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Chapter 0

Introduction

At the beginning of the 20th century, it looked like physics was about to be complete. True,
there were a few phenomena that couldn’t yet be explained using the laws of mechanics
and electrodynamics.

Examples include discrete lines in emission spectra (pictured), quan-
tized angular momentum in a Stern-Gerlach setup, electrons not
crashing into the nucleus, and interference patterns behind double
slits.

However, there was no reason to believe that more than a little bit of fiddling was required
to account for them...

...then a bunch of gifted twenty-somethings took it on them to fix things up, and when
they were done, not much was left of the old way of thinking about reality.

0.1 Structure of the theory

In the Hamiltonian formulation of classical physics:

• With every system, one associates a phase space. In the simplest case of point
particles with n degrees of freedom, it is given by the set of vectors X = (x,p),
with x ∈ Rn describing the positions and p ∈ Rn the momenta of the particles.

• The state of the system is completely specified if one knows its phase space coordi-
nates X(t0) at any one time t0.

• Any observable property of the system is a function of X(t0). This includes the
positions and momenta X(t) at any other point in time, which can be found from
X(t0) by solving Hamilton’s equations.

Compare this to quantum mechanics:

• With every system, one associates a complex vector space H with an inner product.
(A Hilbert space).

• The state of the system is described by a vector ψ ∈ H of norm-squared ⟨ψ|ψ⟩ = 1.

• Any observable property is associated with a linear map O : H → H (called an
operator in this context). If one measures the property on a system in state ψ, the
outcome will follow a probability distribution with expected value equal to ⟨ψ|Oψ⟩.

Some Q&A’s:
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• Q.: “Complex inner product space”? How in God’s name does one come up with
that?
A.: Yeah, this is not an obvious construction at all! It took a few decades of trial-
and-error before the structure became clear.

• Q.: The quantum description mentions “measurements”, the classical one does not.
A.: Well spotted! Classical physics tells us how things are. QM only tells us how
systems respond to measurements.

• Q.: That seems overly pedantic. Can’t we say “a system is in place x if that’s where
we’d find it if we measure”?
As stated, that doesn’t work, because QM does not tell us where the particle will
be when we measure the position. It just makes a prediction about the average
position found in many repetitions. Though, historically, many scientists felt that
there should be a “complete” description of reality that does assign definite positions
to particles without referring to acts of measurements or randomness (Einstein: “Der
Alte würfelt nicht”). Today, it is known that this isn’t really possible. In this sense,
Nature is fundamentally not classical. (Yes, we’ll explain that in more detail).

• Q.: Enough about philosophy. In practice, how do I know which Hilbert space /
state vector / operator to use in order to model a given experiment?
A.: There are heuristic quantization rules that turn classical into quantum models.
(“Heuristic” is a smart-ass term for “rule of thumb”). More systematically, one
can often characterize all quantum models that are compatible with a given set of
symmetries, e.g. non-relativistic space-time symmetries. We’ll have a look at this
approach. Finally, physics is an empirical science. So it’s perfectly OK to just guess
a model and accept it if its predictions agree with experimental outcomes.

• Q.: Gotcha. Can you show me some details?
A.: Sure thing! Read on.



Chapter 1

Wave mechanics

We’ll start with a quick and dirty account of the quantum mechanics of a point particle. We
will state a number of heuristic “quantization rules”. These will be explained and justified
in more mathematical detail in later chapters.

Rule 1 The Hilbert space associated with a point particle moving in n dimensions
consists of functions ψ : Rn → C, with the form

⟨ϕ|ψ⟩ :=
∫
ϕ(x)∗ψ(x) dnx. (1.1)

Mathematically, these “wave functions” behave similarly to the classical fields of elec-
trodynamics or continuum mechanics.

The good thing is that you are already familiar with such fields (somewhat, at least).
So things will feel very concrete and we’ll be able to make quick progress.

The bad thing is that you are already familiar with such fields. So there’s the danger
that one takes the analogy too seriously and starts thinking of quantum mechanical wave
functions as being as real as ripples on the surface of a lake. But that’s taking things too
far. As we’ll discuss in Chapter 2, these functions are really just mathematical tools for
computing probabilities. (In particular, I feel that semi-classical notions such as “wave-
particle duality” or “the collapse of the wave function”, often invoked for pedagogical
purposes, result from people taking wave functions too literally, and end up causing more
confusion than clarity.)

1.1 Properties of particles in one dimension

We’ll now explain what it means when we say that “a particle is in the state ψ(x)”. For
simplicity, we restrict to n = 1 for the time being.

1.1.1 Position measurements

Rule 2 A position measurement on a particle in state ψ will result in the outcome x
with probability density |ψ(x)|2.

6
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Remark.
• Recall that one goes from probability densities to probabilities by integrating. E.g., the

probability of finding the particle in an interval [a, b] is

Pr
[
x ∈ [a, b]

]
=

∫ b

a

|ψ(x)|2 dx.

• The same situation is sometimes expressed in these words:

– “The probability of finding the particle in the infinitesimal interval [x, x + dx] is
|ψ(x)|2 dx”.

– “The probability of finding the particle at x is |ψ(x)|2”. (It’s a little sloppy, but very
common, to not strictly distinguish between probabilities and densities).

How are positions of microscopic particles measured, practically speaking?

Until the early 2000’s most households had an electron posi-
tion measurement device in their living rooms: A television
set built around a cathode ray tube (top). An electron gun
prepares a constant stream of electrons in identical states.
They traverse the tube, eventually hitting the fluorescent
screen. There, a light flash is created at the impact point,
effectively measuring the position of the electron.

A slightly beefed-up version of the setup can be used to re-
veal interference effects of electron wave functions. The
series of pictures on the left is taken from this paper. A
low-intensity electron beam was passed through a double
slit. Light flashes emanating from a fluorescent screen were
recorded with a CCD camera. The series shows the accu-
mulated signals over time. Each point thus represents the
outcome of a position measurement on a single electron. As
the number of events increases, the density of points be-
comes proportional to |ψ(x, y, 0)|2 (in coordinates where
the electrons move along the z-direction and the screen is
located in the z = 0-plane).

Picture credit.

The total probability of finding the particle somewhere is one, so that any state vector
must be normalized in the sense that∫ ∞

−∞
|ψ(x)|2 dx = 1. (1.2)

Using (1.1), the normalization condition can be expressed in terms of the squared norm

∥ψ∥2 = ⟨ψ|ψ⟩ = 1.

Examples.
• A wave function that gives rise to a uniform distribution on the interval [a, b]:

ψ(x) =
1√
b− a

{
1 x ∈ [a, b]
0 else

https://en.wikipedia.org/wiki/Cathode-ray_tube
https://iopscience.iop.org/article/10.1088/1367-2630/15/3/033018
https://en.wikipedia.org/wiki/Cathode-ray_tube#/media/File:Cathode_ray_Tube.PNG
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• Gaussian wave functions turn out to be very important, in particular

ψ(x) = π−1/4e−
x2

2 . (1.3)

Its probability density

|ψ(x)|2 =
e−x

2

√
π

is the normal distribution with mean µ = 0 and standard deviation σ = 1√
2

. We’ll also
soon make contact with the following family of Gaussian wave packets, parameterized by
x0, k0 ∈ R, σ ∈ R>0:

ψσ,x0,k0(x) =

(
1

2πσ2

)1/4

e
− (x−x0)2

4σ2 eik0x. (1.4)

Because |eik0x|2 = 1, the parameter k0 does not affect the distribution of position mea-
surements. But the funny complex numbers will turn out to be meaningful in other ways.

Now assume that you perform independent position measurements on N particles, all
in the same state ψ. If xi is the i-th outcome, then, by the law of large numbers, the mean
position will converge to the expected value

1

N

N∑
i=1

xi →
∫ ∞

−∞
x|ψ(x)|2 dx (N → ∞). (1.5)

In QM, it’s common to express the right hand side in different language. Define the
position operator X to be the linear map that acts on a wave function ψ by multiplying it
with its argument:

(Xψ)(x) = xψ(x).

Then the expected value can be written as an inner product:∫ ∞

−∞
x|ψ(x)|2 dx =

∫ ∞

−∞
ψ(x)∗xψ(x) dx =

∫ ∞

−∞
ψ(x)∗(Xψ)(x) dx = ⟨ψ|Xψ⟩.

Other common notations:

⟨ψ|Xψ⟩ = ⟨ψ|X|ψ⟩ = ⟨X⟩ψ = ⟨X⟩.

Example. For the Gaussian in (1.3), ⟨ψ|X|ψ⟩ = 0, because ψ(x) is an even function, but x is
an odd function. Similarly, ⟨ψσ,x0,k0 |X − x0|ψσ,x0,k0⟩ = 0.

Often, we will compute expected values of functions of position.

Examples.
• For

f(x) =

{
1 x ∈ [a, b]
0 else

,

the expectation value∫ ∞

−∞
f(x)|ψ(x)|2 dx =

∫ b

a

|ψ(x)|2 dx = Pr
[
x ∈ [a, b]

]
is the just probability of finding the particle in the interval [a, b].

https://en.wikipedia.org/wiki/Normal_distribution
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• The expectation value of f(x) = (x − x0)2 measures the expected squared distance of
the position to the value x0. In particular, the variance is the expected value of f(x) =
(x − ⟨X⟩)2. It is the most commonly used measure of the dispersion (or spread) of a
distribution.

The expectation value f(x) can also be expressed by an operator, namely f(X). To
define that expression, assume that f can be written as a series f(x) =

∑
k ckx

k and set
f(X) :=

∑
k ckX

k. From

(Xkψ)(x) = (X · · ·X︸ ︷︷ ︸
k×

ψ)(x) = (X · · ·X︸ ︷︷ ︸
(k−1)×

xψ)(x) = · · · = xkψ(x)

one then easily obtains (
f(X)ψ

)
(x) = f(x)ψ(x).

Therefore, as in (1.5), under repeated measurements,

1

N

N∑
i=1

f(xi) → ⟨ψ|f(X)|ψ⟩ (N → ∞).

Example. For the variance, we get the useful formula

Var[X] := ⟨(X − ⟨X⟩)2⟩ = ⟨X2 − 2⟨X⟩X + ⟨X⟩2⟩ = ⟨X2⟩ − ⟨X⟩2.

For the Gaussian wave function (1.3), this gives

Var[X] = ⟨ψ|X2|ψ⟩ − ⟨ψ|X|ψ⟩2

= ⟨ψ|X2|ψ⟩ (ψ(x) is even and x is odd)

=
1√
π

∫ ∞

−∞
x2e−x

2

dx

=
1√
π

∫ ∞

−∞
x
(
− 1

2
∂xe

−x2)dx
=

1

2

1√
π

∫ ∞

−∞
e−x

2

dx (partial integration)

=
1

2
.

Similarly, for the wave packet (1.4), the variance of the position distribution is Var[X] = σ2.

1.2 Momentum

Recall the definition of the Fourier transform and its inverse

ψ̃(k) = (2π)−n/2
∫
e−ikxψ(x) dnx,

ψ(x) = (2π)−n/2
∫
eikxψ̃(k) dnk.

(1.6)

Rule 3 A momentum measurement on a particle in state ψ(x) will result in the out-
come p with probability density |ψ̃(k)|2, where k = p/ℏ.
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• Q.: Why?? What has the Fourier transform of all things to do with momentum?
A.: We’ll justify this more systematically in Chapter 4. For now, take it as an axiom.
It’s not completely surprising, because before QM was fully developed, de Broglie
conjectured, and Thomson-Reid and Davisson-Germer confirmed experimentally,
that electrons with momentum p show interference behavior that is consistent with
plane waves with wave vector k = p/ℏ. The above box says that the Fourier trans-
form is the right way of making this correspondence precise.

Example. Exercise: The momentum distribution of the wave packet (1.4) is

|ψ̃σ,x0,k0(k)|
2 =

(
2σ2

ℏ2π

)1/2

e
−σ2(k−k0)2

ℏ2 .

Finding it involves a somewhat lengthy calculation. Next, we’ll discuss strategies for avoiding
these.

As with position, the expected value of a momentum measurement can be expressed
as an inner product involving the wave function and an operator:∫

dk ℏk|ψ̃(k)|2 =

∫
dk ψ̃(k)∗ℏkψ̃(k) (1.7)

=
1√
2π

∫
dk

(∫
dx e−ikxψ(x)

)∗

ℏkψ̃(k)

=
1√
2π

∫
dk

∫
dxψ(x)∗ℏkeikxψ̃(k)

=
1√
2π

∫
dk

∫
dxψ(x)∗(−iℏ∂x)eikxψ̃(k)

=

∫
dxψ(x)∗(−iℏ∂x)ψ(x)

= ⟨ψ|(−iℏ∂x)|ψ⟩. (1.8)

The momentum operator is therefore defined as

P := −iℏ∂x. (1.9)

From (1.7), it is manifest that momentum expectation values are real numbers. But
that’s hard to see from the operator representation (1.8).

Reminder If A is an operator, its adjoint is the unique operator A† such that

⟨A†ϕ|ψ⟩ = ⟨ϕ|Aψ⟩ ∀ϕ, ψ.

A linear map A is self-adjoint or Hermitian if A† = A.

If A is Hermitian, then for all ψ,

⟨ψ|Aψ⟩∗ = ⟨Aψ|ψ⟩ = ⟨ψ|Aψ⟩ ⇒ ⟨ψ|Aψ⟩ ∈ R.

(The converse is also true). Thus, real-valued quantities are represented by Hermitian
operators in QM. Let’s verify directly that the momentum operator is Hermitian: Exercise.

https://en.wikipedia.org/wiki/Matter_wave
https://en.wikipedia.org/wiki/Matter_wave
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Example. Equation (1.9) allows us to compute expectation values of (functions of) momentum
without having to perform Fourier transforms. For example, for ψ = ψσ,x0,k0 the Gaussian in
Eq. (1.4):

(Pψ)(x) = −iℏ
(

1

2πσ2

)1/4

∂x

(
e
− (x−x0)2

4σ2 eikx
)

= (x− x0)
iℏ
2σ2

ψ(x) + ℏkψ(x)

⇒ ⟨ψ|P |ψ⟩ = ℏk⟨ψ|ψ⟩+ iℏ
2σ2
⟨ψ|X − x0|ψ⟩ = ℏk.

The eikx-factor that did not impact the position distribution is now seen to affect momentum.
Let’s compute the variance of the momentum distribution, for simplicity for ψ := ψσ,0,0:

(P 2ψ)(x) =
ℏ2

2σ2

(
1

2πσ2

)1/4

∂x

(
xe

− x2

4σ2

)
=

ℏ2

2σ2

(
1− x2

2σ2

)
ψ

⇒ Var[P ] = ⟨ψ|P 2|ψ⟩ = 1

2

ℏ2

σ2

(
1− σ2

2σ2

)
=

1

4

ℏ2

σ2
.

Recall that Var[X] = σ2, so that decreasing σ makes position distributions more concentrated,
while making the momentum distribution less concentrated. In fact, their product is constant:

Var[X2] Var[P 2] =
ℏ2

4
. (1.10)

For classical point particles, position and momentum are independent parameters. In
QM, their distributions are derived from the same object, the wave function ψ(x). This
gives rise to relations between the two quantities. The most famous one is the Heisenberg
uncertainty relation

Var[X] Var[P ] ≥ ℏ2

4
,

which says that no wave function has both a sharp position and a sharp momentum distri-
bution. Proving it is homework. (Eq. (1.10) shows Gaussian wave packets attain Heisen-
berg’s lower bound).

The proof of the uncertainty relation will make use of the fact that X and P do not
commute. Indeed, they satisfy (homework!) what is pompously called the canonical com-
mutation relation

[X,P ] = XP − PX = iℏ1. (1.11)

For now, that’s just an algebraic fact. We’ll explain where it comes from in Chap. 4.

Remark. Let ψ(t) be the pressure exerted by a sound wave on your eardrums at time t. Creating
the pressure takes an amount of mechanical energy proportional to |ψ(t)|2. Likewise, the energy
associated with frequency ω

2π
is proportional to the square of the Fourier coefficient |ψ̃(ω)|2.

Can you see where this is going? The distributions of acoustic energy in, respectively, time and
frequency space is computed in exactly the same way as position and momentum in quantum
mechanics.

Introduce the acoustic time and frequency operators as (Tψ)(t) = tψ(t) and (Fψ)(t) =
−i
2π
∂tψ(t). Then the same calculation that leads to Heisenberg’s uncertainty relation says that the

spread in time and frequency of an audio signal must satisfy ∆T∆F ≥ 1
4π

. That’s the reason a
flute can play much shorter notes than a trombone, while still sounding in tune.
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Musical notes encode temporal and frequency information. From
the above, this might be problematic! Exercise: Argue why there
is no issue for the example shown on the left.

1.3 Quantization of functions of position and momentum

In Hamiltonian mechanics of point particles, any observable quantity is a function f(x,p)
of position and momentum.

For functions f(x) of position alone, and functions f(p) of momentum alone, we have
already constructed operators that represent them in QM: f(X) and f(P ) respectively. In
particular, this gives operators

P 2

2m
and V (X)

for the kinetic and potential energy. It’s thus natural to conjecture:

Rule 4 A classical phase space function f(x, p) turns into the operator f(X,P ).

This turns out to mostly work. There are two related issues. First, multiplication of
the classical functions x, p commutes, but the same is not true for the associated operators.
This leads to ambiguities. For example, xp, px, 12 (xp+ px) all denote the same function,
XP,PX, 12 (XP + PX) are completely different. Second, even if f(x, p) is real-valued,
f(X,P ) need not be Hermitian, and thus need not have real expectation values. Fortu-
nately, neither problem will occur in these notes, so we’ll ignore them.

The quantization rule allows us to find the Hamiltonian operator, representing energy:

H =
P 2

2m
+ V (X), (Hψ)(x) =

−ℏ2

2m
∂2xψ(x) + V (x)ψ(x). (1.12)

For position and momentum, we started describing the possible values encountered in
a measurement (any real number), constructed the probability densities (|ψ(x)|2, |ψ̃(k)|2
respectively), and finally found operators (X , P ) that describe expected values. The above
quantization rule just gives an operator, but does not by itself describe the possible out-
comes and probabilities. There is a standard construction that associates a full measure-
ment process with an operator. It is sometimes called the projective measurement or the
von Neumann measurement of the operator.

Reminder. This construction uses ideas from linear algebra. Recall: Given an operator A,
the number λ is an eigenvalue if there exists a non-zero eigenvector (here also: eigenfunction,
eigenstate) ϕλ such that

Aϕλ = λϕλ. (1.13)

For a fixed λ, the set of solutions to (1.13) is the eigenspace associated with λ. An eigenvalue
is degenerate if the eigenspace is has dimension larger than 1. If A = A† is Hermitian, then all
eigenvalues are real, eigenvectors to different eigenvalues are orthogonal to each other, and there
exists an ortho-normal eigenbasis.
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Rule 5 If A is a Hermitian operator describing an observable quantity, then the pos-
sible values that can occur in a projective measurement are its eigenvalues.

Next, the basic idea is to derive probabilities from the squared inner product with
normalized eigenvectors: |⟨ψ|ϕλ⟩|2. Unfortunately, the details are quite subtle.

An eigenvalue λ of A is discrete if there is a finite distance ϵ such that all other eigen-
values are at least ϵ away. Else, it is continuous. We need to associate probabilities with
discrete eigenvalues, but probability densities with continuous ones.

Discrete eigenvalues

If λ is discrete and non-degenerate, one can show that there exist normalized eigenvector

Aϕλ = λϕλ, ⟨ϕλ|ϕλ⟩ = 1. (1.14)

It is unique up to a global phase: ϕλ 7→ eiθϕλ.

Rule 6d If λ is discrete and non-degenerate, the probability of observing λ when per-
forming the projective measurement of A on a system in state ψ is

|⟨ψ|ϕλ⟩|2, (1.15)

where ϕλ solves (1.14).

If λ is degenerate, then its eigenspace has a basis {ϕ(i)λ }i that is ortho-normal ⟨ϕ(i)λ |ϕ(j)λ ⟩ =
δij . In this case, Eq. (1.15) generalizes to∑

i

|⟨ψ|ϕ(i)λ ⟩|2.

Continuous eigenvalues

If λ is continuous, it is an element of an interval (a, b) ⊂ R of eigenvalues. The deep spec-
tral theorem of functional analysis then implies that there is a family ϕλ′ of eigenvectors

Aϕλ′ = λ′ϕλ′ , normalized in the sense that ⟨ϕλ|ϕλ′⟩ = δ(λ− λ′). (1.16)

for λ′ ∈ (a, b). Here δ is the Dirac delta function.

Remark. The “eigenfunctions” ϕλ associated with a continuous eigenvalue do not have finite
norm, and are often not even realizable as ordinary functions. A careful treatment shows that
these are to be understood as distributions. See the Appendix for more information. Here, we’ll
gloss over these details, and just give a few examples.

Rule 6c If λ is continuous and non-degenerate, the probability density of observing λ
when performing the projective measurement of A on a system in state ψ is

|⟨ψ|ϕλ⟩|2, (1.17)

where ϕλ solves (1.16).
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If λ is degenerate, we’ll need one more index: Then, there exist {ϕ(i)λ′ } such that

⟨ϕ(i)λ |ϕ(j)λ′ ⟩ = δij δ(λ− λ′)

and Eq. (1.17) generalizes to ∑
i

|⟨ψ|ϕ(i)λ ⟩|2.

Example. Let’s look at the momentum operator through this lens. The eigenvalue equation
Pϕλ = λϕλ reads

−iℏ∂xϕλ(x) = λϕλ(x), ∀x,

solved by ϕλ(x) = cei
λ
ℏ x for some constant c.

Assume that λ ∈ R. Then ϕλ is a plane wave. It follows from Parseval’s Theorem that

⟨ϕλ|ϕλ′⟩ = |c|
2

2π
δ(λ− λ′),

so that c = (2π)−1/2 gives the correct normalization for continuous eigenvectors. The probabil-
ity density for the outcome λ becomes |⟨ϕλ|ψ⟩|2 = |ψ̃(λ)|2. We have recovered the definition
of momentum measurement we started with, so all is consistent.

Now consider the case where λ ̸∈ R. Then ϕ(x) diverges exponential as x tends to either
+∞ or −∞, depending on the sign of Im z. But then, even for ψ with finite norm, the integral
|⟨ϕλ|ψ⟩| will usually diverge. We thus reject such solutions.

1.4 Energy

We have seen in (1.12) that the energy operator for point particle is

H =
P 2

2m
+ V (X), (Hψ)(x) =

−ℏ2

2m
∂2xψ(x) + V (x)ψ(x).

For reasons explained soon, the eigenvalue equation for H is called the time-independent
Schrödinger equation. We’ll work out its solutions for various potentials V .

1.4.1 Free particle

A particle is free if V = 0. The eigenvalue equation then reads

−ℏ2

2m
∂2xϕE(x) = EϕE(x), solved by ϕE(x) = Aei

√
2mE
ℏ +Be−i

√
2mE
ℏ

for constants A,B ∈ C. Energy eigenspaces are thus two-fold degenerate.
A natural basis for the energy eigenspace is given by

ϕ+E(x) =
1√
2π
ei

√
2mE
ℏ x, ϕ−E(x) =

1√
2π
e−i

√
2mE
ℏ x. (1.18)

These are just the momentum eigenfunctions for p = ±
√
2mE. The relation between

energy and momentum is the same as in the classical case (we’ll see more exciting results
in a minute). Thus, physically, the eigenspace is degenerate because knowing the energy
tells you only about the magnitude, but not the direction of momentum.

https://en.wikipedia.org/wiki/Parseval%27s_theorem
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We are free to choose different bases in the energy eigenspaces. In particular,

ϕ
(e)
E (x) =

1√
2
(ϕ+E(x) + ϕ−E(x)) =

1

π
cos
(√2mE

ℏ
x
)
,

ϕ
(o)
E (x) =

1

i
√
2
(ϕ+E(x)− ϕ−E(x)) =

1

π
sin
(√2mE

ℏ
x
) (1.19)

is often a useful choice (“e/o” for even/odd).

1.4.2 The step potential

Consider the “step potential” (Fig. ??)

V (x) =

{
0 x ≤ 0 (“region I”)
VII x > 0 (“region II”) , VII > 0.

Of particular interest is the energy range 0 < E < VII, which classically is associated with
particles that move in from −∞, bounce off the potential step, and return to −∞.

To solve the time-independent Schrödinger equation for this and similar potentials,
one first finds the solutions in each region where the potential is constant, and then patches
these solutions together. Let’s work this out for 0 < E < VII.

Piece-wise solution: In region I, the particle is free, so the general solution is

ϕI(x) = Aeikx +Be−ikx, k =
√
2mE/ℏ.

In region II, the eigenvalue equation mimics the free one, with E replaced by VII − E:

−ℏ2

2m
∂2xϕII(x) + VIIϕII(x) = EϕII(x) ⇔ ∂2xϕII(x)−

2m(VII − E)

ℏ2
ϕII(x) = 0.

It is customary to write the general solution as

ϕII(x) = Ceκx +De−κx, κ =
√
2m(VII − E)/ℏ. (1.20)

The coefficient C has to vanish, for else ϕII(x) would diverge as x→ ∞.
Join at interface: When gluing solutions together we impose the interface conditions

demanding that ϕ(x) and ϕ′(x) be continuous (c.f. Eq. (D.11)). In this case:

ϕI(0) = ϕII(0) ⇔ A+B = D, (1.21)
ϕ′I(0) = ϕ′II(0) ⇔ ikA− ikB = −κD. (1.22)

That’s a system of linear equations which, after some boring but tedious massaging gives

B = −ei2δA, D = −2i
√

E
VII
eiδA, δ = tan−1

√
E

VII−E . (1.23)

Energy eigenfunction of the potential step
Hamiltonian with parameters

m = ℏ = 1, V = 300, E =
V

2
, A = 1.

(Compared to (1.23), the wave function
has been multiplied by a global phase fac-
tor of ie−iδ , which makes its real).
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Discussion. We’ll interpret these solutions in more detail soon. For now, just a quick
analogy. Shine a light wave with incident amplitude A on a perfect mirror. Let B be the
amplitude of the reflected wave. Because the energy in the field is proportional to the
amplitude squared, energy conservation means that |A|2 = |B|2. But also, the wave will
not be reflected directly at the surface of the mirror: The field will enter the material, with
a strength that decreases exponentially from the surface.

Replacing “energy” by “probability”, that’s exactly what we are seeing here. In partic-
ular, Eq. (1.20) says that there is a finite probability of finding the particle in the “classically
forbidden” region with E < V . We’ll come back to this later.1

In the limit VII → ∞, Eqs. (1.20, 1.23) say that ϕII(x) → 0: The probability of finding
a particle in a region of infinite potential is 0.

1.4.3 The infinite potential well

Next, consider a “infinite potential well” or “particle in a box”:

V (x) =

 ∞ x ∈ (−∞,−a/2) (“region I”)
0 x ∈ [−a/2, a/2] (“region II”)
∞ x ∈ (a/2,∞) (“region III”)

.

Then ϕI(x) = ϕIII(x) = 0. Using the basis (1.19) in region II:

ϕII(x) = A sin(kx) +B cos(kx), ϕII(±a/2) = 0, k =

√
2mE

ℏ
.

The boundary conditions ϕ(±a/2) = 0 force A = 0 or B = 0. Because

sin
(
ka/2

)
= 0 ⇔ ka

2
= a multiple of π ⇔ ka = an even multiple of π,

cos
(
ka/2

)
= 0 ⇔ ka

2
=
π

2
+ a multiple of π ⇔ ka = an odd multiple of π,

the solutions are labeled by positive natural numbers n = 1, 2, 3, . . . . Specifically

ϕn(x) =

√
2

a

{
sin(knx) n even
cos(knx) n odd , kn = n

π

a
, En =

ℏ2k2n
2m

=
ℏ2π2

2ma2
n2.

Discussion: The boundary conditions make it so that the possible energies are a dis-
crete set! This effect is what gives quantum theory its name. Also, the lowest possible en-
ergy,E1 ∝ 1

a2 increases with decreasing width of the box. This is the uncertainty principle
at work: Because Var[X] ≃ a2, it must be that Var[P ] ∝ 1

a2 . But Var[P ] = ⟨P 2⟩ ∝ ⟨H⟩.

1.5 Dynamics

Recall that in mechanics, the Hamilton function plays two completely different roles.

1There’s also the somewhat-harder to interpret phase factor ei2δ . Suffice it to say that in two dimensions,
its optical analogue gives rise to the Goos-Hänchen effect. I mention it mainly because to a slightly dyslexic
speaker of German and English, this has got to be the most hilariously-named result in all of science. The fact
that, incongruently, it was demonstrated by a Mr. Goose and a Miss Rooster only adds to its allure. (Also, check
out the biography of Hilda Hänchen). (And, no, it didn’t escape my attention that the name literally translates to
“cockfight”. This thing’s a goldmine!).

https://en.wikipedia.org/wiki/Evanescent_field
https://en.wikipedia.org/wiki/Goos%E2%80%93H%C3%A4nchen_effect
https://en.wikipedia.org/wiki/Hilda_H%C3%A4nchen
https://de.wikipedia.org/wiki/Hilde
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(1) It is an observable quantity, measurable e.g. by a power meter, a thermometer, or, if
you know relativity, a weight scale. It is a conserved quantity, and a significant part of the
world’s economy is concerned with moving our limited supply from one place to another.

(2) It also gives rise to the time evolution, via Hamilton’s equations

∂tX = J
(
∇H(X)

)
, X =

(
x
p

)
, J =

(
0 1
−1 0

)
.

(This dual role is an incarnation of Noether’s Theorem). It may then not be too surpris-
ing that the quantum mechanical rule for time evolution also involves the energy operator.

Rule 7 Let ψt be the state of an isolated quantum system at time t. Then

iℏ∂tψt = Hψt. (1.24)

Equation (1.24) is Schrödinger’s equation.
Depending on context, one should think of ψt as a family of functions ψt : R → C

indexed by the time t, or as a single function ψ(t, x) = ψt(x) of two arguments.
Even for n = 1, the Schrödinger equation

iℏ∂tψ(t, x) = − ℏ2

2m
∂2xψ(t, x) + V (x)ψ(t, x)

is a partial differential equation that does not usually allow for an explicit solution. We’ll
now look a various ways of anyway extracting information from it.

1.5.1 Time evolution operator

Define the time evolution operator

U(t) = e
t
iℏH =

∞∑
k=0

1

k!

(
t

iℏ
H

)k
. (1.25)

Recalling basic linear algebra,

∂tU(t) =
( 1

iℏ
H
)
U(t),

and one immediately verifies that that given the some initial condition ψ0, the family

ψt = U(t)ψ0

solves the Schrödinger equation.
We’ll see that this formulation is helpful for analyzing the Schrödinger equation, but it

does not usually suggest a way for actually evaluating ψt(x).

1.5.2 Reduction to the time-independent Schrödinger equation

Assume that ϕ is an energy eigenfunction, Hϕ = Eϕ. Then iℏ∂tϕt = Hϕt with initial
condition ϕ0 = ϕ is solved by

ϕt = e−iωtϕ, ω =
E

ℏ
.
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Now assume that H has a discrete eigenbasis {ϕλ}λ with eigenvalues Eλ. If

ψ0 =
∑
λ

cλϕλ

is the expansion of ψ0 in terms of that basis, then a solution of (1.24) is given by

ψt(x) =
∑
λ

cλe
−iωλtϕλ, ωλ =

Eλ
ℏ
. (1.26)

Continuous eigenvalues are treated similarly, with the sum replaced by an integral.
Thus, the Schrödinger equation is easy to solve if we know an eigenbasis ofH . It is for

this reason that the eigenvalue equation for the Hamiltonian is called “time-independent
Schrödinger equation”.

Free time evolution

Let’s apply this to the free Hamiltonian H = P 2/(2m). Its (continuous) eigenbasis is
given by the plane waves ϕk = (2π)−1/2eikx, where k ∈ R and Hϕk = Ekϕk with
Ek = ℏ2k2

2m . The expansion coefficients of ψ0 in that basis are just the Fourier transform

ψ̃0(k) = (2π)−1/2

∫
ψ0(x)e

−ikx dx.

Hence the above discussion shows that the wave function at time t,

ψt(x) =

∫
ψ̃0(k)e

−iωktϕk(x) dk = (2π)−1/2

∫
ψ̃0(k)e

−iωkt+ikx dk

is the inverse Fourier transform of ψ̃0(k)e
−iωkt.

Remark. The calculation for a Gaussian wave packet is homework. You’ll find that the expec-
tation values of position and momentum satisfy the classical relations

⟨X⟩(t) = ⟨X⟩(0) + ⟨P ⟩(0)
m

t, ⟨P ⟩(t) = ⟨P ⟩(0). (1.27)

However, asymptotically, Var[X] ∝ t. The wave packet becomes “smeared out”. (Var[P ]
remains constant).

Now here’s a puzzle. Put a ping-pong ball on a table. Then no forces act on it in the direction
parallel to the table top – these degrees of freedom should thus be “free”. Still, if you leave the
room and check its position a day later, you’ll find it right where you left it (assuming you don’t
live with my kids) – no broadening of the spatial distribution is observed.

Sometimes the following reason is offered: “The Heisenberg limit Var[X] ≥ ℏ2
4Var[P ]

is
tiny on account of ℏ being so small, thus macroscopic objects have quasi-definite position and
momentum”. That’s a bogus argument, though, because the Heisenberg limit is only a lower
bound to the uncertainty. As the wave packet shows, Var[X] Var[P ] may well tend to infinity.

The actual resolution is that Schrödinger’s equation only applies to isolated quantum system.
But macroscopic bodies constantly interact with an enormous number of degrees of freedom,
notably electromagnetic radiation.

The theory of decoherence explains quantitatively how these interactions cause the ball to re-
main in place. The details are beyond the scope of this lecture, though we might have a superficial
look at the theory toward the end of the term.
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1.5.3 Heisenberg picture

Consider a quantum system which at time 0 is in the state ψ, and on which an observable
F is measured at time t. The expected value is

⟨F ⟩(t) = ⟨ψt|Fψt⟩ (1.28)
= ⟨U(t)ψ|FU(t)ψ⟩
= ⟨ψ|U(t)†FU(t)︸ ︷︷ ︸

=:F (t)

ψ⟩. (1.29)

Equations (1.28, 1.29) suggest two different ways of modeling the situation.

In Eq. (1.28), the time delay is part of the state preparation.
If some procedure produces a system in state ψ, then “that
procedure followed by a waiting time” results in the state
ψt = U(t)ψ. This point of view is the Schrödinger picture.

In Eq. (1.29), the time delay is part of the measurement
process. If some procedure measures F , then “first wait,
then measure” is also an observable, described by F (t) :=
U(t)†FU(t). This point of view is the Heisenberg picture.

Exercises.
• Use H = H† to show that

U(t)† = U(−t). (1.30)

• Prove that for any polynomial function f ,

[f(X), P ] = iℏf ′(X) and [X, f(P )] = iℏf ′(P ). (1.31)

So, “taking commutator with P acts on functions of X like a derivative” (and vice-versa).

• Prove that

[U(t)†FU(t), H] = U(t)†[F,H]U(t). (1.32)

The Schrödinger equation is a differential equation for the time evolution of states. To
get the analogous Heisenberg equation of motion, just differentiate:

∂tF (t) = ∂t U(−t)FU(t)

=
1

iℏ
(
−HF (t) + F (t)H

)
product rule, (1.25), (1.30)

=
1

iℏ
[F (t), H]. (1.33)

Applications (of the Heisenberg picture).

• The constant function F (t) = F solves (1.33) iff [F,H] = 0. Thus, an observable is
conserved iff it commutes with the Hamiltonian. In particular, energy is preserved.

• For the free Hamiltonian H = P 2/(2m), using (1.31) shows that

X(t) = X +
P

m
t, P (t) = P (1.34)
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solves (1.33). Taking expectations, we get the relation (1.27), but now valid for any state,
not just wave packets. Note that the proof of (1.27) relied on moderately painful Gaussian
integrals and a direct generalization to arbitrary states is not feasible. But switching to
the Heisenberg picture, we see that the “linear motion of expected position” is actually a
property of the X observable, and can be easily proved without any reference to states!

Ehrenfest Theorem

This section is an example for the use of the Heisenberg picture. Nothing much
builds on it.

A generalization of (1.34) is known as the Ehrenfest Theorem. Compute:

∂t⟨X⟩(t) = 1

iℏ
⟨ψ|U(−t)[X,H]U(t)ψ⟩ (1.32), (1.33)

= ⟨ψt|
1

iℏ
[X,

1

2m
P 2 + V (X)]ψt⟩

=
⟨P ⟩(t)
m

(1.31) (1.35)

∂t⟨P ⟩(t) = −⟨V ′(X)⟩(t) (as above). (1.36)

This looks very much like the classical equations of motion for a particle with position
and momentum given by the expected quantum values

x(t) := ⟨X⟩(t), p(t) := ⟨P ⟩(t).

The part that spoils it is that the right hand side of (1.36) is the “average force”

⟨V ′(X)⟩(t) =
∫

|ψt(x)|2V ′(x) dx

whereas for a classical point particle, we would need the “force at the average” V ′(⟨X⟩(t)).
We thus find that position and momentum expectation values behave classically when-

ever we can exchange taking averages and applying V ′. This holds...

• ...approximately, if |ψt(x)|2 is concentrated in a region that is much smaller than the
length scales on which the force varies.

• ...exactly, if V is at most quadratic in X , so that the force is a linear function.

1.5.4 Numerical diagonalization

Let’s face it: In general we’ll need computer assistance.
To phrase the problem in terms computers are good at, we replace continuous space by

a discrete lattice. Specifically, cover the interval [0, L] by N points of distance a = N/L.
Then a function ψ : [0, L] → C can hopefully be well-approximated by its values ψ(ar),
r ∈ {1 . . . N} on the lattice.

It’s clear how to discretize the potential energy operator: (V ψ)(ar) = V (ar)ψ(ar).
For the kinetic energy, we have to replace the second derivative by a suitable finite

difference quotient. It turns out that

(∆aψ)(x) =
ψ(x− a)− 2ψ(x) + ψ(x+ a)

a2
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is a good choice, because we recover the original version in the continuum limit a→ 0, as

(∆aψ)(x) =
ψ(x+a)−ψ(x)

a − ψ(x)−ψ(x−a)
a

a
→ ψ′(x+ a)− ψ′(x)

a
→ ψ′′(x) (a→ 0).

Adopting cyclic boundary conditions so that we’ll never reach the “end of the dis-
cretized world”, we obtain the following matrix approximation to the Hamilton operator:

Ha =
−ℏ2

2ma2


−2 1 1
1 −2 1

. . .
1 −2 1

1 1 −2

+


V (a)

V (2a)
. . .

V (Na)

 .

Follow this link to see the pretty results.

Remark. The method presented here has been chosen because it’s conceptually close to what
one uses in the analytic theory, not because it’s the most efficient way to find the time evolution
on a classical computer. For the latter, consult the computational physics course!

1.5.5 Scattering & the tunnel effect

Flip through the numerical simulation of a particle tunneling through a potential barrier:

Picture credit.

There’s little hope to analytically describe the self-interference effects
on display while the particle interacts with the potential (top center).
But at the beginning and at the end of the process, the wave function
is away from the potential and the time evolution is just free. And
indeed, one can often understand quite explicitly how the outgoing
state is related to the incoming state.

A situation where particles are initially free, then interact with
each other or a potential, only to move out and become free again, is
called a scattering process. In real life, we learn about objects from
their scattering properties all the time (left).

We won’t cover scattering theory in general in these notes. Rather, we’ll take the
one-dimensional tunnel effect as an example to explain how one can read off quantitative
properties of a scattering process from suitably chosen eigenfunctions of H .

Tunneling through a rectangular potential barrier

Consider a “potential barrier” of width a and height V0:

V (x) =

 0 x ∈ (−∞, 0) region I
V0 x ∈ [0, a] region II
0 x ∈ (a,∞) region III

.

A classical particle with energy E < V0 cannot transverse the barrier.

https://www.thp.uni-koeln.de/gross/blog/posts/qm-sim/
https://www.thp.uni-koeln.de/gross/blog/posts/qm-sim/
https://dwr.virginia.gov/wildlife/bats/bat-biology-and-ecology/


CHAPTER 1. WAVE MECHANICS 22

As in Sec. 1.4.2, the eigenfunctions of H with energy E < V0 are of the form

ϕ(x) =

 Aeikx +Be−ikx x ∈ (−∞, 0)
Ceκx +De−κx x ∈ [0, a]
Feikx +Ge−ikx x ∈ (a,∞)

,
k =

√
2mE/ℏ,

κ =
√
2m(V0 − E)/ℏ

.

The six coefficients A, . . . , G ∈ C are related by two interface conditions each for
x = 0 and x = a, leaving us with two independent parameters. In other words, en-
ergy eigenspaces are two-fold degenerate. As we’ll see, the eigenfunctions ϕ+E , defined by
A = 1 and G = 0, and ϕ−E , defined by G = 1 and A = 0, are well-suited for describing
scattering states that move in from the left or from the right respectively.

We’ll focus on ϕ+E , given by

ϕ+E(x) =

 eikx +Bke
−ikx region I

Cke
κx +Dke

−κx region II
Fke

ikx region III
.

Finding the Bk, ..., Fk requires a lengthy calcula-
tion, see below.

We can try to interpret the terms of ϕ+E . In region I, it resembles a superposition of
a momentum eigenstate with momentum +ℏk and ampltiude 1, and one with momentum
−ℏk and amplitude Bk. It is then reasonable to suspect that if a particle approaches the
barrier with momentum ℏk, the probability to find it in a reflected state after the interaction
is |Bk|2. Likewise, in region III, ϕ+E agrees with a momentum eigenstate for +ℏk and
amplitude Fk, and hence we might expect the tunneling probability to be |Fk|2.

The interface conditions. Computing the reflection coefficient Bk and the transmission coef-
ficient Fk is not conceptually difficult, but quite lengthy.

The first interface condition at x = 0 is the same as (1.21). In matrix form:(
A
B

)
=

1

2

(
1− iκ

k
1 + iκ

k

1 + iκ
k

1− iκ
k

)(
C
D

)
. (1.37)

Likewise, the interface conditions are x = a read(
C
D

)
=

(
e−κa 0
0 eκa

)
1

2

(
1 + i k

κ
1− i k

κ

1− i k
κ

1 + i k
κ

)(
eika 0

0 e−ika

)(
F
G

)
. (1.38)

You can find this expression either by computing the derivatives directly, or by modifying (1.37)
realizing that (i) at x = a, the roles of ik and κ are exchanged, and (ii) the diagonal matrices
represent the change in the various exponential functions due to the shift x 7→ x+ a.

The product of all four matrices expresses A,B in terms of E,F . For A = 1, F = 0, an
unpleasant calculation leads to

Fk =
e−iak

cosh(aκ) + i
2

(
κ
k
− k

κ

)
sinh(aκ)

, Bk =
(k2 + κ2)

(k2 − κ2) + 2ikκ coth(aκ)
.

For large values of a, the tunnel probability decreases exponentially in the width of the barrier

T := |Fk|2 ∝ e−2aκ.

There’s a new phenomenon for energies E > V0, where one finds oscillations in the tunnel-
ing probability as a function of k. The details are homework.
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Justification of dynamical interpretation

This section justifies why the coefficients that appear in the energy eigenvectors
can be interpreted as the dynamical transition & reflection probability. Feel free
to skip if you already think that’s vaguely plausible.

This way of interpreting the coefficients in the time-independent eigenfunction as pa-
rameters of the dynamical scattering process can indeed be justified. To make this precise,
let’s track a wave packet ψt(x) that at time t = 0 is contained in region I. We also assume
that the Fourier transform ψ̃(k) of ψ0(x) is narrowly concentrated around some k0 > 0,
so that the particle is initially approaching the barrier from the left.

Away from the barrier, ϕ+E is a superposition of three momentum eigenstates

ϕ+E(x) = eikxθ−(x) +Bke
−ikxθ−(x) + Fke

ikxθ+(x) (x in I or III), (1.39)

where we have used the step functions

θ−(x) =

{
1 x ≤ 0
0 x > 0

and θ+(x) =

{
0 x < 0
1 x ≥ 0

.

We’ll show that (1.39) allows us to express ψt(x) in terms of three free wave packets:

αt(x) :=
1√
2π

∫
ψ̃(k)e+ikx−iωkt dk,

βt(x) :=
1√
2π

∫
ψ̃(k)Bke

−ikx−iωkt dk ≃ Bk0√
2π

∫
ψ̃(k)e−ikx−iωkt dk, (1.40)

γt(x) :=
1√
2π

∫
ψ̃(k)Fke

+ikx−iωkt dk ≃ Fk0√
2π

∫
ψ̃(k)e−ikx−iωkt dk. (1.41)

Their interpretations are (Fig. 1.1):

• αt(x) is the time evolution of ψ0(x) under the free Hamiltonian. It will keep on
moving to the right as t→ ∞.

• βt(x) ≃ Bk0αt(−x) is a re-scaled mirror image of αt(x).

• γt(x) ≃ Fk0αt(x) is a re-scaled copy of αt(x).

Figure 1.1: For t → ±∞, the time evolution of a scattered state ψt(x) can be expressed
as the superposition of three free wave packets (black), multiplied by step functions (blue).

Now consider the following solution to the Schrödinger equation for H:

δt(x) =
1√
2π

∫
ψ̃(k)ϕ+Ek

(x)e−iωkt dk.
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(We’ll find below that δt = ψt, but it’s better to use different symbols until this has been
established). Plugging in (1.39), we see that for all x in region I and III,

δt(x) = αt(x)θ
−(x) + βt(x)θ

−(x) + γt(x)θ
+(x) (x in I or III).

Let’s analyze the behavior of δt(x).

• For t ≤ 0: By assumption, the function αt is contained in region I. Then its mirror
image βt is contained in region III, and thus does not contribute, because the step
function θ− is zero there. The final term does not contribute for similar reasons.
It then follows that δt(x) = ψt(x). Because both δt (by construction) and ψt (by
assumption) solve the Schrödinger equation and agree at one time, they must be
equal: ψt(x) = δt(x).

• For t ≫ 0: αt and γt will have moved into region III under the free time evolution.
The mirror image βt now moves to the left in region I. The step functions kill the
first term, leaving us with a reflected and a transmitted copy of αt(x), as claimed.

• As a bonus, we can explain some of the wild interference fringes seen during the
scattering process. They happen for times t where the trailing part of the free in-
coming wave αt interferes with the front of its mirror image βt around x = 0.

1.6 The harmonic oscillator

Classically, a harmonic oscillator is a system with Hamilton function of the form

H(x, p) =
1

2m
p2 +

1

2
mω2x2.

Its trajectories are ellipses in phase space,(
x(t)
p(t)

)
=

(√
2

mω2E cos(ωt+ ϕ)
√
2mE sin(ωt+ ϕ)

)
.

The harmonic oscillator is the most important model system in physics. Some reasons:

• Modes of classical & quantum fields are described by harmonic oscillators.

• Equilibrium positions of classical systems correspond to local minima in the poten-
tial. Around a minimum, the potential can be approximated by a parabola. There-
fore, small perturbations around an equilibrium position lead to harmonic motion.

• Most physics problems are too difficult to be solved from first principles. You know
what kind of systems one can solve efficiently, both with pen and paper and a com-
puter? That’s right: coupled harmonic oscillators. This lead to a “filter effect”,
where systems that cannot be treated this way just can’t be treated at all, and physi-
cists stop talking about them. As Peskin is said to have quipped: “Physics is that
subset of human experience which can be reduced to coupled harmonic oscillators.”
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1.6.1 Algebraic solution

The goal is to solve the time-independent Schrödinger equation Hϕ = Eϕ for

H =
1

2m
P 2 +

1

2
mω2X2.

That’s a linear, second-order, ordinary differential equation:

− ℏ2

2m
ϕ′′(x) +

1

2
mω2x2ϕ(x)− Eϕ(x) = 0.

It can be solved directly from this point of view, and if your hobbies include studying the
intricacies of Hermite polynomials, I invite you to go right ahead. For the rest of us, there
is a slightly more abstract, but also vastly more elegant, way of finding the eigenvalues and
eigenvectors of H , using not much more than the commutation relation [X,P ] = iℏ. We
will walk through this algebraic solution step by step.

Problem-adapted units

In terms of the dimensionless operators

X̃ =

√
mω

ℏ
X, P̃ =

√
1

mℏω
P,

the Hamiltonian and the commutation relations simplify to

H =
1

2
ℏω(P̃ 2 + X̃2), [X̃, P̃ ] =

1

ℏ
[X,P ] = i1.

Ladder operators

Switch to “complex coordinates”

a :=
1√
2
(X̃ + iP̃ ) ⇒ a† =

1√
2
(X̃ − iP̃ ). (1.42)

For reasons we’ll see momentarily, these are called ladder operators. Then:

[a, a†] =
1

2

(
− i[X̃, P̃ ] + i[P̃ , X̃]

)
= 1

and their “absolute value-squared” N := a†a is essentially equal to the Hamiltonian:

N =
1

2

(
X̃2 + P̃ 2 + iX̃P̃ − iP̃ X̃

)
=

1

2

(
X̃2 + P̃ 2 + i[X̃, P̃ ]

)
=

1

2

(
X̃2 + P̃ 2 − 1

)
.

Indeed, re-arranging,

H = ℏω
(
N +

1

2
1
)
. (1.43)

The operator N is the occupation number operator, a name that will become clear soon.
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Remark. The complex coordinates a = 1√
2
(x + ip) are standard in the quantum treatment of

the harmonic oscillator, but also make sense classically. See Appendix B.3.

The eigenvalue equation for the occupation number operator

To solve the eigenvalue equation for H it suffices to solve it for N , as

Nϕ = nϕ ⇔ ℏω
(
N +

1

2
1
)
ϕ = ℏω

(
n+

1

2

)
ϕ.

We’ll now work out the set of eigenvalues of N in a number of mathematical steps.

1. If n is an eigenvalue of N , then n ≥ 0.

Interpretation: Classically, the harmonic oscillator can attain any non-negative energy.
The claim says that the energies of the quantum version are also non-negative... ...but,
looking at (1.43), are actually bounded below by 1

2ℏω > 0. That makes sense, recalling
the uncertainty relation: A classical harmonic oscillator attains energy 0 exactly for a
particle that is located at x = 0 and has momentum p = 0, which can’t be realized in QM.

Proof. Let ϕ be an associated eigenvector. Assume that ϕ is normalizable. Then we may
as well choose ϕ such that ⟨ϕ|ϕ⟩ = 1, in which case

n = ⟨ϕ|Nϕ⟩ = ⟨ϕ|a†aϕ⟩ = ⟨aϕ|aϕ⟩ = ∥aϕ∥2 ≥ 0.

(It turns out that all eigenvectors of H are normalizable. If you don’t want to assume this,
a limit argument still gives the same result. We skip the details).

Let ϕ be a normalized eigenvector of N with eigenvalue n. Then

2. a†ϕ is eigenvector with eigenvalue n+ 1 and norm ∥aϕ∥ =
√
n+ 1.

3. If n ̸= 0, then aϕ is eigenvector with eigenvalue n−1 and norm ∥aϕ∥ =
√
n.

Interpretation: The result explains the term “ladder operators”.
Specifically, a† is the creation operator (because it “adds an

excitation” to the oscillator), and a is the annihilation operator.
(The “dagger” symbol that physicists use to denote the adjoint
kinda looks like a +, so you can remember which one is the cre-
ation operator).

Proof. We only prove the second claim, the first one works analogously. By assumption,

∥aϕ∥2 = ⟨ϕ|a†aϕ⟩ = n.

In particular, if n ̸= 0, then aϕ ̸= 0, too. To see that aϕ is an eigenvector, compute

[N, a] = a†aa− aa†︸︷︷︸
1+a†a

a = −a ⇒ N(aϕ) = (aN − a)ϕ = (n− 1)(aϕ).
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4. The eigenvalues of N are the natural numbers, n ∈ {0, 1, 2, . . . }.

Interpretation: The differences between energy levels of a quantum oscillator thus
come in multiples of ℏω. These are the quanta that Max Planck postulated in order to
explain the spectrum of the black body radiation, and which give QM its name. It is often
said that a harmonic oscillator in an n-eigenstate is “occupied by n excitations”, which one
talks about like particles. “Huh huh!”, I hear you say, “These aren’t real particles... ...just
labels for the eigenfunctions of an oscillator!” Joke’s on you, though, because “excitations
of an oscillator” is pretty much how particles are defined in quantum field theory.

Proof. Let n be an eigenvalue of N .
“Downwards”: Applying a repeatedly, we get a sequence n, n− 1, n− 2, . . .
of eigenvalues. Because all eigenvalues are non-negative, the sequence has to
abort. By the previous claim, it aborts iff it reaches 0. This happens iff n ∈ N.

“Updwards”: Applying a† repeatedly, every natural number n′ > n can
be reached.

5. The eigenspace for n = 0 is non-degenerate. A normalized eigenvector is

ϕ0(x) =
(mω
πℏ

)1/4
e−

1
2

mω
ℏ x2

. (1.44)

That’s the only part of the argument which requires us look
at the H in detail, rather than rely on commutation relations
alone. The lowest-energy eigenstate, or ground state, of the
oscillator is a Gaussian wave function.

Proof. The eigenvalue equation Nϕ0 = 0 can be converted into one for a:

Nϕ0 = 0 ⇔ ⟨ϕ0|a†aϕ0⟩ = 0 ⇔ ⟨aϕ0|aϕ0⟩ = 0 ⇔ aϕ0 = 0.

The latter expands into the first-order differential equation

aϕ0(x) =

√
mω

2ℏ
xϕ0(x) +

√
ℏ

2mω
ϕ′0(x) = 0.

Plugging in, one finds that

ϕ0(x) = Ae−
1
2

mω
ℏ x2

, A ∈ C

is a one-parameter family of solutions. Because the ODE is first-order, these are all.

6. All eigenspaces are non-degenerate.

Proof. Proof by contradiction.
Assume that there are two eigenvectors ϕn, ψm such that
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• Both are n-eigenvectors:

Nϕn = nϕn, Nψn = nψn.

• They are orthogonal to each other (and hence linearly independent)

⟨ϕn|ψn⟩ = 0.

Define

ϕn−1 = aϕn, ψn−1 = aψn.

Then both are (n− 1)-eigenvectors, and

⟨ϕn−1|ψn−1⟩ = ⟨aϕn|aψn⟩ = ⟨ϕn|a†aψn⟩ = ⟨ϕn|Nψn⟩ = n⟨ϕn|ψn⟩ = 0.

Thus n− 1 is degenerate, and by induction, all eigenvalues ≤ n are.
But 0 is non-degenerate, a contradiction.

Summary

The eigenvalues of the harmonic oscillator are non-degenerate and given by

En = ℏω
(
n+

1

2

)
, n ∈ N.

The eigenvectors can be be constructed by “laddering” starting from the (Gaussian)
ground state ϕ0. The resulting vector has normalization

∥(a†)nϕ0∥2 = n∥(a†)n−1ϕ0∥2 = n(n− 1)∥(a†)n−2ϕ0∥2 = · · · = n!∥ϕ0∥2 = n!

so that normalized eigenvectors are

ϕn :=
1√
n!
(a†)nϕ0.
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1.6.2 Properties of eigenstates

Explicit eigenfunctions

Fortunately, one rarely ever needs to work with the explicit form of the eigenfunctions. But
in case you like nice plots, here’s a few of them. Setting m = ω = ℏ = 1 for simplicity:

ϕ1(x) = a†ϕ0(x) =
1√
2
(X − iP )ϕ0(x) =

1√
2π−1/4

(x− ∂x)e
− 1

2x
2

=
1√

2π−1/4
2xe−

1
2x

2

ϕ2(x) =
1√
2
a†ϕ1(x) =

1√
2π−1/4

(x− ∂x)2xe
− 1

2x
2

=
1

2π−1/4
(2x2 − 2 + 2x2)e−

1
2x

2

=
1

2π−1/4
(4x2 − 2)e−

1
2x

2

...

ϕn(x) =
1√
n!2n

1

π1/4

(
x− ∂x

)n
e−

1
2x

2

=
1√
n!2n

Hn(x)e
− 1

2x
2

,

where Hn(x) is the n-th Hermite polynomial.

Expectation values

So how does one compute expectation values if the specific form of the eigenfunctions is
rarely used? The trick is to express observables as polynomials in ladder operators. (One
can show that this is always possible.) For example, X and P expectations vanish:

⟨ϕn|X̃ϕn⟩ =
1√
2
⟨ϕn|(a+ a†)ϕn⟩ =

1√
2

(√
n⟨ϕn|ϕn−1⟩+

√
n+ 1⟨ϕn|ϕn+1⟩

)
= 0,

⟨ϕn|P̃ ϕn⟩ =
−i√
2
⟨ϕn|(a− a†)ϕn⟩ = · · · = 0.

https://en.wikipedia.org/wiki/Hermite_polynomials
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Likewise, we can compute the variances from

⟨ϕn|X̃2ϕn⟩ =
1

2
⟨ϕn|(a2 + aa†︸︷︷︸

a†a+1

+a†a+ (a†)2)ϕn⟩ =
1

2
(n+ 1 + n) = n+

1

2
,

⟨ϕn|P̃ 2ϕn⟩ = ... = n+
1

2
.

In adapted units, the variances are thus equal, never zero, and increase with the energy.

1.6.3 Coherent states

Homework.



Chapter 2

The mathematical framework of QM

The last chapter was phrased in terms of wave functions ψ(x). That’s a good starting
point, because these are very concrete objects. However, the values ψ(x) are not directly
physically observable – only probabilities |⟨ϕλ|ψ⟩|2 or expectation values ⟨ψ|F |ψ⟩ are.

This suggests that these linear-algebraic expressions are more fundamental than the
explicit functions ψ(x). Also, pragmatically, computing with abstract linear-algebraic ob-
jects is often much simpler. Take, e.g. our one-line calculation of the position variance
⟨ϕn|X̃2|ϕn⟩ in a harmonic oscillator eigenstate. One can compute this as an integral over
explicit Hermite polynomials – but that is unlikely to brighten the mood.

This suggests that one should re-formulate QM, so that abstract Hilbert spaces and
linear operators are the fundamental objects. Concrete functions will then appear as the
representation of abstract vectors in a concrete basis.

For better or worse, this linear-algebraic language is the one in which QM is most often
discussed. In this chapter, we will introduce the relevant notions. (This involves repeating
some ideas that already came up in Linear Algebra and Chapter 1).

2.1 Hilbert spaces

A Hilbert space H is a complex vector space with a sesquilinear inner product ⟨·|·⟩.
Sesquilinearity means that for all vectors

α, β, γ ∈ H

and complex numbers z ∈ C, we have

⟨α|β + γ⟩ = ⟨α|β⟩+ ⟨α|γ⟩, (2.1)
⟨α|zβ⟩ = z⟨α|β⟩, (2.2)

as well as
⟨α|β⟩ = ⟨β|α⟩. (2.3)

From this, it follows that

⟨α+ β|γ⟩ = ⟨α|γ⟩+ ⟨β|γ⟩,
⟨zα|β⟩ = z̄⟨α|β⟩,

i.e. the inner product is anti-linear w.r.t. the first entry and linear w.r.t. the second one.

31
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Remark. Beware that mathematicians usually employ the opposite convention, where the
sesquilinear inner product is linear in the first entry!

The norm of a vector α ∈ H is given by

∥α∥ :=
√

⟨α|α⟩.

Recall that inner products are required to be definite, i.e. to fulfill

∥α∥ > 0 ∀α ̸= 0.

There are two examples of Hilbert spaces you should be acquainted with: column
vectors and square-integrable functions. Let’s look at both in turn.

The vector space Cd is formed by d-dimensional complex column vectors

α =

α1

...
αd


with sesquilinear inner product

⟨α|β⟩ =
d∑
i=1

ᾱiβi. (2.4)

Such Hilbert spaces appears e.g. in the description of spin degrees of freedom.
The second class are the spaces L2(Rn) of square-integrable complex functions on

Rn. (“wave functions” in physics jargon – we’ve already encountered the n = 1 case
in Chapter 1). Given two functions α, β : Rn → C, define a “continuous analogue” of
Eq. (2.4) by

⟨α|β⟩ =
∫
ᾱ(x)β(x) dnx. (2.5)

For the non-pedantic physicist, the space of all complex-valued functions, together with
the form (2.5) defines a Hilbert space. It is associated with a point particle with n degrees
of freedom.

Remark. There are three technical problems that one has to address to define the Hilbert space
of functions with mathematical rigor.

The first problem is the integral is not actually defined for all functions. Set, e.g.

ψ(x) =

{
sin(1/x) x ̸= 0,
0 x = 0.

Then ∫
|α(x)|2 dx

does not exist. The second problem is that the integral may be defined, but infinite – take e.g.
α(x) = 1 and compute ⟨α|α⟩. To get rid of both problems, we define a function α to be square-
integrable if

∥α∥2 = ⟨α|α⟩ =
∫
|α(x)|2 dnx
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exists and is finite. If α, β are square-integrable, then the product ᾱβ is integrable, and the
Cauchy-Schwarz inequality says that

|⟨α|β⟩|2 ≤ ∥α∥2 ∥β∥2 <∞,

so that, by restricting to square-integrable functions, we have rid ourselves of undefined and
infinite integrals!

The third problem is that the norm is no longer definite. Indeed, define a function

α(x) =

{
1 x = 0
0 x ̸= 0

.

Then α ̸= 0, but ∥α∥2 = 0. Circumventing this problem requires some mathematical gymnas-
tics: We say that two functions are equivalent if they differ only on a set of measure zero. This
means e.g. that the function α is equivalent to the 0-function, as the two differ only at one point.
If we define the Hilbert space L2(Rn) to be the complex vector space of equivalence classes
of square-integrable functions, then one can show that (2.5) becomes a definite inner product.
Problem solved.

2.2 Linear operators

Recall that a map A between two vector spaces is linear if

A(ϕ+ ψ) = A(ϕ) +A(ψ) and A(λϕ) = λA(ϕ).

In QM, linear maps between Hilbert spaces are traditionally called operators.
Examples:

• H = Cd: In this case, operators can conveniently be specified as matrices, which act
on column vectors in the usual way. For example, we will have ample opportunity
to work with the Pauli matrices:

σx =

(
0 1
1 0

)
, σx =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

• In H = L2(R), we have already made contact with the position operator, which
acts on a function ψ : R→ C by multiplying it with its argument

(Xψ)(x) = xψ(x),

and the momentum operator maps a function to −iℏ times its derivative

P = −iℏ∂x : ψ 7→ Pψ = −iℏψ′.

2.3 Dirac notation

Physicists often use notational aids to distinguish vector-valued quantities from scalars.
In quantum mechanics, the suggestive Dirac notation (or “bra-ket” notation) is usually
employed. Here, a vector α ∈ H is written as |α⟩. This is called a ket, for reasons that will
be obvious momentarily.

Every vector ψ ∈ H defines a linear function

H → C, ϕ 7→ ⟨ψ|ϕ⟩, (2.6)
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the “inner product with ψ”. In quantum, we denote this function as ⟨ψ| and call it a bra.
Then we can write

⟨ψ|(|ϕ⟩) = ⟨ψ|ϕ⟩, (2.7)

so a “bra-ket” is a “braket”. This passes for humor around here.

Remark. Linear functions from a vector spaces to C are also called dual vectors or (linear)
functionals. Confusion alert: In the calculus of variation – i.e. the branch of analysis that turns
the action principle into the Euler-Lagrange equation – the word “functional” is used instead to
refer to a function that takes other functions as arguments.

The genius of this notation is that one doesn’t need to expend any thoughts on concepts
like “dual vectors” or “linear functionals” – the formalism almost forces one to use these
object correctly.

Let’s play around with this. Equation (2.7) is the inner product between |ψ⟩ and |ϕ⟩.
One can combine two vectors also to form an outer product, namely the linear operator
H → H defined as

|β⟩ 7→ |ϕ⟩⟨ψ|
(
|β⟩
)
:= |ϕ⟩

(
⟨ψ|β⟩

)
. (2.8)

Definition (2.8) implies that composing bras and kets is associative: One can read the
expression

|ϕ⟩⟨ψ|β⟩

as either (
|ϕ⟩⟨ψ|

) (
|β⟩
)

“operator acting on vector”

or as

|ϕ⟩
(
⟨ψ|β⟩

)
“vector times inner product” ,

getting the same result.

Remark. Here’s a more systematic interpretation of (2.8). Bras were defined as linear maps
H → C. Analogously, we can interpret a ket |ϕ⟩ as the linear map

C→ H, λ 7→ λ|ϕ⟩ (2.9)

(The same way an n × 1-matrix can be read either as a column vector in Cn or as a linear map
C → C

n). Then a product of kets and bras is nothing but a concatenation of linear maps. For
example, (read from right to left):

⟨γ|︸︷︷︸
...and on to a number

|β⟩︸︷︷︸
...that number to a vector...

⟨α|︸︷︷︸
map a vector to a number...

: H → C.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The associativity rule found above is thus nothing but the associativity of the composition of
linear maps.
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2.4 Bases

Let H be a Hilbert space. A discrete set {|ei⟩}i ⊂ H is called ortho-normal if

⟨ei|ej⟩ = δi,j .

If in addition, every element |ψ⟩ ∈ H can be expressed as a liner combination

|ψ⟩ =
∑
i

ψi|ei⟩ (2.10)

with suitable expansion coefficients ψi ∈ C, then we have an ortho-normal basis (ONB).

Remark.
• In physics, unless stated otherwise, “basis” always means “ortho-normal basis”.

• Hilbert spaces are often infinite-dimensional. In this case, the “sum” in (2.10) is actually
an infinite series, and the equality sign is to be interpreted as the statement

lim
n→∞

∥∥∥∥∥
(

n∑
i=1

ψi|ei⟩

)
− |ψ⟩

∥∥∥∥∥ = 0.

Experience has it that ignoring these subtleties tends to not create major problems in
physics. If you are bothered by this, it pays to pick up a book on functional analysis.

Every ONB fulfills the completness relation∑
i

|ei⟩⟨ei| = 1, (2.11)

where 1 : |ψ⟩ 7→ |ψ⟩ is the identity map. To prove it, calculate for an arbitrary |ψ⟩ =∑
i ψi|ei⟩, (∑

i

|ei⟩⟨ei|

)∑
j

ψj |ej⟩

 =
∑
i,j

ψj |ei⟩ ⟨ei|ej⟩︸ ︷︷ ︸
δi,j

= |ψ⟩. (2.12)

The completeness relation implies the following properties of ONBs:

1. Expansion coefficients are given by inner products

|ψ⟩ = 1|ψ⟩ =
(∑

i

|ei⟩⟨ei|
)
|ψ⟩ =

∑
i

⟨ei|ψ⟩︸ ︷︷ ︸
ψi

|ei⟩.

2. Expansion coefficients of bras are the complex conjugate:

⟨ψ| = ⟨ψ|1 =
∑
i

⟨ψ|ei⟩︸ ︷︷ ︸
ψ̄i

⟨ei|.

3. Inner products can be computed with respect to an arbitrary ONB:

⟨ψ|ϕ⟩ = ⟨ψ|1|ϕ⟩ =
∑
i

⟨ψ|ei⟩⟨ei|ϕ⟩ =
∑
i

ψ̄iϕi.

The special case where ϕ = ψ is sometimes called the Parseval relation:

∥ψ∥2 = ⟨ψ|ψ⟩ =
∑
i

|ψi|2.
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4. Description of operators via matrix elements

A = 1A1 =
∑
i,j

|ei⟩⟨ei|A|ej⟩⟨ej | =
∑
i,j

Ai,j |ei⟩⟨ej |, Ai,j := ⟨ei|A|ej⟩. (2.13)

so that

⟨ϕ|A|ψ⟩ = ⟨ϕ|1A1|ψ⟩ =
∑
ij

ϕ̄jAijψi.

The expression (2.13) also shows that for every basis {|ei⟩}i of the Hilbert space,
the set {|ei⟩⟨ej |}ij is a basis for the vector space of linear operators.

The Dirac notation allows one to save a bit of ink when working with one fixed ONB.
Say we have agreed to work with {|ei⟩}i. Then quantum physicists (and no-one else. . . )
commonly drop the symbol e and just put the index into the ket:

|i⟩ := |ei⟩.

2.4.1 Vector and matrix representations

Assume that H is finite-dimensional and that some ONB {|i⟩}di=1 has been fixed. Then
the calculations above define a one-one relation between H and the Hilbert space Cd of
row vectors. Concretely, take the dictionary

kets ↔ column vectors |ψ⟩ ↔

ψ1

...
ψd


bras ↔ row vectors ⟨ψ| ↔ (ψ̄1, . . . , ψ̄d)

operators ↔ matrices A↔

A1,1 . . . A1,d

...
...

Ad,1 . . . Ad,d


with

ψi = ⟨i|ψ⟩, Ai,j = ⟨i|A|j⟩.

Under this identification, the composition rules of bras, kets, and operators correspond to
the usual rules of matrix-vector multiplication. This representation is particularly useful
for computer implementations!

2.5 The adjoint

Recall that inRd with Euclidean scalar product

(u, v) =
∑
i

uivi

one can “move a matrix from one entry of the scalar product to the other by taking its
transpose”

(u,Av) = (Atu, v), (At)i,j = Aj,i.
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Likewise, if H is a Hilbert space andA an operator on H, then there is a unique adjoint
operator A† such that

⟨ϕ|Aψ⟩ = ⟨A†ϕ|ψ⟩ ∀ψ, ϕ ∈ H.

With respect to a basis, one finds the formula

⟨ϕ|Aψ⟩ =
∑
ij

ϕ̄iAijψj =
∑
j

(∑
i

ϕiĀij

)
ψj = ⟨A†ϕ|ψ⟩ ⇒ (A†)ij = Āji.

The basis representation of A† is therefore the “conjugate transpose” of the one of A. The
expression A† for the adjoint is pronounced “A dagger”. An operator A is self-adjoint or
Hermitian if A = A†.

Properties. It is easy to see that taking the adjoint

• ...is anti-linear (A+ zB)† = A† + z̄A†,

• ...reverses products (AB)† = B†A†,

• ...exchanges “bras” and “kets”
(
|α⟩⟨β|

)†
= |β⟩⟨α|.

One can unify the last two properties by slightly generalizing the definition of the adjoint. If
H and K are two Hilbert spaces, then it is still true that for every operator A : H → K, there is
a unique adjoint A† : K → H, such that

⟨ϕ|Aψ⟩K = ⟨A†ϕ|ψ⟩H, ϕ ∈ K, ψ ∈ H.

Recall that C = C
1 is itself a Hilbert space, and that we have identified a ket |β⟩ ∈ H with a

linear map C → H in (2.9). Then one directly verifies that |β⟩† = ⟨β| and that the first two
properties still hold. The third property is then a special case of the second one.

Examples.
• The Pauli matrices are self-adjoint, as is evident by taking the conjugate-transpose.

• The momentum operator is self-adjoint:

⟨ϕ|P |ψ⟩ =
∫ ∞

−∞
ϕ̄(x)(−iℏ)ψ′(x) dx

= −
∫ ∞

−∞
(ϕ̄)′(x)(−iℏ)ψ(x) dx (integration by parts)

=

∫ ∞

−∞
ψ̄(x)(−iℏ)ϕ′(x) dx = ⟨ψ|P |ϕ⟩,

where we have used that for square-integrable functions limx→±∞ ψ(x) = 0, so that no
boundary terms appear when integrating by parts.

2.6 Spectral decomposition (discrete case)

Recall our old friend, the eigenvalue problem: Given an operator A : H → H, find all
λi, |ψi⟩ such that

A|ψi⟩ = λi|ψi⟩

Of course, the λi’s are the eigenvalues and the |ψi⟩’s the eigenvectors of A.
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A spectral decomposition (or eigendecomposition) of A is a representation of the form

A =
∑
i

λi|ψi⟩⟨ψi|, 1 =
∑
i

|ψi⟩⟨ψi|. (2.14)

The spectral decomposition reveals the eigenvalues and eigenvectors of A:

A|ψj⟩ =
∑
i

λi|ψi⟩ ⟨ψi|ψj⟩︸ ︷︷ ︸
δij

= λj |ψj⟩.

It follows that A has an eigendecomposition if and only if one can find an ONB comprised
of eigenvectors. In this case, one refers to it as A’s eigenbasis, and the λi’s appearing in
the decomposition are exactly the eigenvalues of A.

Not every operator has an eigenbasis, e.g. the “spin-1/2 raising operator”

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
does not (why?). There’s a theorem in functional analysis that essentially says that A
has an eigendecomposition if and only if A commutes with its adjoint, i.e. AA† = A†A.
(Though the case when there is a continuum of eigenvalues needs more attention, see
section below).

The most important class of operators for which this holds are, of course, the self-
adjoint ones A = A†. What is more, in this case, all eigenvalues are real. Indeed, A|ψ⟩ =
λ|ψ⟩ implies (taking |ψ⟩ to be normalized without loss of generality)

λ = ⟨ψ|A|ψ⟩ = ⟨ψ|A†|ψ⟩ = ⟨ψ|A|ψ⟩ = λ̄.

Thus the self-adjoint operators are exactly those of the form

A =
∑
i

λi|ϕi⟩⟨ϕi|, λi ∈ R, {|ϕi⟩}i an ONB.

2.7 Spectral decomposition (continuous case)

When working out eigendecompositions in infinite dimensions, we can run into trouble.
Let’s see what can go wrong.

First, consider the momentum operator P = −i d
dx . The eigenvalue equation is trivial

to solve:

−iψ′ = λψ ⇔ ψ(x) = c eiλx.

Trouble is that these solutions are not square integrable:

∥ψ∥2 =

∫ ∞

−∞
|c|2 dx = ∞. /

For the position operator (Xψ)(x) = xψ(x), the eigenvalue equation

xψ(x) = λψ(x) ∀x

is solved by

ψ(x) =

{
c x = λ
0 else ,
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which has norm ∥ψ∥ = 0. So it seems like there are no eigendecompositions for the two
most important operators of QM. //

To get around the problem, we widen our domain of discourse by allowing for more
general objects than just square-integrable functions. Let’s first see how this formally
solves our problem. Whether we are “allowed to do this”, i.e. whether the formal con-
struction will lead to inconsistencies, is something we’ll worry about later.

2.7.1 Delta distributions

The distribution δy is a formal object whose inner product with a smooth function ϕ is
defined to be

⟨δy|ψ⟩ =
∫
δ̄y(x)ψ(x) dx := ψ(y).

Then the expression ∫
x

x|δx⟩⟨δx|dx

provides an eigendecomposition of the position operator X in the sense that for any pair
of smooth functions ϕ, ψ we get the correct result

⟨ϕ|
(∫

x

x|δx⟩⟨δx|dx
)
|ψ⟩ =

∫
x⟨ϕ|δx⟩⟨δx|ψ⟩ =

∫
xϕ̄(x)ψ(x) = ⟨ϕ|X|ψ⟩. (2.15)

Likewise, we have the completeness relation∫
x

|δx⟩⟨δx|dx = 1 (2.16)

in the same sense, i.e.

⟨ϕ|
(∫

x

|δx⟩⟨δx|dx
)
|ψ⟩ =

∫
⟨ϕ|δx⟩⟨δx|ψ⟩ =

∫
ϕ̄(x)ψ(x) = ⟨ϕ|ψ⟩.

So when integrated against smooth functions, the expressions above behave just like an
eigendecomposition should. We can work this that! ,

2.7.2 Plane waves

We now turn to eigendecomposition of the momentum operator. For k ∈ R, define the
non-normalizable eigenfunction

ϕk(x) = (2π)−1/2eikx.

We claim that ∫
k

|ϕk⟩⟨ϕk|dk = 1,

∫
k

ℏk |ϕk⟩⟨ϕk|dk = P,

in the sense that for ψ, ϕ vanishing at infinity

⟨ϕ|
(∫

k

|ϕk⟩⟨ϕk|dk
)
|ψ⟩ = ⟨ϕ|ψ⟩, (2.17)

⟨ϕ|
(∫

k

ℏk |ϕk⟩⟨ϕk|dk
)
|ψ⟩ = ⟨ϕ|P |ψ⟩. (2.18)
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To see that this is true, note that the inner product with a function ψ

⟨ϕk|ψ⟩ = (2π)−1/2

∫
e−ikxψ(x) dx = ψ̃(k)

gives the Fourier transform ψ̃ of ψ evaluated at k. Recall that the inverse transform is

(2π)−1/2

∫
eikxψ̃(k) dk = ψ(x).

The completeness relation Eq. 2.17 thus follows from

⟨δx|
(∫

k

|ϕk⟩⟨ϕk|dk
)
|ψ⟩ = (2π)−1/2

∫
k

eikxψ̃(k) dk = ψ(x).

Next, for ψ vanishing at infinity, integration by parts give

ℏk⟨ϕk|ψ⟩ = (2π)−1/2

∫
ℏke−ikxψ(x) dx

= (2π)−1/2

∫ (
iℏ

d

dx
e−ikx

)
ψ(x) dx

= (2π)−1/2

∫ (
−iℏ d

dx
ψ(x)

)
e−ikx dx = ⟨ϕk|P |ψ⟩

which implies Eq. (2.18):

⟨ϕ|
(∫

k

ℏk|ϕk⟩⟨ϕk|dk
)
|ψ⟩ = ⟨ϕ|

(∫
k

|ϕk⟩⟨ϕk|dk
)
P |ψ⟩ = ⟨ϕ|P |ψ⟩. ,,

2.7.3 General eigendecompositions

We can now sketch the way in which a general Hermitian operator A has an eigendecom-
position. Consider all solutions to the eigenvalue equation

A|ψλ⟩ = λ|ψλ⟩,

regardless of whether |ψλ⟩ is square-integrable or not. Assume for simplicity that A is
non-degenerate, i.e. that for every λ ∈ R, there is at most one eigenfunction |ψλ⟩. An
eigenvalue λ ∈ C is called discrete if it is separated from all other eigenvalues by a finite
distance. Let D be the set of discrete eigenvalues. Eigenvalues that are not discrete are
called continuous. Collect them in another set C. Choose normalization such that

⟨ψλ′ |ψλ⟩ = δλ′,λ λ ∈ D,

⟨ψλ′ |ψλ⟩ = δ(λ′ − λ) λ ∈ C.

Then we have the completeness relation and spectral decomposition

1 =

∫
C

|ψλ⟩⟨ψλ|dλ+
∑
λ∈D

|ψλ⟩⟨ψλ|,

A =

∫
C

λ|ψλ⟩⟨ψλ|dλ+
∑
λ∈D

λ|ψλ⟩⟨ψλ|.
(2.19)
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We can unify the treatment of the discrete and the continuous part. Define

ρ =
∑
λ∈D

δλ + IC in terms of the indicator function IC(λ
′) =

{
1 λ′ ∈ C
0 else .

The delta functions allow us to incorporate the sums in (2.19) into the integral:

A =

∫
λ|ψλ⟩⟨ψλ|ρ(λ) dλ. (2.20)

The completeness relation generalizes like this: For any subset S ⊂ R,∫
S

|ψλ⟩⟨ψλ|ρ(λ) dλ = PS , (2.21)

where PS projects onto the space spanned by {|ψλ⟩ |λ ∈ S}. This looks somewhat like
the formula ∫

S

ρ(λ) dλ = µ(S)

for computing the measure of a set S given a density ρ. Therefore, the map S 7→ PS is
called a projection-valued measure and ρ the density of states (with respect to dλ). The
interpretation of ρ is particularly clear when applied to sets S that do not intersect the
continuous part S ∩ C = ∅. Then∫

S

ρ(λ) dλ = |S ∩D|

equals the number of eigenvalues of A in S.
See Chapter 1 of Quantum Mechanics by Ballentine for a more careful, but not too

technical exposition. A rigorous version is the spectral theorem of functional analysis.

2.8 Functions of operators

Let

A =
∑
i

λi|ϕi⟩⟨ϕi|

be the eigendecomposition of an operator. Then

A2 =
∑
ij

λiλj |ϕi⟩ ⟨ϕi|ϕj⟩︸ ︷︷ ︸
δij

⟨ϕj | =
∑
i

λ2i |ϕi⟩⟨ϕi|

and likewise

Ak = · · · =
∑
i

λki |ϕi⟩⟨ϕi|.

Thus, if p(x) =
∑
k ckx

k is a polynomial, then

p(A) =
∑
k

ckA
k =

∑
i

p(λi)|ϕi⟩⟨ϕi|.

For an arbitrary function f : C → C, one can thus consistently define its action on
operators with an eigendecomposition as

f(A) :=
∑
i

f(λi)|ϕi⟩⟨ϕi|.

(This convention is sometimes called the spectral calculus).
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2.9 Unitary operators

Unitary operators are the Hilbert space analogue of orthogonal rotations in Euclidean vec-
tor spaces: Invertible linear operators that preserve inner products. Let’s work out what
that means.

The inner product between U |ϕ⟩, U |ψ⟩ is ⟨ϕ|U†U |ψ⟩. Thus U preserves the inner
product between any pair of operators if and only if

⟨ϕ|U†U |ψ⟩ = ⟨ϕ|ψ⟩ ∀ϕ, ψ ∈ H.

We thus define: An operator is unitary if it is invertible and fulfills U†U = 1.
One can work out that these characterizations are equivalent:

1. U is unitary.

2. U has a spectral decomposition of the form

U =
∑
i

eiϕi |ψi⟩⟨ψi|, ϕi ∈ R,

i.e. all eigenvalues λi = eiϕi have absolute value equal to 1.

3. There is a Hermitian operator A such that U = eiA (in the sense of Sec. 2.8).

4. U is such that U†U = 1 and UU† = 1 (in which case U is automatically invertible,
so we do not have to list this as an extra requirement).

5. If {|ei⟩}i is an ONB, then so is {U |ei⟩}i.

In quantum mechanics, unitary operators describe symmetries. The most important
symmetry is of course time evolution! The Hermitian operator that generates time evolu-
tion U(t) in the sense that U(t) = e−it/ℏH (as in Point 3.) is nothing but −1/ℏ times the
Hamiltonian.

2.10 Projections

Recall (see Fig. 2.1) that in Rd with Euclidean scalar product (u, v) =
∑
i uivi, there is a

one-one relation between

• Subspaces V ⊂ Rd, and

• orthogonal projections P , i.e. linear maps fulfilling P = P t, P 2 = P .

The Hilbert space analogue works like this: An operator P is a projector (or projection)
if

1. P = P †, and

2. P 2 = P .

The first property means that P has a spectral decomposition. The second property then
implies that the eigenvalues are elements of {0, 1}. Thus,

P =
∑
i

|ψi⟩⟨ψi|,

where the {|ψi⟩} form an ONB for the subspace V ⊂ H onto which P projects.
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Figure 2.1: Orthogonal projection of u onto the x-y-plane.

Examples.
• For every normalized vector |ψ⟩ ∈ H, the outer product P = |ψ⟩⟨ψ| is the projection

onto the one-dimensional subspace V = {z|ψ⟩ | z ∈ C}.
• Define the parity operator Π onH = L2(R) by

Π|δx⟩ = |δ−x⟩, that is (Πϕ)(x) = ϕ(−x).

Then it’s easy to see that P± = 1
2
(1+Π) are projection operators onto the space of even

and odd functions respectively (why?).

2.11 The trace

The trace of an operator is the sum over its eigenvalues. It can be expressed as

trA =
∑
i

⟨i|A|i⟩,

where the sum is over any ONB {|i⟩}i.
Some properties:

• Cyclic invariance:

trAB =
∑
ij

⟨i|A|j⟩⟨j|B|i⟩ =
∑
ij

⟨j|B|i⟩⟨i|A|j⟩ = trBA.

• Trace of outer products are inner products:

tr |α⟩⟨β| =
∑
i

⟨i|α⟩⟨β|i⟩ =
∑
i

⟨β|i⟩⟨i|α⟩ = ⟨α|β⟩.

2.12 Commuting operators

Assume that two operators A,B have a joint eigenbasis {|ψi⟩}:

A|ψi⟩ = ai|ψi⟩, B|ψi⟩ = bi|ψi⟩.

Then

[A,B]|ψi⟩ = (AB −BA)|ψi⟩ = (aibi − biai)|ψi⟩ = 0 ∀ i.
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so the operators commute.
Less obvious, but still true is that the converse also holds: If a set of normal operators

commute, one can construct a joint eigenbasis. (The proof is very simple if one of the
operators is non-degenerate, but somewhat lengthy in the general case. We skip it here).

Example. Consider the momentum operator P = −iℏ∂x, the free Hamiltonian H = P 2/2m,
and the parity operator (Πψ)(x) = ψ(−x). Then

1. [H,P ] = 0 (because any two functions of the same Hermitian operator commute),

2. [P,Π] ̸= 0, because by the chain rule, computing the derivative of the reflected function
incurs an extra minus sign: (PΠψ)(x) = −Pψ(−x) while (ΠPψ)(x) = Pψ(−x).

3. [H,Π] = 0, because H depends on the 2nd derivative, and the two signs cancel.

By 1., we can find an energy eigenbasis consisting of states with well-defined momentum. These
are the plane waves ϕ±

E(x) of Eq. (1.18). By 3., there is an energy eigenbasis of states with well-
defined parity. These are sine / cosine functions ϕ(e)

E (x), ϕ
(o)
E (x) of (1.19). By 2., we cannot

insists on both properties at the same time.
While the eigenspaces of H are two-fold degenerate, the joint eigenbases of H,P and, re-

spectively, of H,Π are unique (up to re-ordering and changing phases).

In the example, the eigenspaces of H and of Π are both degenerate. But the joint
eigenvalue equations

H|E, π⟩ = E|E, π⟩, Π|E, π⟩ = π|E, π⟩, E ≥ 0, π ∈ {±1}

have a unique solution |E, π⟩ (up to physically irrelevant phases). In general, a collection
of operators with a unique joint eigenbasis is called a complete set of commuting operators.
The eigenvalues that single out an element of the basis (like E, π in the example) are
sometimes called quantum numbers.

2.13 Modeling reality, the quantum way

Even though it’s common to talk about “the axioms of quantum mechanics”, the truth
is that “quantum theory” is more of a general framework. Here’s the maybe minimal
requirement a theory has to fulfill to count as “quantum”.

• It takes as input a classical description of a physical setup. “Mount the dilution fridge
in the rack, tune the lasers to 400nm, record whether the photo detector clicks.”

• The procedure is divided into a “preparation” and a “measurement” part.

• To each preparation procedure, associate a state, represented by a vector |ψ⟩ in a
Hilbert space. To each measurement procedure, associate an observable, represented
by a Hermitian operator F .

• The expected value of the measurement outcome is then given by ⟨ψ|F |ψ⟩.

TBD: Figure
Comments:

• There’s generally a lot of freedom for how to divide up a setup into preparation
and measurement. See the discussion of Schrödinger vs. Heisenberg picture in
Sec. 1.5.3. (A particularly radical case is commonly used in relativistic quantum
field theory, where there’s a default preparation procedure essentially saying “don’t
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do anything at all!”, which results in the quantum vacuum state. Several books have
been written about it!). However, if it’s quantum, there has to be a Hilbert space
somewhere in the middle!

• So what is a “quantum state”? It’s natural to define a quantum state as a classical
description of a preparation procedure, since this is what completely determines the
observable behavior. (Or, more pedantically, as an equivalence class of prepara-
tions, where two procedures are identified if they lead to statistically indistinguish-
able measurement outcomes). Likewise, an observable is an (equivalence class of)
classical prescription of a measurement process.

• Q.: You have defined the more fundamental concept “a quantum state” in terms of
the less fundamental “classical description”. Shouldn’t classical physics just arise
as a limit of quantum? Like, in the same way as Galilean space-time is now recog-
nized as a mere approximation to the more fundamental relativistic space-time?
Yes, there some tension here! The relation between classical and quantum concepts
is a major problem in metaphysics, sometimes discussed as the measurement prob-
lem.

• Q.: So “physical reality factors through a Hilbert space”. I mean, it’s hard to come
up with a less intuitive starting point! Can one explain why?
A.: Touchy subject.
Here’s what could have been. Special relativity has also fundamentally changed our
understanding of reality (e.g. showing that seemingly innocuous concepts like “at
the same time” often don’t make sense, ...). But: You can start with a simple-to-
understand empirical observation – “the speed of light is the same in every reference
frame” – and given enough scratch paper and ingenuity, reason your way to SR just
from this one physical axiom.
Trying to emulate this, hundreds of papers have been written in an attempt to find
physically meaningful axioms from which the Hilbert space structure of QM could
be derived. There is currently no consensus on whether this has been achieved to a
satisfactory degree, and if so, which axioms to start from.
For the time being, you may just have to accept it.

_
\_( ") )_/

_

https://scholar.google.com/scholar?q=quantum+mechanics+from+physical+axioms


Chapter 3

Two-body quantum mechanics

3.1 Hilbert spaces for composite systems

Consider two quantum mechanical systems with individual Hilbert spaces

• H1 = {
∑
i αi|ei⟩}, with ⟨ei|ek⟩ = δi,k.

• H2 = {
∑
i βi|ei⟩}, with ⟨fj |fl⟩ = δj,l.

Our goal is to assign a Hilbert space H1,2 to the joint system.
If the two particles are distinguishable, then it makes sense to prepare to first one in

the state |ei⟩ and the second one in the state |fj⟩. There must therefore be an element in
the joint Hilbert space H1,2 that describes this state. Write it as

|ei, fj⟩ “system 1 in state |ei⟩, system 2 in state |fj⟩”. (3.1)

Being a vector space, H1,2 must also contain any linear combination∑
i,j

ψi,j |ei, fj⟩, ψi,j ∈ C

of such elements. This suggests the following construction:

The tensor product Hilbert space H1,2 = H1 ⊗H2 is the vector space

H1,2 =
{∑

i,j

ψi,j |ei, fj⟩
}
, with ⟨eifj |ekfl⟩ = δi,kδj,l.

3.1.1 Product states, entanglement

Generalizing (3.1), if |α⟩ =
∑
i αi|ei⟩ ∈ H1 is a general state of the first system, and

|β⟩ =
∑
j β|fj⟩ ∈ Hj , one of the second system, associate with it the product state

|α, β⟩ =
∑
i,j

αiβj |ei, fj⟩ ∈ H1,2.

It is called so, because the coefficients ψi,j = αiβj factorize. Alternative notations:

|α, β⟩ = |αβ⟩ = |α⟩|β⟩ = |α⟩ ⊗ |β⟩.

46
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If the basis one is referring to is clear from context, one also writes |ei, fj⟩ = |i, j⟩.
It is easy to verify that the tensor product between product vectors factorizes:

⟨αβ|γδ⟩ =
∑
ijkl

α∗
i β

∗
j γkδl ⟨ij|kl⟩︸ ︷︷ ︸

δikδjl

=
∑
ij

α∗
i β

∗
j γiδj = ⟨α|γ⟩ ⟨β|δ⟩. (3.2)

A simple parameter counting argument shows that “most” vectors in a tensor product
space do not factorize. Such vectors are called entangled, and give rise to very exciting
phenomena, as we’ll see soon.

Remark. Interpreting the expansion coefficients ψij as a matrix, it becomes apparent that there
are numbers αi, βj such that ψij = αiβj if and only if ψij has rank 1.

As an example, consider Hilbert spacesH1 = H2 with ONB {|↑⟩, |↓⟩}. Then

|ψ⟩ = 1

2

(
|↑↑⟩+ |↑↓⟩+ |↓↑⟩+ |↓↓⟩

)
is not entangled, because the coefficient matrix

ψij =

(
1
2

1
2

1
2

1
2

)
ij

has rank 1. And indeed, |ψ⟩ = |α⟩|β⟩ for |α⟩ = |β⟩ = 1√
2
(|↑⟩+ |↓⟩). On the other hand, both

|Φ+⟩ = 1√
2

(
|↑↑⟩+ |↓↓⟩

)
and |Ψ−⟩ = 1√

2

(
|↑↓⟩ − |↓↑⟩

)
(3.3)

are entangled, because

rank

(
1√
2

0

0 1√
2

)
= rank

(
0 1√

2

− 1√
2

0

)
= 2.

Remark. The tensor product is not the only way to combine local to combine individual Hilbert
spaces to a joint one.

Indeed, call two particles indistinguishable if one cannot construct measurement devices
that are sensitive to one of them, but not to the other. Elementary particles of the same type are
indistinguishable: There is no detector that will be triggered only by one specific photon!

For indistinguishable particles, the tensor product Hilbert space is “too large”. Indeed, in
H1 ⊗ H2, the vector |α⟩|β⟩ generally describes a different state than |β⟩|α⟩, even though no
measurement device can tell them apart. This redundancy is already present in classical mechan-
ics, but doesn’t seem to cause major trouble there. In contrast, in QM, in turns out that one must
switch to a “reduced”, non-redundant, Hilbert space to get correct predictions. It appears that el-
ementary particles fall in one of two categories, which employ different mechanisms for building
a joint Hilbert space from individual ones. These are called Bosons and Fermions respectively.
The details are not part of this class.

3.1.2 Local operators

Let H1,2 = H1 ⊗H2. We can let operators A on H1, or B on H2 act on product vectors
in the obvious way:

A|α, β⟩ = (A|α⟩)|β⟩, B|α, β⟩ = |α⟩(B|β⟩).



CHAPTER 3. TWO-BODY QUANTUM MECHANICS 48

This defines A,B on all of H12, because the product vectors |ei, fj⟩ form a basis. If not
clear from context, the system on which an operator acts is explicitly specified

C(1)|α, β⟩ = (C|α⟩)|β⟩, C(2)|α, β⟩ = |α⟩(C|β⟩).

Examples. Consider againH1 = H2 with ONB {|↑⟩, |↓⟩}. With respect to this ONB, let

σx =

(
0 1
1 0

)
be the operator that exchanges “up” and “down” states. Then σ(1)

x acts on the product basis as

|↑↑⟩ 7→ |↓↑⟩, |↑↓⟩ 7→ |↓↓⟩, |↓↑⟩ 7→ |↑↑⟩, |↓↓⟩ 7→ |↑↓⟩,

or, in matrix form w.r.t. that basis,

|↑↑⟩ |↑↓⟩ |↓↑⟩ |↓↓⟩

|↑↑⟩


0 1 0 0
|↑↓⟩ 1 0 0 0

|↓↑⟩ 0 0 0 1 .
|↓↓⟩ 0 0 1 0

In general, the matrix elements of the product of local operators are the product of the local
matrix elements:

⟨i, j|A(1)B(2)|k, l⟩ = ⟨i|A|k⟩ ⟨j|B|l⟩. (3.4)

You’ll also come across the “tensor product of operators” notation (sometimes called the
Kronecker product, in particular in computer algebra systems):

A⊗B := A(1)B(2) ⇒ A⊗ 1 = A(1), 1⊗B = B(2).

Local operators acting on different subsystems commute:

A(1)B(2)|αβ⟩ = (A|α⟩)(B|β⟩) = B(2)A(1)|αβ⟩. (3.5)

Local observables

Now consider the situation that we have prepared a two-particle system in a product state
|ψ⟩ = |α⟩|β⟩, measure the observable A on the first system, and disregard the second one.
The expectation value then better be equal to ⟨α|A|α⟩, for “preparing a second particle
somewhere else and then ignoring it” shouldn’t affect the behavior of the first system. And
indeed, using (3.2),

⟨ψ|A(1)|ψ⟩ = ⟨α|⟨β|(A|α⟩)|β⟩ = ⟨α|A|α⟩ ⟨β|β⟩ = ⟨α|A|α⟩. (3.6)

More generally,

⟨αβ|A(1)B(2)) |αβ⟩ = ⟨α|A|α⟩ ⟨β|B|β⟩, (3.7)

hence the observable A(1)B(2) describes the process of “measuring A on the first system,
B on the second system, and multiplying the results”.
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Figure 3.1: Local measurements on two-body quantum states. (i) Assume that particle one
has been prepared in state |α⟩ and an observableA has been measured on it. Then the result
should be independent of what happened to an unrelated particle. (Verified in Eq. (3.6)).
(ii) More generally, if two particles are prepared separately and measured separately, the
results should be independent. (Verified in Eq. (3.7)). (iii) Entangled states of two systems
can be prepared only in a process involving them both. The results of local measurements
on such a state can be correlated. (Verified in Eq. (3.8)).

We can now have a first look at the properties of entangled states. Continuing the
example around Eq. (3.3), and using the observable

σz =

(
1 0
0 −1

)
which assigns +1 to |↑⟩ and −1 to |↓⟩, compute

⟨Φ+|σ(1)
z |Φ+⟩ = 1

2
⟨↑↑|σ(1)

z |↑︸ ︷︷ ︸
+|↑⟩

↑⟩+ 1

2
⟨↑↑|σ(1)

z |↓︸ ︷︷ ︸
−|↓⟩

↓⟩ = 1

2
− 1

2
= 0,

⟨Φ+|σ(2)
z |Φ+⟩ = ... = 0,

⟨Φ+|σ(1)
z σ(2)

z |Φ+⟩ = 1

2
⟨↑↑|σ(1)

z σ(2)
z |↑↑⟩︸ ︷︷ ︸

+|↑↑⟩

+
1

2
⟨↑↑| σ(1)

z σ(2)
z |↓↓⟩︸ ︷︷ ︸

(−1)2|↓↓⟩=+|↓↓⟩

=
1

2
+

1

2
= 1.

(3.8)

Interpretation: The first two equations imply that, when measuring σz on either particle,
the outcomes ±1 must occur with equal probability, so that the expected value is 0. The fi-
nal equation says that when measuring σz on both particles at the same time, the product of
the results is always +1. Therefore, the results +1,+1 and −1,−1 occur with probability
1
2 each. In other words, the outcomes of the σz-measurements are strictly correlated.

Thus, Eq. (3.7) says that product measurements on product states lead to independent
outcomes, while product measurements on entangled states can show correlations.

On quanta and socks. In popular science expositions, it is sadly common that the correlations
above are presented as something deeply mysterious. “Measuring the first particle immediately
tells you about the result a measurement on the second particle would give. Even if they are far
apart. Spooky action-at-a-distance!”

This argument is completely wrong. Correlations between two random events are common-
place. Whether or not it will rain on any given day is hard to predict, but if it rains on my place, it
will also rain on my neighbor’s place. (In the literature, the term Bertlemann’s socks has come to
be associated with the confused tendency of thinking that correlations are mysterious when they
appear in quantum measurements, while unremarkable in everyday objects (like socks)).

However, the correlations that can occur when measuring entangled sates are actually deeply
mysterious! Seeing this takes a little bit more work. See the section below.

https://cds.cern.ch/record/142461/files/198009299.pdf
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3.2 Bell inequalities

Classical mechanics tells you what is happening. Quantum mechanics only tells you what
you will observe when you measure. It does not assign values to unmeasured physical
properties.

Figure 3.2: Left panel: 1935 New York Times headline reporting on Einstein-Podolsky-
Rosen paper arguing that quantum mechanics was incomplete. I wonder how Podolsky
and Rosen felt about the framing. Right panel: 2015 New York Times headline reporting
on Einstein being wrong.

From the early days of the theory, some scientists – famously Albert Einstein (Fig. 3.2
– saw this as a sign that quantum mechanics was incomplete, and should be supplanted
by a more detailed description of Nature that does track the time evolution of all physical
properties, measured or not.

In what I feel is one of the most profound findings of modern physics, this program
has since been proven to be impossible: The hypothesis

“Physical properties exist independently of measurements” (3.9)

has been experimentally falsified as a general property of Nature! On top of the surprising
conclusion, this is remarkable because (3.9) feels like a philosophical statement that is too
vague to have testable implications. Yet here we are.

In the following derivation, we have to keep in mind that we want to reason about
theories different from quantum mechanics. This means that we cannot use any concept
that has a meaning only in the context of QM. “Hilbert space”, “entanglement”, “commu-
tators”, even “photon”... ...all these terms are verboten until further notice.1

3.2.1 The CHSH scenario

Our challenge now is to come up with a setting in which the vague statement (3.9) leads to
quantitative predictions that can be compared to experiments. The most important case is
the so-called CHSH scenario (Fig. 3.3). While not difficult to understand, it does contain
quite a number of elements that seem ill-motivated at this point. Please bear with me for a
moment.

1Physicists talking about Bell inequalities have a tendency of emphasizing entanglement, or the singlet state
and how the fact that it’s spin-0 means that angular momentum measurements are anti-correlated, and some such
things. These are not wrong and even mildly helpful for the design of experiments that lead to the falsification
we are after. All this is also completely secondary to the main point; a case of people sticking to their comfort
zone.

https://www.nytimes.com/1935/05/04/archives/einstein-attacks-quantum-theory-scientist-and-two-colleagues-find.html
https://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777
https://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777
https://www.nytimes.com/2015/10/22/science/quantum-theory-experiment-said-to-prove-spooky-interactions.html
https://www.nature.com/articles/nature15759
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Figure 3.3: The ingredients of the CHSH scenario (for Clauser, Horne, Shimony and Holt).
Two experimentalists are located at different ends of a laboratory. Each can perform one
of two measurements on systems emanating from a box in the middle. Surprisingly, the
analysis of the set of correlations that are compatible with this extremely vaguely defined
scenario offers profound insights!

The scenario contains two observers, Alice and Bob, located at different ends of a
laboratory. There’s a box in the middle. In regular intervals, it emits two systems, one
flying to Alice and one to Bob. Each observer has two measurement devices, labeled 1
and 2. The devices work like this: They have an entry port and when one of the systems
coming from the central box enters a device, one of two lights will flash. The lights are
labeled +1 and −1 respectively. Every time a pair of systems leaves the central box, Alice
and Bob choose one of their measurement devices at random, put it in the path, and record
the observed outcomes.

OK, some Q&A’s:

• Q.: So what’s up with the talk of “systems”? What are these? Photons? Spins?
A.: Unspecified. For now, these could be puffs of hot air and the measurement
devices random number generators. Our analysis does not depend on assumptions
about their nature. (Also, what’s a photon?)

• Q.: Are Alice’s devices 1 and 2 different? Is Alice’s device 1 different from Bob’s
device 1?
A.: We do not need to make any assumptions about this.

• Q.: Why are the outcomes labeled ±1?
A.: That’s not really essential. This particular choice will work well with our analy-
sis, though.

• Q.: Can Alice rig her boxes together such that she can perform both measurement
on the same incoming system?
A.: For all we know at this point... maybe?

• Q.: Look man. You are clearly just avoiding my questions. Why don’t you study your
system first, and come back once you can give specific answers?!
A.: You got it backwards! The fewer assumptions I need to make, the more generally
applicable my conclusions will be.2

• Q.: How in the world does one come up with this?
A.: Well, it took physics a few decades. Also, literal Einstein missed it.

2I once had a long discussion with colleague who refused to conceit this point, despite me applying all the
logic, persuasion, and appeals to authority I could muster. Very frustrating.
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With the setup established, let’s look at the lab book produced by A&B. Here’s a
possible snapshot:

Alice Bob

i A1 A2 B1 B2

1 + −
2 + +
3 − −
4 + +
...

...
...

...
...

Obviously, in each round i, both Alice and Bob can fill out only the column corresponding
to the measurement they chose to make.

We will now argue that Assumption (3.9) puts quantitative constraints on the type of
data that can appear in this setting. Later, we will see that there are experiments that violate
these constraints—thereby disproving the general validity of (3.9). (Also, QM predicts the
violations correctly. That’s also interesting, but less relevant).

Concretely, if physical properties exist independently of observations, then there exits
a complete table, say

Alice Bob

i A1 A2 B1 B2

1 + − − −
2 + − + +
3 − − + −
4 + + + −
...

...
...

...
...

and in each round, A&B just decide which of the pre-existing values to uncover.
In what may feel like an unmotivated move even by the standards of the present dis-

cussion, associate the expression

C = A1B1 +A1B2 +A2B1 −A2B2

which each complete row. There’s an elegant geometric construction that leads to this
particular formula (the keyword is Bell polytope) – but it takes some time to develop, so
let’s just work with C regardless of where it comes from. In our example:

Alice Bob

i A1 A2 B1 B2 C
1 + − − − −2
2 + − + + 2
3 − − + − 2
4 + + + − 2
...

...
...

...
...

...
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Despite being the sum of four terms each valued ±1, the expression (in fact: its absolute
value) is upper-bounded by 2: Factoring out Alice’s variables and applying the triangle
inequality,

|C| = |A1(B1 +B2) +A2(B1 −B2)| ≤ |B1 +B2|+ |B1 −B2| = 2.

It may seem that we can’t extract observable predictions out of this discussion, because
the expression C involves all four variables, and by assumption, we only have access to
two of them in each round. But there’s a nice trick to get around this! Indeed, if C ≤ 2 in
every run, then so is the average

⟨C⟩ = 1

N

N∑
i=1

C(i)

over N runs. But averages are linear, and therefore ⟨C⟩ equals

⟨A1B1 +A1B2 +A2B1 −A2B2⟩ = ⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩.

Each of the four terms ⟨AiBj⟩ can be estimated by A&B! If they choose their settings at
random, then by the law of large numbers (or, quantitatively, by the Chernoff bound), their
observed mean will converge to the true expected value in the limit of large N . Thus, As-
sumption (3.9) implies that the linear combination of these four experimentally accessible
numbers is no larger than 2, up to statistical fluctuations that vanish in the large-N limit.
Such a test of (3.9) is called a Bell inequality.

Following up on pioneering works that led to the 2022 Nobel Prize, it is today fairly
routine to perform experiments that are compatible with the CHSH setup and yield a value
of ⟨C⟩ ≃ 2.7.

Thus, Assumption (3.9) must be rejected as a general feature of Nature.

3.2.2 Quantum violations of the CHSH inequality

We’ll let Alice and Bob perform local measurements on the entangled state

|Φ+⟩ = 1√
2
(|↑↑⟩+ |↓↓⟩).

Exercise Let a =

(
ax
az

)
be a vector in the x-z-plane. Assume that it is normalized, ∥a∥ = 1.

• Show that â := axσx + azσz is an observable with eigenvalues ±1.

• Let b be another normalized vector in the x-z-plane. Show that

⟨Φ+|â(1)b̂(2)|Φ+⟩ = (a, b). (3.10)

• Now choose the vectors ai, bi according to the diagram to the left (i.e. at
angles 0 or ±45 degrees with respect to the coordinate axes). Show

⟨Φ+|â(1)1 b̂
(2)
1 + â

(1)
1 b̂

(2)
2 + â

(1)
2 b̂

(2)
1 − â

(1)
2 b̂

(2)
2 |Φ

+⟩ = 2
√
2.

• Interpret the result in the light of the CHSH experiment.

https://en.wikipedia.org/wiki/Chernoff_bound


Chapter 4

Symmetries in quantum mechanics

Popcorn time! In this chapter, we discuss why some things are the way
they are in QM. We won’t really talk about how to compute stuff (which
is what is tested in the written exam). So if there’s some detail you don’t
fully grok – stop worrying and help yourself to some more popcorn!
Picture credit.

4.1 Introduction

Here are some questions you might have:

• OK, I have gotten used to the idea that mathematical models of reality involve
Hilbert spaces and operators. But, when constructing a quantum theory, how do
I know which vector / operator to assign to a physical setup?

• Specifically, what does momentum have to do with i times a spatial derivative??

• Also, what’s up with all these random1 “iℏ”s floating around QM???

• Typical textbook quote: “A quantum mechanical angular momentum J is a set of
operators Jx, Jy, Jz such that [Jx, Jy] = iℏJz ...”. Are you trolling me? Who even
comes up with stuff as bizarre as that????

It turns out that one can make progress on these questions by working out the condi-
tions a QM model has to fulfill in order to be compatible with this empirical observation:

The behavior of physical experiments does not depend on when, where, or in which
orientation they are being performed.

Outline (spoiler alert!)

The arguments presented here aren’t really complicated, but quite lengthy. I give a short
outline here, so you are less likely to get lost along the way.

• [Generators]: The operation of “rotating a quantum system” about the z axis by an
angle θ is associated with a unitary U(θ), so that for any state |ψ⟩, the displaced
state is |ψ′⟩ = U(a)|ψ⟩. The first-order Taylor approximation is U(θ) = 1 + θl3,
where l3 = U ′(0) is called the generator of z-rotations.

1random. German adjective. Means “unmotivated, unexpected”. Use liberally. Source: Generation Z.
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https://en.wikipedia.org/wiki/File:Popcorn_Time_logo.png
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The study of generators is useful for two reasons:

• [Finding Hilbert spaces]: It follows from properties of the rotation group that the
generators l1, l2, l3 of rotations about the coordinate axes have to fulfill [l1, l2] = l3
(and cyclic permutations). That’s useful because one can enumerate all solutions to
this equation! The list includes some old friends, (like solutions on L2(R3)), but
also new possibilities, notably spin-1/2 systems.

• [Identifying observables]: It turns out that if g is a generator, then ig is Hermitian.
Typically, the observable ig is proportional to a conserved quantity (time to recall
Noether’s Theorem!). The constant of proportionality is not fixed by theoretical
arguments, but has to be experimentally determined. In any case, it’s called ℏ.

We’ll now walk through the arguments in more detail, mainly focusing on rotations.

4.2 Wigner’s Theorem

Consider a preparation procedure that produces a quantum system in state |ψ⟩, followed
by a measurement of an observable F . Let λ be possible outcome of F , associated with
an eigenvector |ϕλ⟩, so that the probability of observing λ is |⟨ψ|ϕλ⟩|2.

Now compare it to a setup that is identical to the first, except that every part has
been displaced by some space-time symmetry. Call the displaced state |ψ′⟩ and the λ-
eigenvector of the displaced observable |ϕ′λ⟩.

By invariance, the physical behavior of the two setups must be the same, i.e.

|⟨ψ|ϕλ⟩|2 = |⟨ψ′|ϕ′λ⟩|2. (4.1)

Which types of transformations |ψ⟩ 7→ |ψ′⟩, |ϕλ⟩ 7→ |ϕ′λ⟩ are compatible with (4.1)?
Two possibilities are easy to guess:

• Unitaries: Choose a unitary U and set

|ψ′⟩ = U |ψ⟩, |ϕ′λ⟩ = U |ϕλ⟩.

Then ⟨ψ′|ϕ′λ⟩ = ⟨Uψ|Uϕλ⟩ = ⟨ψ|ϕλ⟩, and hence (4.1) holds.

• Anti-unitaries: Choose an ONB {|ei⟩}i. Define “complex conjugation of coeffi-
cients with respect to that basis” as the function

C : |ψ⟩ =
∑
i

ψi|ei⟩ 7→
∑
i

ψ∗
i |ei⟩.

Then

|ψ′⟩ = C|ψ⟩, |ϕ′λ⟩ = C|ϕλ⟩ ⇒ ⟨ψ′|ϕ′λ⟩ = ⟨ψ|ϕλ⟩∗,

so we found another solution to (4.1). The combination UC of complex conjugation
followed by a unitary also does the job. Such maps are called anti-unitaries.
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A lengthy argument known as Wigner’s Theorem shows that unitaries and anti-unitaries
are the only possibilities to satisfy (4.1).

Wigner: For every symmetry S of a quantum system, there is a unitary or anti-
unitary U(S) such that state vectors and eigenvectors of observables transform as

|ψ′⟩ = U(S)|ψ⟩, |ϕ′λ⟩ = U(S)|ϕλ⟩.

The most relevant symmetries in physics can be continuously deformed to the trivial
transformation. In particular, this is true for rotations and translations – just let the angle /
distance go to 0. Such symmetries are always unitarily represented.

Proof. Let L be linear and A anti-linear, both invertible. Then one checks that

L(i1)L−1 = i1 but A(i1)A−1 = −i1. (4.2)

If a family U(s) of solutions to (4.1) depends continuously on a parameter s, then all U(s) are
unitary or all are anti-unitary, because a continuous map that takes values in {±i1} is constant.

There are symmetries not connected to 1, and these may be associated with anti-
unitaries. We will not consider such symmetries in the notes, though one appears in the...

...homework. Show that in wave mechanics, time reversal symmetry, t 7→ −t, is implemented
by complex conjugation ψ(x) 7→ ψ(x)∗ in the position basis.

Example. Let’s see how wave functions in L2(Rn) transform under translations. For a ∈ Rn,
let Ta denote the function x 7→ x+a that translates points by a. Its action on wave functions is

(U(Ta)ψ)(x) = ψ(x− a). (4.3)

(Mind the minus! The value of the translated function at x equals the value of the original at
x−a). The operator U(Ta) is unitary because shifting the integrand does not change integrals.

4.2.1 Projective representations

If R,S are two symmetries, then “R after S”, denoted by RS, is another symmetry. Math-
ematically, the set of symmetries forms a group. Therefore, U(R)U(S) must implement
the same operation as U(RS) on quantum states. Because two state vectors give rise to
the same predictions iff they differ by a phase factor, we get the compatibility condition

U(R)U(S) = eiϕ(R,S)U(RS) (4.4)

for some phases ϕ(R,S).

https://en.wikipedia.org/wiki/Wigner%27s_theorem
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Let G be a symmetry group. An assignment S 7→ U(S) of a unitary to each S ∈ G,
that satisfies (4.4) is called a projective unitary representation of the symmetry group. If
the phases all vanish, i.e. if

U(R)U(S) = U(RS), (4.5)

then U called a linear unitary representation, or just a unitary representation.

Example. The action of translations on wave functions is indeed a unitary representation:(
U(Ta)U(Tb)ψ

)
(x) =

(
U(Tb)ψ

)
(x− a) = ψ(x− a− b) =

(
U(Ta+b)ψ

)
(x).

Every continuous symmetry group of a quantum system comes with a unitary pro-
jective representation S 7→ U(S).

It turns out that for the simple cases considered in this chapter, we can ignore the
possibility of phase factors ϕ(R,S), and focus only on linear representations.

4.3 Rotations: Definition, generators, spin-1/2

Motivated by Wigner’s Theorem, we’ll take a look at representations of rotations.

4.3.1 Rotations

First some basics.
A rotation inRn is a linear map x 7→ Rx that

• preserves inner products

(Rx, Ry) = (x,y), or, equivalently, RtR = 1, (4.6)

• preserves orientation

detR = 1. (4.7)

The set of all rotations ofRn is denoted as SO(n), the “special orthogonal group”.

E.g., rotations around the z-axis e3 by an angle θ are represented by

Rθe3
=

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (4.8)

A theorem of Euler states that for every rotation R of R3, there is a
unit vector ω and an angle θ such that R = Rθω rotates by θ about
the axis ω.

There are two physically important unitary representations of SO(3) that are simple to
construct.

https://en.wikipedia.org/wiki/Euler%27s_rotation_theorem
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Examples. (More details in Chapter 5).

• LetH = L2(R3). For R ∈ SO(3), define a linear map U(R) by(
U(R)ψ

)
(x) = ψ(R−1x). (4.9)

(The −1 plays the same role as the minus sign in (4.3)). Because detR = 1, the transfor-
mation is volume-preserving and hence unitary. It is geometrically obvious that this is a
representation (why?), though let’s confirm this for those who only trust algebra:(

U(R)U(S)ψ
)
(x) =

(
U(S)ψ

)
(R−1x) = ψ(S−1R−1x) = ψ((RS)−1x)

=
(
U(RS)ψ

)
(x).

Edit: ...and because the calculation above led to questions, here a more explicit version:(
U(R)U(S)ψ︸ ︷︷ ︸

=:ϕ

)
(x) =

(
U(R)ϕ

)
(x)

= ϕ(R−1x︸ ︷︷ ︸
=:y

) (by (4.9))

= (U(S)ψ)(y) (by def of ϕ)

= ψ(S−1y) (by (4.9))

= ψ(S−1R−1x) (by def of y)

= ψ((RS)−1x) (inverse of a composition)

= (U(RS)ψ)(x) (by (4.9)).

The map R 7→ U(R) is called the orbital angular momentum representation. We’ll
analyze it in detail, in particular for the solution of the hydrogen atom.

• LetH = C
3. Because R ∈ SO(3) is just a 3× 3-matrix, we can let it act onH directly.

The orthogonality condition (4.6) also implies that R is unitary. For reasons we’ll explain
later, this realization is called the spin-1 representation, U1 : R 7→ R. It appears e.g. in
the quantum theory of photons.

Eventually, we will classify all such representations (Chapter 5). The first obstacle we
face on the way is that the composition law that appears in (4.4) can be quite complicated.

For example, pick a pair of angles θ1, θ2 and axes
ω1,ω2. Then the composition Rθ1ω1

Rθ2ω2
is again a ro-

tation, i.e. of the form Rθ3ω3
. But how does one find θ3,ω3

as a function of the original rotations? For SO(3), the an-
swer is given by Rodrigues’ rotation formula2, which one
can work out by analyzing the simple diagram to the right!

v 

v = k(k∙v) 
v = − k×(k×v) = v − k(k∙v) 

v v = + v 

k∙v 

v 

k×
v 

si
n 

k×
v 

si
n 

k×(k×v)(1−cos  ) 

cos 
v 

k 
k×(k×v) 

k×
v 

v rot 

v rot 

v rot 

v 

What? That doesn’t sound like fun? Fortunately, there’s a much easier solution.

4.3.2 Generators

The composition law of continuous groups is most easily expressed in terms of their gen-
erators. (Physicists also talk about infinitesimal elements and mathematicians about the
Lie algebra of the group). The central observation is that

2Should rename it Rodrigues’ rotation relation, to really roll off the tongue.

https://commons.wikimedia.org/wiki/File:Orthogonal_decomposition_unit_vector_rodrigues_rotation_formula.svg
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“a rotation is the combination of many small ones, so it suffices to understand those.”

More precisely, consider the z-axis rotations Rθe3
defined in (4.8). Then

Rθe3
=
(
Rθ/Ne3

)N
for any N ∈ {1, 2, 3, . . . }.

In the limit of N → ∞, the first-order Taylor approximation

Rθ/Ne3
≃ 1+

θ

N
l3, l3 = ∂θ|0Rθe3

=

0 −1 0
1 0 0
0 0 0

 (4.10)

becomes exact. Therefore, using Euler’s characterization of the exponential,

Rθe3
= lim
N→∞

(
Rθ/Ne3

)N
= lim
N→∞

(
1+

θ

N
l3

)N
= eθl3 (matrix exponential).

The matrix l3 is called the generator of the one-parameter groupRθe3
. Physicist also refer

to 1+ θl3 for “very small” θ as an infinitesimal rotation.

Let’s generalize this to arbitrary ω. Re-writing (4.10) as

∂θ|0Rθe3
v =

0 −1 0
1 0 0
0 0 0

v = ez × v

i.e. in terms of the cross product with the rotation axis, suggests that ∂θ|0Rθωv = ω × v.
This can indeed be verified. Expressing the cross product as a matrix multiplication gives

∂θ|0Rθωv = ω × v =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

v =

(
3∑
i=1

ωili

)
v,

having introduced the following basis for the space of anti-symmetric matrices:

l1 =

0 0 0
0 0 −1
0 1 0

 , l2 =

 0 0 1
0 0 0
−1 0 0

 , l3 =

0 −1 0
1 0 0
0 0 0

 . (4.11)

It is often convenient to allow for non-normalized vectors ω. Then, in summary

The exponential e
∑

i ωili is the rotation about the axis ω
∥ω∥ by the angle |ω∥.

Baker-Campbell-Hausdorff

Recall that we aim to express the composition law in a less painful way. In the language
introduced above, this means: Given two generators g, h, what is the generator of egeh?

The product of two matrix exponentials can be evaluated using the important Baker-
Campbell-Hausdorff3 (BCH) formula. Let g, h be two arbitrary matrices (not necessarily

3Studying in the region, you should learn about the life of Hausdorff. Be warned. There’s no happy ending.

https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
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generators of rotations). As a warm-up, assume that g and h commute. Then switching to
a common eigenbasis shows that

egeh = eg+h (only if [g, h] = 0).

In the general case, correction terms appear in the exponent. These are described by the
BCH formula (working out the lowest-order correction is homework):

egeh = exp

(
g + h+

1

2
[g, h] +

1

12
([g, [g, h]]− [h, [g, h]]) + . . .

)
, (4.12)

where the dots represent further nested commutators.

Caveat. The exponent in (4.12) is an infinite series. Strictly speaking, the series in the exponent
is only guaranteed to converge for group elements g, h that are “sufficiently close to the identity”.
For now, we can get away with ignoring this subtlety. Having said this, it is the basis of one of
my favorite quantum effects, and we’ll have a brief look at in in Sec. ??

The precise form of the higher-order terms isn’t important. The main lesson is:

The composition law is determined by the commutator relations of the generators.

(If you ever wondered why physicists seem so infatuated with commutators and Poisson
brackets and such... ...now you know: These encode information about groups!)

For the basis (4.11) a direct computation gives

[l1, l2] = l3 and cyclic permutations. (4.13)

By linearity, (4.13) determines arbitrary commutators, and hence, by (4.12) the group
law of SO(3). This simple relation thus replaces all the nastiness of Rodrigues’ formula!

Exercise. Consider a rotation by a small angle θ first around the x axis and then around the y
axis. Can you make sense of the first and second order terms in Eq. (4.12)? Maybe get a ball to
play around with and explain what’s going on to a partner (or at least to a rubber duck).

4.3.3 Representations of generators

Instead of directly working with representations of groups, the above discussion suggests
to work with representations of their generators instead.

To see how this works, let H be a Hilbert space, and let j1, j2, j3 be operators on H.
Define a linear map

u
(∑

i

ωili

)
=
∑
i

ωiji (4.14)

sending generators of rotations to operators on H. Our goal is to find out under which
conditions

U(eg) := eu(g) (4.15)

defines a representation. Using BCH twice

U(egeh) = U(eg+h+
1
2 [g,h]+...) = eu(g)+u(h)+

1
2u([g,h])+...

U(eg)U(eh) = eu(g)eu(h) = eu(g)+u(h)+
1
2 [u(g),u(h)]+...

(4.16)

https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula#Questions_of_convergence
https://en.wikipedia.org/wiki/Rubber_duck_debugging
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and comparing exponents, we find that

U(egeh) = U(eg)U(eh) ⇔ [u(g), u(h)] = u([g, h]). (4.17)

The map U(eg) = eu(g) is a representation iff u preserves commutator relations.

A short calculation using bilinearity of the commutator shows that (4.14) preserves the
commutator relation of SO(3) generators iff [j1, j2] = j3 (and cyclic permutations). Thus:

There is a one-one correspondence between representations of SO(3) and operators

j1, j2, j3 that satisfy [j1, j2] = j3 (and cyclic permutations). (4.18)

Example. Compute the generators for the orbital angular momentum representation (4.9):

∂θ|0
(
U(Rθei)ψ

)
(x) = ∂θ|0ψ

(
R−1
θ,ei

x
)

= ∇ψ ·
(
∂θ|0R−θ,eix

)
= ∇ψ ·

(
x× ei

)
= ei ·

(
x×∇ψ

)
=

1

iℏ
ei ·

(
x× Pψ

)
=

1

iℏ
(
X × P

)
i︸ ︷︷ ︸

=:Li

ψ.

Thus, up to constants, u(li) is the i-th component of the orbital angular momentum operator
L = X × P . That is no coincidence (because nothing ever is!), as we will see.

Exercises.
• Compute the commutator [L1, L2] between the first two components of angular momen-

tum. Verify that the 1
iℏLi satisfy the same commutator relations as the generators of

SO(3).

• Show that the inverse of eg is e−g .

• An operator g is anti-Hermitian if g† = −g. Show that g is anti-Hermitian if and only if
ig is Hermitian. Show that eg is unitary if and only if g is anti-Hermitian.

4.3.4 Spin-1/2

We can now find reps of SO(3) by guessing j1, j2, j3 and verifying (4.18). Examples:

• dimH = 1. All 1× 1-matrices commute, so the only solution is j1 = j2 = j3 = 0.
This generates the trivial or spin-0 representation U0 : R 7→ e0 = 1. While boring,
the spin-0 representation is actually quite relevant! It describes spaces of vectors
that do not change under rotations. Example: The ground state of the H atom.

• dimH = 3. We’ve already found the defining or spin-1 representation U1 : R 7→ R.

This leaves a gap at dimH = 2. It isn’t obvious whether one can represent 3D rotations
on a 2D space... So, remember how we’ve constantly annoyed you with Pauli matrices in
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the linear algebra course? Now it’s time to cash in! The Paulis anti-commute and satisfy

σ1σ2 = iσ3

which implies (4.18) for jk = 1
2iσk. They generate the spin-1/2 representation.

The re-scaled Paulis generate the spin- 12 representation U 1
2
(Rω) = e

1
2i

∑
k ωkσk .

Exercise. So how can a three-dimensional rotation act on a two-dimensional space?

1 2

3

θ

o

The key is to go complex. Up to a (physically irrelevant) global
phase, every normalized vector |ψ⟩ ∈ C2 can be written as

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.

Interpreting θ, ϕ as polar and azimuthal angles, they specify a
point on a sphere. It is called the Bloch sphere representation of
|ψ⟩. Homework: Show that the Bloch vector of |ψ′⟩ = U 1

2
(R)|ψ⟩

equals the result of R acting on the Bloch vector of |ψ⟩.

Above, we have denoted the standard basis inC2 by

|0⟩ = |e0⟩ =
(
1
0

)
, |1⟩ = |e1⟩ =

(
0
1

)
.

Yay, we found the lowest-dimensional space that behaves non-trivially under rotations!
That’s cute and all, you might counter, but the discussion has been purely mathematical.
We have yet to work out a physical interpretation which makes testable predictions, so that
we can look for signatures of spin- 12 in Nature. OK, then, let’s do that.

4.4 Conserved quantities

It turns out that suitable multiples of the generators of symmetries can often be identified
with physically relevant observables. The connection goes via the theory of conserved
quantities, the basics of which we’ll briefly recall.

4.4.1 Classical mechanical energy and momenta

Consider a single free classical point particle in R3. Its energy H = ∥p∥2

2m , momentum p,
and angular momentum L = x× p are constants of motion.

If the particle interacts with a second one, its individual energy and
momenta are no longer conserved. However, Noether’s theorem says
that if the Hamilton function of the combined system is of the form

H =
∥p1∥2

2m1
+

∥p2∥2

2m2
+HI , HI = V (∥x1 − x2∥),

i.e. invariant under translations of time and space and under rotations, then conservation
holds for the total energies and momenta

H = H1 +H2 +HI , p = p1 + p2, L = L1 +L2.
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What is more, in a scattering process, i.e. a process where the two particles do not
interact for t → ±∞, the interaction term HI does not contribute to the energy in the
limit. Therefore:

In a scattering process where the interaction is invariant under rotations, space and
time translations, the sum of the single-body energies and momenta is preserved.

This has practical consequences. For example:

Measurement procedures based on conservation laws

A ballistic pendulum (right) uses conservation laws to measure the
nozzle velocity of a canon ball (explain how!).

The general idea is to couple a conserved quantity of a difficult-
to-access system (a fired canon ball) to a reference system (the pen-
dulum). The method works because conservation laws hold inde-
pendently of the details of the interaction. In this case, the interac-
tion between the barrel and the ball is mediated by exploding gun-
powder – probably very complex and not well-understood.

4.4.2 Generalizations of mechanical energy and momenta

Consider a non-mechanical system, e.g. the electro-magnetic (EM) field or a quantum
particle. When does it make sense to call a function Hgen of its states a “generalization of
mechanical energy”?

Arguably, this is well-justified if one can couple the system to a mechanical reference,
and if the sum of Hgen and mechanical energy Hmech is conserved (in any scattering
processes as described above). That’s because in this case, any decrease in mechanical
energy is accompanied by an equal increase in Hgen, so that in a sense, the two functions
represent the same kind of stuff. The same logic applies to linear and angular momenta.

A physical quantity represents energy / momenta if it satisfies the corresponding
conservation law when interacting with a mechanical reference system.

Example. Consider a mechanical particle that carries a charge and thus interacts with the EM
field. Conservation of total energy, linear and angular momentum holds if

Hem =
ϵ0
2

∫
E2(x) + c2B2(x) d3x,

pem = ϵ0

∫
E(x)×B(x) d3x,

Lem = ϵ0

∫
x× (E(x)×B(x)) d3x.

There’s no guarantee that such generalized quantities can always be found... ...maybe
there is a perpetual motion machine. But, while seemingly fundamental concepts had
to be abandoned left and right as physics progressed in the past century (determinism,
absoluteness of lengths and simultaneity, ...) conservation of energy and momenta has
held up!

https://en.wikipedia.org/wiki/Ballistic_pendulum
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What is more, if one can associate generalized conserved quantities to a new system at
all, then their values are essentially unique, and can be determined by physical observations
(as we’ll see now), or even from theoretical arguments (next section).

Details (on the uniqueness of conserved quantities). Consider a scattering process where the
reference particle starts in a state with energy H in

mech and ends up in a state with energy Hout
mech.

Then energy conservation gives

Hout
gen +Hout

mech = H in
mech +H in

gen ⇒ Hout
gen −H in

gen = −(Hout
mech −H in

mech). (4.19)

Hence, the difference in generalized energy between the outgoing and the incoming state of
the general system must be equal to minus the energy difference measurable on the mechanical
reference. If there is one state of the general system that can be converted into any other by
suitable scattering processes, then (4.19) fixes the generalized energy uniquely up to an additive
constant (the energy of the state we started from). This remaining ambiguity is unavoidable,
because if Hmech +Hgen is conserved, then so is Hmech +Hgen +H0 for any constant H0.

4.4.3 Conserved quantities and generators

It turns out that if a quantum theory is invariant under a space-time symmetry group, one
can often argue that observables satisfy a conservation law if and only if they are propor-
tional to a corresponding generator. Some examples of this correspondence are:

Symmetry Generator Observable Conserved quantity
Rotation about ek jk Jk = iℏ jk angular momentum
Displacement along ek pk Pk = iℏ pk linear momentum
Displacement in time h H = −iℏh energy

We’ll outline the argument here for the case of spin-1/2 systems. (Though some proofs
will have to be deferred until more theory is introduced later).

The argument makes use of the transformation properties of classical momenta.

Exercise. Under a rotation x 7→ Rx, the momentum and angular momentum of a classical
point particle transform as

pmech 7→ Rpmech, Lmech 7→ RLmech. (4.20)

Now proceed as follows:

1. Argue that if a system can couple to a classical point particle, its angular momentum
must “inherit” the transformation property (4.20), at least up to additive constants.

2. Show that for spin-1/2 particles, there is a unique set of observables that transforms
in this way.

Angular momenta transform as vectors under rotation

As a preparation: It is easy to see that differences of generalized angular momenta must
transform as in (4.20). Indeed, in a scattering process in which angular momenta are
conserved, we have that

Lout
gen −Lin

gen = Lin
mech −Lout

mech. (4.21)
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Now consider the same process, but rotated by some R:

Lout
gen

′ −Lin
gen

′
= Lin

mech

′ −Lout
mech

′

⇒ Lout
gen

′ −Lin
gen

′
= R

(
Lin

mech −Lout
mech

)
(by (4.20))

⇒ Lout
gen

′ −Lin
gen

′
= R

(
Lout

gen −Lin
gen

)
(by (4.21)).

Arguing that the same holds for each summand is a little bit more complicated, and requires
and extra assumption, see box below.

Details. TBD.

Spin-1/2 angular momentum observables

Let’s apply the argument to derive the angular momentum observables S = (S1, S2, S3)
for spin- 12 systems. We’ll write sk = i

2σk for the generators of the representation.
Because {σ0 = 1, σ1, σ2, σ3} is a basis of the space of 2× 2-basis, we can expand

Sk =

3∑
l=0

c
(k)
l σl

in terms of yet-to-be-determined coefficients c(k)l . By the previous section, the k-th compo-
nent of angular momentum is invariant under rotations about the ek-axis. As in Eq. (1.33),
and using the commutation relations of the Pauli matrices,

∂θ|0eθskSke−θsk =
[
sk, Sk

]
=
∑

⇔ Sk = c
(k)
0 σ0 + c

(k)
k σk.

Because σ0 = 1, the first coefficient is just an additive constant, which we may set to 0.
The three coefficients c(k)k must all be the same. For example, to show that c(1) = c(2),

consider the behavior of S1 under rotations about e3:

∂θ|0eθs3S1e
−θs3 = c

(1)
1

i

2
[σ3, σ1] = c

(1)
1 σ2.

But the transformation law (4.20) demands

∂θ|0eθs3S1e
−θs3 = ∂θ|0

∑
k

Sk(Rθe3
)k1 = S2 = c

(2)
2 σ2 ⇒ c

(1)
2 = c

(2)
2 .

The angular momentum observable Sk of a spin- 12 system proportional to σk.

The value of the proportionality constant cannot be derived theoretically (beyond that
it must be imaginary, for the operators Sk to be Hermitian). Experimentally, it’s iℏ2 .

Remark. The argument implies that any observable on a spin-1/2 system is proportional to
an angular momentum (plus an irrelevant multiple of 1). In this sense, spin-1/2 systems are
“bundles of pure angular momentum”, with no other physical properties.
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Angular momentum

Under construction. Use Chapter 7 in handwritten notes for now.

As a starting point, we define a quantum mechanical angular momentum as a set of
hermitian operators L1, L2, L3 satisfying

[L1, L2] = iℏL3 (+ cyclic permutations).

Just as momentum is a generator of translations, angular momentum is a generator of
rotations and indeed the operators 1

iℏLi satisfy the commutation relations of the generators
of the rotation group 4.13:

[ 1iℏL1,
1
iℏL2] = ( 1

iℏ )
2[L1, L2] =

1
iℏL3

Note: The quantum mechanical observables differ from the generators by a factor of
iℏ. The existance of two normalizations reflects the fact that observables in QM describe
measurements as well as generate symmetries. The two roles require different normal-
izations. We have already seen this in the Schrödinger equation: the generator of time
evolution 1

iℏ , differs from the observable that corresponds to the energy by the same pref-
actor.

From now on we will work with observables and the corresponding normalization.
Define the operator

L2 := L2
1 + L2

2 + L2
3.

(It’s not defined as the square of a “L” operator, just common notation).
The operator L2 had the special property1 that it commutes will all the Li, i.e.,

[L2, Li] = 0.

(the verification of this fact is left to you as homework). Since L2 commutes with the
Li we can find joint eigenbasis of L2, L3. (The fact that we have chosen L3 is a matter
of historical convention. It has no physical relavence. In fact we could replace L3 with∑
i ωiLi for any vector ω ∈ R3). Let |ϕ⟩ be a common eigenvector. Write the eigenvalue

of L3 as

L3|ϕ⟩ = mℏ︸︷︷︸
(the eigenvalue)

|ϕ⟩.

1Casimir Operator. TBD.
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Here “m” is called the magnetic quantum number.
The operator L2 is the sum of squares of operators, hence any eigenvalue is non-

neqative and has a square roots, can write

L2|ϕ⟩ = λ2ℏ2|ϕ⟩

for some λ ∈ R. Even worse, write

ℓ =

√
λ2 +

1

4
− 1

2

then

ℓ(ℓ+ 1) =

(√
λ2 +

1

4
− 1

2

)(√
λ2 +

1

4
+

1

2

)
= λ2 +

1

4
− 1

4
= λ2,

so that

L2|ϕ⟩ = ℓ(ℓ+ 1)ℏ2|ϕ⟩ Lz|ϕ⟩ = mℏ|ϕ⟩.

We can thus choose an ONB of the form

{|k, l,m⟩ =: |klm⟩}k,l,m
with

ℓ angular momentum quantum number
m magnetic quantum number
k degeneracy

Ex.: Spin- 12 . For Lz = Sz = ℏ
2
σz ,

m = ±1

2
, λ2 =

3

4
⇒ ℓ =

√
3

4
+

1

4
− 1

2
=

1

2

and

|1
2
,
1

2
⟩ =

(
1
0

)
=: | ↑ ⟩ |1

2
,−1

2
⟩ =

(
0
1

)
=: | ↓ ⟩.

5.0.1 Magnetic quantum numbers through laddering

Define (cf. Sec. 1.6.1)

L+ := L1 + iL2, ⇒ L− := L†
+ = L1 − iL2.

Ex.: Spin- 12 Ex.:

S+ =
ℏ
2
(σx + iσy) =

ℏ
2

(
0 1
1 0

)
+ i

ℏ
2

(
0 −i
i 0

)
= ℏ

(
0 1
0 0

)
,

S− = S†
+ = ℏ

(
0 0
1 0

)
.

Homework:

[L3, L±] = ±ℏL±, L−L+ = L2 − L3(L3 + ℏ).
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Ex.: Spin- 12 Ex.:

LzL+ =
ℏ2

2

(
1 0
0 −1

)(
0 1
0 0

)
=

ℏ
2
L+

L+Lz =
ℏ2

2

(
0 1
0 0

)(
1 0
0 −1

)
= −ℏ

2
L+

.

Claim 1: It holds that

−ℓ ≤ m ≤ ℓ

and

m = ℓ ⇔ L+|k, l,m⟩ = 0

m = −ℓ ⇔ L−|k, l,m⟩ = 0.

Proof:

0 ≤ 1

ℏ2
∥L+|klm⟩∥2 =

1

ℏ2
⟨klm|L−L+|klm⟩

=
1

ℏ2
⟨klm|L2 − Lz(Lz − ℏ)|klm⟩

= ℓ(ℓ+ 1)−m(m+ 1).

In particular,

∥L±|klm⟩∥ = ℏ
√
ℓ(ℓ+ 1)−m(m± 1). (5.1)

Ex.: Spin- 12

S+| ↑ ⟩ = ℏ
(
0 1
0 0

)(
1
0

)
= ℏ

(
0
0

)
= 0

S+| ↓ ⟩ = ℏ
(
0 1
0 0

)(
0
1

)
= ℏ

(
1
0

)
= ℏ| ↑ ⟩

and indeed,

ℏ
√

1

2
(
1

2
+ 1) +

1

2
(−1

2
+ 1) = ℏ

√
3

4
+

1

4
= ℏ.

Claim 2:

• If m < ℓ, then L+|klm⟩ is Lz eigenvector with eigenvalue ℏ(m+ 1).

• If m > −ℓ, then L−|klm⟩ is Lz eigenvector with eigenvalue ℏ(m− 1).

Proof.

Lz
(
L+|klm⟩

)
=
(
L+ℏ+ L+Lz

)
|klm⟩

=
(
L+ℏ+ L+ℏm

)
|klm⟩

= ℏ(m+ 1)
(
L+|klm⟩

)
.
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TBD: Figure.
Laddering must terminate. Hence m = ±ℓ must occur. Therefore, we have a 2ℓ + 1

dimensional subspace for each ℓ. Since the dimension of a vector space is a natural number
it must be the case that

ℓ ∈ {0, 1
2
, 1,

3

2
, 2, ...}.

This in turn implies that the magnetic quantum number is quantized. We call the two
possible cases m = {−ℓ, · · · ,− 1

2 ,
1
2 , · · · , ℓ} and m = {ℓ, · · · ,−1, 0, 1, · · · , ℓ}, half-

integral and integral respectively. For each choice of ℓ we get a subspace of the full
Hilbert space H, i.e.,

H(1,ℓ) := ⟨{|1, l,m⟩}ℓm=−ℓ⟩ ⊂ H.

In each H(k,ℓ) we can find the common eigenvectors of L2 and L3, for example by finding
one of the eigenvectors and then using the ladder operators. The collection of all such
eigenvectors then forms an ONB of H. In this basis, the previously discussed operators
have a block diagonal structure. For example

⟨k′l′m′|L3|klm⟩ = δk′kδl′lδm′mℏm

⟨k′l′m′|L±|klm⟩ = δk′kδl′lδm′,m±1ℏ
√
ℓ(ℓ+ 1)−m(m± 1)

TBD: Block diagonal figure.

5.1 Orbital angular momentum

As an example, let us look at the angular momentum that accompanies circular mo-
tion. From classical mechanics, one might be familiar with the angular momentum vector
L = r × p (for example from planetary motion). The quantum mechanical analog of this
quantity is called the orbital angular momentum (which one encounters while studying,
for example, the structure of atoms).

To define the orbital angular momentum operator, we will first need the vectorial ver-
sions of the position and momentum operators on the Hilbert space H = L2(R3). These
are given by:

R :=

XY
Z

 , (Rψ)(x, y, z) =

xψ(x, y, z)yψ(x, y, z)
zψ(x, y, z)

 ,

P := −iℏ

∂x∂y
∂z

 , (Pψ)(x, y, z) = −iℏ

∂xψ(x, y, z)∂yψ(x, y, z)
∂zψ(x, y, z)

 .

The orbital angular momentum operator is defined as

L =

LxLy
Lz

 := R× P = −iℏ

y∂z − z∂y
z∂x − x∂z
x∂y − y∂x

 .

One can indeed verify that (homework)

[Lx, Ly] = iℏLz (+ cyclic permutations),

and therefore L is a QM angular momentum.
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Reduction to functions on a sphere

Switching to spherical polar coordiantes we get the following (the details are homework)

Lx = −iℏ(y∂z − z∂y) = iℏ
(
sinϕ

∂

∂θ
+

cosϕ

tan θ

∂

∂ϕ

)
Ly = −iℏ(z∂x − x∂z) = iℏ

(
− cosϕ

∂

∂θ
+

sinϕ

tan θ

∂

∂ϕ

)
Lz = −iℏ(x∂y − y∂x) = −iℏ ∂

∂ϕ

The operators are independent of the radial coordinate r! From here we can proceed in
one of two ways:
Geometric argument:

TBD.
Analytic argument:

To find the eigenfunctions common eigenfunctions of L2 and Lz we set up the eigen-
value equations:

L2Ψklm(r, θ, ϕ) = ℏ2ℓ(ℓ+ 1)Ψklm(r, θ, ϕ),

LzΨklm(r, θ, ϕ) = ℏmΨklm(r, θ, ϕ).

These are nothing but simultaneous partial differential equations. Since the differential
operators are all independent of r, we can use an ansatz of the form

Ψklm(r, θ, ϕ) = f(r)Yklm(θ, ϕ),

where f(r) is an arbitrary, normalised function, i.e., ||f || = 1. Therefore the above set of
differential equations reduces to

L2Yklm(θ, ϕ) = ℏ2ℓ(ℓ+ 1)Yklm(θ, ϕ),

LzYklm(θ, ϕ) = ℏmYklm(θ, ϕ).

The functions Yklm live on the unit sphere and have to be square-integrable, i.e., Yklm ∈
L2(S2) ⊂ L2(R3).

Solving on the sphere: Spherical harmonics

Recall,

Lz = −iℏ∂ϕ,
L± = ℏe±iϕ

(
± ∂θ + i cot θ∂ϕ

)
,

L2 = −ℏ2
(
∂2θ + cot θ∂θ + csc2 θ∂2ϕ

)
.

We have to solve the following simultaneous differential equations:

L2Yklm(θ, ϕ) = ℏ2ℓ(ℓ+ 1)Yklm(θ, ϕ), (5.2)
LzYklm(θ, ϕ) = ℏmYklm(θ, ϕ). (5.3)

Consider first the differential equation (5.3). Writing out the differential operators, this
equation reads

−iℏ ∂

∂ϕ
Yklm(θ, ϕ)

!
= ℏmYklm(θ, ϕ).



CHAPTER 5. ANGULAR MOMENTUM 71

This equation is independent of θ and admits a straightforward solution of the form

Yklm(θ, ϕ) = eiϕmFklm(θ),

where ϕ ∈ [0, 2π), and (for now) Fklm(θ) is arbitrary. Since we are on a sphere, the
function Yklm must be periodic in ϕ, with a period of 2π. From this we get the condition

ei(ϕ+2π)m !
= eiϕm ⇒ m ∈ Z.

Therefore the half-integral values of m and hence ℓ are ruled out.
From here, insted of solving (5.2) directly, we proceed by using the ladder operators.

We use the fact that L+|k, ℓ, ℓ⟩ = 0 to get:

0
!
= L+Ykℓℓ(θ, ϕ)

⇔ 0 = ℏeiϕ(∂θ + i cot θ∂ϕ)e
iϕℓFkℓℓ

⇔ 0 = ℏeiϕ(ℓ+1)(∂θ + i cot θ(iℓ))Fkℓℓ

⇔ 0 =
( d
dθ

− ℓ cot θ
)
Fkℓℓ.

This is a first order ordinary differential equation. This means the solution space of this
differential equation is one-dimensional. (TBD: no delocalization?) Indeed the function
Fℓℓ(θ) = (sin θ)ℓ solves the above differential equation as( d

dθ
− ℓ cot θ

)
(sin θ)ℓ = ℓ(sin θ)ℓ−1 cos θ − ℓ cos θ(sin θ)ℓ−1 = 0.

This solution also exists for every ℓ ∈ N0. Since we have found one solution for each ℓ,
and since the solution space is one dimensional, we have infact found all possible solutions
for the above equation. To find all possible common eigenfunctions of L2 and Lz , we just
repeatedly apply L− to Yℓℓ for each ℓ.

More explicitly, we have

Y ℓℓ (θ, ϕ) = c(sin θ)ℓeiℓϕ.

To find c we normalise

1
!
=

∫
sin θdθdϕ c2||Y ℓℓ (θ, ϕ)||2.

This gives us the normalization

c =
1

2ℓℓ!

√
(2ℓ+ 1)!

4π

The function Y mℓ can now be obtained from this function by applying the ladder operator
L−. The case ℓ = 1 is homework. For reference, one gets the following functions:

Y mℓ (θ, ϕ) = (−1)m

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pmℓ (cos θ)eimϕ,

where Pmℓ (x) are the associated Legendre polynomials.
In summary: On the Hilbert space L2(S2), the following functions on the unit sphere

form an ONB

Y mℓ (θ, ϕ), with ℓ ∈ N0; m = −ℓ, · · · , ℓ.

These are the spherical harmonics. The rotations leave the subspaces Hℓ = ⟨{Y mℓ }ℓm=−ℓ⟩
invarient. The eigenfunctions in Hℓ with ℓ = 0, 1, 2, 3, · · · are called the s, p, d, f, · · ·
orbitals respectively.
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5.1.1 Parity

Recall that the parity operator Π reflects functions at the origin:

(Πψ)(x) = ψ(−x).

Rotations and reflections at the origin commute: R(−x) = −Rx. Hence Π commmutes
also with the generators Li or rotations, and therefore, we could have added

ΠYklm = πYklm

to the joint eigenvalue equations (5.2), (5.3). Because Π2 = 1, the parity eigenvalues are
π ∈ {±1}. In fact, no harm was done when we left it out – because the Y ml actually all
have a definite parity. You can see explicitly this for Y m=l

l = c(sin θ)leilϕ by evaluating

Y m=l
l (π − θ, ϕ+ π) = (sin(π − θ)︸ ︷︷ ︸

sin(θ)

)l eilπ︸︷︷︸
(−1)l

eiϕ = (−1)l Y m=l
l (θ, ϕ).

And because Π commutes with L−, the parity must the be same for the entire basis
{Y ml }lm=−l of the representation space H(l).

5.2 Addition of angular momenta

Classically, the total angular momentum of an n-body system is just the sum of the indi-
vidual terms

L =

n∑
i=1

L(i).

Here, we’ll work out the quantum theory of combined angular momenta.
For example, take a spin-l1 and a spin-l2 particle. Which values can the total angular

momentum attain? Concretely, we’d like to know the eigenvalues of L2 for L = L(1) +
L(2).

5.2.1 Total angular momentum and rotations
Recall that we derived the operators representing
conserved quantities from the generators of an as-
sociated symmetry. In that spirit, the total angular
momentum of two systems is iℏ times the generator
of rotations acting on each particle individually.

To work out a formula for the generator, consider two Hilbert spaces Hi, and let L(i) be
the angular momentum observable of the i-th system. Under a rotation about the ek-axis,
state vectors |αi⟩ ∈ Hi transform as

|αi⟩ = e
θ
iℏL

(i)
k |αi⟩.

Thus their product in H1,2 transforms as

|α1⟩|α2⟩ 7→
(
e

θ
iℏL

(1)
k |α1⟩

)(
e

θ
iℏL

(2)
k |α2⟩

)
. (5.4)
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Differentiating with respect to θ and using the product rule,

∂θ|0
((
e

θ
iℏL

(1)
k |α1⟩

)(
e

θ
iℏL

(2)
k |α2⟩

))
=
( 1

iℏ
L
(1)
k +

1

iℏ
L
(2)
k

)
|α1⟩|α2⟩.

If two systems transform under a symmetry, then the generator on the joint system
is the sum of the generators on the individual ones.

Multiplying by iℏ, we obtain L = L(1) +L(2) for the total angular momentum.
Because (3.2) is a representation of the rotation group, we know from Chap. 4 that the

components of L fulfill the commutator relations of a quantum angular momentum. To
verify this directly, use that operators on different systems commute (3.5):

[L1, L2] = [L
(1)
1 + L

(2)
1 , L

(1)
2 + L

(2)
2 ] = [L

(1)
1 , L

(1)
2 ] + [L

(2)
1 , L

(2)
2 ] = iℏL(1)

3 + iℏL(2)
3

= iℏL3 (and cyclic).

5.2.2 Eigenspaces of total angular momentum

[This is the most technical part of this entire course. I don’t think I understood what really
happened when I first encountered it as a student myself. So, give it a try, but don’t beat
yourself up if you end up confused on first (or second) reading.]

Assume that Hi = H(li) carries a spin-li-representation of SO(3). In other words,

Hi =

{
li∑

m=−li

ψm|l,m⟩

}
.

Then L = L(1) +L(2) generates some representation of the rotation group on

H1,2 = H(l1) ⊗H(l2) =

{ ∑
m1,m2

ψm1,m2 |l1,m1⟩|l2,m2⟩

}
.

The question is: Which spin representations, i.e. which values of the quantum number l,
occur on this joint Hilbert space?

As in the general theory, we need to find a joint eigenbasis

L2|K,L,M⟩ = ℏ2L(L+ 1)|K,L,M⟩, Lz|K,L,M⟩ = ℏM |K,L,M⟩. (5.5)

of the total angular momentum operators on the tensor product Hilbert space. (It will turn
out that there are no degeneracies, i.e. the label K will note be required).

Step 1: Find all Lz eigenvalues

Diagonalizing Lz is trivial – just take the product basis:

(L(1)
z + L(2)

z )|l1,m1⟩|l2,m2⟩ = ℏ(m1 +m2︸ ︷︷ ︸
=M

)|l1,m1⟩|l2,m2⟩.

To visualize the possible values for M that can oc-
cur this way, draw the eigenvalues −li ≤ m ≤ li
in a plane. Then constant values of M lie on diag-
onals, as indicated.
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Step 2: Find the subrepresentation with highest spin

In particular, the highestLz-eigenvalue that occurs isM = l1+l2, with unique eigenvector
|l1,m1 = l1⟩|l2,m2 = l2⟩. It must belong to a spin-(l1 + l2)-representation. Setting

|L,M⟩ := |l1,m1 = l1⟩|l2,m2 = l2⟩, L =M = l1 + l2, (5.6)

and laddering downwards gives a basis

{|L = l1 + l2,M⟩}l1+l2M=−(l1+l2)

of H(l1+l2) inside of H(l1) ⊗H(l2).

Step 3: Find the subrepresentation with second-highest spin

The next-largest eigenvalue is M = l1 + l2 − 1, which is two-fold degenerate, with basis

|l1, l1⟩|l2, l2 − 1⟩, |l1, l1 − 1⟩|l2, l2⟩.

This eigenspaces must contain the vector |L = l1+ l2,M = l1+ l2−1⟩ already accounted
for. There is therefore a vector |ψ⟩ in this eigenspaces, unique up to a global phase, that
is orthogonal to |L = l1 + l2,M = l1 + l2 − 1⟩. It must belong to a spin-(l1 + l2 − 1)-
representation. Setting

|L = l1 + l2 − 1,M = l1 + l2 − 1⟩ := |ψ⟩

and laddering downwards gives a basis

{|L = l1 + l2 − 1,M⟩}l1+l2−1
M=−(l1+l2−1)

of H(l1+l2−1) ⊂ H⊥
(l1+l2)

⊂ H(l1) ⊗H(l2).

Step 4: Iterate

We now iterate this construction until every vector in H(l1) ⊗H(l2) is accounted for. As-
suming (without loss of generality) that l1 ≥ l2, this happens once we have included
L = l1 − l2.

That’s because

dim(H(l1) ⊗H(l2)) = (2l1 + 1)(2l2 + 1) =

l1+l2∑
l=l1−l2

(2l + 1) =

l1+l2∑
l=l1−l2

dimH(l).

Proof.

l1+l2∑
l=l1−l2

(2l + 1) = 2l2 + 1 + 2

l1+l2∑
l=l1−l2

l (there’s 2l2 + 1 summands)

=2l2 + 1 + (l1 + l2)(l1 + l2 + 1)− (l1 − l2 − 1)(l1 − l2) (Triangular number)

=2l2 + 1 + 4l1l2 + 2l1 = (2l1 + 1)(2l2 + 1). (group terms)

We have thus partitioned the tensor product Hilbert space H(l1) ⊗H(l2) into mutually
orthogonal subspaces H(l). Such a partition is called a direct sum decomposition, and
stylized like this:

https://en.wikipedia.org/wiki/Triangular_number
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H(l1) ⊗H(l2) ≃
l1+l2⊕

L=l1−l2

H(l).

This particular direct sum is known as the Clebsch-Gordan decomposition.

Example. Treat an electron in the p-orbital (l1 = 1) and its spin (l2 = 1
2

). For brevity, write
|m1⟩|m2⟩ for |l1,m1⟩|l2,m2⟩. From (5.6), the highest M -value belongs to∣∣∣3

2
,
3

2

〉
=
∣∣∣1〉∣∣∣1

2

〉
.

Applying the laddering operator L− = L
(1)
− + L

(2)
− and using (5.1) gives∣∣∣3

2
,
1

2

〉
=

1√
3

(√
2
∣∣∣0〉∣∣∣1

2

〉
+
∣∣∣1〉∣∣∣− 1

2

〉)
. (5.7)

We could ladder downwards again to get the M = − 1
2

eigenvector, but it’s easier to argue by
symmetry: Instead of with the highest M -value, we could have started with the lowest one,
M = −(l1 + l2) and laddered upwards. The analogue of the previous two steps gives∣∣∣3

2
,−3

2

〉
=
∣∣∣− 1

〉∣∣∣− 1

2

〉
,∣∣∣3

2
,−1

2

〉
=

1√
3

(√
2
∣∣∣0〉∣∣∣− 1

2

〉
+
∣∣∣− 1

〉∣∣∣1
2

〉)
.

We have found a basis for the spin-3/2 subspaceH(3/2).

From the general theory, the M = 1
2

-subspace must contain a vector orthogonal to
∣∣∣ 32 , 1

2

〉
,

unique up to phase. It belongs to a spin-1/2 space. Indeed, from (5.7), we can just read it off:∣∣∣1
2
,
1

2

〉
=

√
2

3

(
− 1√

2

∣∣∣0〉∣∣∣1
2

〉
+
∣∣∣1〉∣∣∣− 1

2

〉)
.

(Here, we have followed a general convention, and chosen the phase such that the term with the
highest value of m1 gets a positive coefficient). Laddering down, or arguing by symmetry,∣∣∣1

2
,−1

2

〉
=

√
2

3

(
− 1√

2

∣∣∣0〉∣∣∣− 1

2

〉
+
∣∣∣− 1

〉∣∣∣1
2

〉)
.

Let’s count dimensions to double-check that we’re done:

dimH(1) ⊗H(1/2) = 3× 2 = 4 + 2 = dimH(3/2) + dimH(1/2).

The important case l1 = l2 = 1
2

is homework.

Remark. The expansion coefficients ⟨L,M |l1,m1⟩|l2,m2⟩ which express the common eigen-
basis of L2, Lz in terms of the common eigenbasis of (L(1))2, L

(1)
z , (L(2))2, L

(2)
z are called

the Clebsch-Gordan coefficients. They are used in atomic physics, and tabulated online. The
example above can be summarized as:

M m1 m2 ⟨3/2,M |1,m1⟩|1/2,m2⟩
3/2 1 1/2 1

1/2 1 −1/2
√

2/3

1/2 −1 1/2
√

1/3

−1/2 0 −1/2
√

2/3

−1/2 −1 1/2
√

1/3
−3/2 −1 −1/2 1

https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients
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M m1 m2 ⟨1/2,M |1,m1⟩|1/2,m2⟩
1/2 1 −1/2

√
2/3

1/2 0 1/2 −
√

1/3

−1/2 0 −1/2 −
√

1/3

−1/2 −1 1/2
√

2/3



Chapter 6

Central potentials

6.1 Recap: Classical theory

Consider a classical particle with Hamilton function

H(q,p) =
∥p∥2

2m
+ V (∥q∥)

invariant under rotations. Let r = ∥q∥ be the distance to the origin, q̂ = q/r the radial
vector, and pr = q̂ · p the radial momentum. Decompose 2m times the kinetic energy

∥p∥2 = (r̂ · p)2 + ∥r̂ × p∥2 = p2r +
∥L∥2

r2
(6.1)

in terms of a “radial” and a “rotational” contribution.
Next, Noether’s theorem says that rotational invariance implies that L is conserved.

Adjusting coordinates if necessary, we may assume that L = ℓez is proportional to ez .
Using that L = x × p, it follows that the dynamics takes place in the x–y-plane. Denote
polar coordinates in the plane by (r, ϕ). You can trust me that the (r, ϕ, pr, Lz) are canoni-
cal coordinates (or better don’t trust me and use the generating functionG3 = −x(r, ϕ) ·p
to verify). We can thus write the Hamiltonian as

H(r, ϕ, pr, Lz) =
p2r
2m

+
L2
z

2mr2
+ V (r).

In particular, the equations of motions for r do not depend on ϕ, and are generated by

H(r, pr) =
p2r
2m

+ Veff(r), Veff(r) :=
ℓ2

2mr2
+ V (r), (6.2)

which corresponds to a particle moving in one dimension under the effective potential Veff .
Gravitational and Coulomb potentials are pro-
portional to −1/r. If that were a one-
dimensional potential, it would suck every-
thing right into the center.

Fortunately for planet-dwellers (and elec-
trons), we live in three dimensions. If you start
off with non-zero angular momentum, the ef-
fective potential includes the centrifugal bar-
rier term ℓ2/(2mr2), which keeps us in orbit.

77

https://en.wikipedia.org/wiki/Canonical_transformation#Generating_function_approach
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6.2 Stationary Schrödinger equation for central potentials

The Hamilton operator for a point particle in 3D under a central potential V (r) is

H =
∥P ∥2

2m
+ V (r) = − ℏ2

2m
∆+ V (r).

Much of the classical analysis of the last section carries over.

6.2.1 Radial angular momentum

In QM, too, we can decompose the kinetic energy into a “radial” and a “rotational” contri-
bution. The most straight-forward way is to convert the Laplacian and the squared-angular
momentum operator to spherical coordinates (or to look up the expressions):

∆ =
1

r
∂2r r +

1

r2 sin θ
∂θ (sin θ∂θ) +

1

r2 sin2 θ
∂2ϕ,

L2 = −ℏ2
(

1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2ϕ

)
.

The angular components of −ℏ2/(2m)∆ and L2/(2mr2) are seen to be identical, so that

P 2

2m
= − ℏ2

2m

1

r
∂2r r +

L2

2mr2
. (6.3)

Radial momentum. The first term looks complicated. Classically, it’s p2r , where pr = q̂ · p =
p · q̂ is the radial component of the angular momentum.

Which operator corresponds to pr? In Sec. 1.3, we mentioned that quantization is ambiguous
if operator ordering makes a difference. That happens here, because “putting the radial vector to
the right of the momentum gives an additional term from the product rule”. Details:

(R̂ · P )ψ = −iℏ∂rψ,

where r is the radial component of spherical coordinates. Ordering operators differently:

(P · R̂)ψ = −iℏ
∑
i

∂i
(xi
r
ψ
)
= −iℏ

∑
i

(
1

r
ψ − x2i

r3
ψ +

xi
r
∂iψ

)
= −iℏ

(
∂r +

2

r

)
ψ.

We might try our luck with the mean of the two possibilities, setting

Pr =
1

2
(R̂ · P + P · R̂) = −iℏ

(
∂r +

1

r

)
. (6.4)

Squaring this one gives

P 2
r ψ = −ℏ2

(
∂2
rψ + ∂r

(
1

r
ψ

)
+

1

r
∂rψ +

1

r2
ψ

)
= −ℏ2

(
∂2
rψ +

2

r
∂rψ

)
, (6.5)

which is 2m times the operator on the left of (6.3).

−ℏ2 1
r
∂2
r (rψ) = −ℏ2

1

r
∂r(r∂rψ + ψ) = −ℏ2 1

r
(r∂2

rψ + 2∂rψ) = −ℏ2
(
∂2
rψ +

2

r
∂rψ

)
.

This justifies calling (6.4) the radial momentum operator.

https://en.wikipedia.org/wiki/Laplace_operator#Three_dimensions
https://en.wikipedia.org/wiki/Angular_momentum_operator#Orbital_angular_momentum_in_spherical_coordinates
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6.2.2 Reduction to one-dimensional problem

From the last section,

H =
P 2
r

2m
+

L2

2mr2
+ V (r).

Because the Lk act only on angular coordinates, L2 and Lz commute with H . We can
therefore look for solutions to this system of joint eigenvalue equations

Hψ = Eψ, (6.6)

L2ψ = ℏ2l(l + 1)ψ, (6.7)
Lzψ = ℏmψ. (6.8)

Write ψ = ψ(r, θ, ϕ) in spherical coordinates. Then we know from Chap. 5 that, for every
value of r, (6.7) and (6.8) together mean that ψ(r, θ, ϕ) is proportional to Y ml (θ, ϕ). Thus

ψ(r, θ, ϕ) = Y ml (θ, ϕ)R(r)

where R(r) are the yet-to-be-determined proportionality constants. Then Eq. (6.6) gives(
− ℏ2

2m

1

r
∂2r (rR(r)) +

ℏ2l(l + 1)

2mr2
+ V (r)

)
Y ml (θ, ϕ)R(r) = E Y ml (θ, ϕ)R(r).

To clean up, set u(r) := rR(r), divide by Y ml and multiply by r, to get the radial equation

Hlul,k(r) = El,k ul,k(r), Hl = − ℏ2

2m
∂2r +

ℏ2l(l + 1)

2mr2
+ V (r), (6.9)

where we have introduced labelsEl,k, ul,k for the k-th eigenvalue and eigenfunction ofHl.
As in the classical case, this is formally equivalent to the time-independent Schrödinger
equation for a particle moving in 1D under an l-dependent effective potential.

Remark. Taking the Jacobian determinant of spherical coordinates into account,

∥ψ∥22 =

∫∫∫
|ψ(r, θ, ϕ)|2 r2 sin θ dr dθ dϕ

=

∫ ∞

0

|R(r)|2r2 dr
∫∫
|Y ml (θ, ϕ)|2 sin θ dθ dϕ =

∫ ∞

0

|u(r)|2 dr. (6.10)

In particular, |u(r)|2 is the probability density at distance r from the center.

For most potentials V (r), the radial equations can’t be solved explicitly, but there are
some general properties, discussed next.

Bound states versus scattering states

Assume that limr→∞ V (r) = 0. Then Hl is approximately free asymptotically, and thus
eigenfunctions satisfy

u(r → ∞) ∝ e±kr, k =

√
−Eℏ
2m

.

If E < 0, then k is positive. The e+kr-solution diverges and is thus unphysical. The e−kr

one gives state whose probability of being found at distance r from the center decreases
exponentially. These are bound states, and we will focus on this class below.

If E > 0, then k is imaginary, so u(r) oscillates with constant amplitude as r → ∞, a
spherical wave. In the Advanced QM course, these solutions are used to study scattering
processes.
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Relations between the radial equations

The HamiltoniansHl depend on the angular momentum quantum number l. The difference

Hl+1 −Hl =
ℏ2

2mr2
(l + 1) (6.11)

is strictly positive. The ground state energies El,1 thus increase with l.

ℓ

E

0 1 2

E0,1

E0,2

E0,3

E1,1

E1,2

E2,1

E2,2

E2,3

In general, that’s the only relation between the
eigenvalues of different Hl, so we expect a level
diagram to look something like the one sketched.

It could happen that two eigenvalues of differ-
ent Hamiltonians agree. This would then be called
an accidental degeneracy, because there’s really no
systematic reason to expect it.

I’m bringing this up because the hydrogen level di-
agram looks this this.

The k-th eigenvalue of Hl is the (k − 1)st of
Hl+1. That’s not an accident, that’s a car crash!
Any method for solving the 1/r-potential better
identifies a concrete mechanism that causes this
surprising behavior.

ℓ

E

0 1 2 3

6.3 The Coulomb potential

For the important case V (r) = −κ/r, the radial equation can be solved explicitly. We
focus on the bound states, i.e. E < 0.

6.3.1 Switching to problem-adapted units

Define problem-adapted units (their names will be justified later)

a0 :=
ℏ2

mκ
Bohr radius, ρ := r/a0 distance in units of a0,

EI :=
mκ2

2ℏ2
ionization energy, ϵ := E/EI energy in units of EI .

Then a boring substitution...

Hl = − ℏ2

2m
∂2r +

ℏ2l(l + 1)

2mr2
− κ

r
= − ℏ2

ma20

1

2
∂2r +

ℏ2

ma20

l(l + 1)

2ρ2
− κ

a0

1

ρ

= 2EI

(
−1

2
∂2ρ +

l(l + 1)

2ρ2
− 1

ρ

)
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...shows that dividing the radial equation by 2EI gives the dimensionless variant

hl ul,k =
1

2
ϵl,k ul,k, hl = −1

2
∂2ρ +

l(l + 1)

2ρ2
− 1

ρ
, (6.12)

where ul,k is the k-th eigenstate of hl.
There’s various options for solving these eigenvalue equations:

• Treat them as generic differential equations and use standard techniques: split off
the asymptotic behavior, make a power series ansatz for the remainder, work out
conditions on the coefficients... Stuff like that. Teaching it this way is the grown-up
thing to do. Compatible with any textbook and conceptually straight-forward.
But, boy does it suck! It involves zero exciting ideas, is lengthy, and doesn’t offer
any insights into “why” the accidental degeneracies occur.

• In 1935 (!) Vladimir Fock wrote a paper (in perfect German) relating the Coulomb
problem in R3 to a free particle on the 3-sphere (i.e. the one in R4). He showed
that the Coulomb Hamiltonian is nothing but the spherical Laplace operator in thin
disguise, and the hydrogen eigenfunctions are just the (hyper-)spherical harmonics.
It’s breathtakingly beautiful... ...but I have never found a way to tell the story so that
it would work for a 2nd year class. / Oh dear. Back to the power series...

• ...or so it was until, well into my teaching career, I become aware of a trick based
on... checks notes... supersymmetric quantum mechanics. What’s not to love?

6.3.2 Supersymmetric quantum mechanics

Supersymmetry (SUSY if you want to sound cutesy) was a big thing in high energy physics
from the early 1970s on. It pairs every elementary particle with a supersymmetric partner,
always one Boson and one Fermion, such that their Hamiltonians share the same eigen-
values. This may sound like random words, but it’s actually an essentially unique way to
work around a known limitation of relativistic quantum field theory. Taking it seriously
made a lot of sense. The hype fizzled out in the 2010s, when the LHC failed to uncover so
much as a shred of evidence for supersymmetry being implemented for actual particles.

Oh well.
The math, however, remains sound. And if you

(((((((((
dumb it down enough repeatedly pass

to simpler models that retain the key ideas, you’ll eventually arrive at supersymmetric
quantum mechanics. It’s a somewhat niche field,1 but I feel its solution of the hydrogen
atom is under-appreciated.

Supersymmetric partners

Our development rests on the linear-algebraic triviality that for any operator A, the non-
zero eigenvalues of

H− := A†A and of H+ := AA†

are the same (their roots being known as the singular values of A). Indeed, explicitly,

H−|ψ−
E ⟩ = E|ψ−

E ⟩ ⇒ H+A|ψ−
E ⟩ = AA†A|ψ−

E ⟩ = E A|ψ−
E ⟩,

H+|ψ+
E⟩ = E|ψ+

E⟩ ⇒ H−A
†|ψ+

E⟩ = A†AA†|ψ+
E⟩ = E A†|ψ+

E⟩.

1In particular, it isn’t mentioned in most QM textbooks. This section draws from Chapter 3 of Supersym-
metric Methods by Junker, and on this article.

https://en.wikipedia.org/wiki/Haag%E2%80%93%C5%81opusza%C5%84ski%E2%80%93Sohnius_theorem
https://en.wikipedia.org/wiki/Coleman%E2%80%93Mandula_theorem
https://pubs.aip.org/aapt/ajp/article-abstract/58/5/487/1053705/Eigensolution-of-the-Coulomb-Hamiltonian-via?redirectedFrom=fulltext
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In words: If |ψ−
E ⟩ is a H−-eigenvector with eigenvalue E, then |ψ+

E⟩ := A|ψ−
E ⟩ solves the

eigenvalue equation for H+. Thus if A|ψ−
E ⟩ isn’t 0, it is an H+-eigenvector. But

∥A|ψ−
E ⟩∥

2 = ⟨ψ−
E |A

†A|ψ−
E ⟩ = E ∥ψ−

E∥
2, (6.13)

so we’re good if E ̸= 0. (In this general setting, one can’t say much about E = 0).

0 = E−
1

E−
2

E−
3

E−
4

E+
1

E+
2

E+
3

A†

A

H− H+

Below, we’ll work with non-degenerate, non-negative
Hamiltonians where 0 is an eigenvalue of H− but not of
H+. The resulting level diagram is pictured.

In analogy to the ladder operators of the harmonic
oscillator, A then maps a k-th eigenvector to a (k− 1)st
– however, it also switches from H− to H+.

To apply this to QM, we need A’s such that H± can be interpreted as Hamiltonians.
This is achieved by choosing a function v, called the supersymmetric potential, and setting

A :=
1√
2
(∂x + v) ⇒ A† =

1√
2
(−∂x + v).

Then the H± take the form of one-dimensional Hamiltonians, as hoped for:

H± =
1

2

(
−∂2x + v2 ± [∂x,Φ]

)
= −1

2
∂2x +

1

2
v2 ± 1

2
v′,

with a (dimensionless) kinetic energy term − 1
2∂

2
x and potential V± = 1

2 (v
2 ± v′).

Example. For v = x, we recover the ladder operators (1.42) of the harmonic oscillator, and

H± = −1

2
∂2
x +

1

2
x2 ± 1

2
= HHO ±

1

2

are shifted versions of the (dimensionless) harmonic oscillator Hamiltonian HHO.

Groundstates

For every state |ψ⟩, we have that

⟨ψ|H−|ψ⟩ = ⟨ψ|A†A|ψ⟩ = ∥A|ψ⟩∥2 ≥ 0,

which implies that H− has non-negative eigenvalues (a similar argument holds for H+).
Also, the eigenvalue 0 occurs for H− iff there is a state ψ such that

0 = ⟨ψ|H−|ψ⟩ = ∥A|ψ⟩∥2 ⇔ Aψ = 0 ⇔ ∂xψ(x) = −v(x)ψ(x).

Being of first order, this differential equation is trivial to solve:

ψ(x) = e−
∫ x v(x′) dx′

(indefinite integral). (6.14)

It may happen that ψ(x) diverges as x → ±∞. Thus, our conclusion is that 0 is an
eigenstate of H− iff the solution of (6.14) can be interpreted as a quantum state.

Example. Continuing the treatment of the harmonic oscillator,

v = x ⇒ −
∫ x

v(x′)dx′ = −1

2
x2 + C ⇒ ψ(x) ∝ e−

1
2
x2 ,

which is normalizable, and indeed the correct ground state wave function.
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Application to the Coulomb problem

The effective Hamiltonian hl of Eq. (6.12) is connected to the supersymmetric potential

vl =
1

l + 1
− l + 1

ρ
.

To see this, compute the two associated partner potentials:

V± =
1

2
v2l ±

1

2
v′l =

1

2

(
1

(l + 1)2
− 2

ρ
+

(l + 1)2

ρ2
± l + 1

ρ2

)
=

(l + 1± 1)(l + 1)

2ρ2
− 1

ρ
+

1

2(l + 1)2
.

Now comes the key insight! Comparison with (6.12) shows that

H− = hl +
1

2(l + 1)2
, H+ = hl+1 +

1

2(l + 1)2
. (6.15)

Thus: Up to a shift of energy levels, “neighboring” radial Hamiltonians hl, hl+1 are
supersymmetric partners! Let’s record some simple consequences:

• Zero is an eigenvalue of H−. Indeed,∫ ρ l + 1

ρ′
− 1

l + 1
dρ′ = (l + 1)− ρ

l + 1
ln ρ+ C ⇒ ul,1(x) ∝ ρl+1e−

ρ
l+1 ,

which is certainly normalizable. Also, we now have the ground state of hl!

• From (6.15) we then find the ground state energy of hl:

0 = H−ul,1 = hl ul,1 +
1

2(l + 1)2
ul,1 ⇒ ϵl,1 = − 1

(l + 1)2
.

• Because H+ = H− + l+1
ρ2 and the added term is strictly positive, 0 is not an eigen-

value of H+. We thus encounter the situation sketched in the level diagram on this
page: E−

k = E+
k−1, meaning here that ϵl,k = ϵl+1,k−1.

And that’s it. We can sweep the board without any further calculations (c.f. Fig. 6.1)!

• We already know all the ground state energies ϵl,1 and wave functions ul,1.

• But this implies the first excited energies, because ϵl,2 is the ground state energy
ϵl+1,1 of the partner. Iterating:

ϵl,k = ϵl+1,k−1 = ϵl+2,k−2 = · · · = ϵl+k−1,1 = − 1

(l + k)2
=: − 1

n2
.

Thus, the energy only depends on the sum n = l + k ∈ {1, 2, . . . }, called the
principal quantum number n.

• Each value of n can be realized in n different ways, namely for l = 0, . . . , n − 1.
Recall that the full HamiltonianH of Eq. (6.6) has 2l+1 eigenstates associated with
each value of l. Thus, the degeneracy of the n-th level of H is

n−1∑
l=0

2(l + 1) = n+ 2

n−1∑
l=0

l = n+ n(n− 1) = n2.
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ℓ
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Figure 6.1: Level diagram of the effective Hamiltonians hl for the Coulomb problem. The
“accidental” degeneracies are explained by the fact that neighboring effective Hamiltoni-
ans are supersymmetric partners. Energy axis not to scale.

• Eigenfunctions are obtained analogously. Write the generalized annihilation opera-
tor for the superpotential vl as Al := 1√

2
(∂x + vl) . Then

ul,k ∝ A†
l ul+1,k−1 ∝ A†

lA
†
l+1 ul+2,k−2 ∝ · · · ∝ A†

lA
†
l+1 · · ·A

†
l+k−2 ul+k−1,1.

Normalization. If you’re feeling masochistic, you can work out the normalization constants.
For the ground states, Mathematica tells me that

ul,1(ρ) = Nl,1 ρ
l+1e−ρ/(l+1), Nl,1 =

√
22(l+1)

(l + 1)4+2l(2l + 1)!

is normalized (w.r.t. (6.10)).
To extend this to all states, we need to preserve normalization under laddering. Arguing as

in Eq. (6.13), if |ψ+
E⟩ is a normalized eigenvector of H+ with eigenvalue E, then E−1/2A†|ψ+

E⟩
is also normalized. The connection with our application is made in Eq. (6.15). Specifically,
choosing |ψ+

E⟩ = |ul+1,k−1⟩, then

E = ϵl,k +
1

2(l + 1)2
=

1

2(l + 1)2
− 1

2(l + k)2
=

1

2(l + 1)2
− 1

2n2
.

Therefore, the normalized wave functions are

ul,k =

l+k−2∏
l′=l

((
1

2(l + 1)2
− 1

2n2

)−1/2

A†
l′

)
ul+k−1,1,

where the factors must be order so that l′ increases from left to right.
Be sure to multiply with an additional a−1/2

0 when switching from ρ to r.
Some complete solutions: TBD.
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6.3.3 Summary

The ground states ψnlm of the 1/r-potential are thus labeled by the principal quantum
number n = 1, 2, . . . , the angular momentum quantum number l = 0, . . . , n− 1, and the
magnetic quantum number m = −l, . . . , l. Then:

ψnlm(r, θ, ϕ) = Nnl
1

r
ul,n−l(r)Y

m
l (θ, ϕ), En = −EI

n2
, (6.16)

where Nnl is a normalization constant.
If you’re feeling masochistic, you can be more explicit. For example, recall that the

ground state of Hl is

ul,1(r) = Nl+1,l

(
r

a0

)l+1

e
− r

a0(l+1) . (6.17)

(The normalization constant in (6.16) is the same as the one in (6.17). That’s because
|ψnlm(r, θ, ϕ)|2 must be integrated in spherical coordinates, with volume element r2 sin θ dr dθ dϕ.
In the radial integral for |ψ|2, the 1/r factor in (6.16) exactly kills the r2 of the volume
element, leaving us with

∫∞
0

|ul,r|2). Anyways, Mathematica gives

(whatever...).

There’s pretty visualizations online if that floats your boat.

https://en.wikipedia.org/wiki/Hydrogen_atom#Visualizing_the_hydrogen_electron_orbitals
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Figure 6.2: I don’t know why I did this.



Chapter 7

Perturbation Theory

Obligatory xkcd. This is you (once you understand this
chapter).

Most operators cannot be explicitly diagonalized. In
perturbation theory, the idea is to start from a Hamilto-
nian H0 for which the eigenvalue problem H0|ψi⟩ =
Ei|ψi⟩ is solvable, and to make statements about the
“perturbed” operator

H = H0 + λW.

The perturbation W (a “secondary term” as per the
comic) is arbitrary, but we only aim for approximations
that work for “small” values of λ.

It’s not the most conceptually inspiring chapters of
QM, but important in practice!

7.1 Stationary perturbation theory

For now, assume that all eigenvalues of H0 are non-degenerate and
discrete. Starting from one solution H0|ψi⟩ = Ei|ψi⟩, our goal is to
track the evolution of the eigenvalues Ei(λ) and eigenvectors |ψi(λ)⟩
of H(λ) = H0 + λW as λ increases. (Click for numerics).

Here,Ei(λ) is the eigenvalue ofH(λ) that connects toEi as λ→ 0.
It can happen that the graphs of two eigenvalues cross for larger values
of λ – the problem then ceases to be well-defined.

The eigenvector |ψi(λ)⟩ is defined via

H(λ)|ψi(λ)⟩ = Ei(λ)|ψi(λ)⟩ (eigenvalue equation), (7.1)
⟨ψi|ψi(λ)⟩ = 1 (“normalization” condition). (7.2)

Warning: The norm of |ψi(λ)⟩ is usually larger than one:

⟨ψi(λ)|ψi(λ)⟩ =
∑
j

|⟨ψj |ψi(λ)⟩|2 = 1 +
∑
j ̸=1

|⟨ψj |ψi(λ)⟩|2.
0.0 0.5

1

0

1

2

3

4

87

https://xkcd.com/793/
https://www.thp.uni-koeln.de/gross/blog/posts/perturbation/
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The basic assumption of perturbation theory is that both the eigenvalue and the eigen-
vector can be expanded as a power series in λ:

Ei(λ) =

∞∑
n=0

E
(n)
i λn |ψi(λ)⟩ =

∞∑
n=0

|ψ(n)
i ⟩λn.

The difficulty lies in finding the scalar and vectorial coefficients E(n)
i and |ψ(n)

i ⟩.
The central equation of stationary perturbation theory arises by plugging this ansatz

into (7.1):

(
H0 + λW

)( ∞∑
n=0

|ψ(n)
i ⟩λn

)
−

( ∞∑
n=0

E
(n)
i λn

)( ∞∑
n=0

|ψ(n)
i ⟩λn

)
= 0. (7.3)

A power series is identically equal to 0 if and only if the coefficients for each order λn

vanish. For the rest of the section, we’ll analyze these conditions order-by-order.

7.1.1 First-order energy correction

Order-0: Setting the coefficient of λ0 in (7.3) equal to 0 gives

H0|ψ(0)
i ⟩ − E

(0)
i |ψ(0)

i ⟩ = 0 ⇒ E
(0
i = Ei, |ψ(0)

i ⟩ = |ψi⟩.

Order-1: For the coefficients of λ1:

H0|ψ(1)
i ⟩+W |ψ(0)

i ⟩ − E
(1)
i |ψ(1)

i ⟩ − E
(0)
i |ψ(0)

i ⟩ = 0

⇒
(
H0 − E

(0)
i

)
|ψ(1)
i ⟩+

(
W − E

(1)
i

)
|ψ(0)
i ⟩ = 0. (7.4)

Multiply ⟨ψi| from the left:

⟨ψi|H0 − E
(0)
i |ψ(1)

i ⟩︸ ︷︷ ︸
⟨ψi|Ei−E(0)

i |ψ(1)
i ⟩=0

+⟨ψi|W − E
(1)
i |ψ(0)

i ⟩ = 0, (7.5)

henceE(1)
i = ⟨ψi|W |ψi⟩. An embarrassingly large part of physics is built on the resulting

First order energy correction formula: Ei(λ) = Ei + λ⟨ψi|W |ψi⟩+O(λ2).

In matrix notation with respect to the H0-eigenbasis:

.

Example. The anharmonic oscillator (in units where ℏ = ω = m = 1). Take

H0 =
1

2
(P 2 +X2), W = X4.
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To compute the matrix element of W in the ground state, write X = 1√
2
(a+ a†), so that

E
(1)
0 =

1

4
⟨0|(a+ a†)4|0⟩ = 1

4
⟨0|a(aa† + a†a)a†|0⟩ = 1

4
(
√
1 · 2 · 2 · 1 +

√
1 · 1 · 1 · 1) = 3

4
.

Thus, the ground state energy increases due to the anharmonic term by

E0(λ) =
1

2
+

3

4
λ+O(λ2).

For n > 0, there are six non-zero terms.

7.1.2 First-order eigenstate correction

We have obtained the energy correction by projecting Eq. (7.4) onto |ψi⟩. We have not yet
used the information contained in the projections onto the orthogonal directions. So, let’s
project onto |ψj⟩, for j ̸= i:

⟨ψj |H0 − E
(0)
i |ψ(1)

i ⟩︸ ︷︷ ︸
(Ej−Ei)⟨ψj |ψ(1)

i ⟩

+ ⟨ψj |W − E
(1)
i |ψ(0)

i ⟩︸ ︷︷ ︸
=⟨ψj |W |ψi⟩

= 0 ⇒ ⟨ψj |ψ(1)
i ⟩ = ⟨ψj |W |ψi⟩

Ei − Ej
.

The contribution of |ψi⟩ itself to |ψi(λ)⟩ is fixed by the normalization condition (7.2):

1 = ⟨ψi|ψi(λ)⟩ = ⟨ψi|
∞∑
n=0

λn|ψ(n)
i ⟩ = ⟨ψi|ψ(0)

i ⟩︸ ︷︷ ︸
=1

+

∞∑
n=1

λn⟨ψi|ψ(n)
i ⟩

so that ⟨ψi|ψ(n)
i ⟩ = 0 for n > 0. We’re left with:

|ψi(λ)⟩ = |ψi⟩+ λ
∑
j ̸=i

⟨ψj |W |ψi⟩
Ei − Ej

|ψj⟩. (7.6)

7.1.3 Higher orders

We’ll sketch a recursion relation that gives all E(n)
i , |ψ(n)

i ⟩. The λn-terms in (7.3) are

H0|ψ(n)
i ⟩+W |ψ(n−1)

i ⟩ −

(
n∑
k=0

E
(k)
i

)
|ψ(n−k)
i ⟩ = 0. (7.7)

Projecting the above back onto ⟨ψi|, only the term proportional to W and the final sum-
mand survive, giving

E
(n)
i = ⟨ψi|W |ψ(n−1)

i ⟩. (7.8)

Thus: In order to learn the eigenvalue correction of order n, we need to know the eigen-
vector one of order n− 1. E.g., with (7.6), the 2nd order coefficient for the energy is

E
(2)
i =

∑
j ̸=i

|⟨ψj |W |ψi⟩|2

Ei − Ej
.
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Higher orders. We won’t be using any other higher-order corrections in this course. If that
makes you sad, just project (7.7) onto j-th unperturbed state, re-arrange as above to arrive at

|ψ(n)
i ⟩ =

∑
i ̸=j

|ψi⟩⟨ψi|
Ei − Ej

(
W |ψ(n−1)

i ⟩ −
n∑
k=2

E
(k)
i |ψ

(n−k)
i ⟩

)
.

The E(n) term on the right can be eliminated using (7.8), so that only lower-order terms appear.

More is better? Let’s talk about convergence.
It can be shown that under the assumptions made, the perturbation series converges to the true

function Ei(λ) for all λ ∈ [0, ρ], where ρ is some finite convergence radius. Thus, eventually,
higher orders will give better results! It is also true that for every n, there is a number ρn, such
that the order-n+ 1 correction is better than the order-n one if λ ∈ [0, ρn].

So it looks like going to higher orders is a good idea – which would be reassuring given that
the complexity of the corrections increases quite rapidly.

Unfortunately, in physics applications, λ is usually fixed by the problem, and even if λ ∈
[0, ρ], convergence need not be monotonic in the order. The approximation can become worse
when increasing n. Adding insult to injury, there’s no general way to realize when this happens,
and no obvious alternative. Tough.

7.1.4 Perturbations of a degenerate level

The theory changes slightly if the unperturbed eigenvalue is degenerate

H0|ψ̃i,r⟩ = Ei, r = 1, . . . , d

for some ONB |ψ̃i,1⟩, . . . , |ψ̃i,d⟩ of the Ei-eigenspace. In matrix notation:

where Wi is the d× d submatrix representing the action W on the degenerate space.
Hermiticity of W implies Hermiticity of Wi, so we can find an ONB |ψi,r⟩ of the

Ei-eigenspace that diagonalizes W :

Wi |ψi,r⟩ = E
(1)
i,r |ψi,r⟩, r = 1, . . . , d.

The eigenvalues of Wi give the 1st order correction: Ei,r(λ) = Ei + λE
(1)
i,r .

In particular, if the eigenvalues of Wi are distinct, the degeneracy is lifted for λ > 0.

Proof. Make the ansatz

|ψ(1)
i,r ⟩ =

∑
j ̸=i

⟨ψj |W |ψi,r⟩
Ei − Ej

|ψj⟩ (7.9)
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for the first-order eigenvector correction. Then setting the λ1-coefficient in (7.3) to 0 gives

H0|ψ(1)
i,r ⟩+W |ψi,r⟩ − Ei|ψ(1)

i,r ⟩ − E
(1)
i,r |ψi,r⟩

=W |ψi,r⟩+
∑
j ̸=i

⟨ψj |W |ψi,r⟩
Ei − Ej

(H0 − Ei)|ψj⟩︸ ︷︷ ︸
=(Ej−Ei)|ψj⟩

−E(1)
i,r |ψi,r⟩

=
(
1−

∑
j ̸=i

|ψj⟩⟨ψj |
)

︸ ︷︷ ︸
projection ontoEi-eigenspace

W |ψi,r⟩ − E(1)
i,r |ψi,r⟩ = E

(1)
i,r |ψi,r⟩ − E

(1)
i,r |ψi,r⟩ = 0.

7.1.5 Application: The linear Stark effect

Work in progress

Add a term W = cZ to the atomic Hamiltonian. This would correspond to an electric
field pointing along the z axis with constant field strength.

The ground state does not change to first order

⟨nlm|Z|nlm⟩ = 0.

For the states with l = 0 (in particular the ground state), this is obvious, because these
wave functions are rotation-invariant, while Z changes sign under reflections.

All other levels are degenerate. The lowest one is spanned by |n = 2, l = 0,m = 0⟩
and |n = 2, l = 1,m⟩ for m = −1, 0, 1. Because Lz commutes with W ∝ Z, the matrix
elements vanish unless m = m′.

Thus the only possible non-zero ones are

⟨200|Z|210⟩ = ⟨210|Z|200⟩∗.

We know the wave functions can be represented with real numbers only, so let’s call the
result w. (Happens to be −3e|E|a0). Thus

W = w


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 “exchanges |2, 0, 0⟩ and |2, 1, 0⟩”

which is diagonalized by

1√
2
(|2, 0, 0⟩ ± |2, 1, 0⟩), |2, 1,−1⟩, |2, 1, 1⟩.

with eigenvalues ±w, 0.
Thus the n = 2 space splits into two perturbed states with energies ±w and two states

that remain unpertrubed to first order.
TBD: Figure.

7.2 Time-dependent perturbation theory

Fig. TBD.

We now study dynamics perturbatively. A typical example
is the excitation of an atom by laser light. The effects of the
light wave on a bound electron can be modeled by a potential
term with a sinusoidal time-dependency – so we’ll consider
this type of interactions in particular.
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We consider a system in state |ϕ(t)⟩ evolving under a time-dependent Hamiltonian

iℏ∂t|ϕ(t)⟩ =
(
H0 + λW (t)

)
|ϕ(t)⟩.

At time t = 0, the system is assumed to be in an initial eigenstate |i⟩ with energy H0|i⟩ =
Ei|i⟩. Now choose some “final” eigenstate |f⟩ ̸= |i⟩ with energy Ef . The goal is to
estimate the probability

pi→f (t) = |⟨f |ϕ(t)⟩|2

of finding the system in state |f⟩ when measured at time t.

Series expansion

As is standard in perturbation theory, we assume that one can expand

|ϕ(t)⟩ =
∞∑
n=0

λn|ϕ(n)(t)⟩

as a power series and that low orders are meaningful. For the Schrödinger equation,

iℏ∂t
(∑

n

λn|ϕ(n)(t)⟩
)
= (H0 + λW (t))

(∑
n

λn|ϕ(n)(t)⟩
)

the lowest degrees in λ give

iℏ∂t|ϕ(0)⟩ = H0|ϕ(0)⟩ 0th order,

iℏ∂t|ϕ(1)⟩ = H0|ϕ(1)⟩+W (t)|ϕ(0)⟩ 1st order.

With initial condition |ϕ(t = 0)⟩ = |i⟩, the zeroth-order equation is solved by

|ϕ(0)(t)⟩ = e
t
iℏEi |i⟩.

Because ⟨f |i⟩ = 0, the transition probability |⟨f |ϕ(t)⟩|2 will, to first order, be equal to
λ2|⟨f |ϕ(1)(t)⟩|2. To compute the latter, project the 1st order equation onto ⟨f | to get

∂t⟨f |ϕ(1)(t)⟩ =
1

iℏ
E0⟨f |ϕ(1)(t)⟩+

1

iℏ
e

t
iℏEi⟨f |W (t)|i⟩.

Write ⟨f |ϕ(1)(t)⟩ = e
t
iℏEf bf (t), in terms of an (as of yet unknown) function bf (t). Plug-

ging in and using the product rule gets us to

e
t
iℏEf∂tbf (t) =

1

iℏ
e

t
iℏEi⟨f |W (t)|i⟩.

This equation is solved by the integral

bf (t) =
1

iℏ

∫ t

0

eiωfit
′
⟨f |W (t′)|i⟩dt′ (7.10)

where we have introduced the Bohr frequency

ωfi =
Ef − Ei

ℏ
.

We now evaluate the integral for two important special cases of the time dependency.
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Constant perturbation

First, let W (t) = W be constant. Without doing any calculations, you can see that the
integral in (7.10) is oscillatory (and thus small) unless ωfi ≃ 0. Integrating explicitly:

bf (t) =
⟨f |W |i⟩
ℏωif

(
eiωfit − 1

)
(7.11)

and using the half-angle formula sin2 θ2 = 1
2 (1− cos θ),

pi→f (t) = λ2
|⟨f |W |i⟩|

ℏ2

(
sin(ωif/2)t

ωfi/2

)2

. (7.12)

With ϵ := ωfi/2, the right hand factor is sin2(ϵτ)/ϵ2, the
square of the “sinc function” (pictured). It has a central peak of
height t2, zeroes at ϵ = ±π

t , and shows oscillations of quadrat-
ically decreasing amplitude for ϵ→ ±∞.

Thus, to first order, only states |f⟩ with energy Ef in the
range Ei ± 2πℏ

t pick up significant weight. For such states,
the modulus squared is proportional to t2 and the squared cou-
pling coefficient |⟨f |λW |i⟩|2.

The result can be interpreted as an approximate version of
energy conservation. “Wait, isn’t energy preserved exactly?”
There’s no contradiction, because we’re talking about energy
as measured by H0, but the dynamics is generated by H .

Sinusoidal perturbation

Now assume there is an angular frequency ω such that

W (t) = 2 cos(ωt)W = (eiωt + e−iωt)W.

Then

bf (t) =
1

iℏ

∫ t

0

ei(ωfi+ω)t
′
⟨f |W |i⟩dt′ + 1

iℏ

∫ t

0

ei(ωfi−ω)t′⟨f |W |i⟩dt′.

Each of the integrals reduces to the time-independent case, with ωfi replaced by ωfi ± ω.
Assume that ωfi ≫ 0 and ω ≃ ωfi. By the above, the first integral will be ≃ 0, and the
transition probability is thus approximately equal to (7.12), with ωif replaced by ωif − ω.

A perturbation cos(ωt)W causes an efficient transition between H0-eigenstates
|i⟩, |f⟩ if |⟨f |W |i⟩|2 ≫ 0 and ω is close to the Bohr frequency ωfi.

7.2.1 Coupling to a continuum of states, “Fermi’s Golden Rule”

Let’s look at the case where Ef is part of the continuous spectrum, and |f⟩ only a gener-
alized eigenstate. Then |⟨f |ϕ(t)⟩|2 is a probability density, and it is more meaningful to
work with

pi→F = ⟨ϕ(t)|PF |ϕ(t)⟩,

https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Multiple-angle_and_half-angle_formulae


CHAPTER 7. PERTURBATION THEORY 94

for some projection operator PF . Let ρ(f) be a measure such that

PF =

∫
F

|f⟩⟨f |ρ(f) df.

In other words, ρ(f) is the “density of states”, in the sense of Sec. 2.7.3. Then

⟨ϕ(t)|PF |ϕ(t)⟩ =
∫
F

|⟨f |ϕ(t)⟩|2ρ(f) df =

∫
F

4|⟨f |V |i⟩|2
sin2

(
(Ei − Ef )

t
2ℏ
)

(Ei − Ef )2
ρ(f) df.

It is known (by the Dirichlet integral) that the area under the “sinc-square”–curve is τπ.
Therefore, the family of functions fτ (ϵ) := 1

πτ sin
2(ϵτ)/ϵ2 converges to a δ-function

centered at 0 as τ → ∞. Then, optimistically,

⟨ϕ(t)|PF |ϕ(t)⟩ ≃ t
2π

ℏ

∫
F

|⟨f |V |i⟩|2 δ(Ei − Ef )ρ(f) df =: tΓ. (7.13)

Let’s suspend disbelief for a while and take (7.13) at face value. It is called Fermi’s Golden
Rule: The probability pi→F (t) increases linearly, with slope Γ proportional to the squared
coupling and the density of states, integrated over all final states with the right energy.

The “≃”–step in (7.13) involved quite the leap of faith. The squared-sinc-construction
gives a delta function only in the limit of large times, but first-order perturbation theory is
valid, at most, at short times. It’s unclear whether there’s an intermediate regime where
both approximations simultaneously hold. But experience has shown that the “golden”
rule gives the right answer more often than one could have hoped, hence the moniker.

https://en.wikipedia.org/wiki/Dirichlet_integral


Appendix A

Complex analysis

These notes are following the books by Jänich (Funktionentheorie, in German) and Altland–
von Delft. We skip all proofs that don’t reduce to simple calculations. None are difficult,
though. The Jänich book is particularly clear.

A.1 Holomorphic functions

A function f : R→ R is differentiable at z0 if the limit

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) (A.1)

exists.
Now let f : C → C. Because one can divide by complex numbers, the expression

(A.1) still makes sense if z, z0 are taken to be complex.

The function f is complex differentiable at z0 if the limit (A.1) exists for z ∈ C.

Let U ⊂ C be an open set.

The function f is holomorphic on U if it is complex differentiable for all z0 ∈ U .

(Often, the domain U is left implicit).
Examples:

• The identity function f(z) = z is obviously holomorphic on U = C.

• The sum, product, and chain rules hold for complex differentiation. In particular,
sums, products, and compositions of holomorphic functions are holomorphic

• Thus polynomials are holomorphic on C.

• Assume that for every z0 ∈ U , there is a power series

∞∑
k=0

ck(z − z0)
k

95
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that converges to f(z) for all z in a vicinity of z0. Explicitly, its complex derivative
can be computed term-by-term

f ′(z) =

∞∑
k=0

ck kz
k−1.

(As we’ll see later, the converse is also true: Every holomorphic function has a
locally convergent Taylor series).

• In particular, the exponential and sine/cosine functions are holomorphic on C.

• If f, g are holomorphic on a set U , and if g has no zeros on U , then f/g is holomor-
phic on U and quotient rule (f/g)′ = (f ′g − fg′)/g2 holds.

Remark on domains. In physics, we’re often cavalier about domains. The statement “1/x is a
function on R” wouldn’t raise eyebrows (even though the function is only defined on R \ {0}).
Often, that sloppiness doesn’t cause serious problems. Not so in function theory! Here, we have
to be precise for reasons that will be obvious soon.

A.1.1 The Cauchy-Riemann equations

A function f : C→ C can equivalently be expressed as a real vector field(
u(x, y)
v(x, y)

)
, z = x+ iy, f = u+ iv. (A.2)

In this picture, holomorphy is characterized by the Cauchy-Riemann equations:

The function f is holomorphic if and only if

∂xu = ∂yv, ∂yu = −∂xv. (A.3)

Interpretation. Let’s think about C as R2 with basis 1, i. Multiplication by a complex num-
ber then becomes a linear map R2 → R

2. Explicitly, multiplication by 1 acts trivially, and
multiplication by i acts on the basis as 1 7→ i and i 7→ −1. Therefore, in matrix notation:

z 7→ (a+ ib) z corresponds to a

(
1 0
0 1

)
+ b

(
0 1
−1 0

)
.

Recall that differentiation can be seen as a method for finding the optimal linear approxima-
tion to a function. In particular, if F : Rn → R

m, then

F (x+ δ) ≃ F (x) + Jδ, where J is the Jacobi matrix with elements Jij = ∂jFi.

The Cauchy-Riemann equations say that the Jacobi matrix of the vector field (A.2) is(
∂xu ∂yu
∂xv ∂yv

)
= (∂xu)

(
1 0
0 1

)
+ (∂yu)

(
0 1
−1 0

)
, (A.4)

i.e. that the two-dimensional real linear map given by the l.h.s. of (A.4) corresponds to a one-
dimensional complex linear map. This should explain the connection to complex differentiation.
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A.2 Complex integration

A.2.1 Cauchy theorem

Vector calculus recap: Line integrals. Let F : Rn → R
n be a vector field.

The line integral along a curve γ : [0, 1]→ R
n is∫

γ

F · dr =

∫ 1

0

γ̇(t) · F (γ(t)) dt.

Let f be a holomorphic function on U ⊂ C, and let γ : [0, 1] → U a curve in U . The
complex line integral is ∫

γ

fdz :=

∫ 1

0

γ̇(t)f(γ(t)) dt.

We can now state the centrally important Cauchy theorem. It assumes that U is connected
and simply connected (i.e. has no holes).

If U is connected and simply connected, γ a closed curve, and f holomorphic, then∮
γ

f dz = 0.

Vector calculus recap: Stoke’s Theorem. The fundamental theorem of calculus links the
values of a function on the boundary of a region to the integral of its derivative over the region.
One of its generalizations to vector fields is Stoke’s Theorem. Here, “region” means “an oriented
surface Σ in R3, described by a field n of normal vectors”, and the right notion of “derivative”
is the curl ∇× F . The boundary of Σ is a curve γ. Then we have∫

Σ

(∇× F ) · n dS =

∫
γ

F · dr.

TBD: Figure.

Proof. Expand the integrand as

γ̇ f = (Re γ̇ + i Im γ̇)(u+ iv) =

(
Re γ̇
Im γ̇

)(
u
−v

)
+ i

(
Re γ̇
Im γ̇

)(
v
u

)
.

Embed R2 into the z = 0 plane of R3. Let Σ be the surface enclosed by γ. Then Stoke’s
Theorem and the Cauchy-Riemann equations give

Re

∮
γ

f dz =

∫
γ

 u
−v
0

 · dr =

∫
Σ

∇×

 u
−v
0

 · ezdr =

∫
Σ

(∂xv + ∂yu)dr = 0,

Im

∮
γ

f dz =

∫
γ

vu
0

 · dr =

∫
Σ

∇×

vu
0

 · ezdr =

∫
Σ

(∂xu− ∂yv)dr = 0.

https://en.wikipedia.org/wiki/Simply_connected_space
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Stokes%27_theorem
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A.2.2 Analyticity

Recap: Radius of convergence of a series. Consider a series

f(z) =

∞∑
k=0

ckz
k, ck ∈ C.

Then there exists a number ρ, the radius of convergence, such that the series converges for all z
with |z| < r and diverges for all z with |z| > r. (No simple statement is possible for |z| = r).

TBD: Figure.

A function f is analytic on an open set U ⊂ C if for every point z0 ∈ U , f can be written
as a Taylor series

f(z) =

∞∑
k=0

cn(z − z0)
n, cn =

1

n!
∂nz f(z0).

with a positive radius of convergence.

Remark. Physicists often assume implicitly that every function can be meaningfully Taylor-
expanded about every point, or at least about every point at which the function is infinitely often
differentiable. (The ansatz made in quantum perturbation theory is a typical example). But that
isn’t actually true! (Read the WP page on bump functions for disturbing counterexamples). Now
we have a name for the class of functions for which this does work: analytic.

Remarkably one can show that:

A function is holomorphic if and only if it is analytic.

• Some authors therefore do not distinguish between holomorphic and analytic.

• The statement is remarkable, because the definition of a holomorphic function only
talked about first-order derivatives. But convergent power series are infinitely often
differentiable. The implication “first order differentiable ⇒ infinitely differentiable”
is a remarkable property of complex differentiation, which, of course, absolutely
does not hold in the real-valued theory.

A.2.3 Singularities and Laurent series

Let f be holomorphic on U . An isolated point z0 in the complement of U is called an
isolated singularity.

There are three types of isolated singularities: TBD. Figure.
...

An isolated singularity at a point z0 is called a pole if there exists an n such that
(z − z0)

nf(z) has a removable singularity at z0.

If no such n exists, the singularity is essential. The order of a pole is the smallest
number n with that property. A pole of order 1 is called simple.

https://en.wikipedia.org/wiki/Bump_function
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If f has a pole of order n at z0, then, removing the singularity of (z − z0)
nf(z) at z0,

we obtain a function that is now holomorphic in a vicinity of z0. By the last section, this
function has a convergent Taylor series

(z − z0)
nf(z) =

∞∑
k=0

ck(z − z0)
k so that f(z) =

∞∑
k=−n

ck+n(z − z0)
k.

Such a series that includes negative-power terms is called a Laurent series.

If f has a pole of order n at z0, it has a Laurent series in a vicinity of z0:

f(z) =

∞∑
k=−n

ak(z − z0)
k, z ̸= 0.

A function that is holomorphic except for finitely many poles is meromorphic.

A.2.4 Residues

Let γ(t) = rei2πt be a positively oriented circular closed curve. Compute the line integral∫
γ

zk dz =

∫ 1

0

rke2πikt︸ ︷︷ ︸
zk at z=γ(t)

2πire2πit︸ ︷︷ ︸
γ̇(t)

dt = 2πirk+1

∫ 1

0

ei2π(k+1)t dt = 2πiδk,−1.

Assume f has a pole at z0. Let r be sufficiently small that the Laurent series around z0
converges. Let γ(t) = rei2πt + z0. Exchanging the order of summation and integration,

1

2πi

∫
γ

f(z) dz = a−1,

i.e. the integral around the singularity gives the −1st term of the Laurent series.

If f is meromorphic on U , the residue at a point zk ∈ U is

Res(f, zk) :=
1

2πi

∫
γ

f(z) dz,

where γ is any positively oriented loop that encloses zk, but no other singularity.

For physics, the most relevant result in complex analysis is the residue theorem:

If f is meromorphic and γ a positively oriented loop, then∮
γ

f dz = 2πi
∑
k

Res(f, zk),

where the sum is over all poles enclosed by γ.

The proof is essentially graphical: TBD.
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A.3 Applications of the residue theorem

A.3.1 Lorentz distribution

Consider the real integral∫ ∞

−∞

1

x2 + a2
dx = lim

R→∞

∫ R

−R

1

x2 + a2
dx.

Backstory. Bored? Here’s the backstory. (Which we just mention, but won’t explain. Sorry).
Assume an atom decays from an excited state to its ground state, emitting a photon. You might
expect the energy of the photon to equal the difference of the atomic energies. But that isn’t
exactly true! The reason is that “atom in an excited state, no photons present” isn’t an eigenstate
of the joint atom–field system, and therefore does not have a definite energy. Instead, it turns out
that the distribution of energies is well-approximated by a Lorentz (or Cauchy) distribution

p(E) = N
1

(E − E0)2 + (ℏΓ/2)2
.

Here, E0 is the location of the distribution (close, but not equal to the difference of the atomic
energies), ℏΓ/2 controls the width of the distribution, related to the lifetime τ = 1/Γ of the
excited state, and N is a normalization constant.

We’ll compute the normalization constant. You expected more? Sorry. But the mundane
stuff also has to be done. It is the reciprocal of the above integral for a = ℏΓ/2.

Nothing prevents us from re-interpreting the integrand as a function onC. It factors as

f(z) =
1

z2 + a2
=

1

(z + ia)(z − ia)
,

thus it has two first-order poles, at z = ±ia. Now consider the arc γ(R)
2 (t) = Reiπt. Its

length is πR. The absolute value of the integrand on the arc is∣∣∣∣ 1

Reiπt + ia

∣∣∣∣ ∣∣∣∣ 1

Reiπt − ia

∣∣∣∣ ≤ ( 1

R− |a|

)2

. (A.5)

It follows that the contribution of the integral over the arc vanishes as R→ ∞:

lim
R→∞

∣∣∣∣∣
∫
γ
(R)
2

1

z2 + a2
dz

∣∣∣∣∣ ≤ lim
R→∞

πR

(
1

R− |a|

)2

= 0.

Thus, we can complete the contour by adding the γ2 integral. The contour will then enclose
the simple pole at z0 = ia. The −1st coefficient of the Laurent series about z0 is just the
0th term of the Taylor series of

(z − ia)f(z) =
1

z + ia

which in turn is just the value, 1/(2ia), of that function at z0 (after having removed the
singularity). Therefore:∫ ∞

−∞

1

x2 + a2
dx = lim

R→∞

(∫ R

−R

1

z2 + a2
dz +

∫
γ
(R)
2

1

z2 + a2
dz

)

= 2πiRes(f, ia) =
2πi

2ia
=
π

a
.

The cool aspect of the calculation is that in the residue picture, the only non-zero
contribution to the real integral came from a complex singularity. Magical, no?

https://en.wikipedia.org/wiki/Cauchy_distribution
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A.3.2 Green’s functions

Consider the integral

G(t) = − 1

2π

∫ ∞

−∞

e−iωt

−ω2 − 2iγω + ω2
0

dω, γ, ω0 > 0.

Backstory. Newton’s equation for the position u(t) of a particle subject to a driving force
mf(t), viscous damping coefficient (mγ)/2, and undamped eigenfrequency ω0 is(

∂2
t + 2γ∂t + ω2

0

)
u(t) = f(t)

The problem is to find u(t) given f(t) and the boundary condition u(−∞) = 0.
It follows from the theory of Green’s functions that the solution is given by the convolution

u(t) =

∫
G(t− t′)f(t′) dt.

In this sense, G(t− t′) describes the influence at time t of an external impulse at time t′.

The polynomial in the denominator factorizes as

−(ω − ω+)(ω − ω−), ω± = iγ ±
√
ω2
0 − γ2.

The integrand has first-order poles in the positive half-plane. [TBD: Figure.] The strategy
is again to close the contour by a half-circle with radius R through the complex numbers,
in such a way that the integral over the arc vanishes as R → ∞. The denominator is
quadratic in ω and thus goes to 0 fast enough to not cause trouble – compare section above.
The enumerator is more tricky: The exponential goes to 0 or to ∞ away from the real axis.
To analyze the behavior, we have to treat the cases of positive / negative t separately.

For t < 0, the exponential is bounded in the lower half-plane. Closing the integration
there leaves the poles outside the contour and thus gives 0.

For t > 0, the contour must be closed in the upper half-plane, thus enclosing both
poles. The residue theorem then gives

G(t) = ie−γt
(
− 1

ω+ − ω−
ei
√
ω2

0−γ2t +
1

ω+ − ω−
e−i

√
ω2

0−γ2t

)
.

Since we’re done integrating in Fourier space, we can re-use the letter ω, defining it to be√
|ω2

0 − γ2|. Then the above may be simplified (using l’Hôpital for the equality case) to

G(t) = θ(t)
e−γt

ω

 sin(ωt) ω0 > γ
e−γtt ω0 = γ
sinh(ωt) ω0 < γ

, (A.6)

where θ is the Heaviside step function.
Discussion:

• The Heaviside function θ assures that the physical system behaves causally, in the
sense that a past impulse will only affect future behavior. Mathematically, it ap-
peared because the sign of t determined whether the contour would enclose singu-
larities or not.

• You may recognize the functional form ofG(t) from classical mechanics. The cases
correspond to an underdamped / critical / overdamped oscillator respectively.

https://www.thp.uni-koeln.de/gross/files/aqm.pdf
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Damping
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A.3.3 Resolvents

Given a linear operator L on a Hilbert space H, the function that maps complex numbers
z to the operator

R(z;L) := (z1− L)−1,

is called the resolvent of L. (Warning: Some authors use the sign convention (L−z1)−1!).
Assume for simplicity that L = L† is a Hermitian matrix with eigenvalues λ ∈ D and

eigenvectors |ψλ⟩. Then

(z − L)−1 =
∑
λ∈D

1

z − λ
|ψλ⟩⟨ψλ|.

Let γ be a positively oriented closed curve in C. The matrix-valued integral∮
γ

(z − L)−1 dz (A.7)

has matrix elements

⟨i|
∮
γ

(z − L)−1 dz|j⟩ =
∑
λ∈D

∮
γ

1

z − λ
dz ⟨i|ψλ⟩⟨ψλ|j⟩ = 2πi

∑
λ∈Σ∩D

⟨i|ψλ⟩⟨ψλ|j⟩,

where Σ is the region enclosed by the contour. In other words, (A.7) is 2πi times the
projection onto the eigenspaces whose eigenvalues are enclosed by the contour.

Such operator-valued complex integrals are used e.g. in quantum scattering theory.

A.4 Analytic continuations

TBD.



Appendix B

Technical details

B.1 More on delta distributions

B.1.1 How to think about distributions

Our account of general eigendecompositions and distributions is not mathematically rig-
orous. It can be made precise, but doing so takes a lecture in functional analysis (c.f. the
spectral theorem and the theory of distributions). Given that we won’t take the time here
to go into more details, how should one deal with distributions that pop up in equations?
Some strategies:

1. Integrate against smooth functions that quickly vanish at infinity. As in (2.15), even
if the intermediate mathematical expression contains δ’s, they should have all van-
ished after one has integrated the expression over smooth functions in order to ex-
tract physical quantities. The mathematically rigorous approach is based on this
strategy, and it is the one we will have at the back of our heads in this document.

2. Think of δ is an idealization of “highly concentrated”. One can in principle replace
δx by functions δ(ϵ)x that are supported on an ϵ-ball around x, where ϵ is much
smaller than any relevant length scale. The final physical results should then only
weakly depend on the actual choice of ϵ, and one should, in fact, be able to take a
limit ϵ → 0. In this sense, the actual distribution is an idealization that allows one
to directly obtain the limit, without first introducing an ϵ and eliminating it again in
the end.

3. Shut-up-and-calculate. The reason δ’s are so ubiquitous is that they work well as a
computational tool. So in reality, people just use them whenever they would have
used a Kronecker delta in a discrete analogue, and pretend that all algebraic manip-
ulations that are valid for Kronecker deltas also extend to distributions. This mostly
works.

B.1.2 Derivatives of delta functions

While the mathematicians look the other way, let’s get adventurous and represent the mo-
mentum operator in position basis.

The derivative of the delta function δ′y(x) is a formal object whose inner product with
smooth functions vanishing at infinity is defined so that formally the rule of integration by

103
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parts holds:

⟨δ′y|ψ⟩ =
∫
δ′x(x)ψ(x) dx := −

∫
δx(x)ψ

′(x) dx = −ϕ′(y)

and therefore

P = iℏ
∫

|δx⟩⟨δ′x|dx

is valid in the sense that for all smooth ψ, ϕ vanishing at infinity,

iℏ
∫
⟨ψ|δx⟩⟨δ′x|ϕ⟩dx = −iℏ

∫
ψ̄(x)ϕ(x′) dx = ⟨ψ|P |ϕ⟩. (B.1)

Other expressions are

P = −iℏ
∫

|δ′x⟩⟨δx|dx = −iℏ
∫

|δx⟩∂x⟨δx|dx = iℏ
∫ ∫

|δy⟩ δ′y(z) ⟨δz|dy dz.

The first holds because shifting the derivative to the bra means that in (B.1), ψ instead of
ϕ gets differentiated, and to remedy that, we need to use integration by parts once more,
which causes the change in sign. The second one holds because ∂xδx(y) = ∂xδ(y − x) =
−δ′x(y), so differentiating the index rather than the argument of the delta function also
incurs a sign change. A similar argument verifies the third expression. This last one is
interesting, because it is a formal generalization of (2.13) to continuous bases. It expresses
P in terms of its “matrix elements”

⟨δy|P |δz⟩ = −iℏ
∫
δy(x)δ

′
z(x) dx = iℏ

∫
δ′y(x)δz(x) dx = iℏδ′y(z).

Using these formulas, the kinetic energy operator reads

P 2

2m
= − ℏ2

2m

∫
|δx⟩∂2x⟨δx|dx =

ℏ2

2m

∫
|δ′x⟩⟨δ′x|dx.

B.2 More on Fourier transforms

Let’s have a closer look at the n-dimensional Fourier basis ϕk(x) = (2π)−n/2eikx, for
k ∈ Rn, and the associated transforms

ψ̃(k) := ⟨k|ψ⟩ = (2π)−n/2
∫
e−ikxψ(x) dnx,

ψ(x) := ⟨x|ψ⟩ = (2π)−n/2
∫
eikxψ̃(k) dnk.

(B.2)

B.2.1 Fourier transforms in finite regions

The Fourier basis for functions on Rn is continuous, which, as discussed above, comes
with technical difficulties. Things are much easier for spaces of functions in finite regions.

Concretely, choose some length L and consider the box B = [−L/2, L/2]n with side
length L centered at the origin. Let L2(B) be the space of functions defined on the region



APPENDIX B. TECHNICAL DETAILS 105

B with cyclic boundary conditions (i.e. functions take the same values on opposite faces
of the box) and with inner products given by integrals over B only:

⟨ϕ|ψ⟩ =
∫
B

ϕ̄(x)ψ(x) dnx.

A plane wave eikx complies with the boundary conditions if and only if every component
ki of the wave vector is an integer multiple of 2π

L . Indeed, the discrete set of functions

ϕk(x) :=
1

Ln/2
eikx, k ∈ 2π

L
Zn,

forms an ONB for L2(B) and the formulas for the Fourier transform become

ψ̃(k) =
1

Ln/2

∫
B

e−ikxψ(x) dnx,

ψ(x) =
1

Ln/2

∑
k∈ 2π

L Z
n

ψ̃(k)eikx.
(B.3)

Comparison with (B.2) shows that, formally, the transition between a finite and an un-
bounded volume Fourier transform is facilitated by the substitution

1

πn/2

∫
Rn

dnk ↔ 1

Ln/2

∑
k∈ 2π

L Z
n

(B.4)

Note the asymmetry in (B.3): Fourier transformation takes the compact domain B to
the discrete domain 2π

L Z
n. We can of course reverse the interpretation of the two functions

in (B.3). The formula then says that functions ψ(x) defined on a lattice Zn 2π
L can be

expanded in terms of plane waves ϕk(x) = 1
Ln/2 e

−ikx with wave vectors k ∈ B. In
this context, B is sometimes called the Brillouin zone and k the crystal momentum or
quasi-momentum.

Of course, the universe isn’t actually a finite box with cyclic boundary conditions...
...but we may as well pretend it were! Physics is local, so we can assume that all phenom-
ena we are interested in take place in some box that is sufficiently large that the boundary
does not affect the predictions we extract from the theory.

B.2.2 Translation symmetry

Fourier transforms are intimately connected to translation symmetry. Let Ta be the trans-
lation operator that shifts functions along the vector a

(Taψ)(x) = ψ(x− a).

The Fourier basis diagonalizes translations:

⟨x|Ta|ϕk⟩ = eik(x−a) = e−ika⟨x|ϕk⟩ ⇒ Ta =

∫
e−ika|ϕk⟩⟨ϕk|dnk.

It is the unique common eigenbasis of all Ta (why?). Therefore, if A is any operator that
commutes with translations

[Ta, A] = 0 ∀a, (B.5)
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then T must be diagonal in the Fourier basis, too. Explicitly, (B.5) implies that A is fully
specified by its “first column”

f(z) := ⟨δz|A|δ0⟩

in the sense that

⟨δx|A|δy⟩ = ⟨δx|ATyT−y|δy⟩ = ⟨δx|TyA|δ0⟩ = ⟨δx−y|A|δ0⟩ = f(x− y).

It then follows that the eigenvalues of A are proportional to the Fourier transform of f :

⟨δx|A|ϕk⟩ = (2π)−n/2
∫
⟨δx|A|δy⟩eiky dny

= eikx(2π)−n/2
∫
f(x− y)e−ik(x−y) dny = (2π)n/2f̃(k) ⟨δx|ϕk⟩

so that, summarizing,

A = (2π)n/2
∫
f̃(k) |ϕk⟩⟨ϕk|dnk. (B.6)

B.2.3 Fourier transform for functions depending on space and time

Common notation and sign conventions slightly differ when one coordinate has the in-
terpretation of a time. Write x = (t,x) ∈ Rn, with t the “temporal” coordinate and
x ∈ Rn−1 the “spatial” ones. Wave vectors are denoted by k = (ω,k). To compute inner
products, we use the Minkowski form

⟨p, x⟩ = ωt− kx,

which (at least in the case of n = 4) determines the space-time metric in relativity. The
commonly used basis of plane waves is

ϕk(x) = (2π)−n/2e−i⟨p,x⟩ = (2π)−n/2e−iωt+kx

so that the forward and inverse Fourier transform are, respectively,

ψ̃(ω,k) = (2π)−n/2
∫
eiωt−ikxψ(t,x) dtdnx,

ψ(t,x) = (2π)−n/2
∫
e−iωt+ikxψ̃(ω,k) dω dnk.

(B.7)

This convention extends to the case n = 1. That is, if a function ψ depends only on
time, then its FT is taken to be ψ̃(ω) = 1

2π

∫
eiωtψ(t)dt, whereas if the single parameter is

interpreted as a spatial coordinate or a generic parameter, then ψ̃(k) = 1
2π

∫
e−ikxψ(x)dx.

B.2.4 Finite Fourier transform

Occasionally, we’ll come across the finite Fourier transform. It is defined for functions
ψ : ZN → C, where ZN = {0, . . . , N − 1} with arithmetic done modulo N . The
standard basis on this space is given by delta functions δx(y) = δxy so that

|ψ⟩ =
∑
x∈ZN

ψ(x)|δx⟩.
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The Fourier basis is

|ϕk⟩ =
1√
N

∑
x∈ZN

eikx|δx⟩, k ∈ 2π

N
ZN .

The Fourier transform and its inverse thus take the form

ψ̃(k) = ⟨ϕk|ψ⟩ =
1√
N

∑
x∈ZN

e−ikxψ(x), ψ(x) = ⟨δx|ψ⟩ =
1√
N

∑
k∈ 2π

N ZN

eikxψ̃(k).

The theory developed above can be easily translated to the finite case.
This appendix is taken from lectures notes on Advanced Quantum Mechanics.

Much of the material here, will migrate into the main body of the notes, as the course
goes on.

B.3 Complex coordinates for classical harmonic oscillator

Let’s retrace the solution of a harmonic oscillator

H =
P 2

2m
+

1

2
mω2X2.

in classical mechanics. Choose problem-adapted units for length and momentum:

X̃ =

√
mω

ℏ
X, P̃ =

√
1

mℏω
P ⇒ H =

1

2
ℏω(P̃ 2 + X̃2).

Wait, what’s ℏ doing in a classical calculation? Well, it’s convenient to work with dimen-
sionless quantities X̃, P̃ . But then XP/(X̃P̃ ) is a constant having the dimension of an
action. There’s no preferred scale of action in classical mechanics – but ℏ does the job and
facilitates the later transition to QM.

Next, introduce complex coordinates

a :=
1√
2
(X̃ + iP̃ ) ⇒ a† =

1√
2
(X̃ − iP̃ ),

where we use the “dagger” superscript to denote complex conjugation. These complex
coordinates may not have a direct physical interpretation, but they are easy to work with
and we can recover the original position and momentum coordinates as

X =

√
ℏ

2mω
(a+ a†) =

√
2ℏ
mω

Re(a), P = −i
√
mℏω
2

(a− a†) =
√
2mℏω Im(a).

The Poisson bracket {X,P} = 1 implies

{a, a†} =
1

2

(
− i{X̃, P̃}+ i{P̃ , X̃}

)
=

1

iℏ
,

so the coordinate change (X,P ) → (a, a†) is canonical up to the factor 1/(iℏ). The
Hamilton function reads in complex coordinates

H =
1

2
ℏω(aa† + a†a) = ℏω|a|2. (B.8)

and the equations of motion are (using standard properties of Poisson brackets)

∂ta = {a,H} = ℏω{a, a†a} = ℏω(a†{a, a}+ {a, a†}a) = −iωa,

solved by a(t) = a(0)e−iωt.
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Miscellaneous Integrals

C.1 Gaussian and Fresnel integrals

Starting point is the famous formula due to Gauss∫ ∞

−∞
e−x

2

dx =
√
π,

which can be obtained by evaluating its square in polar coordinates.
From there, we one finds the general form∫ ∞

−∞
e−αx

2+βx+γ dx =

√
π

α
e

β2

4α+γ (C.1)

which holds for all complex α, β, γ such that the integral converges: either Re[α] > 0;
or Re[α] = 0 and Re[β] = 0 (though in the latter case, the integral is not absolutely
convergent, so it should be handled with care). In the formula,

√
π/α is the principal

square root, defined to be the unique root with argument in (−π, π]. For real α, β, γ’s, the
above can be proven by completing the square and using the substitution rule. For complex
coefficients, one has to use a suitable contour integration. The special case α = ∓i and
β = γ = 0 is the complex asymptotic Fresnel integral∫ ∞

−∞
e±ix

2

dx =
√
πe±iπ/4. (C.2)

The Gaussian integral (C.1) is taken over the entire real real line x → ±∞, but in
fact, is already close to its asymptotic value if the limits of the integral are large compared
to
√
|α|. This is obvious if α has a large real part (because the absolute value of the

integrand is decaying with e−Reαx2

). Imaginary parts of α also aid convergence, but for
a more subtle reason: They cause the integrand to oscillate rapidly for large arguments, so
that its contributions to the integral tend to cancel.

To visualize this effect, consider the non-asymptotic real Fresnel integrals

C(x) :=

∫ x

0

cos(t2) dt, S(x) :=

∫ x

0

sin(t2) dt.

Separating real and imaginary parts in (C.2) gives

lim
x→∞

C(x) = lim
x→∞

S(x) =

√
π

8
. (C.3)

Their convergence is shown in (Fig. C.1).
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https://en.wikipedia.org/wiki/Absolute_convergence#Absolute_convergence_of_integrals
https://en.wikipedia.org/wiki/Absolute_convergence#Absolute_convergence_of_integrals
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Figure C.1: The Fresnel integrals C(x) (orange) and S(s) (blue). The integral quickly
converges towards its asymptotic value

√
π/8 (black line), with contributions of larger

arguments canceling to the oscillating behavior of the integrand.

C.2 Some Fourier transforms

Rotationally invariant functions

Let V (x) = V (∥x∥) be a rotationally-invariant function in R3. Its Fourier transform
Ṽ (k) is computed most easily in the coordinate system (r, µ = cos θ, ϕ) where (r, θ, ϕ)
are spherical coordinates with polar vector parallel to k. The volume element is

r2 sin θ dr dθ dϕ = r2 dr dµdϕ (C.4)

so that the Fourier transform

Ṽ (k) = (2π)−3/2

∫
e−ikxV (r) d3x

= (2π)−1/2

∫ ∞

0

dr r2 V (r)

∫ 1

−1

dµ e−ikrµ

= (2π)−1/2

∫ ∞

0

dr r2V (r)

[
e−ikrµ

−ikr

]1
µ=−1

=
i

(2π)1/2k

∫ ∞

0

dr rV (r)
(
e−ikr − eikr

)
(C.5)

=

√
2

π

1

k

∫ ∞

0

rV (r) sin(kr) dr (C.6)

reduces to a one-dimensional integral.



Appendix D

Function spaces and distributions

In this chapter, we take a more pedantic look at the function spaces that occur in QM. For
simplicity of presentation, we’ll mainly restrict attention to the one-dimensional case.

D.1 Square-integrable functions

What mathematical properties should a “wave function” ψ : R → C for a particle in one
dimension have?

First, according to the Born interpretation, p(x) := |ψ(x)|2 is the probability density
describing the distribution of position measurement outcomes. For this interpretation to
make sense,

∫
|ψ(x)|2 dx must equal 1.

Next, physical predictions depend on ψ only through integrals. Integrals stay the same
if the value of the integrand is changed on a set of measure zero. Therefore, two functions
that agree almost everywhere (i.e. everywhere except on a set of measure zero) define the
same physical state and should therefore be identified. For any function ψ : R→ C, write
[ψ] for the set of functions that agree with ψ almost everywhere.

These two conditions suggest that wave functions should belong to the space

L2(R) =

{
[ψ]
∣∣∣ψ : R→ C,

∫
|ψ(x)|2 dx <∞

}
of equivalence classes of square-integrable functions.1 This is indeed the standard choice.

In practice, the identification of functions agreeing almost everywhere is usually left
implicit. That is, L2(R) is called “the space of square-integrable functions” instead of the
more precise “space of equivalence classes of square-integrable functions”, and one writes
ψ ∈ L2(R) as a short-hand for [ψ] ∈ L2(R). We will also follow this convention.

The Cauchy-Schwarz inequality says that∣∣∣∣∫ ψ(x)∗ϕ(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ ψ(x)∗ψ(x) dx

∣∣∣∣1/2 ∣∣∣∣∫ ϕ(x)∗ϕ(x) dx

∣∣∣∣1/2 , (D.1)

so that

⟨ψ|ϕ⟩ :=
∫
ψ(x)∗ϕ(x) dx

1See any textbook on analysis, e.g. Folland’s Modern analysis, Chapter 2 for more details on integration
theory. Just two comments on terminology: (1) All integrals in the theory of function spaces are to be understood
in the sense of Lebesgue. (2) A function f is integrable if the integral

∫
f exists and is finite. (So, counter-

intuitively, “f is integrable” and “the integral of f exists” are different statements!)
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is well-defined as a sesquilinear form L2(R) → C.

Remarks on the use of equivalence classes

Identifying functions that lead to the same physical predictions makes sense. Let’s re-
iterate, though, that consequently elements of L2(R) aren’t strictly speaking functions,
but rather equivalence classes of functions. In particular, “the value ψ(x)” of an element
[ψ] ∈ L2(R) at a point x is not a well-defined concept! This might be surprising, be-
cause in practice, we work with point-wise values ψ(x) all the time. We get away with
this because either: (1) We use ψ(x) in a context (e.g. under an integral) where it does not
matter which representative of the equivalence class has been chosen. Or, (2), there is an
(implicit) convention that fixes a representative. For example, it is easy to see that every
equivalence class contains at most one continuous function (Fig. ??). Thus, if we agree to
use continuous representatives whenever possible, there is no ambiguity for such classes.

The identification also makes the mathematical theory cleaner. For example, for a
function ψ : R → C, the integral ∥[ψ]∥2 :=

∫
|ψ(x)|2 dx vanishes if and only if ψ is

supported on a set of measure zero, i.e. iff [ψ] = [0]. The implication ∥[ψ]∥ = 0 ⇒
[ψ] = 0 is part of the mathematical definition of a norm. It is frequently invoked in
physics arguments: For example, in the algebraic treatment of the harmonic oscillator,
one typically shows that ∥a|0⟩∥ = 0 and concludes that a|0⟩ = 0, i.e. that the attempt to
construct a negative-energy eigenstate by laddering leads to the 0 function.

D.1.1 Why go beyond L2?

The choice of L2(Rn) as the space of wave functions was physically well-motivated. But
it turns out that for the purpose of doing some calculations, it is “too small”, while for
others, “too large”.

Too small: L2(R) does not contain the eigenfunctions of some important operators.
The eigenfunctions of the momentum operator are plane waves, which have norm ∞, and
therefore do not belong to L2. The eigenfunctions of the position operator are supported
only on one single point. As elements of L2, they are therefore equivalent to the function
that is identically 0.

Too large: L2(R) contains elements for which important operators are undefined. For
example, there are classes [ψ] ∈ L2(R) that do not contain any continuous representative,
in which case the action of the momentum operator is not well-defined. For an example
involving the position operator, take the function

ψ(x) =
1√

π(x+ i)
. (D.2)

Then ∫
|ψ(x)|2 dx =

1

π

∫
1

x2 + 1
dx =

1

π
[arctan(x)]

∞
−∞ = 1,

so ψ ∈ L2(R). But (by comparison with
∫∞
a

1/xdx = ∞), one can easily see that the
integral ⟨ψ|Xk|ψ⟩ =

∫
xk

x2+1 dx is infinite for even k ∈ N and undefined for odd k ∈ N.
In particular, ∥Xψ∥2 = ⟨ψ|X2|ψ⟩ = ∞, implying that Xψ ̸∈ L2(R).

https://en.wikipedia.org/wiki/Norm_(mathematics)
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Figure D.1: Rigged Hilbert spaces are “rigged” in the sense of “fully equipped” (like
Imperator Furiosa’s War Rig, pictured above), not in the sense of “manipulated with the
goal to deceive”, like a loaded die. (OK, maayybe I was just looking for an excuse to
include that picture in my lecture notes).

Discussion

Do these issues mean that L2(R) is not an appropriate mathematical model for the space
of wave functions? Arguably not!

For the eigenfunction examples, note that infinitely extended or infinitely concentrated
states are unphysical, so we cannot complain that the space L2(R), designed to model
physical wave functions, does not contain them.

Now let’s look at the function ψ defined in (D.2). The fact that Xψ ̸∈ L2(R) does not
mean that position measurements aren’t well-defined. To the contrary, p(x) = |ψ(x)|2 =

1
π(x2+1) is a perfectly good probability density describing position measurement outcomes.
It’s just that none of the moments ⟨Xk⟩ (including the expectation value, k = 1) exist and
are finite. But nobody ever promised us that all probability distributions can be character-
ized via moments, so there is no fundamental issue with this. Likewise, any ψ ∈ L2(R),
even if it exhibits discontinuities, has a Fourier transform ψ̃, and thus a probability density
p(ℏk) = |ψ̃(k)|2 over momentum measurement outcomes.

However, the discussion does suggest that for the purpose of doing calculations, it
would be good to identify a “sandwich of spaces”

Φ ⊂ L2(R) ⊂ Φ′, (D.3)

where Φ is “sufficiently small” that all relevant operators are well-defined on it, and Φ′ is
“large enough” that it contains a complete set of eigenvectors for all relevant operators.

As we’ll see, the spaces Φ and Φ′ are usually constructed together. Elements of Φ are
called test functions and those of Φ′ distributions. Constellations as in (D.3) are studied as
Gelfand triples or rigged Hilbert spaces (Fig. D.1)).

Which spaces of functions are the best choice for Φ,Φ′ depends on the problem one
wants to solve. An important set for quantum mechanics is Schwartz space (after Laurent
Schwartz, not to be confused with Hermann Schwarz of Cauchy-Schwarz-inequality fame)
for Φ and the associated space of tempered distributions for Φ′. We’ll look at this case next,
and briefly sketch the general theory in Sec. D.3.

Remark. The domainD of a function f is the set of mathematical objects on which f is defined.
One equivalently says that “f is a function on D”... ...except in the theory of Hilbert spaces. We
have seen above that P and X are not defined on certain elements of the Hilbert space L2(R)
– their domains D(P ), D(X) are strictly smaller. But one still says that “X is the position
operator on L2(R)”. In general, if T is any linear operator whose domain D(T ) is dense in a

https://en.wikipedia.org/wiki/Imperator_Furiosa
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Hilbert space H, it is customary in functional analysis to call T a linear operator on H. (Of
course, physicists don’t worry about such details at all).

D.2 Distributions

D.2.1 Schwartz space

The most important set of test functions Φ in QM is Schwartz space S, the “smooth func-
tions whose derivatives vanish rapidly”:

S =
{
ϕ ∈ C∞(R)

∣∣∣∀α, β ∈ N0 : sup
x

|xα∂βxϕ(x)| <∞
}
. (D.4)

The condition ϕ ∈ C∞(R) means that elements of Schwartz space are infinitely diff-
entiable; while the second condition says that ϕ and its derivatives vanish faster than any
polynomial function as |x| → ∞. It follows that S is invariant under P and X . It is also
easy to see that any square-integrable function can be arbitrarily-well approximated by
Schwartz-class functions, i.e. for every ψ ∈ L2(R) and every ϵ > 0, there exists a ϕ ∈ S
such that ∥ψ − ϕ∥ ≤ ϵ. (Technically: S is dense in L2(R) w.r.t. norm topology).

This already solves half of our problems: Because well-behaved functions are dense,
there is little loss of generality in assuming that any wave function of physical interest lies
in S. One can then apply X and P without any issue.

D.2.2 Tempered distributions

Constructing the space that contains the generalized eigenvectors requires us to to take a
little detour: We will first have to study linear functionals S → C.

A function u : R→ C is locally integrable if for any compact set K ⊂ R,∫
K

|u(x)|dx <∞.

For example, continuous functions are locally integrable, whereas 1/x isn’t (e.g.
∫ 1

0
| 1x |dx =

∞). Now, for any locally integrable function u that grows at most polynomially as |x| →
∞, and for any l ∈ N0, define a functional TDlu : S → C by

TDlu(ϕ) :=

∫
u(x)(−∂x)lϕ(x) dx. (D.5)

(The notation Dlu will be explained below). Then TDlu is well-defined as a linear func-
tional S → C. That’s because ϕ ∈ S implies that ∂lxϕ ∈ S as well; local integrability of u
and continuity of ∂lxϕ implies that the integrand is locally integrable; and finally fact that
∂lxϕ vanishes faster than any polynomial, together with the matching growth restriction on
u, means that the integral remains finite as |x| → ∞. A functional of this form is called a
tempered distribution, and the space of all tempered distributions is denoted by S ′.

In contrast, note that TDlu is rarely well-defined as a functional on L2(R). For one,
elements ψ ∈ L2(R) aren’t in general differentiable, and even if they are, they generally
vanish too slowly for the integral to converge. So we see that S, on account of being
smaller than L2(R), allows for a larger set of linear functionals! Recall that we’re out to
find a set larger than L2(R), so this seems like a promising direction to explore. Let’s look
at some examples.

https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness
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Plane waves: Teikx defines a linear functional on Schwartz space, but, because eikx is
not normalizable, not on L2(R).

Delta functional: Let θ(x) be the step function that is 0 for x < 0 and 1 for x ≥ 0.
Then, using integration by parts,

TDθ(x)(ϕ) = −
∫
θ(x)∂xϕ(x) dx = −

∫ ∞

0

∂xϕ(x) dx = ϕ(0). (D.6)

The operation only makes sense for functions ϕ that are differentiable at 0 – so certainly
for elements of S, but not necessarily elements of L2(R).

“Bra vectors”: For every ψ ∈ L2(R), the “bra” ϕ 7→ ⟨ψ|ϕ⟩ = Tψ∗ defines a tempered
distribution. (Indeed, every square-integrable function is also locally integrable. That’s an
easy consequence of the Cauchy-Schwarz inequality).

The principal value is important in the theory of partial differential equations, where
one often wants to associate a distribution with the function u(x) = 1

x in some way.
Unfortunately, 1

x is not locally integrable, and indeed,
∫ ϕ(x)

x dx does not in general exist.
But as we’ll see, the principal value

pv

(
1

x

)
(ϕ) := lim

ϵ→0+

∫
R\(−ϵ,ϵ)

ϕ(x)

x
dx (D.7)

is finite for all ϕ ∈ S and, what is more, is given by the tempered distribution TD log |x|(ϕ).
To see that this makes sense, we first need to convince ourselves that log |x|, even though
it diverges as x → 0, is locally integrable. This follows from the fact that the anti-
derivative of log |x| is F (x) = x log |x| − x + C, which remains finite at the singularity:
limx→0 F (x) = C. Therefore, TD log |x| is indeed a tempered distribution. It remains to
be shown that it evaluates to the principal value:

TD log |x|(ϕ) =−
∫

log |x|ϕ′(x) dx

= lim
ϵ→0+

(
−
∫ −ϵ

−∞
log(−x)ϕ′(x) dx−

∫ ∞

ϵ

log xϕ′(x) dx

)
= lim
ϵ→0+

(∫ −ϵ

−∞

ϕ(x)

x
dx− ϕ(−ϵ) log ϵ+

∫ ∞

ϵ

ϕ(x)

x
dx+ ϕ(ϵ) log ϵ

)
=pv

(
1

x

)
(ϕ) + lim

ϵ→0+
log(ϵ)(ϕ(ϵ)− ϕ(−ϵ))

=pv

(
1

x

)
(ϕ) + 2ϕ′(0) lim

ϵ→0+
ϵ log(ϵ)︸ ︷︷ ︸
=0

= pv

(
1

x

)
(ϕ).

Powers of 1/r in higher dimensions: In contrast to the previous example, u(x) =
∥x∥−k is locally integrable as a function on Rn, as long as n > k. This can be seen by
switching to n-dimensional spherical coordinates, where the volume element is propor-
tional to rn−1, which lifts the singularity at 0. The definition (D.5) is easily adapted to
higher dimensions, and integrating against such a u thus defines a tempered distribution.
Unsurprisingly, the case k = 1, n = 3 is important due to its relation to the Coulomb and
the gravitational potential.

Regular distributions

Distributions of the form Tu (i.e. those that can be expressed without differentiating the
argument before integrating) are called regular. For regular distributions, it is common

https://en.wikipedia.org/wiki/N-sphere#Spherical_volume_and_area_elements
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to use the same symbol for both the distribution S → C and for the function R → C

defining it:

T (ϕ) =

∫
T (x)ϕ(x) dx. (D.8)

You might complain that such an overloading of notation is not a nice thing to do. And
you’d be right. But things are about to get worse. Such a convention is even used for
non-regular distributions!

Consider e.g. the delta distribution δ(ϕ) = ϕ(0) discussed above. It is not regular.
(Because a hypothetical function giving rise to it would have to be zero everywhere except
at x = 0 – but an integral over a function supported on only one point is zero). But, in
analogy to (D.8), one still writes

δ(ϕ) =

∫
δ(x)ϕ(x) dx.

The r.h.s. is not an integral and δ(x) not a function – the entire r.h.s. is to be read as an
elaborate notation for δ(ϕ). Whether this convention is genius (because it allows practi-
tioners to work with distributions without having to learn the abstract theory) or horrific
(because the one job of mathematics is to be rigorous and not to pretend that objects exist
when in fact they don’t) is a question that may be controversially debated.

D.2.3 Operations on distributions

Our goal is still to find generalized eigenvectors for X and P . These will turn out to be
distributions. For that to even make sense, we have to define what it means for an operator
to act on distributions.

Let A be any operator that maps S to S. There is a unique operator At, the transpose
of A, such that, for ϕ, ψ ∈ S,∫

(Aψ)(x)ϕ(x) dx =

∫
ψ(x)(Atϕ)(x) dx.

(This is the bilinear analogue of the definition of the adjoint for sesquilinear inner prod-
ucts). It directly follows that for regular distributions with u ∈ S , TAu(ϕ) = Tu(A

tϕ).
Using the notation in (D.8), this means

(AT )(ϕ) = T (Atϕ). (D.9)

We take Eq. (D.9) as the general definition for the action of an operator on distributions.
In words: Operations on distributions are defined by shifting them onto the argument.

Derivatives of distributions

The most important application is the differentiation operator (Dϕ)(x) = ∂xϕ(x). By
partial integration, Dt = −D from which we get

(DTu)(ϕ) =

∫
u(x)(−∂lx)ϕ(x) dx = TDu(ϕ)

and, more generally, DlTu = TDlu (which justifies the notation Dlu, as promised).
With these conventions in place, we can explain the notion of “derivative in the sense

of distribution” that you will likely have come across before. Take for example the step
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function θ. Seen as a functionR→ C, it is not differentiable, due to the discontinuity at 0.
But the distribution Tθ does have a derivative: DTθ = δ, as computed in (D.6). Identifying
θ with Tθ, this fact is often expressed as “∂xθ(x) = δ(x) in the sense of distribution”. Note
that every locally integrable function is infinitely differentiable in the sense of distribution
(by virtue of the elements of the test function space S having this property).

As an application, let’s derive a famous identity that expresses the principal value in
terms of a “side limit of a deformed version of 1/x”, namely

lim
ϵ→0+

1

x± iϵ
= pv

(
1

x

)
∓ iπδ. (D.10)

First, recall that the principal complex logarithm

Log(x+ iy) = log
√
x2 + y2 + i arctan

x

y

is an analytic continuation of the logarithm to the complex numbers, except for a branch
cut on the negative real axis (Fig. ??). It follows that

lim
ϵ→0+

Log(x± iϵ) = log |x| ∓ iπθ(x)

which immediately implies (D.10) by differentiating both sides in the sense of distribution.

Generalized eigenvectors

We say that a distribution T is a generalized eigenvector of an operator A : S → S if

AT = λT.

Plane waves are therefore eigenvectors of the differentiation operatorD or the momen-
tum operator P = −iD:

DTeikx = T∂xeikx = Tikeikx = ik Teikx , P Teikx = k Teikx .

Likewise, if δa = ∂xθ(x− a) : ϕ 7→ ϕ(a) is the delta distribution at a ∈ R, then

(X δa)(ϕ) = δa(Xϕ) = aϕ(a) = a δa(π) ⇒ X δa = a δa.

So, with all these preparations in the bag, it was pretty easy to identify the generalized
eigenvectors!

Interface conditions for piece-wise continuous potentials. In one dimension, the
time-independent Schrödinger equation(

− ℏ2

2m
∂2x + V (x)− E

)
ψ(x) = 0 (D.11)

is an ordinary differential equation. The Picard-Lindelöf theorem says that if V is Lipschitz
continuous, then the ODE can be solved.

A staple of introductory QM lectures are potentials that are only piece-wise continuous.
In this case, there aren’t necessarily solutions to (D.11) in the ordinary sense. Here, we’ll
work out under which conditions one can stitch piece-wise solutions together to get a
generalized eigenvector of the Hamiltonian.

https://en.wikipedia.org/wiki/Complex_logarithm
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Lipschitz_continuity
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We treat the case where (D.11) has ordinary solutionsψ−(x) on (−∞, 0) andψ+(x) on
(0,∞). Assume that both solutions and their first derivatives are continuous and bounded
around 0, and can thus be extended to 0. We also require that V is bounded around 0. Then

ψ(x) :=

{
ψ−(x) x ≤ 0,
ψ+(x) x > 0

is a generalized eigenvector if and only if, for all test functions ϕ,∫ ∞

−∞
ϕ(x)

(
− ℏ2

2m
∂2x + V (x)− E

)
ψ(x) dx = 0.

Because ψ is an ordinary solution away from zero, the integral is equal to

lim
ϵ→0

∫ ϵ

−ϵ
ϕ(x)

(
−ℏ2

2m
∂2x + V (x)− E

)
ψ(x) dx =

−ℏ2

2m
lim
ϵ→0

∫ ϵ

−ϵ
ϕ(x)∂2xψ(x) dx,

where we have used that (V (x) − E) does not contribute to the integral in the limit, as
ϕ, ψ, and V are bounded around 0. Integrating by parts,

lim
ϵ→0

∫ ϵ

−ϵ
ϕ(x)ψ′′(x) dx =ϕ(0)

(
ψ′
+(0)− ψ′

−(0)
)
− lim
ϵ→0

∫ ϵ

−ϵ
ϕ′(x)ψ′(x) dx

=ϕ(0)
(
ψ′
+(0)− ψ′

−(0)
)
− ϕ′(0)

(
ψ+(0)− ψ−(0)

)
,

which vanishes for all ϕ if and only if the interface conditions

ψ+(0) = ψ−(0) and ψ′
+(0) = ψ′

−(0) (D.12)

are met. Notably, these do not imply thatψ is twice differentiable, which would be required
for ordinary solutions to (D.11).

Fourier transforms of tempered distributions

Because the Fourier transform exchanges X and P , the characterization (D.4) of S, and
hence the space itself, is invariant under Fourier transforms. Applying the general scheme
(D.9), the Fourier transform of a tempered distribution T is (FT ) : ϕ 7→ T (F tϕ).

To get more explicit formulas, first note that F t = F :∫
(Fψ)(k)ϕ(k) dk =

1√
2π

∫ ∫
e−ikxψ(x)ϕ(k) dxdk =

∫
ψ(x)(Fϕ)(x) dx.

Thus, using the shorthand “tilde notation” for the Fourier transform,

T̃ (ϕ) = T (ϕ̃).

Delta distribution. For δ, compute

δ̃(ϕ) = δ(ϕ̃) = ϕ̃(0) =

∫
1√
2π
ϕ(x) dx = T 1√

2π
(ϕ), (D.13)

that is, the FT of δ is a regular distribution, arising from the constant function

δ̃(k) =
1√
2π
. (D.14)
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One could be tempted to use the following formal calculation to arrive at the same conclu-
sion:

δ̂(k) = “
1√
2π

∫
e−ikxδ(x) dx” =

1√
2π
.

But, unlike, (D.13), this is not a rigorous argument given our development of the theory so
far! That’s because we have defined δ(ϕ) only for ϕ ∈ S, but e−ikx is most definitely not
an element of Schwartz space. The integral is therefore only heuristically defined. One
can sometimes make sense of products of distributions – but the issue is subtle and we will
not pursue it here.

Constant functions. The constant function 1(x) = 1 does not have a Fourier trans-
form in the ordinary sense. For one, the integral (2π)−1

∫
dx that would define 1̃(0) is

infinite. However, because T1 defines a tempered distribution, it does have a FT. Slightly
abusing language once again, we call it the FT of 1 (in the sense of distribution).

We can find it by expressing F−1 in terms of F and applying it to (D.14). To this end,
let Π be the parity operator, which mirrors functions about the origin: (Πϕ)(x) = ϕ(−x).
Then it is easy to see that F† = ΠF t and hence unitarity of F implies

(ΠF)F = F†F = 1 ⇒ F−1 = ΠF . (D.15)

Applying this to (D.14) gives

F (1) =
√
2πδ.

The principal value. From an easy contour integration, the FT of 1/(x+ iϵ) is

1√
2π

∫
1

x+ iϵ
e−ikx dx = −i

√
2πe−ϵkθ(k) → −i

√
2πθ(k) (ϵ→ 0+).

Using (D.10), we then find that the FT of the principal value is a regular distribution:(
F pv(1/x)

)
(k) = lim

ϵ→0+
F
(

1

x+ iϵ

)
(k) + iπF(δ)(k)

= i

√
π

2
(−2θ(k) + 1) = −i

√
π

2
sign(k). (D.16)

Combining this result with (D.15) gives further transforms of common distributions:

(F sign) (k) = i

√
2

π
pv(1/k) (D.17)

(Fθ) (k) = 1

2
F (sign+1) (k) = i

1√
2π

(pv(1/k)− iπδ) . (D.18)

Coulomb and Yukawa potentials. Up to constants, the Coulomb potential is u(x) =
− 1

∥x∥ in R3. Just like the constant function treated above, it does not have an ordinary
Fourier transform. For example, ũ(0) would be given by

−(2π)−3/2

∫
1

∥x∥
d3x = −2(2π)−1/2

∫
r dr = −∞. (D.19)

But as discussed in Sec. D.2.2, u(x) defines a regular distribution whose Fourier transform
turns out to be regular again, given by

ũ(k) = −
√

2

π

1

∥k∥2
. (D.20)
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Here’s how to find (D.20). Express

Tu(ϕ̃) = −
∫
ϕ̃(k)

∥k∥
d3k = − lim

s→0+

∫
e−s∥k∥

∥k∥
ϕ̃(k) d3k. (D.21)

as a limit of integrals involving the “regularizing” factor e−s∥k∥.

This is valid, because the integral, interpreted as a function of s ∈ [0,∞), is con-
tinuous at 0. In fact, it is even differentiable:

−∂s|0
∫
e−s∥k∥

∥k∥ ϕ̃(k) d3k =

∫
ϕ̃(k) d3k, (D.22)

which is finite for ϕ̃ ∈ S. (Note that the same regularization does not work for the
integral in (D.19), which formally corresponds to the case ϕ̃(k) = 1. Of course,
the constant function is not an element of Schwartz space, and indeed, this choice
would cause (D.22) to diverge).

Plugging in the definition of the FT and exchanging integrals,

Tu(ϕ̃) = lim
s→0

∫ (
−(2π)−3/2

∫
e−s∥k∥

∥k∥
e−ik·xϕ(x)d3k

)
d3x.

The expression in parentheses is the FT of

V (x) = − 1

∥x∥
e−s∥x∥

which, up to constants, is known as the Yukawa potential. Its Fourier transform follows
from the general formula (C.5) for rotationally-invariant functions in terms of k = ∥k∥:

Ṽ (k) =
i

(2π)1/2k

∫ ∞

0

(
e−sr−ikr − e−sr+ikr

)
dr.

The one-dimensional integral can immediately be solved as

−
[
er(−s−ik)

−s− ik

]∞
0

+

[
er(−s+ik)

−s+ ik

]∞
0

= − 1

−s− ik
+

1

−s+ ik
= − 2ik

s2 + k2
.

Collecting constants, we get the FT of the Yukawa potential, which gives (D.20) as s→ 0:

Ṽ (k) = −
√

2

π

1

s2 + k2
. (D.23)

Products and tensor products

If T is a tempered distribution, and v a smooth function that grows at most polynomially
as |x| → ∞, then the product vT between v and T is the tempered distribution

vT : ϕ 7→ T (vϕ). (D.24)

The product between a smooth function and a distribution behaves mostly like the product
between functions. In particular, if T = Tu is regular, then vTu = Tuv .

https://en.wikipedia.org/wiki/Yukawa_potential
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However, one cannot extend (D.24) to products between arbitrary distributions, while
retaining the basic properties of “multiplication”. For example

δ x = 0 by (D.24)
⇒ (δ x) pv(1/x) = 0 pv(1/x) = 0 by above and (D.24)

xpv(1/x) = 1 by (D.24)
⇒ δ (x pv(1/x)) = δ 1 = δ by above and (D.24)

so there is no associative way to assign a meaning to “δ xpv(1/x)”.
Tensor products between distributions are perfectly well-defined, though. If S, T are

distributions, then S ⊗ T is the bilinear form that sends ϕ, ψ ∈ S to S(ϕ)T (ψ).
Using the fictional function notation T (x) for distributions T (as in (D.8)), the situation

can be summarized as: “T (x)S(x) makes no sense, but T (x)S(y) is unremarkable – just
integrate against two test functions”.

A propose bilinear forms. Take any distribution K on test functions on R2, not
necessarily a tensor product. If ϕ, ψ are test functions on R, then their tensor product
(ϕ ⊗ ψ)(x, y) = ϕ(x)ψ(y) can be paired with K. This way, K, too, defines a bilinear
form:

ϕ, ψ 7→ K(ϕ⊗ ψ) also written as K(ϕ⊗ ψ) =

∫
K(x, y)ϕ(x)ψ(y) dxdy.

One says that K is the integral kernel of the bilinear map.
This definition can be extended straight-forwardly to multilinear or sesquilinear func-

tions. The sesquilinear case is frequently used in quantum mechanics – c.f. Eq. (B.1).

D.3 Topological aspects, more pedantry, and generalizations

Our definition of tempered distributions in Eq. (D.5) was constructive: We showed how
to build distributions concretely given a function u and derivatives ∂lx. The mathematical
theory is usually formulated axiomatically. Distributions are defined indirectly, as linear
functionals on test function spaces, subject to some abstract properties. These properties
are phrased in the language of point set topology. In this section, we briefly introduce this
more abstract point of view.

Topological spaces

Consider a set X . A topology on X is a rule that allows us to decide when a sequence
xk : N→ X converges to an element x ∈ X .

As a first example, assume that X is a vector space equipped with a norm ∥ · ∥. This
covers an extremely wide range of spaces, from X = R, the real numbers with norm
∥x∥ = |x| the absolute value, to X = L2(R) with norm ∥x∥ = ⟨x|x⟩1/2 derived from the
inner product. We say that a sequence xk converges in norm topology to x,

xk → x, if lim
k→∞

∥xk − x∥ = 0. (D.25)

We’ll use these concepts to give very general definitions of continuity and complete-
ness.

https://en.wikipedia.org/wiki/General_topology
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Figure D.2: Sequence continuity is equivalent to the more familiar “ϵ-δ-definition” of
continuity for functions f : R→ R. It is more general, though, and can also be applied to
spaces whose topologies do not derive from a distance measure.

Continuity

A function f between two topological spaces is continuous if it maps convergent sequences
to convergent sequences (Fig. D.2), i.e. if

xk → x ⇒ f(xk) → f(x).

Example (important!): If ψ ∈ L2(R), then the linear functional ⟨ψ| is continuous.
The proof reduces to the Cauchy-Schwarz inequality. If limk→∞ ∥ϕk − ϕ∥ = 0, then∣∣⟨ψ|ϕk⟩ − ⟨ψ|ϕ⟩

∣∣ = ∣∣⟨ψ|(|ϕk⟩ − |ϕ⟩)
∣∣ ≤ ∥ψ∥1/2

∥∥ϕk − ϕ
∥∥1/2 → 0 (k → ∞).

Completeness and Hilbert spaces

Now for completeness. A sequence xk is Cauchy if “its elements eventually become arbi-
trarily close” in the sense that

∀ ϵ > 0, ∃n ∈ N such that ∀ k, l > n, it holds that ∥xk − xl∥ ≤ ϵ.

A space X is complete if every Cauchy sequence converges to an element of X .
As an example of a Cauchy sequence, let xk be the approximation of

√
2 to k decimal

places. This example shows that the rational numbers are not complete: There is no q ∈ Q
such that xk → q (for then q would have to equal

√
2, which, famously, is not rational).

In the mathematical literature, a Hilbert space is defined as a

• complex vector space,

• with a sesquilinear inner product ⟨·|·⟩,

• that is complete with respect to the norm derived from the inner product.

The final condition is often glossed over in physics presentations. It is important, though.
For one, it means that series like

|ψ(t)⟩ =
∞∑
k=0

1

k!
(itH)k|ψ(0)⟩ := lim

K→∞

K∑
k=0

1

k!
(itH)k|ψ(0)⟩,

used ubiquitously, are actually well-defined. Another reason is that the equivalence of
“kets” and “bras” requires this property: The set of continuous linear functionals on a
Hilbert space H is denoted by H′. If |ψ⟩ ∈ H, then we’ve shown above that ⟨ψ| is
continuous, i.e. an element of H′. The Riesz representation theorem says that the converse
is also true: Every continuous linear functional of a Hilbert space is given by some “bra
vector”.

One can show that L2(R) is complete, i.e. actually a Hilbert space.
Contrast this with Schwartz space S. It, too is a complex vector space with the same

sesquilinear inner product as L2(R). But it is not complete in norm topology and hence no
Hilbert space. The argument works just like the

√
2-example above. Because S is dense

in L2(R), for every ψ ∈ L2(R), there exists a sequence ϕk : N → S converging to ψ in
norm. Thus, if ψ ̸∈ S, the sequence ϕk has no limit point in S.

https://en.wikipedia.org/wiki/Riesz_representation_theorem
https://en.wikipedia.org/wiki/Riesz%E2%80%93Fischer_theorem
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Topology on Schwartz space

Return to Schwartz space S. Because it is a subspace of L2(R), we can use the norm
topology also for S. However, there’s a second, important, topology on that space. For
α, β ∈ N0, define the (semi)-norms

∥ϕ∥α,β := sup
x∈R

|Xα∂βψ(x)|.

A sequence ϕk : N→ S converges with respect to this family of semi-norms,

ϕk →
S
ϕ, if lim

k→∞
∥ϕ− ϕk∥α,β = 0 ∀α, β ∈ N0. (D.26)

To avoid confusion, we’ll write ϕk →
L2

ϕ if we mean convergence with respect to the

Hilbert space norm. It is easy to see that ϕk →
S
ϕ implies ϕk →

L2
ϕ, but not the other way

round. One says that the topology (D.26) is finer than norm topology.
There’s a non-trivial regularity theorem (Reed-Simon, Thm. V.10), which states that

the constructive definition (D.5) of tempered distribution characterizes exactly the space
of linear functionals on Schwartz space that is continuous in the sense of (D.26).

Generalizations

The topological formulation above is the basis of generalizations. The common recipe
is to choose a test function space Φ (often norm-dense in L2(R)), endow it with a finer
topology, and then consider the continuous dual Φ′.

The most important choice is to take Φ to be the space of bump functions C∞
c (R):

smooth functions with compact support. “Compact support” means that these functions
are identically zero for |x| large enough. (It is not obvious that one can define functions
that transition smoothly from being identically zero in some region to being non-zero in
other regions, but such functions do exist). In the context of distributions, the space of
bump functions is usually denoted by D.

Recall that Schwartz functions vanish faster than any polynomial, and thus integrals
against locally integrable functions u(x) that grow at most polynomially are finite. Be-
cause bump functions vanish identically for large x, integrals against any locally integrable
u are well-defined. This suggests, correctly, that the space of distributions D′ is even larger
than the space of tempered distributions S ′.

The structure of D′ is somewhat more complicated than was the case for S ′. We will
not discuss it here, but, for completeness, give the topology from which it derives. It is
defined in terms of the (semi-)norms

∥ϕ∥K,α := sup
x∈K

|∂αxϕ(x)|

indexed by compact subsets K ⊂ R and a number n ∈ N0, in the same way as (D.26):

ϕk →
D
ϕ if lim

k→∞
∥ϕ− ϕk∥K,α = 0 ∀α,K.

Because elements of D are smooth, distributions in D′ are arbitrarily often differen-
tiable. However, the space D is easily seen not be be invariant under Fourier transforms,
so the Fourier transform is not defined on D′. This is the reason the space plays a less
prominent role in quantum theory.

https://en.wikipedia.org/wiki/Bump_function
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Terminology

The word “distributions” used without qualification is most likely to refer to D′, but can
also mean a general continuous dual space Φ′, and may also refer to tempered distributions
S ′, depending on context. Making matters worse, S is always called “Schwartz space”,
but the name “Schwartz” is also associated with the general mathematical theory of dis-
tributions and in particular also with D′. “Tempered distributions” always means S ′, at
least.

Lastly, if a science professor answers an inquiry about a questionable derivation by
claiming that it is to be understood “in the sense of distribution”, they likely mean neither
D′ nor Φ′ nor S ′. Instead, they are probably vaguely aware of the fact that what they are
doing isn’t quite rigorous, but are optimistic that a smart mathematician could figure it
out, and in any case, want to get through their lecture with their dignity intact and have
found that “distribution” is a fully general incantation that reliably suppresses follow-up
questions.

Needless to say, I would never engage in such tactics.
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