$$

In coordinates, the evaluation of a linear form on a vector corresponds to a product between a row and a column vector, which in turn is the contraction $\sum_{i} \alpha_{i} x_{i}$ of their coefficients.

2.3.1 Transpose and adjoint of column vectors

The transpose of an $m \times n$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$ is the $n \times m$ matrix $\boldsymbol{A}^{t}=\left(b_{i j}\right)$ with rows and columns interchanged: $b_{i j}=a_{j i}$. In particular, the transpose of a column vector is a row vector with the same components.

On \mathbb{R}^{n}, the inner product with a vector \boldsymbol{w} is

$$
\boldsymbol{v} \mapsto\langle\boldsymbol{w}, \boldsymbol{v}\rangle=\sum_{i} w_{i} v_{i}=\boldsymbol{w}^{t} \boldsymbol{v}
$$

Thus: The inner product with \boldsymbol{w} is the linear form represented by the row vector \boldsymbol{w}^{t}.
Likewise, the adjoint of a matrix \boldsymbol{A} is $\boldsymbol{A}^{\dagger}=\overline{\boldsymbol{A}}^{t}$, the conjugate-transpose (pronounced "A dagger"). On \mathbb{C}^{n} with the standard Hermitian scalar product, we have

$$
\boldsymbol{v} \mapsto\langle\boldsymbol{w}, \boldsymbol{v}\rangle=\sum_{i} \bar{w}_{i} v_{i}=\boldsymbol{w}^{\dagger} \boldsymbol{v}
$$

ஃ In computer algebra systems, the standard Euclidean / Hermitian scalar products are often implemented this way. In Julia, where an apostrophe (') denotes the adjoint:

```
julia> v=[1;im] # Column vector. 'im' is the imaginary unit i.
2-element Vector{Complex{Int64}}:
1 + 0im
0 + 1im
julia> v' # Its adjoint is a row vector. Note the conjugation.
1\times2 adjoint (::Vector{Complex{Int64}}) with eltype Complex{Int64}:
1+0im 0-1im
julia> v'*v # Standard Hermitian norm squared
2 + 0im
```

Remark. The adjoint of a vector v is denoted by v^{\dagger} in physics. In analysis, it's v^{*}. In Julia, v^{\prime}. In QM, vectors are written as "kets" $|v\rangle$ and their adjoints as "bras" $\langle v|$. In covariant notation, taking the transpose corresponds to "lowering the index": $v^{i} \mapsto v_{i}$. In geometry, one writes v^{b} (because the musical symbol b denotes the... wait for it... lowering of the pitch). Madness.

2.4 Differentials

Let $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable. Its first-order Taylor expansion around $\boldsymbol{p} \in \mathbb{R}^{n}$ is

$$
f_{i}(\boldsymbol{p}+\boldsymbol{x}) \simeq f_{i}(\boldsymbol{p})+\sum_{j} \frac{\partial f_{i}(\boldsymbol{p})}{\partial p_{j}} x_{j}, \quad i=1, \ldots, n
$$

We see that changing the argument from \boldsymbol{p} to $\boldsymbol{p}+\boldsymbol{x}$ produces, to first order, a change in the function value that is given by a matrix-vector product. We can write it as

$$
\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad \boldsymbol{y} \mapsto \boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{f}} \boldsymbol{x}, \quad \text { where } \quad \boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{f}}=\left(\begin{array}{ccc}
\frac{\partial f_{1}(\boldsymbol{p})}{\partial p_{1}} & \ldots & \frac{\partial f_{1}(\boldsymbol{p})}{\partial p_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}(\boldsymbol{p})}{\partial p_{1}} & \cdots & \frac{\partial f_{m}(\boldsymbol{p})}{\partial p_{n}}
\end{array}\right)
$$

$\boldsymbol{J}_{\boldsymbol{p}}$ is the Jacobian matrix, and the linear map $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}$ it defines is the differential, of \boldsymbol{f} at \boldsymbol{p}. The differential is thought of as a "linearization" of the function f around a given point.

Remark.

- For $m=1$, i.e. for scalar functions f on \mathbb{R}^{n}, the differential is a linear form

$$
\mathrm{d}_{\boldsymbol{p}} f: \boldsymbol{x} \mapsto\left(\begin{array}{lll}
\frac{\partial f(\boldsymbol{p})}{\partial p_{1}} & \ldots & \frac{\partial f(\boldsymbol{p})}{\partial p_{n}}
\end{array}\right)\left(\begin{array}{c}
x_{1} \tag{2.12}\\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}
$$

In physics, this is more commonly written as the inner product between the gradient

$$
\operatorname{grad} f=\left(\begin{array}{c}
\frac{\partial f(\boldsymbol{p})}{\partial p_{1}} \\
\vdots \\
\frac{\partial f(\boldsymbol{p})}{\partial p_{n}}
\end{array}\right)
$$

and the deviation \boldsymbol{x}. Mathematically, the differential is the more fundamental notion: It can also be defined on spaces that do not have a scalar product to change the column vector grad f to the row vector representing the linear form that's actually meant.

- Let's be a bit flexible with notation. Use x_{i} to denote, depending on context, (1) the function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ that maps a column vector to its i th component; (2) the result $x_{i}=$ $x_{i}(\boldsymbol{v}) \in \mathbb{R}$ of that function acting on a vector; (3) a "variable name" which indicates that $\frac{\partial}{\partial x_{i}}$ refers to the partial derivative w.r.t. the i th $\operatorname{argument}$. As a function, x_{i} has a differential $\mathrm{d}_{\boldsymbol{p}} x_{i}$. Because $\frac{\partial x_{i}}{\partial x_{j}}=\delta_{i j}$, it is represented by the standard dual basis element $\boldsymbol{\epsilon}_{i}$. Expanding 2.12 in that basis (and suppressing \boldsymbol{p}) gives

$$
\mathrm{d} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \mathrm{~d} x_{i} .
$$

This formula can be read in two ways: (1) Intuitively, as relating "infinitesimal" changes of the arguments to those of the function value. (2) Mathematically rigorous, as an equation between well-defined linear maps.

- The chain rule of differentiation states

$$
\begin{equation*}
\frac{\partial(f \circ g)_{i}}{\partial x_{k}}=\sum_{j} \frac{\partial f_{i}}{\partial g_{j}} \frac{\partial g_{j}}{\partial x_{k}} \tag{2.13}
\end{equation*}
$$

That sure looks like a matrix product! And indeed, if one decodes the terse notation (the "flexibility" sketched above now also applies to f_{i}, g_{j}), Eq. 2.13 says that the Jacobian $\boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{f} \circ \boldsymbol{g}}$ of a composition is the matrix product of the individual Jacobians:

$$
\boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{f} \circ \boldsymbol{g}}=\boldsymbol{J}_{\boldsymbol{g}(\boldsymbol{p})}^{\boldsymbol{f}} \boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{g}} \quad \text { and thus } \quad \mathrm{d}(\boldsymbol{f} \circ \boldsymbol{g})=(\mathrm{d} \boldsymbol{f})(\mathrm{d} \boldsymbol{g})
$$

2.5 Kernels and images

2.5.1 Affine subspaces

Take a subspace $S \subset V$ and a vector $a_{0} \in V$. Now consider the "shifted subspace"

$$
A=a_{0}+S:=\left\{a_{0}+s \mid s \in S\right\}
$$

A set of this form is called an affine subspace of V.

Elementary facts:

1. One can recover S from A as

$$
S=A-A:=\left\{a_{1}-a_{2} \mid a_{1}, a_{2} \in A\right\} .
$$

It is called the directional vector space of A.
2. A set $A \subset V$ is affine if and only if $A-A$ is a linear subspace.

Examples are considered in the next section.

2.5.2 Kernels and images

With a linear map $L: V \rightarrow W$, associate the sets

$$
\begin{aligned}
\operatorname{img} L & :=\{L v \mid v \in V\} \subset W & & \text { the image or range of } L \\
\operatorname{ker} L & :=\{v \in V \mid L v=0\} \subset V & & \text { the kernel or null space of } L .
\end{aligned}
$$

Both the image and the kernel are linear spaces.
A not insignificant part of your time as a scientist will be spent solving (inhomogeneous) linear equations: Given L, f, find u such that

$$
\begin{equation*}
L u=f . \tag{2.14}
\end{equation*}
$$

The set of solutions to 2.14 is an affine space with directional vector space equal to ker L.
Proof. If u_{1} and u_{2} are solutions, then $L\left(u_{1}-u_{2}\right)=f-f=0$, so that $u_{1}-u_{2} \in \operatorname{ker} L$. Conversely, if u is a solution and $v \in \operatorname{ker} L$, then $L(u+v)=L(u)=f$ is a solution.

Example. Driven harmonic oscillator. Newton's equation for the position $u(t)$ of a harmonic oscillator with frequency ω subject to a driving force $m f(t)$ is

$$
\left(\partial_{t}^{2}+\omega^{2}\right) u=f
$$

The kernel of $L=\partial_{t}^{2}+\omega^{2}$ on the space of bounded functions has basis $\{\cos (\omega t), \sin (\omega t)\}$. Thus the set of solutions is of the form $u(t)=u_{0}(t)+A \cos (\omega t)+B \sin (\omega t)$, where u_{0} is any particular solution, and A, B are constants. Finding a u_{0} given f is considerably harder.

Consider, e.g., a driving force acting on an oscillator at $t=0$.

If the system was previously at rest, it will then start oscillating (left). If it was moving before, then, with a bit of luck, the driving force will exactly cancel the upwards momentum (center). The difference between the two solutions is a free oscillation (right).

We'll talk about practical ways for solving linear equations in Sec. 5.1 .
The discussion implies that L is injective if and only if $\operatorname{ker} L=\{0\}$.

2.5.3 Rank-nullity theorem, down to earth approach

If $L: V \rightarrow W$ and V is finite-dimensional, then

$$
\begin{equation*}
\operatorname{dimimg} L+\operatorname{dim} \operatorname{ker} L=\operatorname{dim} V \tag{2.15}
\end{equation*}
$$

The dimension of the image of L is the rank of L. The dimension of the kernel of L is sometimes called the nullity of L. Thus (2.15) is also known as the rank-nullity theorem.

The textbook by Fischer and Kaul contains this figure, illustrating the "no-expansion-of-dimension" property of linear maps, which is made precise by the ranknullity theorem. I mean, 2.15) is an equation relating three natural numbers, so I'm not sure it really needs a visualization per se. But then again, F\&K are much more experienced in teaching this material than I am. And, gotta admit, the figure has a certain memetic je ne sais quoi, so I didn't want to withhold it from you.

Proof. Choose a basis $\left\{b_{1}, \ldots, b_{s}\right\}$ of ker L. By the basis extension theorem, one can complete it to a basis $\left\{b_{1}, \ldots, b_{s}, c_{1}, \ldots, c_{r}\right\}$ of V. Then $s+r=\operatorname{dim} V$ and $s=\operatorname{dim} \operatorname{ker} L$.

The set $\mathcal{B}=\left\{L c_{i}\right\}_{i=1}^{s}$ spans img L. It is also linearly independent (hence a basis):

$$
\sum_{i} x_{i} L\left(c_{i}\right)=L\left(\sum_{i} x_{i} c_{i}\right),
$$

so if the left hand side is 0 , then $v=\sum_{i} x_{i} c_{i} \in \operatorname{ker} L$. But the b_{i} form a basis of ker L, so that also $v=\sum_{i} y_{i} b_{i}$. By the uniqueness of basis expansions, all the x_{i} must be 0 .

Thus we have dim $\operatorname{img} L=s$, proving the claim.

- Remark. Confusion alert (English, German): rank $=$ Rang \neq range $=$ Bild .

Example. Let V be Euclidean or Hermitian, $0 \neq v \in V$. Consider the projection P_{v}. Then $\operatorname{img} P_{v}$ consists of the multiples of v, thus rank $P_{v}=1$. The kernel ker P_{v} is the space $v^{\perp}=$ $\{w \in V \mid\langle v, w\rangle=0\}$ of vectors orthogonal to v (its orthocomplement). One can extend v to a basis and use Gram-Schmidt to obtain an orthogonal basis $\left\{w_{1}=v, w_{2}, \ldots\right\}$. Then $\mathcal{B}=$ $\left\{w_{2}, \ldots\right\}$ is a basis of v^{\perp}. If $\operatorname{dim} V=n<\infty$, then $|\mathcal{B}|=n-1$, compatible with 2.15.

2.5.4 Optional: Rank-nullity, what's actually going on

Quotient spaces

Fix a subspace $S \subset V$. Remarkably, the set of affine subspaces with directional vector space S is itself a vector space, the quotient space V up to S, denoted by V / S.

Addition and scalar multiplication between sets are defined as

$$
A+B=\{a+b \mid a \in A, b \in B\}, \quad \lambda A=\{\lambda a \mid a \in A\}
$$

We need to verify: (1) If A, B are affine subspaces with directional vector space S, then the same is true for their sum and scalar multiples; and (2) These operations satisfy Def. 2

Associate with every element $v \in V$ the affine subspace it lies in:

$$
v \mapsto[v]_{S}:=v+S
$$

Claim: This map commutes with addition and scalar multiplication

$$
\begin{equation*}
[v+w]_{S}=[v]_{S}+[w]_{S}, \quad \lambda[v]_{S}=[\lambda v]_{S} \tag{2.16}
\end{equation*}
$$

Proof. Using that S, as a subspace, is closed under addition and scalar multiplication,

$$
\begin{aligned}
\lambda[v]_{S} & =\lambda(v+S)=\lambda v+\lambda S=\lambda v+S=[\lambda v]_{S} \\
{[v+w]_{S} } & =(v+w)+S=(v+w)+S+S=(v+S)+(w+S)=[v]_{S}+[w]_{S}
\end{aligned}
$$

Then condition (1) follows immediately, and condition (2) is an easy exercise.
The map $v \mapsto[v]_{S}$ is called the canonical projection from V to V / S.

Rank-nullity revisited

Isomorphic vector spaces have the same dimension. It'd be cool if we could associate a vector space with each side of rank-nullity theorem, and prove that the two are isomorphic. This would "explain the equality in a deeper way".

Not only is this possible, but this formulation also works in infinite dimensions (and analogous constructions exist in group theory and in non-commutative algebra).

The central claim is (Fig. ??): $\operatorname{img} L$ is isomorphic to the quotient space $V / \operatorname{ker} L$.

Proof. Write $K=\operatorname{ker} L$. Define a linear map \tilde{L} from V / K to img L by

$$
\tilde{L}[v]_{K}=L v
$$

\tilde{L} is well-defined, because any $v^{\prime} \in[v]_{K}$ differs from v by an element of K, so that $L v^{\prime}=L v$. It is surjective, because if $u=L v \in \operatorname{img} L$, then $\tilde{L}[v]_{K}=u$. It is injective, because if $\tilde{L}\left[v_{1}\right]_{K}=\tilde{L}\left[v_{2}\right]_{K}$, then $0=\tilde{L}\left[v_{1}-v_{2}\right]_{K}=L\left(v_{1}-v_{2}\right)$ so that $\left(v_{1}-v_{2}\right) \in K$ and thus $\left[v_{1}-v_{2}\right]_{K}=[0]_{K}$.

In the special case where V is finite-dimensional, the proof in the previous section can be re-read to show that

$$
\operatorname{dim} V / K=\operatorname{dim} V-\operatorname{dim} K
$$

so we recover the rank-nullity theorem in the re-arranged way

$$
\operatorname{dimimg} L=\operatorname{dim} V-\operatorname{dim} \operatorname{ker} L
$$

2.6 Inverse maps

If $L: V \rightarrow W$ is invertible, then the inverse function $L^{-1}: W \rightarrow V$ is also linear.
Proof. Given $w \in W$, let $v=L^{-1}(w)$. By linearity, $L(\lambda v)=\lambda w$. Applying L^{-1} to both sides gives $L^{-1}(\lambda w)=\lambda v=\lambda L^{-1}(w)$.

Showing that L^{-1} commutes with addition works analogously.
If V, W are finite-dimensional, then the rank-nullity theorem implies:

1. L can be invertible only if $\operatorname{dim} V=\operatorname{dim} W$.
2. If $\operatorname{dim} V=\operatorname{dim} W$, then:

$$
\begin{aligned}
& L \text { is invertible } \\
& \Leftrightarrow \quad \operatorname{dim} \operatorname{ker} L=0, \quad \text { i.e. the nullity of } L \text { is } 0, \text { or } L \text { is injective } \\
& \Leftrightarrow \quad \operatorname{dimimg} L=\operatorname{dim} W, \quad \text { i.e. the rank of } L \text { is maximal, or } L \text { is surjective. }
\end{aligned}
$$

Remark. These equivalences do not hold in infinite dimensions. Take $V=W=\mathcal{P}(\mathbb{C})$, the space of polynomials. The multiplication operator $p \mapsto x p$ injective. But it is not surjective, because the constant function $p(x)=1$ is not in its range. The differentiation operator $p \mapsto \partial_{x} p$ is surjective. But it is not injective, because its kernel contains all constant functions.

Example. Let V be the vector space of all functions on \mathbb{R}. Let m be a function without a zero: $m(x) \neq 0$. The inverse of the multiplication operator $\left(M_{m} f\right)(x)=m(x) f(x)$ is $M_{1 / m}$.

Taking the inverse reverses compositions: $(K L)^{-1}=L^{-1} K^{-1}$. Proof:

$$
\left(L^{-1} K^{-1}\right)(K L)=L^{-1}\left(K^{-1} K\right) L=L^{-1} L=\mathbb{1}
$$

2.6.1 Inverse matrices

Now assume that V, W are both n-dimensional, and that bases have been chosen.
If L is represented by a matrix \boldsymbol{A}, then \boldsymbol{B} is a matrix representation of L^{-1} if and only if $\boldsymbol{A} \boldsymbol{B}=\mathbb{1}$. In this case, we write $\boldsymbol{B}=\boldsymbol{A}^{-1}$, the inverse matrix of \boldsymbol{A}.

Example.

- If $\boldsymbol{A}=\operatorname{diag}\left(\left(a_{i}\right)\right)$ is diagonal with non-zero entries, then $\boldsymbol{A}^{-1}=\operatorname{diag}\left(\left(a_{i}^{-1}\right)\right)$.
- The Pauli matrices 1.4 square to identity $\boldsymbol{\sigma}_{i}^{2}=\mathbb{1}$. Hence $\boldsymbol{\sigma}_{i}^{-1}=\boldsymbol{\sigma}_{i}$.
- Let $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be invertible. By Sec. 2.4 the Jacobi matrices fulfill $\left(\boldsymbol{J}_{\boldsymbol{p}}^{\boldsymbol{f}}\right)^{-1}=\boldsymbol{J}_{\boldsymbol{f}(\boldsymbol{p})}^{\boldsymbol{f}^{-1}}$.
- A real square matrix \boldsymbol{O} is orthogonal if $\boldsymbol{O}^{t} \boldsymbol{O}=\mathbb{1}$, i.e. if $\boldsymbol{O}^{-1}=\boldsymbol{O}^{t}$. Orthogonal matrices preserve the Euclidean scalar product-we'll look at them in detail later.

For 2×2-matrices, there is an explicit formula for the matrix inverse (check it!):

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-c b}\left(\begin{array}{cc}
d & -b \\
c & a
\end{array}\right)
$$

There are a few more classes of matrices for which the inverse can be easily found. But in general, computing matrix inverses is painful for humans and even computers are only moderately good at it, with speed and numerical stability being issues. Experience has it that problems that seem to require a matrix inverse can often be re-formulated to avoid it.

2.7 Coordinate changes

2.7.1 General case

We start with a few remarks on coordinates in general, not just linear ones on vector spaces.

Manifolds

Let M be a set of points on which we want to do physics. For example, M could be Euclidean space, or a model of the surface of the earth or of the entire universe. (In the mathematical theory, these sets go by the pleasant-sounding name of manifolds).

Coordinate functions

In order to talk about the elements of M concretely, it is helpful to choose coordinates. A coordinate function is an invertible function from (a subset of) M to \mathbb{R}^{n}. With respect to a coordinate function ϕ, a point $p \in M$ is represented by the column vector $\boldsymbol{x}=\boldsymbol{\phi}(p)$.

For example, if M models earth, it contains a point p_{M} corresponding to the center of Cologne. If ϕ : $M \rightarrow \mathbb{R}^{2}$ assigns to each point their latitude and longitude in degrees, then $\phi\left(p_{M}\right)=\binom{50.933594}{6.961899}$.

If one has chosen two different coordinate systems ϕ, ψ, one can ask which function converts the first type to the second type. Read off the figure: Starting with $\boldsymbol{x}=\phi(p)$, move up ϕ^{-1} to get to p, and then down again along $\boldsymbol{\psi}$, reaching $\boldsymbol{y}=\boldsymbol{\psi}(p)$. Thus, the coordinate change is given by $\psi \circ \phi^{-1}$. In the other direction, it's $\phi \circ \boldsymbol{\psi}^{-1}$.

Curves

In the mechanics of point particles, you will study curves $\gamma: \mathbb{R} \rightarrow M$, where $\gamma(t)$ is the position of a particle at time t. Particles have traced out trajectories long before humans started choosing reference systems, so γ exists independently of any coordinates. But if we want to, we can consider representations

$$
\begin{aligned}
& \gamma_{\phi}:=\phi \circ \gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad \text { or } \\
& \gamma_{\psi}:=\psi \circ \gamma: \mathbb{R} \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

These can be converted into each other using the coordinate changes described above:

$$
\begin{equation*}
\left(\boldsymbol{\psi} \circ \phi^{-1}\right) \circ \gamma_{\phi}=\boldsymbol{\psi} \circ \phi^{-1} \circ \phi \circ \gamma=\boldsymbol{\psi} \circ \gamma=\gamma_{\boldsymbol{\psi}} \tag{2.17}
\end{equation*}
$$

Scalar functions

Another important set of objects are scalar functions $f: M \rightarrow$ \mathbb{R}. Think of, say, temperature or a potential, that take a real value at every point. A coordinate representation f_{ϕ} of f maps coordinates $\boldsymbol{x}=\boldsymbol{\phi}(p)$ of a point $p \in M$ to the value $f(p)$. Thus:

$$
\begin{equation*}
f_{\phi}=f \circ \phi^{-1} \tag{2.18}
\end{equation*}
$$

("start from \boldsymbol{x}, move up through ϕ^{-1} to p, then apply f ").
A very important lesson:
Coordinate representations of functions to M depend on ϕ directly.
Coordinate representations of functions on M depend on the inverse ϕ^{-1}.
And indeed, converting f_{ϕ} to f_{ψ} involves the inverse of the map encountered in 2.17):

$$
f_{\phi} \circ\left(\phi \circ \psi^{-1}\right)=f \circ \phi^{-1} \circ \phi \circ \psi^{-1}=f \circ \psi^{-1}=f_{\psi}
$$

Curves and scalar functions can be concatenated to $f \circ \gamma: \mathbb{R} \rightarrow \mathbb{R}$, describing the evolution of f as t is varied, without referencing any coordinates.

Transformations

Consider a map $g: M \rightarrow M$, describing, e.g., a rotation. In coordinates

$$
\begin{equation*}
g_{\phi}=\phi \circ g \circ \phi^{-1} \tag{2.20}
\end{equation*}
$$

("Start with \boldsymbol{x}, crawl up ϕ^{-1} to get to p, slide along g, then down again through ϕ, thereby reaching $\boldsymbol{y}=\boldsymbol{\phi}(g(p))$.") Because g is both a function on M and to M, its coordinate representation depends on ϕ and ϕ^{-1}.

Changing coordinates:

$$
\begin{aligned}
& \left(\boldsymbol{\psi} \circ \boldsymbol{\phi}^{-1}\right) \circ g_{\boldsymbol{\phi}} \circ\left(\phi \circ \boldsymbol{\psi}^{-1}\right) \\
= & \boldsymbol{\psi} \circ \boldsymbol{\phi}^{-1} \circ \boldsymbol{\phi} \circ g \circ \boldsymbol{\phi}^{-1} \circ \phi \circ \boldsymbol{\psi}^{-1}=g_{\boldsymbol{\psi}} .
\end{aligned}
$$

Passive transformations

Ever been confused about whether your train just started rolling out of the station, or whether the one on the neighboring track began moving in the opposite direction?

Let $g: M \rightarrow M$. Its action $p \mapsto g(p)$ on points is called active. If g is invertible, one can also use it to act on coordinate systems (analogous to the reference system defined by the neighboring train). This passive action takes a coordinate function ϕ and creates a new coordinate function $\psi:=\phi \circ g^{-1}$.

The coordinate change from the original ϕ to the new system ψ is

$$
\begin{equation*}
\phi \circ g^{-1} \circ \phi^{-1} \tag{2.21}
\end{equation*}
$$

Formally, this is the inverse g_{ϕ}^{-1} of the coordinate representation of the active action (recall the opposite direction of motion of the reference train).

Remarks.

- "Passive transformation" sometimes refers to the map $\phi \mapsto \phi \circ g^{-1}$ (as in our definition) and sometimes, if ϕ is clear from context, to the coordinate change $\phi \circ g^{-1} \circ \phi^{-1}$.
- All other objects encountered (M, curves, scalar functions, (active) transformations) exist independently of coordinates. That's obviously not the case for passive transformations. It thus comes as no surprise that passive transformations are often seen in science and engineering, but much less talked about in math, with its emphasis on canonic objects.
- Compare "If a physical process is possible, then so is any rotated version of it" to "The equations of physics are invariant under rotations of the coordinate system". These statements express the same fact about reality, respectively from an active and a passive mindset. Which one do you find more compelling?

Notation

We have encountered many objects in quick succession. In physics books, most of them are not mentioned explicitly. Let me try to give a fair summary of the standard terminology:

concept	math	physics	comment
point	$p \in M$	\boldsymbol{r}	
coordinate function	$\boldsymbol{\phi}: M \rightarrow \mathbb{R}^{n}$	\boldsymbol{r}	
different coordinate function	$\boldsymbol{\psi}: M \rightarrow \mathbb{R}^{n}$	\boldsymbol{r}^{\prime}	
coordinates of a point	$\boldsymbol{x}=\boldsymbol{\phi}(p)$	\boldsymbol{r}	I'm sensing a pattern!
curve	$\gamma: \mathbb{R} \rightarrow M$	$\boldsymbol{r}(t), \boldsymbol{r}$	
position of curve at time t	$\gamma(t)$	$\boldsymbol{r}(t)$	
coordinate rep of curve	$\gamma_{\boldsymbol{\phi}}=\phi \circ \gamma$	$\boldsymbol{r}(t), \boldsymbol{r}$	
scalar function	$f: M \rightarrow \mathbb{R}$	$f(\boldsymbol{r}), f$	
coordinate rep of function	$f_{\boldsymbol{\phi}}=f \circ \phi^{-1}$	$f(\boldsymbol{r}), f$	
function along curve	$f \circ \gamma$	$f(t)$	Wait, where's the curve?
coordinate change	$\boldsymbol{\psi} \circ \boldsymbol{\phi}^{-1}$	$\boldsymbol{r}^{\prime}(\boldsymbol{r})$	I'm not making this up.
$\quad \vdots$	\vdots	\vdots	-

As long as you can keep all the different meanings separated in your head, the terse physics notation is extremely clean and efficient. But God help you should you ever get confused!

2.7.2 In linear algebra

In linear algebra, coordinates are derived from bases. For a basis \mathcal{B}, recall that $\phi^{\mathcal{B}}$ is the linear maps $V \rightarrow \mathbb{F}^{n}$ that gives the expansion coefficients w.r.t. \mathcal{B} (Eq. (1.5)).

Vectors

Assume two bases $\mathcal{A}=\left\{v_{i}\right\}_{i=1}^{n}$ and $\mathcal{A}^{\prime}=\left\{v_{i}^{\prime}\right\}_{i=1}^{n}$ have been chosen on a space V. There are thus two sets of coordinates associated with every vector:

$$
\boldsymbol{x}=\phi^{\mathcal{A}}(v), \quad \boldsymbol{x}^{\prime}=\boldsymbol{\phi}^{\mathcal{A}^{\prime}}(v)
$$

The coordinate change

$$
\begin{equation*}
\phi^{\mathcal{A}^{\prime}} \circ\left(\phi^{\mathcal{A}}\right)^{-1}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n} \tag{2.22}
\end{equation*}
$$

is a linear function and thus realized by multiplication with an $n \times n$-matrix. Denote it as $\boldsymbol{T}_{\mathcal{A}}^{\mathcal{A}^{\prime}}$, or, if the bases are clear from context, as \boldsymbol{T} :

$$
\begin{equation*}
\boldsymbol{x}^{\prime}=\phi^{\mathcal{A}^{\prime}} \circ\left(\phi^{\mathcal{A}}\right)^{-1}(\boldsymbol{x})=\boldsymbol{T} \boldsymbol{x} \tag{2.23}
\end{equation*}
$$

Relation (2.23) is called the contravariant transformation law.

Linear forms

Now let $f: V \rightarrow \mathbb{F}$ be a linear form. By 1.9 , it is represented by the row vectors

$$
\boldsymbol{y}=\phi_{\mathcal{B}}(f), \quad \boldsymbol{y}^{\prime}=\boldsymbol{\phi}_{\mathcal{B}^{\prime}}(f)
$$

As in 2.18): With \boldsymbol{T} the same matrix as above, they are related by

$$
\begin{equation*}
\boldsymbol{y}^{\prime}=\boldsymbol{y} \boldsymbol{T}^{-1} \tag{2.24}
\end{equation*}
$$

Relation (2.24) is the covariant transformation law. As a consistency check, let's verify that the contraction between a co- and a contravariant quantity is invariant:

$$
\boldsymbol{y}^{\prime} \boldsymbol{x}^{\prime}=\boldsymbol{y} \boldsymbol{T}^{-1} \boldsymbol{T} \boldsymbol{x}=\boldsymbol{y} \boldsymbol{x}
$$

This had better be the case, because both expressions describe the coordinate-independent number $f(v)$ (c.f. 2.19).

Example. If $\boldsymbol{T} \boldsymbol{x}=\lambda \boldsymbol{x}$ stretches vectors, then $\boldsymbol{y} \boldsymbol{T}^{-1}=\frac{1}{\lambda} \boldsymbol{y}$ shrinks to compensate.

Linear maps

Let $L: V \rightarrow V$ be a linear map with matrix representations

$$
\boldsymbol{A}=\phi_{\mathcal{B}}^{\mathcal{B}}(L), \quad \boldsymbol{A}^{\prime}=\phi_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}(L)
$$

As in 2.20,

$$
\begin{equation*}
\boldsymbol{A}^{\prime}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1} \tag{2.25}
\end{equation*}
$$

One says that \boldsymbol{T} acts on \boldsymbol{A} by conjugation. Two matrices $\boldsymbol{A}, \boldsymbol{A}^{\prime}$ that are related by conjugation with an invertible \boldsymbol{T} are similar.

Passive action

If $L: V \rightarrow V$ is invertible, it maps bases to bases:

$$
\mathcal{B}=\left\{v_{i}\right\} \mapsto \mathcal{B}^{\prime}=L(\mathcal{B})=\left\{L v_{i}\right\} .
$$

Then $\phi^{L(\mathcal{B})}=\phi^{\mathcal{B}} \circ L^{-1}$, i.e. the action of invertible maps on bases gives rise to the "passive action".

Let $\boldsymbol{T}=\phi^{L(\mathcal{B})} \circ\left(\phi^{\mathcal{B}}\right)^{-1}$ be the matrix implementing the change from the old to the new coordinate system. Formally, it equals the basis representation $\phi^{\mathcal{B}} \circ L^{-1} \circ\left(\phi^{\mathcal{B}}\right)^{-1}$ of the inverse of L. "Rotating the basis to the right has the same effect on coordinates as rotating all vectors to the left":

Below is work very much in progress.

Chapter 3

Eigenvalues and eigenvectors

Two matrix representations $\boldsymbol{A}, \boldsymbol{A}^{\prime}$ of a linear map are related by a similarity transformation $\boldsymbol{A}^{\prime}=\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}$ (c.f. (2.25). Matrices that are "similar" in this technical sense can look very different in practice. Given L, it is of great interest to find a basis w.r.t. which the representation \boldsymbol{A} is particularly simple. (In fact, in QM, "solving a system" has come to mean "finding a basis in which the operator describing energy is diagonal".) It is this problem we'll address in the present chapter.

We'll first look at invariants of similarity transforms, i.e. functions of matrices that do not change under $\boldsymbol{A} \mapsto \boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}$, then turn to the discussion of eigenvectors.

3.1 The trace

The trace of a square matrix is the sum over its diagonal elements

$$
\operatorname{tr} \boldsymbol{A}=\sum_{i} a_{i i}
$$

The trace has the following cyclicity property

$$
\begin{equation*}
\operatorname{tr} \boldsymbol{A} \boldsymbol{B}=\operatorname{tr} \boldsymbol{B} \boldsymbol{A} \tag{3.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{tr} \boldsymbol{A}_{1} \boldsymbol{A}_{2} \ldots \boldsymbol{A}_{k-1} \boldsymbol{A}_{k}=\operatorname{tr} \boldsymbol{A}_{2} \boldsymbol{A}_{3} \ldots \boldsymbol{A}_{k} \boldsymbol{A}_{1} \quad \text { and } \quad \operatorname{tr} \boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}=\operatorname{tr} \boldsymbol{A} . \tag{3.2}
\end{equation*}
$$

Proof. Homework.
If L is an abstract linear map, define $\operatorname{tr} L:=\operatorname{tr} \boldsymbol{A}$, where $\boldsymbol{A}=\phi^{\mathcal{B}}(L)$ is the matrix representation w.r.t. some basis. By (3.2), the result does not depend on the basis chosen.

Example [Bloch representation]. The trace scalar product

$$
\langle\boldsymbol{A}, \boldsymbol{B}\rangle_{\mathrm{tr}}:=\operatorname{tr} \boldsymbol{A}^{\dagger} \boldsymbol{B}
$$

is a Hermitian scalar product on the space $\mathbb{C}^{n \times n}$ of complex $n \times n$-matrices.
The Pauli matrices $\left\{\frac{1}{\sqrt{2}} \sigma_{i}\right\}_{i=0}^{3}$ form an ONB for $\mathbb{C}^{2 \times 2}$:

$$
\frac{1}{2}\left\langle\boldsymbol{\sigma}_{i}^{\dagger}, \boldsymbol{\sigma}_{j}\right\rangle=\delta_{i j} .
$$

It follows that any 2×2-matrix ρ can be written as

$$
\boldsymbol{\rho}=\sum_{i} c_{i} \boldsymbol{\sigma}_{i}, \quad c_{i}=\frac{1}{2} \operatorname{tr} \boldsymbol{\sigma}_{i}^{\dagger} \boldsymbol{\rho}
$$

The coefficient vector \boldsymbol{c} is called the Bloch representation of ρ in quantum physics.

3.2 The determinant

The determinant is important in linear algebra and for multidimensional integration. In \mathbb{R}^{n}, it can be geometrically interpreted as measuring "oriented volume". We'll first explain that interpretation in \mathbb{R}^{2} and then treat the more abstract general case.

3.2.1 Oriented volume in two dimensions

Consider a pair of vectors $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ in \mathbb{R}^{2}. They span a parallelogram. It turns out (surprisingly?) to be important to classify these according to their area and their orientation.

Some shapes, like shoes, gloves, or the letter R are not congruent to their mirror images. Roughly, "orientation" is the property that distinguishes the original from its reflection. For an ordered pair $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ of vectors in \mathbb{R}^{2}, define their orientation by

$$
\begin{array}{ll}
\operatorname{ori}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=+1 & \text { if } \boldsymbol{a}_{1} \text { lies to the right of the line through } \boldsymbol{a}_{2} \\
\operatorname{ori}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=-1 & \text { if } \boldsymbol{a}_{1} \text { lies to the left of the line through } \boldsymbol{a}_{2} \\
\operatorname{ori}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=0 & \text { if } \boldsymbol{a}_{1} \text { lies on the line through } \boldsymbol{a}_{2}
\end{array}
$$

Let the volume $\operatorname{vol}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ be the area of the parallelogram spanned by $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$.
The determinant is the "oriented volume"

$$
\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\operatorname{ori}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right) \operatorname{vol}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)
$$

If \boldsymbol{A} is the matrix with columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, one also writes $\operatorname{det} \boldsymbol{A}$ for $\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$.
Below, we will turn the geometric definition into a formula, in two steps:
(S1): The determinant is bilinear and alternating

$$
\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=-\operatorname{det}\left(\boldsymbol{a}_{2}, \boldsymbol{a}_{1}\right)
$$

Bilinear functions are also called bilinear forms. Denote the set of alternating bilinear forms by $\bigwedge^{2}\left(\mathbb{R}^{2}\right)$ ("wedge- 2 "). For the next statement, write

$$
\boldsymbol{a}_{1}=\binom{a}{c}, \quad \boldsymbol{a}_{2}=\binom{b}{d}, \quad \text { so that in matrix form } \quad\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(S2): $\bigwedge^{2}\left(\mathbb{R}^{2}\right)$ is a 1-dimensional vector space. Any $K \in \bigwedge^{2}\left(\mathbb{R}^{2}\right)$ fulfills

$$
\begin{equation*}
K\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=(a b-c d) K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) \tag{3.3}
\end{equation*}
$$

Interpret (3.3) this way: All alternating bilinear forms agree that the oriented volume of a general parallelogram is $(a b-c d)$ times the one of the unit square. But one is free to "choose units" by assigning an arbitrary value $K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)$ to this reference shape. Because the standard choice is 1 , we get

$$
\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Proof of the formula for the two-dimensional determinant

The following properties can be seen from (Fig. ??):
(P1): Exchanging \boldsymbol{a}_{1} and $\boldsymbol{a}_{2} \ldots$

- leaves the volume invariant, and
- flips the sign of the orientation.
(P2): Multiplying a_{1} or a_{2} by $\lambda \in \mathbb{R} \ldots$
- multiplies the volume by $|\lambda|$, and
- preserves orientation if $\lambda>0$ and flips the sign of the orientation if $\lambda<0$.
(P3): Adding a multiple of one vector to the other preserves both volume and orientation.
Proof of (S1). Property (P1) implies that det is alternating, (P2) gives homogeneity

$$
\begin{equation*}
\operatorname{det}\left(\lambda \boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\lambda \operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)=\operatorname{det}\left(\boldsymbol{a}_{1}, \lambda \boldsymbol{a}_{2}\right) \tag{3.4}
\end{equation*}
$$

Now assume that $\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)$ are LI. Then any vector is of the form $\lambda \boldsymbol{a}_{1}+\mu \boldsymbol{a}_{2}$ and we have

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{a}_{1}+\left(\lambda \boldsymbol{a}_{1}+\mu \boldsymbol{a}_{2}\right), \boldsymbol{a}_{2}\right) & =\operatorname{det}\left((1+\lambda) \boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right) & & \text { by }(\mathrm{P} 3), \\
& =\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)+\lambda \operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right) & & \text { by (3.4), } \\
& =\operatorname{det}\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right)+\operatorname{det}\left(\lambda \boldsymbol{a}_{1}+\mu \boldsymbol{a}_{2}, \boldsymbol{a}_{2}\right) & & \text { by (3.4), (P3). }
\end{aligned}
$$

The remaining cases are treated similarly.
Proof of $(S 2)$. Let $K \in \Lambda^{2}\left(\mathbb{R}^{2}\right)$. Using $K(\boldsymbol{v}, \boldsymbol{v})=-K(\boldsymbol{v}, \boldsymbol{v})$ and hence $K(\boldsymbol{v}, \boldsymbol{v})=0$,

$$
\begin{align*}
& K\left(a \boldsymbol{e}_{1}+c \boldsymbol{e}_{2}, b \boldsymbol{e}_{1}+d \boldsymbol{e}_{2}\right) \\
= & a b \underbrace{K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}\right)}_{0}+c d \underbrace{K\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{2}\right)}_{0}+a d K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)+c b \underbrace{K\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right)}_{-K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)} \tag{3.5}\\
= & (a d-c b) K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right) .
\end{align*}
$$

3.2.2 The determinant in general

In \mathbb{R}^{2} the determinant can be described equivalently in geometric terms as oriented volume, or in algebraic terms, as the unique alternating bilinear form that assigns +1 to the standard basis. For general vector spaces \mathbb{F}^{n}, the notions of "orientation" or "volume" might not exist, but the algebraic approach does generalize.

Alternating forms

A function

$$
K: \underbrace{V \times \cdots \times V}_{k \text { times }} \rightarrow \mathbb{F}
$$

is a multilinear form if it is linear in each argument. A multilinear form is alternating if it changes the sign whenever two arguments are swapped. Let $\bigwedge^{k}\left(\mathbb{F}^{n}\right)$ be the space of alternating k-linear forms on \mathbb{F}^{n}.

Permutations

In Eq. 3.3), we used the alternating property to map $K\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{1}\right)$ to $-K\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)$. Below, we'll be dealing with expressions of the form $K\left(\boldsymbol{e}_{j_{1}}, \ldots, \boldsymbol{e}_{j_{n}}\right)$. To track the sign changes incurred when ordering the arguments, we need the concept of "permutations" and their "sign".

A permutation π of n letters is a re-arrangement $\left(\pi_{1}, \ldots, \pi_{n}\right)$ of $(1, \ldots, n)$. The set of all such permutations is S_{n}, the symmetric group on n letters. The sign of a permutation is a number $\operatorname{sign}(\pi) \in \pm 1$ computed as follows. Take π and sort its entries iteratively, for i ranging from 1 to n : If $\pi_{i} \neq i$, find k such that $\pi_{k}=i$ and exchange $i \leftrightarrow k$. Then $\operatorname{sign} \pi=+1$ if an even number of swaps occurred, and -1 else.

Example.

$$
\begin{aligned}
(2,3,1) \rightarrow(1,3,2) \rightarrow(1,2,3) & \Rightarrow \quad \operatorname{sign}(2,3,1)=+1 . \\
(2,1,3) \rightarrow(1,2,3) & \Rightarrow \quad \operatorname{sign}(2,1,3)=-1 .
\end{aligned}
$$

The general definition

1. There is a unique alternating n-form on \mathbb{F}^{n} that assigns +1 to the standard basis. Def.: This form is the determinant. The determinant of an $n \times n$ matrix is the determinant of its columns.
2. The determinant satisfies the Leibniz formula

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A})=\sum_{\pi \in S_{n}}(\operatorname{sign} \pi) a_{1 \pi_{1}} \ldots a_{n \pi_{n}} \tag{3.6}
\end{equation*}
$$

3. Any alternating n-form $K \in \bigwedge^{n}\left(\mathbb{F}^{n}\right)$ is proportional to it

$$
\begin{equation*}
K\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)=\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right) K\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right) \tag{3.7}
\end{equation*}
$$

Proof. From Eq. 3.6, det is multilinear, alternating, and evaluates to 1 on the standard basis. Now use multilineraity and the alternating property to find

$$
\begin{align*}
K\left(\sum_{j_{1}} a_{1 j_{1}} \boldsymbol{e}_{j_{1}}, \ldots, \sum_{j_{n}} a_{n j_{n}} \boldsymbol{e}_{j_{n}}\right) & =\sum_{j_{1}, \ldots, j_{n}} a_{1 j_{1}} \ldots a_{n j_{n}} K\left(\boldsymbol{e}_{j_{1}}, \ldots \boldsymbol{e}_{j_{n}}\right) \tag{3.8}\\
& =\sum_{\pi \in S_{n}}(\operatorname{sign} \pi) a_{1 \pi_{1}} \ldots a_{n \pi_{n}} K\left(\boldsymbol{e}_{1}, \ldots \boldsymbol{e}_{n}\right)
\end{align*}
$$

Remark. The size of the symmetric group is $n!=n \cdot(n-1) \ldots 2 \cdot 1$, which is ginormous. For $n \simeq 60$, the number of terms in (3.6) exceeds the number of hadrons in the universe. Thus, 3.6) is useful for mathematical reasoning, but does not provide a practical algorithm for actually computing det. See Sec. 5.1 for an efficient algorithm.

3.2.3 Properties of the determinant

Most importantly, det turns products of matrices into the product of numbers:

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A} \boldsymbol{B})=\operatorname{det} \boldsymbol{A} \operatorname{det} \boldsymbol{B} \tag{3.9}
\end{equation*}
$$

Proof. Write

$$
\operatorname{det}(\boldsymbol{A B})=\operatorname{det}\left(\boldsymbol{A} \boldsymbol{b}_{1}, \ldots, \boldsymbol{A} \boldsymbol{b}_{n}\right)=: K\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)
$$

Then K is is multilinear and alternating, so that (3.7) implies (3.9)
In particular, matrix inverses are mapped to inverse numbers:

$$
\begin{align*}
1=\operatorname{det}(\mathbb{1})=\operatorname{det}\left(\boldsymbol{T} \boldsymbol{T}^{-1}\right) & =\operatorname{det}(\boldsymbol{T}) \operatorname{det}\left(\boldsymbol{T}^{-1}\right) \tag{3.10}\\
\Rightarrow \quad \operatorname{det}\left(\boldsymbol{T}^{-1}\right) & =[\operatorname{det}(\boldsymbol{T})]^{-1} . \tag{3.11}
\end{align*}
$$

It follows that det is indeed invariant under similarity transformations:

$$
\operatorname{det}\left(\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}\right)=\operatorname{det}(\boldsymbol{T}) \operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{T}^{-1}\right)=\operatorname{det}(\boldsymbol{A})
$$

Like we did for the trace, one can therefore define the determinant of an abstract $L: V \rightarrow$ V as the determinant of any matrix representation $\operatorname{det} L:=\operatorname{det}\left(\boldsymbol{\phi}_{\mathcal{B}}(L)\right)$.

Another important consequence:

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A}) \neq 0 \quad \Leftrightarrow \quad \boldsymbol{A} \text { is invertible. } \tag{3.12}
\end{equation*}
$$

Proof. If \boldsymbol{A} is invertible, then $\operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{A}^{-1}\right)=1$, hence $\operatorname{det}(\boldsymbol{A}) \neq 0$. If \boldsymbol{A} is not invertible, then there is a non-zero \boldsymbol{v} such that $\boldsymbol{A} \boldsymbol{v}=0$. Let i be such that $v_{i} \neq 0$. Then

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{i}, \ldots, \boldsymbol{a}_{n}\right) & =v_{i}^{-1} \operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \sum_{j} v_{j} \boldsymbol{a}_{j}, \ldots, \boldsymbol{a}_{n}\right) \\
& =v_{i}^{-1} \operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, 0, \ldots, \boldsymbol{a}_{n}\right)=0
\end{aligned}
$$

Remarks \& Exercises.

1. $\operatorname{det}(\lambda \boldsymbol{A})=\lambda^{n} \operatorname{det}(\boldsymbol{A}) .(\operatorname{Not} \lambda \operatorname{det}(\boldsymbol{A})$, a common mistake!)
2. From the Leibniz formula, $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{t}\right)$.
3. The determinant of a diagonal matrix is the product of the diagonal elements: $\operatorname{det}\left(\operatorname{diag}\left(a_{i}\right)\right)=a_{1} \ldots a_{n}$.
4. Slightly less obvious: the determinant of an upper triangular matrix is also the product of the diagonal elements.
5. For $n=3$, the triple product (Spatprodukt) formula links det to the cross product:

$$
\operatorname{det}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})=\langle\boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{c}\rangle, \quad \text { where } \quad\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} a_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{2}
\end{array}\right) .
$$

6. The array of numbers $\epsilon_{j_{1} \ldots j_{n}}:=\operatorname{det}\left(\boldsymbol{e}_{j_{1}}, \ldots \boldsymbol{e}_{j_{n}}\right)$ is called the Levi-Civita symbol. Expanding as in Eq. 3.8,

$$
\operatorname{det}(\boldsymbol{A})=\sum_{j_{1}, \ldots, j_{n}} a_{1 j_{1}} \ldots a_{n j_{n}} \operatorname{det}\left(\boldsymbol{e}_{j_{1}}, \ldots \boldsymbol{e}_{j_{n}}\right)=\sum_{j_{1}, \ldots, j_{n}} a_{1 j_{1}} \ldots a_{n j_{n}} \epsilon_{j_{1} \ldots j_{n}} .
$$

3.2.4 Volume and orientation in higher dimensions

In \mathbb{R}^{n}, one defines volume and orientation of a prallelepiped in terms of the determinant:

$$
\begin{aligned}
\operatorname{ori}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right) & :=\operatorname{sign}\left(\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)\right), \\
\operatorname{vol}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right) & :=\left|\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)\right|
\end{aligned}
$$

The volume of an arbitrary body in \mathbb{R}^{n} is defined by approximating it by parallelepipeds (Fig. ??).

From this point of view, the product formula

$$
\operatorname{det}\left(\boldsymbol{A} \boldsymbol{b}_{1}, \ldots, \boldsymbol{A} \boldsymbol{b}_{n}\right)=\operatorname{det}(\boldsymbol{A}) \operatorname{det}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)
$$

says that
multiplying with the matrix \boldsymbol{A} changes volume by a factor of $|\operatorname{det}(\boldsymbol{A})|$, multiplying with the matrix \boldsymbol{A} changes orientation by $\operatorname{sign}(\operatorname{det}(\boldsymbol{A}))$.

Examples.

1. Rotations preserve volume and orientation. Reflections about a coordinate plane preserve volume, but invert orientation. And indeed:

$$
\operatorname{det}\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=\cos ^{2} \phi+\sin ^{2} \phi=1, \quad \operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-1 .
$$

We can now outline what determinants have to do with integration (though the detailed theory is not part of this course). Assume we want to integrate $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a region $R \subset \mathbb{R}^{n}$. It might be that there is a coordinate change \boldsymbol{T} such that $\boldsymbol{T}(R)=\{\boldsymbol{T} \boldsymbol{x} \mid \boldsymbol{x} \in R\}$ is easier to describe. Rewriting the integral in terms of the new coordinates, we have to insert a factor of $|\operatorname{det} \boldsymbol{T}|^{-1}$ to compensate for the distortion of volume under \boldsymbol{T} :

$$
\int_{R} f(\boldsymbol{x}) \mathrm{d}^{n} \boldsymbol{x}=\int_{\boldsymbol{T}(R)} f\left(\boldsymbol{T}^{-1} \boldsymbol{y}\right)|\operatorname{det} \boldsymbol{T}|^{-1} \mathrm{~d}^{n} \boldsymbol{y}
$$

3.3 Eigenvectors and eigenvalues

Let $L: V \rightarrow V$ be a linear map. An eigenvector of L is a non-zero $v \in V$ such that

$$
\begin{equation*}
L v=\lambda v \tag{3.13}
\end{equation*}
$$

for some $\lambda \in \mathbb{F}$. The number λ is the eigenvalue of L associated with v.

Examples.

1. The eigenvectors of a diagonal matrix are the standard basis vectors $\left\{\boldsymbol{e}_{i}\right\}$. The eigenvalue associated with \boldsymbol{e}_{i} is the i th diagonal element. Every non-zero vector is an eigenvector of $\mathbb{1}$ with eigenvalue 1 , and an eigenvector of the null matrix with eigenvalue 0 .
2. A non-trivial rotation on \mathbb{R}^{2} does not have any eigenvectors.
3. The eigenvectors of $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ are the vectors of the form $\boldsymbol{v}=\binom{\lambda}{0}$ for $\lambda \neq 0$.
4. On the space of differentiable functions $\mathbb{R} \rightarrow \mathbb{C}$, the eigenvectors of ∂_{x} are of the form $f(x)=\mu e^{\lambda x}$ for $\mu \neq 0$. Functions representing physical quantities are usually bounded in the sense that for every f, there is a $C \in \mathbb{R}$ s.t. $\forall x,|f(x)| \leq C$. The eigenfunctions above are bounded iff $\lambda=i|\lambda|$ is purely imaginary, in which case f is a plane wave.
5. The map $L+\mu \mathbb{1}$ has the same eigenvectors as L, but all eigenvalues are shifted by μ.

While not every linear map has an eigenvector, some have entire bases of them! An eigenbasis for $L: V \rightarrow V$ is a basis $\mathcal{B}=\left\{v_{i}\right\}$ for V consisting of eigenvectors

$$
L v_{i}=\lambda_{i} v_{i} \quad \forall i
$$

This concept is of great importance, because the representation of L w.r.t. an eigenbasis is extremely simple. In particular, if V is finite-dimensional, we immediately have

$$
\mathcal{B} \text { is an eigenbasis } \quad \Leftrightarrow \quad \phi_{\mathcal{B}}^{\mathcal{B}}(L) \text { is diagonal. }
$$

In this case, the diagonal elements of $\phi_{\mathcal{B}}(L)$ are nothing but the eigenvalues of L. If L has an eigenbasis, it is said to be diagonalizable.

Let's make this concrete for the case where L is given by a square matrix \boldsymbol{A}. Because

$$
\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1} \boldsymbol{e}_{i}=\lambda_{i} \boldsymbol{e}_{i} \quad \Leftrightarrow \quad \boldsymbol{A}\left(\boldsymbol{T}^{-1} \boldsymbol{e}_{i}\right)=\lambda_{i}\left(\boldsymbol{T}^{-1} \boldsymbol{e}_{i}\right)
$$

$\boldsymbol{T} \boldsymbol{A} \boldsymbol{T}^{-1}$ is diagonal iff the columns of \boldsymbol{T}^{-1} are an eigenbasis of \boldsymbol{A}.
Why this really matters. Given a linear L, it can be quite difficult to find an eigenbasis (assuming it exists). But once we have it, most problems involving L become trivial. For example:

- To decide whether L is invertible: Just check whether 0 is among the eigenvectors.
- To compute the inverse of L : Just invert the eigenvalues.
- To solve the linear equation $L u=f$: For the representations $\boldsymbol{f}=\phi^{\mathcal{B}}(f), \boldsymbol{u}=\phi^{\mathcal{B}}(u)$ w.r.t. the eigenbasis, the solution is just $u_{i}=\lambda_{i}^{-1} f_{i}$.

Also, eigenvectors/eigenvalues often have direct physical interpretations. Examples:

- The frequencies of the harmonics of a musical instrument are eigenval-
 ues of a mechanical differential operator. The zeros of the eigenvectors can be visualized as Chladni figures
- The stable axes of rotation of a rigid body are the eigenvectors of the inertia tensor associated with the largest \& smallest eigenvalues.
- The spectral lines of atoms are the differences between eigenvalues of the quantum mechanical energy operator.

Examples.

- The Fibonacci numbers are defined by the recursion relation $F_{k+2}=F_{k+1}+F_{k}$ with initial conditions $F_{0}=0, F_{1}=1$. Apparently, they describe mating rabbits... whatever. To understand the asymptotic behavior, write the relation in matrix form

$$
\underbrace{\binom{F_{k+1}}{F_{k}}}_{\boldsymbol{f}_{k}}=\underbrace{\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)}_{\boldsymbol{F}} \underbrace{\binom{F_{k}}{F_{k-1}}}_{\boldsymbol{f}_{k-1}} \Rightarrow \boldsymbol{f}_{k}=\boldsymbol{F}^{k} \boldsymbol{f}_{0}, \quad \boldsymbol{f}_{0}=\binom{1}{0} .
$$

The powers of the transfer matrix \boldsymbol{F} are best computed in its eigenbasis $\left\{\boldsymbol{v}_{+}, \boldsymbol{v}_{-}\right\}$:

$$
\begin{equation*}
\boldsymbol{f}_{k}=\boldsymbol{F}^{k}\left(c_{+} \boldsymbol{v}_{+}+c_{-} \boldsymbol{v}_{-}\right)=c_{+} \lambda_{+}^{k} \boldsymbol{v}_{+}+c_{-} \lambda_{-}^{k} \boldsymbol{v}_{-}, \quad \boldsymbol{f}_{0}=c_{+} \boldsymbol{v}_{+}+c_{-} \boldsymbol{v}_{-}, \tag{3.14}
\end{equation*}
$$

where $c_{ \pm}$are the expansion coefficients of \boldsymbol{f}_{0} w.r.t. the eigenbasis. Thus, one only has to find the eigenbasis of \boldsymbol{F} to get a closed formula for F_{k} ! Details are an exercise.

3.3.1 Eigenspaces

If v, w are eigenvectors of L for the same eigenvalue λ, then

$$
L(v+\mu w)=L v+\mu L w=\lambda(v+\mu w)
$$

Therefore, the set of all eigenvectors for λ, together with the null vector, form a subspace V_{λ} of V. It is called the eigenspace for λ.

Rearranging the eigenvalue equation (3.13) gives

$$
\begin{equation*}
L v=\lambda v \quad \Leftrightarrow \quad(\lambda \mathbb{1}-L) v=0 \quad \Leftrightarrow \quad v \in \operatorname{ker}(\lambda \mathbb{1}-L) \tag{3.15}
\end{equation*}
$$

and thus $V_{\lambda}=\operatorname{ker}(\lambda \mathbb{1}-L)$. The dimension $\operatorname{dim} V_{\lambda}$ is called the (geometric) multiplicity of λ. Eigenvalues with multiplicity larger than 1 are called degenerate.

Remark. If $L v=\lambda v$, then $L(\mu v)=\lambda(\mu v)$. Thus, even if the eigenspace is non-degenerate, eigenvectors are determined at most up to a non-zero factor $\mu \in \mathbb{F}$. In Euclidean/Hermitian spaces, one often demands that eigenvectors be normalized. But this still leaves an ambiguity of ± 1 or $e^{i \phi}$, known as a "global phase" in QM.

Example

1. On \mathbb{C}^{n}, consider the projection $P_{\boldsymbol{w}}: \boldsymbol{v} \mapsto \boldsymbol{w}\langle\boldsymbol{w}, \boldsymbol{v}\rangle$ for a normalized \boldsymbol{w}. Extend $\mathcal{B}=$ $\left\{\boldsymbol{b}_{1}=\boldsymbol{w}, \boldsymbol{b}_{2}, \ldots\right\}$ to an ONB. Then $P_{\boldsymbol{w}}\left(\boldsymbol{b}_{1}\right)=\boldsymbol{b}_{1}$ and $P_{\boldsymbol{w}}\left(\boldsymbol{b}_{i}\right)=0$ for $i>1$. Thus \mathcal{B} is an eigenbasis. The eigenvalue 1 is non-degenerate, but 0 has multiplicity $n-1$.
2. On the space of twice differentiable bounded functions $\mathbb{R} \rightarrow \mathbb{C}$, the eigenvalues of $P=-i \partial_{x}$ are the real numbers: The eigenspace associated with $k \in \mathbb{R}$ consists of the multiples of $f_{k}(x)=e^{i k x}$. All eigenvalues are hence non-degenerate.
The square $P^{2}=-\partial_{x}^{2}$ has the same eigenvectors. The eigenvalue of f_{k} is now $E:=k^{2}$, and thus f_{k} and f_{-k} belong to the same eigenspace of P^{2}. Therefore: $E=0$ is nondegenerate, but the positive eigenvalues have multiplicity 2 .
In the quantum treatment of a particle in one dimension, P is associated with the particle's momentum, and P^{2} with its kinetic energy. Physically, the degeneracy reflects the fact that each non-zero value of kinetic energy is compatible with two directions of motion.

Let $S=\left\{v_{i}\right\}$ be a set of eigenvectors with distinct eigenvalues λ_{i}. Then S is LI.
Proof. By induction on $|S|=k$. Assume the statement holds for $k-1$. If

$$
0=\sum_{i=1}^{k} c_{i} v_{i} \text { then } 0=\left(\lambda_{k} \mathbb{1}-L\right) \sum_{i=1}^{k} c_{i} v_{i}=\sum_{i=1}^{k-1} c_{i} \underbrace{\left(\lambda_{k}-\lambda_{i}\right)}_{\neq 0} v_{i}
$$

Thus $c_{1}=\cdots=c_{k-1}=0$ by the induction hypothesis, and hence $c_{k}=0$ as well.
Thus: If $\operatorname{dim} V=n<\infty$ and L has n distinct eigenvalues, then it has an eigenbasis.

3.3.2 Characteristic polynomial

In this section, assume that $\operatorname{dim} V=n<\infty$. By 3.15), λ is an eigenvalue iff $\operatorname{det}(L-$ $\lambda \mathbb{1})=0$. The degree- n polynomial

$$
p_{L}: x \mapsto \operatorname{det}(x \mathbb{1}-L)
$$

is the characteristic polynomial of L. Thus, the eigenvalues of L are among the roots of its characteristic polynomial.

Example. For the rotation matrices \boldsymbol{R}_{ϕ}, the characteristic polynomials and its roots are

$$
\begin{aligned}
p_{\boldsymbol{R}_{\phi}}(x) & =\operatorname{det}\left(\begin{array}{cc}
\cos \phi-x & \sin \phi \\
-\sin \phi & \cos \phi-x
\end{array}\right)=x^{2}-2 x \cos \phi+1 \\
\Rightarrow \quad \lambda_{ \pm} & =\cos \phi \pm \sqrt{\cos ^{2} \phi-1}=\cos \phi \pm i \sin \phi=e^{ \pm i \phi}
\end{aligned}
$$

The roots are complex and thus are not eigenvalues of \boldsymbol{R}_{ϕ} as a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
If $\mathbb{F}=\mathbb{C}$, the characteristic polynomial factorizes

$$
\begin{equation*}
p_{L}(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right), \quad \quad \lambda_{i} \in \mathbb{C} \tag{3.16}
\end{equation*}
$$

Consequences:

- Over \mathbb{C}, every L has at least one eigenvalue.
- If p_{L} has n distinct roots, then L has an eigenbasis.

Example. If a real matrix \boldsymbol{A} has no eigenbasis in \mathbb{R}^{n}, it may have one in \mathbb{C}^{n}. For example, the choice $\boldsymbol{T}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right)$ diagonalizes the 2D rotation matrices: $\boldsymbol{T} \boldsymbol{R}_{\phi} \boldsymbol{T}^{-1}=\operatorname{diag}\left(e^{i \phi}, e^{-i \phi}\right)$.

In Hamiltonian mechanics, the dynamics of a harmonic oscillator is a rotation in phase space, i.e. the x - p-plane. In dimensionless coordinates: $\binom{x(t)}{p(t)}=A\binom{\cos \left(-\omega t+\phi_{0}\right)}{\sin \left(-\omega t+\phi_{0}\right)}$. By the above (or directly by Euler's formula), the dynamics is diagonalized by the complex coordinates

$$
\binom{a(t)}{a^{\dagger}(t)}:=\boldsymbol{T}\binom{x}{p}=\frac{1}{\sqrt{2}}\binom{x+i p}{x-i p}=\binom{a(0) e^{-i \omega t}}{a^{\dagger}(0) e^{i \omega t}}
$$

This formulation is central to the "algebraic solution" of the quantum harmonic oscillator.
The number of times a given value λ appears in the decomposition 2.13 is the algebraic multiplicity of the eigenvalue. Counting and using LI of different eigenspaces:

- If for all eigenvalues, the geometric multiplicity equals the algebraic multiplicty, then L has an eigenbasis.

3.4 The Jordan Normal Form (and why it doesn't matter)

The geometric multiplicity can be strictly smaller than the algebraic one. For example,

$$
\boldsymbol{N}:=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{3.17}\\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \in \mathbb{F}^{m \times m}, \quad \operatorname{det}(x \mathbb{1}-\boldsymbol{N})=x^{m}
$$

It "shifts components up, inserting 0 at the bottom". The only eigenvalue is 0 , and the only vectors that get annihilated are the multiplies of \boldsymbol{e}_{1}. Thus the geometric multiplicity is 1 , compared to m for the algebraic one.

It then follows that

$$
\boldsymbol{J}=\lambda \mathbb{1}+\boldsymbol{N}:=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \tag{3.18}\\
0 & \lambda & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & \lambda
\end{array}\right), \quad \operatorname{det}(\boldsymbol{J})=(x-\lambda)^{m} .
$$

also has geometric multipicty 1 , with λ being the unique eigenvalue. A matrix of the form (3.18) is called a Jordan block. It is specified by an eigenvalue λ and multiplicity m.

Jordan blocks are "the most general" examples of a non-diagonalizable matrix, in the following sense:

Jordan Normal Form (JNF): Let V be over \mathbb{C}, $\operatorname{dim} V<\infty$, and $L: V \rightarrow V$. If the roots of p_{L} are elements of \mathbb{F}, then there exists a basis \mathcal{B} such that $\phi_{\mathcal{B}}^{\mathcal{B}}(L)$ is a block matrix

$$
\phi_{\mathcal{B}}^{\mathcal{B}}(L)=\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{p}
\end{array}\right)
$$

with each J_{i} a Jordan block. The JNF is unique up to the order of the blocks.
Remark. The JNF is a spectacular mathematical result. It says that, up to choosing a basis, a linear map is specified exactly by a set of eigenvalues and multiplicites $\left\{\left(\lambda_{i}, m_{i}\right)\right\}$.

It also doesn't matter much in practice.
One reason is that a matrix can fail to be diagonalizable over \mathbb{C} only if two roots of the characteristic polynomial fall together. But " $\lambda_{i}=\lambda_{j}$ " is an unstable condition: The tiniest bit of noise will cause all roots to become distinct. It thus doesn't make sense to compute the JNF of matrices whose entries represent noisy real-world quantities. Numerical computer programs don't usually even provide functions for the JNF, because floating point rounding errors would lift the multiplicities (though computer algebra systems can find the JNF for matrices with exact coefficients, e.g. specified as rational numbers).

Another reason is that many classes of matrices treated in physics are automatically diagonalizable, degeneracies or not. For example: Call a matrix normal \boldsymbol{A} if it commutes with its adjoint $\left[\boldsymbol{A}, \boldsymbol{A}^{\dagger}\right]=0$. Examples include real symmetric matrices or complex self-adjoint ones. One can show that all normal matrices can be diagonalized.

For these reasons, the JNF isn't very prominent in physics.
Example. From 3.17, $\boldsymbol{N}^{m}=0$. A matrix with the property that a finite power is the null matrix is called nilpotent. An example of a nilpotent matrix in physics is the Fermionic creation operator a_{i}^{\dagger}, which "creates a particle in the i th state". It fulfills $\left(a_{i}^{\dagger}\right)^{2}=0$. Why? That's Pauli's exclusion principle at work: There can be only one Fermion in a given state.

3.4.1 Functions of linear maps

Linear maps form an algebra: It makes sense to take powers and linear combinations of them. Thus, if $p(X)=\sum_{i=1}^{d} c_{i} X^{i}$ a polynomial, we can define

$$
p(L)=\sum_{i=1}^{d} c_{i} L^{i} .
$$

Under no circumstances should you confuse this with an application of p to matrix elements. For example, for $p(X)=X^{2}$ and L given by the σ_{x} Pauli matrix,

$$
\left(\begin{array}{ll}
p(0) & p(1) \\
p(1) & p(0)
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \neq p\left(\boldsymbol{\sigma}_{x}\right)=\boldsymbol{\sigma}_{x}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

On the other hand, if $L v=\lambda v$, then

$$
p(L) v=\sum_{i} c_{i} L^{i} v=\sum_{i} c_{i} \lambda^{i} v=p\left(\lambda_{i}\right) v
$$

That is: When applying L to eigenvectors, we can replace the possibly quite complicated "function of linear map" with the generally much simpler "function of scalar". And if L has an eigenbasis $\left\{v_{i}\right\}$, then $p(L)$ is just the linear extension of $v_{i} \mapsto p\left(\lambda_{i}\right) v_{i}$.

Now let $f: \mathbb{F} \rightarrow \mathbb{F}$ be any function, not necessarily polynomial. For a linear map L with eigenbasis $\left\{v_{i}\right\}$, define $f(L)$ as the linear extension of $v_{i} \mapsto f\left(\lambda_{i}\right) v_{i}$. This convention is known as the functional calculus.

In particular, we get this recipe for evaluating $f(\boldsymbol{A})$ for a diagonalizable matrix \boldsymbol{A} :

$$
\text { Find } \boldsymbol{T} \text { s.t. } \boldsymbol{A}=\boldsymbol{T}^{-1} \operatorname{diag}\left(\lambda_{i}\right) \boldsymbol{T} \quad \Rightarrow \quad f(\boldsymbol{A})=\boldsymbol{T}^{-1} \operatorname{diag}\left(f\left(\lambda_{i}\right)\right) \boldsymbol{T}
$$

- Examples. tbd.

3.5 Simultaneous diagonalizability

3.6 Algorithms

Chapter 4
Tensors and multilinear algebra

Chapter 5

Linear equations

5.1 Gaussian elimination

Chapter 6

Matrix groups

6.1 Orthogonality \& unitarity

Chapter 7
Fourier analysis

Appendix A

The map is not the territory

Any finite-dimensional vector space is isomorphic to some \mathbb{F}^{n}. Can we therefore skip all the abstract nonsense and just work with concrete column vectors? Some people think so, others disagree strongly. In this waffly appendix, we mediate a bit about this question.

God, men, and maps

In the beginning God created the heaven and the earth. And for four billion years, the earth just silently existed and minded its own business. Then apes appeared, and became human, and developed language and numbers, and subdued the world. And they created maps and assigned names and coordinates to the places on the planet.

Humans being human, they couldn't agree on anything. And to the surprise of absolutely no one, the primates came up with a Babylonian mess of many different maps.

Here's a sketch of the situation:

It certainly makes logical sense to distinguish between EARTH as created by God, and the various, well... mundane, representations humans came up with. The map is not the territory OK, sure, seems pretty uncontroversial. More interesting questions are whether it makes pragmatic sense to go on about the difference, and which of the two is more important.

Now, this really depends!
If you want get things done - like plan an around-the-world trip, or analyze international trade flows - then, obviously, a map is right tool for the job. It would be hilariously
impractical to walk the literal EARTH for these purposes. On the other hand, fundamentally, it is EARTH we care about. If reading a map leads you to a prediction that does not hold true when you travel EARTH, you'd blame the map, not the territory, for being wrong.

Example. Here's an example of a prediction you are likely to get wrong if you think in terms of maps, rather than EARTH as God created it.

You take off in an airplane in Seattle, point the nose due East, and fly along a straight line above the surface of the earth. You cross North America, and enter oceanic airspace over the Atlantic. Pop quiz: Which land mass will you encounter next? Greenland? Britain? The European continent? Africa? Someplace else?

Click here for the answer.
Surprised? (I was). In this case, you fell for a map-territory confusion. The issue is that a "straight line" on a map almost never represents a straight line on the surface of the earth.

Math, physics, and coordinates

Back to linear algebra.
In a physics textbook, you might read "Let $\boldsymbol{v} \in \mathbb{R}^{3}$ be the position of a particle". A math book would be more likely to say "Let V be Euclidean space, $v \in V$ the position of a particle. Choose a basis $\mathcal{B}=\left(b_{1}, b_{2}, b_{3}\right)$ for V and let \boldsymbol{x} be the coordinates of v with respect to \mathcal{B}." Let's analyze what's behind these differences. You'll find a great similarity to the discussion about maps.

Particles had positions long before our ancestors came down from the trees and got into the habit of choosing coordinate systems. So, as in the example above, it makes logical sense to separate the intrinsic position v from the arbitrary man-made collection of numbers \boldsymbol{v} we use to talk about it. As before, the question is whether it makes pragmatic sense to do so. And again, it depends.

In fields like applied physics or engineering, where emphasis lies on obtaining concrete answers, it may be advantageous not to bother with abstract nonsense like "intrinsic v 's" at all and skip right ahead to coordinate representations \boldsymbol{v} which can be used for actual calculations.

Fields that focus on understanding structures, like pure math, feel that it is worth introducing additional objects if it helps them to clearly separate intrinsic properties from arbitrary conventions. In fact, finding a coordinate-free formulation of a result that has already been worked out by more applied researchers in coordinates is considered a significant achievement.

Theoretical physics sits somewhere in the middle. You'll regularly see both the concrete and the abstract approach in lectures, textbooks, and research publications. Best be able to read both.

Example. An example that you will meet soon comes from classical mechanics. Newton's formula $\boldsymbol{F}=m \boldsymbol{a}$ is stated in coordinates (in fact, only specific coordinate systems work, those derived from an inertial reference frame). On the other hand, the principle of least action also singles out the physical trajectories of classical particles, but can be phrased without having to choose any coordinate system at all. While essentially equivalent to Newton's equations, it is therefore the basis of the more mathematical branches of mechanics.

Example. An example of a non-trivial "map-territory relation" comes from general relativity.
The behavior of an idealized (point-like) black hole is described by the Schwarzschild metric. If you work it out in the usual coordinate system, you'll find that in two places, the elements of the metric tensor, which describes the geometry of space-time, diverge These are singularities. One appears on the event horizon, and one at the center of the black hole.

A comparatively non-trivial analysis (nothing is trivial in general relativity...) shows that they have very different natures. The singularity at the event horizon is a coordinate singularity. If an observer passes through it, nothing dramatic actually happens (though, admittedly, their long-term prognosis isn't stellar). In fact, one can find different coordinate systems which do not show any infinities around the event horizon! On the other hand, at the center of the (idealized) black hole, space-time does indeed break.

So one singularity is only in the map, the other one's in the territory. Keeping the difference in mind greatly reduces the potential for confusion.

Some terminology. "Intrinsic" properties are referred to as canonic in mathematical jargon. For example, one says that any n-dimensional vector space V is isomorphic to \mathbb{F}^{n}, but it isn't canonically isomorphic, in the sense that the isomorphism $\phi^{\mathcal{B}}$ depends on an arbitrary choice of basis \mathcal{B}.

For an example, look again at the space $\underline{1}^{\perp}$ of Fig. 1.1 No basis of that space seems obviously distinguished. Had I asked two halves of the auditorium to each come up with a basis, they would almost certainly have been different. Since there's no canonic way of identifying $\underline{1}^{\perp}$ with \mathbb{R}^{2}, we will keep the two spaces apart.

