
Classical Mechanics

David Gross, Johan Åberg, Markus Heinrich

Exercise sheet 12 Due: January, 18 at 12:00

1 Solving the equations of motion via canonical transformations

In this exercise we shall use canonical transformations in order to solve the equations of motion.

a) Consider the transformations from (q, p) to (Q, P) defined by

Q = αpqγ, P = βqδ, (1)

where α, β, γ and δ are constants. What are the conditions on α, β, γ and δ for (1) to be a canonical
transformation?

Hint: Recall the characterization of canonical transformations in terms of Poisson brackets,
and the definition of the Poisson bracket.

(3 points)

b) Find a canonical transformation from (q, p) to (Q, P) that transforms

H(q, p) =
1
2

p2q4 +
1

2q2 (2)

into the Hamilton function of the Harmonic oscillator

H(Q, P) =
1
2

P2 +
1
2

Q2.

Hint: There was a reason for why we bothered to do exercise a). (2 points)

c) Use the result in b) in order to derive the solutions to Hamilton’s equations corresponding to
(2). (2 points)

2 Liouville’s theorem

Consider a free particle with mass m that moves along a straight line, i.e., the particle has the
Hamilton function

H(x, p) =
1

2m
p2.

For a, b > 0 consider the rectangle R in phase space, defined by −a ≤ x ≤ a, −b ≤ p ≤ b.

a) If we regard R as a set of possible initial conditions for the particle at time t = 0, then this set
of points will, for every time t ≥ 0, evolve to a new set R(t).

Determine R(t) and sketch the shape. (3 points)

b) Determine the area of R(t) and compare with R. (1 points)
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3 Generating functions for canonical transformations

Consider a function F1(q, Q) of the old coordinates q and the new coordinates Q. This function
does implicitly define a canonical transformation between (q, p) and (Q, P) via the two equations

p =
∂F1

∂q
, P = −∂F1

∂Q
. (3)

The function F1 is referred to as the generating function of the transformation.

a) Consider the function

F1(q, Q) =
mω

2
q2 1

tan Q
,

where m and ω are some constants. Use the relations (3) in order to express q and p as functions of
Q and P. (2 points)

Hint: The relations (3) gives p and P as functions of q and Q, and you have to transform
these so that you obtain q and p as functions of Q and P. Do not worry about whether the
square roots are well defined, or the sign of the roots.

b) Consider the Hamilton function for the harmonic oscillator

H(q, p) =
1

2m
p2 +

mω2

2
q2.

Express H in terms of the new variables Q and P. What is the solution of the corresponding equations
of motion? (2 points)

Remark: One could transform the solutions back to the original (q, p) and thus obtain the
solutions to the equations of motion of the harmonic oscillator.

4 Generating functions for canonical transformations again

In the previous exercise we considered generating functions F1(q, Q). However, one can also use
generating functions F2(q, P), F3(p, Q), or F4(p, P). As an example we are here going to consider
generating functions F3(p, Q). Such functions define canonical transformations between (q, p) and
(Q, P) if

q = −∂F3

∂p
, P = −∂F3

∂Q
. (4)

Note the difference in signs compared to (3)!

a) Consider the function
F3(p, Q) = −(eQ − 1)2 tan p.

By using (4), determine Q and P as functions of q and p.

Hint: As in the previous exercise, do not worry about square roots (or logarithms) being
well defined, or which branches to take. (2 points)

b) Confirm, by using Poisson brackets, that the functions Q(q, p) and P(q, p) obtained in a) define a
canonical transformation from (q, p) to (Q, P). (3 points)
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5 Deriving the conditions for generating functions

This exercise gives no points, but gold stars! If you feel that it is unclear where
the conditions (3) and (4) come from, then this is the exercise for you.

One method to derive conditions like (3) and (4) is based on the Hamiltonian
version of the variational principle. Recall that the action functional can be written
S [~q] =

∫ t f
ti

L(~q,~̇q, t)dt. By recalling the relation between the Lagrangian and the
Hamilton function, one can rewrite this as

S [~q,~p] =
∫ t f

ti
∑

j
q̇j pj − H(~q,~p, t)dt. (5)

(By extremizing this integral one obtains Hamilton’s equations.)
Suppose now that we have a new set of coordinates and conjugate momenta ~Q, ~P, and a new

Hamilton function H̃(~Q, ~P, t) thus leading to the new functional

S̃ [~Q, ~P] =
∫ t f

ti
∑

j
Q̇jPj − H̃(~Q, ~P, t)dt. (6)

If the integrands in (5) and (6) are identical up to a total time derivative dF
dt of some function F1,

then the two functionals (5) and (6) yield equivalent equations of motion. In other words, if

∑
j

q̇j pj − H(~q,~p, t) = ∑
j

Q̇jPj − H̃(~Q, ~P, t) +
dF
dt

, (7)

then (~q,~p, H) describe the same physics as (~Q, ~P, H̃)2.

a) Suppose that we let
F = F1(~q, ~Q, t),

for some function F1. Show that a sufficient condition for (7) to be valid is that

pj =
∂F1

∂qj
, Pj = −

∂F1

∂Qj
, H̃(~Q, ~P, t) = H(~q,~p, t) +

∂F1

∂t
. (8)

(0 points, but a gold star!)

Comment: The condition (3) is a special case of (8).

b) Suppose that we instead let
F = ∑

j
qj pj + F3(~p, ~Q, t),

for some function F3. Show that

qj = −
∂F3

∂pj
, Pj = −

∂F3

∂Qj
, H̃(~Q, ~P, t) = H(~q,~p, t) +

∂F3

∂t
. (9)

is a sufficient condition for (7) to hold.

(0 points, but a gold star!)

Comment: The relations (9) yields (4) as a special case.

If one has the energy, one can also derive the conditions for F2 and F4, which are based on the
assumptions

F = −∑
j

QjPj + F2(~q, ~P, t), F = ∑
j

qj pj −∑
j

QjPj + F4(~p, ~P, t).

1F can be a function of ~q, ~p, ~Q, ~P and t, but not of ~̇q, ~̇p, ~̇Q, ~̇P.
2One way of thinking of this equation is that we regard all Q and P as being functions of q and p, or all q and p as being

functions of Q and P.
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