QUANTENMECHANIK
David Gross, Mateus Aratjo

Sheet 7 Due: 21.05 um 12 Uhr

1 Our favourite child, the harmonic oscillator (10 P)

The Hamiltonian of the harmonic oscillator is given by
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and when written in terms of the creation and annihilation operators at and 4, it becomes
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where
4= 1<X+ip) und a' = 1<X—ip>
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for xo = vh/mw and pg = Vhimw.
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To work with these operators, the commutation relations [a,a'] = 1, [a',a'] = [a,4] = 0 are useful,
and the effect of a and a' on the eigenstates of a'a is given by

aln) = /nln—1) and a'ln) = Vn+1n+1).

a) (1P) The coherent states |a) are defined as eigenstates of the annihilation operator a with
eigenvalue «, that is, a|a) = a|a). We want to write them down in terms of the eigenstates of
the harmonic oscillator |n), as
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Determine the coefficients f,(«) and the normalisation factor C. Test whether the coherent
states |a) and |B) for a # B are orthogonal by computing |(B]«)|?.

b) (1 P) Show that the time evolution of the coherent states is given by
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where |a(t)) is a coherent state with eigenvalue a(t) = age
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¢) (2P) Compute the time-dependent expectation values of the position and momentum operators
for the coherent state |« (t)). With that, show that
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g O[Pla(t)) = —(a(t)| -V (X)la(t)),
for V(x) = tmw?x?. What is the meaning of this equation?
Hint: Compute first a|a(t)), and remember that (A|y))" = (y|A*. This equation is the famous
Ehrenfest theorem, that will be spoken about in the lecture.

d) (2P) Compute the product of variances AXAP for an arbitrary coherent state |«).

Hint: If you computed it correctly, you should obtain the surprising result that the product of
variances does not depend on «.
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e) (2P) Consider the displaced ground state of the harmonic oscillator |07 ), that in the position
representation is given by

(x[01) = W%ﬁ"%(m ,

Write |0r) in the |n) basis and compare that with the result of item 1a.

Hint: The state |0r) is the state |0) translated by L, that is, |01) = e iLP |0). Write P in terms of
a’ and a and use the Baker-Campell-Hausdorff formula
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that is true for operators A, B whose commutator [A, B] respect the condition [A, [A, B]] =
[B,[A,B]] = 0.

f) (1,5 P) Since the time evolution of a coherent state is a coherent state, |a(t)) must respect the
differential equation

ala(t)) = a(t)a(t)),

and with that we can compute its position representation (x|a(t)). Solve then

%(X + P ) (x|a(t)) = a(t)(x]a(t))
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and normalise the solution to find that
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modulo an irrelevant global phase.

g) (0,5 P) The quantum state

1
|cat(t)) = \/2(1 T (la(®)) + [ — a(t)))

is known as Schrodinger cat state. Sketch in 3D the absolute value squared of |cat(t)) as a
function of x and t.

2 (Bonus exercise) The Wigner quasiprobability distribution (2 P)
The Wigner quasiprobability distribution is a representation of wavefunctions in the usual x — p

phase space. It is quite useful for studying the quantum-classical correspondence. The Wigner
representation of a wavefunction 1(x) is defined as
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Sketch in 3D the Wigner representation of (x|cat(t)) fiir t = 0. Attention: W(x, p) is always a real
number.



