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1 Measurements

A von Neumann measurement of a qubit |ip) with results © and & is described by two projec-
tors {I1p, 14} such that I + 14 = 1. Result O happens with probability p(V) = ||[TIo|y)]|3,
and leaves the qubit in the state ITo|y)/|[I1o|)||2. Result & happens with probability p(#) =
|TTa|1) |3, and leaves the qubit in the state [14|¢) /|| T14|9)||2. (In practice the measurement usually
destroys the qubit, and often one can ignore the post-measurement state).

a) Show that for any qubit |¢), and any projectors such that ITe + IT4 = 1 we have that p(©) >
0,p(#) =0, and p(V) + p(h) =1. (0.5 p)

b) Let Iy = |6)(6], for a qubit |#) = ¥|0) + J|1). Find I1, such that {Ilc,I14} is a measurement.
Find a qubit [#+) such that T14 = |6)(6"] (the solution is not unique, it is enough to find
one). (0.5p)

o) In quantum computation measurements are always done in the computational basis {|0), |1) },
with results 0, 1, and projectors ITy = |0)(0| and IT; = |1)(1]. They are represented by the
measurement gate . Measurements in other bases are implemented by applying some
unitary U to the state before measuring it in the computational basis, as shown in the following

circuit:
)

Find a unitary U such that p(0) = [[TLU[¢)[3 = [Io|y)|3 and p(1) = [ILU[p)[3 =
|TTa|9)||5. What are the post-measurement states? (xp)

d) When a measurement is made on only one of a pair of qubits, say the first, the proba-
bilities and post-measurement states are given by p(V) = ||(Ilp ® 1)|¢)|¢) |3 and (I1p ®
1)) /]| (TIo @1)|¢)|¢) ||2, with the analogous equation for #. Calculate the post-measurement
states for any pair of qubits |¢)|¢), for the projectors {I1y, 14} from item b). (0.5p)

e) Calculate what the following circuit does, with the unitary U from item c) (or an arbitrary
one, if you couldn’t find it), and remembering that the unitary XZ is only applied to the
post-measurement state if the result of the measurement was 1.
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Hint: It is known as lame teleportation.
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2 Pure and mixed states

a) Let p be a density matrix (positive semidefinite and trace one). Show that the following
statements are equivalent:

(1) o = X pi li) (¥i| with p;, =1 for some iy or [ip;) = |ipp) for all i.
(i) p = |¢) (|, that is, p is a pure state.
(iii) p has rank 1
(iv) p*> =p
(v) tr(p?) =1
(vi) the spectrum of p is given by {1,0,...,0}
(2p)
Hint: It suffices to show the implications in cyclic order, i.e. (i)=(ii)=... =(vi)=(i)
b) Use a criterion of your choice to decide whether the following 1-qubit density matrices, given

in the computational basis, are pure or mixed. In the latter case, write them as a convex
combination of pure states (the solution is not unique).
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3 Separable and entangled states

The reduced density matrix p of the first particle of a bipartite state ') = Y_; a;|ij) is given by
the partial trace over the second particle, defined as

=ty [¥)(¥] = (L@ tr) [¥) (F] = A@tr) Y atali) (k| @ [/) (1] = Y et i) el te([) (1))
ij )

a) Show that if [¥) = |¢)|¢) then p = trp |¥)(¥] is a pure state. (0.5 p)
b) Therefore if p = try [¥) (¥] is not pure, then |¥) is entangled. Let

|®) = /p|00) + /1 — p|11).

Compute the reduced density matrix of the first particle of |®), and check for which p it is
not pure, and therefore |®) is entangled. What is a different way to prepare the same density
matrix? (xp)

o) Check whether the following states are entangled or separable:

1
%(!0@ +101) + [10))

1G) = 5(100) + [01) + [10) + [11))

|H) =

CZ) = 3(100) + [01) + [10) — [11))

(xp)
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