Mathematische Methoden 2

SS 2024

Blatt 1. 20+6 Punkte. Abgabe 14.4.

D. Gross, K. Meinerz, L. Ligthart (Mit Material von J. Berg. Danke, J!)

1 Basis des Unterraums $\underline{1}^{\perp}$ von \mathbb{R}^3 (6 P) Im Skript wird der Unterraum $\underline{1}^{\perp}$ von Vektoren $\boldsymbol{v} \in \mathbb{R}^3$ eingeführt, die die Gleichung $\sum_{i=1}^3 v_i = 0$ erfüllen. Es werden zwei Basen von 1^{\perp} angegeben:

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 und $w_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, w_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}.$

- a) (1 P) Zeigen Sie, dass $\underline{1}^{\perp}$ ein Unterraum des \mathbb{R}^3 ist.
- b) (2 P) Zeigen Sie, dass $\{v_1, v_2\}$ eine Basis von $\underline{1}^{\perp}$ darstellen.
- c) (1P) Zeigen Sie, dass w_1 und w_2 orthonormal sind.
- d) (2P) Warum folgt aus den letzten beiden Aufgaben, dass $\{w_1, w_2\}$ ebenfalls eine Basis von $\underline{1}^{\perp}$ ist?
- **2 Ebene Wellen als Orthonormalsystem (6 P)** Im Skript wird der Vektorraum $C([-\pi, \pi], \mathbb{R})$ stetiger Funktionen von $[-\pi, \pi]$ nach \mathbb{R} eingeführt. Dort ist mit

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$
 (1)

ein Skalarprodukt gegeben.

- a) (3P) Zeigen Sie, dass (1) tatsächlich ein Skalarprodukt definiert. Dazu dürfen Sie zunächst die Positivitätsbedingung $\langle f, f \rangle > 0$ zu $\langle f, f \rangle \geq 0$ abschwächen.
- b) (Optional: 3 Zusatzpunkte) Nutzen Sie die Stetigkeit der Funktionen aus, um die strengere Bedingung $\langle f, f \rangle > 0$ für alle $f \neq 0$ zu zeigen.
- c) (3P) Zeigen Sie, das die Menge

$$\mathcal{B} = \left\{ \frac{\cos(kx)}{\sqrt{\pi}} \right\}_{k=0}^{\infty} \cup \left\{ \frac{\sin(kx)}{\sqrt{\pi}} \right\}_{k=1}^{\infty}$$

ein Orthonormalsystem für $C([-\pi,\pi],\mathbb{R})$ bildet. Hinweis: Diese Seite ist hilfreich!

3 Axiome des Vektorraums (8 P)

a) (3 P) Sei $\mathcal{F} = \{f \colon \mathbb{R} \to \mathbb{R}, x \mapsto f(x)\}$ die Menge der reellen Funktionen. Zeigen Sie, dass $(\mathcal{F}, +, \times)$ einen Vektorraum bildet, wobei Addition und Multiplikation mit einem Skalar $\lambda \in \mathbb{R}$ für $f, g \in \mathcal{F}$ punktweise erklärt wird

$$(f+g)(x) = f(x) + g(x), \quad (\lambda \times f)(x) = \lambda f(x). \tag{2}$$

b) (3 P) Die Menge der Polynome vom Grad n ist die Menge aller Funktionen, die sich als Summe der Potenzen $x^0, x^1, x^2, \ldots, x^n$ der Variablen x mit reellen Koeffizienten $a_0, a_1, \ldots a_n$ schreiben lassen,

$$\mathcal{P}_n = \left\{ f \colon \mathbb{R} \to \mathbb{R}, x \mapsto f(x) = \sum_{k=0}^n a_k x^k \right\}.$$

Zeigen Sie, dass $(\mathcal{P}_n, +, \times)$ ein Untervektorraum von \mathcal{F} ist. Hierbei sind + und \times wie in (2) definiert.

- c) (Optional: 3 Zusatzpunkte) Zeigen Sie, dass die Funktionen $p_k \colon \mathbb{R} \to \mathbb{R}, x \mapsto x^k$ (k = 0, ..., n) eine Basis für \mathcal{P}_n sind. Was schlussfolgern Sie für die Dimension von \mathcal{P}_n ?
- **d)** (2 P) Betrachte $\lambda \in \mathbb{R}$ und $f, g \in \mathcal{P}_n$ mit $f(x) = \sum_{k=0}^n a_k x^k$ und $g(x) = \sum_{k=0}^n b_k x^k$. Berechnen Sie explizit die Koeffizienten von f + g und $\lambda \times f$ bezüglich der p_k .