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A function F = F(~r,~p) on phase space is a conserved quantity, with respect to the Hamilton function
H, if {H, F} = 0. A collection of conserved quantities {Fj}j=1,...,N are called independent if

{Fj, Fk} = 0, j, k = 1, . . . , N.

If a system possesses a constant of motion it can be used to simplify the equations of motion. In
general, N independent conserved quantities reduce the number of degrees of freedom from f to
f − N. Concretely, this can be done by using the equations Fj = const to eliminate coordinates. A
system is called integrable if it has as many independent conserved quantities as it has degrees of
freedom, i.e., f = N. In this case, the solution to the equations of motion can be directly found by
integrating conservation laws.

1 Conserved quantities of centrally symmetric Hamiltonians

a) Consider a particle with mass m in a centrally symmetric potential V. This has the Hamilton
function

H(~r,~p) =
~p2

2m
+ V(‖~r‖). (1)

Show that the angular momentum vector~L and~L2 are conserved quantities.

Hint: Recall exercise 2b) on sheet 10. For the potential, it might be easiest to directly use the

definition of the Poisson bracket { f , g} = ∑N
n=1

(
∂ f

∂pn

∂g
∂rn
− ∂ f

∂rn

∂g
∂pn

)
and the chain rule. Recall

also that Lj = ∑kl εjklrk pl .

(3 points)

b) Using a), how many conserved quantities can you name? Which of them are independent? Is the system
integrable? You are allowed to use the relation {Lj, Lk} = −∑l εjkl Ll without proof. (3 points)

2 Conserved quantities simplify the equations of motion

To illustrate how conserved quantities actually simplify the analysis, we shall here partially solve
the equations of motion corresponding to the Hamilton function (1). The idea is that we should
rewrite the Hamiltonian in terms of conserved quantities.

We will make use of a coordinate transformation to spherical coordinates, i.e.

~r = r

cos ϕ sin θ

sin ϕ sin θ

cos θ

 ≡ rr̂.

To simplify the calculations, you can use the following relations that will come in handy. The
Cartesian unit vectors x̂, ŷ, ẑ and the spherical unit vectors r̂, θ̂, ϕ̂ are related by:

r̂ = sin θ cos ϕx̂ + sin θ sin ϕŷ + cos θẑ,

θ̂ = cos θ cos ϕx̂ + cos θ sin ϕŷ− sin θẑ,

ϕ̂ =− sin ϕx̂ + cos ϕŷ.
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Furthermore, r̂, θ̂, ϕ̂ are orthogonal and fulfill

r̂× θ̂ = ϕ̂, r̂× ϕ̂ = −θ̂, θ̂ × ϕ̂ = r̂.

a) Write the Hamilton function (1) in spherical coordinates and determine the canonical momenta in terms
of r, θ, ϕ and their derivatives.

Hint: It might be easier to first transform the Hamilton function to its corresponding
Lagrangian, make the change of variables to spherical coordinates in the Lagrangian, and
then transform back again to the Hamilton-function. It can be useful to first show that
~̇r = ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂. Use exercise 2 on sheet 9 for the Legendre transform.

(4 points)

b) Express~L2 in spherical coordinates, and relate it to pθ and pϕ.

Hint: Use ~L = m~r×~̇r and ~̇r = ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂ from a).

(4 points)

c) Compute L3 in spherical coordinates and express it using pθ and pϕ.

Hint: With ~L expressed in terms of the spherical unit vectors, one can compute L3 = ẑ ·~L.

(2 points)

d) Use the conserved quantities in order to show that for constant angular momentum ~L2 = `2, the
Hamiltonian in spherical coordinates can be written as

H̃(r, θ, ϕ, pr, pθ , pϕ) =
1

2m
p2

r +
`2

2mr2 + V(r). (2)

(2 points)

e) By (2) we have reduced the the original problem to a single degree of freedom, i.e., the radial
motion. One could now proceed to determine the solutions, e.g. from energy conservation,
but we have already discussed that. Instead we explore the phase-space flow of (2), for the
special case of the Kepler problem

V(r) = − k
r

,

for some constant k.

Use some plotting software to draw the energy level curves of (2).

Hint: It may not be entirely trivial to make a plot where one actually see the bound orbits
E < 0. It can be convenient to first change variables to r̃, p̃r, and Ẽ, such that r = r̃ `

mk ,
E = Ẽ k2m

` , p2
r = p̃2

r
m2k2

` , which results in Ẽ = 1
2 p̃2

r +
1

2r̃2 − 1
r̃ . By plotting energy level curves for

Ẽ = −0.5 to Ẽ = 0.5 in steps of 0.05, in the region 0.2 ≤ r̃ ≤ 10 and −1 ≤ p̃r ≤ 1, one should
be able to see both bound and unbound orbits.

(2 points)

Remark: You might have wondered what happened to the conserved quantity L3 and want to
argue that there is something wrong in our approach, since it was needed for integrability. However,
H only depends on~L2 which, in turn, depends of course on L3. But if one actually wants to compute
the solutions using conservation laws, the relations for L3 and ~L2 are both needed.
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