
Classical Mechanics

David Gross, Johan Åberg, Markus Heinrich

Exercise sheet 3 Due: November, 2 at 12:00

1 Shooting something very far into space
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A group of students S want to send an individual Å, who creates exercises in classical mechanics,
very far into space. They use a cannon to shoot this object into space1. They have enough gun-
powder to reach the necessary escape velocity from Earth. However, they want to make sure that Å
disappears deeply into interstellar space, but at the same time they want to use as little gunpowder
as possible, so that they have more money left for the party afterwards. Some of them have read
a wikipedia-article about a clever technique called the “gravitational slingshot´´ (or “gravity assist
maneuver´´, or “swing-by´´). The idea is that one can increase the speed (relative to the sun) of a
spacecraft (or an object Å) by letting it pass near a planet in a suitable way. The problem is that the
group of students S are not quite sure how all of this works, so you have to help them to understand
the general principles.

As mentioned above, the gravitational sling-shot works by letting object Å pass near a planet P.
For the first step of the analysis we consider the system in the center of mass frame of Å and P2.
We assume that the mass M of P is much larger than the mass m of Å. Hence, we can to a very
good approximation put the center of mass at the center of P, and the relative mass µ equal to m.
The total energy of Å is positive3 since otherwise Å would be trapped in a periodic orbit around
P4. This means that it follows a hyperbolic orbit, in other words, r(φ) = p/(1 + ε cos φ), where the
eccentricity is such that ε > 1. Very far away from P, object Å does to a good approximation only
have kinetic energy, and approximately follows a straight line. The minimal distance between P and
this line is often called the impact parameter. We let ~vpi and ~vp f denote the initial and final velocity
of Å very far from P, in the center of mass frame.

a) Show that the initial speed vpi = ‖~vpi‖ and final speed vp f = ‖~vp f ‖ are equal. (1 points)

b) For the center of mass frame, express the total energy E and the angular momentum L in terms of the
mass m, the initial speed vpi, and the impact parameter b. (2 points)

1Although they do intend to become dictators (as one can see on their eyebrows) they are still only doing dictator-
internships, so they can unfortunately not afford a rocket.

2We ignore the influence from the sun.
3We follow the convention to put the potential energy to zero infinitely far away from P.
4Strictly speaking zero energy would also be allowed. Then, the orbit would be parabolic (and thus ε = 1), but we skip

that special case here.
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Figure 1: The horizontal axis is the symmetry axis of the hyperbola (in red). The dotted blue lines correspond
to the asymptotes of the hyperbola, which object Å approximately travels along when far from P. There are
two distances that are marked as equal in this figure, with the value c. This is due to the properties of the
hyperbola, and can be used to show that b′ = b.

c) Use simple geometric arguments to show that the length b′, as shown in figure 1, is equal to the impact
parameter b. (2 points)

d) The scattering angle θ is defined as the angle by which the initial velocity ~vpi is turned into
~vp f . (Hence, we do for example have ~vpi ·~vp f = vpivp f cos θ.) Derive the scattering angle θ as a
function of m, v0 and b.

Hint: Recall that the eccentricity ε of the orbit is given by the ratio of two characteristic
lengths, ε = c

a , shown in figure 1. Use this to show that ε =
√

1 + tan2 α. Next, recall the
relation between ε and L, E, and m, and use exercise b). Use this to find an expression for the
scattering angle θ. (3 points)

e) The ultimate goal is to determine the difference between the final kinetic energy Ekin,i of object
Å and and the initial kinetic energy Ekin, f , with respect to the reference frame of the sun. Let ~vP

denote the velocity of planet P (also in the frame of the sun). Show that

Ekin, f − Ekin,i = m(~vp f −~vpi) ·~vP.

Hint: Let ~vsi and ~vs f be the initial and final velocities of Å in the reference frame of the sun.
What is the relation between ~vsi and ~vs f and ~vpi and ~vp f ? What is the relation between Ekin,i
and Ekin, f and ~vsi and ~vs f ? Use what you know from a). (2 points)

f) To demonstrate the gravitational slingshot one can consider the special case that the initial
velocity ~vsi of Å, in the frame of the sun, is anti-parallel to ~vP. In other words, Å initially
moves in the opposite direction compared to planet P. Hence, we let ~vsi = −s~vP for s > 0.
Show that

Ekin, f − Ekin,i = m(1 + s)‖~vP‖2
(

1− cos θ
)

,

where θ is the scattering angle that we discussed in d). What does this imply for the relation between
Ekin, f and Ekin,i? Where does the energy come from? (3 points)

2



Classical Mechanics WS 2017/18

2 Barge on a river
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Figure 2: A barge (red) is attached to two huge ropes
(blue) that stretch over a river and is moved along the
indicated cycle mentioned in the text.

Imagine that you are operating a barge that is
attached to huge ropes that stretch over a river.
By pulling the ropes you can move the barge
around. The flow of the river exerts a force on
the barge which we will assume to be ~F = q~v,
where ~v is the velocity of the flow and q > 0 is
some constant.

If the barge is pulled very slowly around on
the river, we can assume that all of the force is
directly transferred to the machinery that pulls
the ropes. Suppose that the velocity profile of
the current is ~v = v0(1− x2

a2 )ŷ for −a ≤ x ≤ a
and v0 > 0. Here, x = −a and x = a are the two
banks of the river and ŷ denotes the unit vector
in the positive y-direction. Hence, we have ori-
ented the coordinate system such that the pos-
itive y-direction is in the direction of the flow
of river, the x-axis is perpendicular to the river,
and x = 0 is in the middle.

Next, let us assume that we want to move the
barge along a closed cycle C as indicated in Fig. 2. The cycle consists of four straight lines described
by the following sequence of points (x, y) = (0, 0) → (0, b) → (−a/2, b) → (−a/2, 0) → (0, 0),
where a, b > 0.

a) Evaluate the curl ~∇× ~F in Cartesian coordinates. Is the force field conservative or non-conservative?
Think of the force field as being independent of z. (2 points)

b) By evaluating the line integral of the force exerted by the river on the barge, determine how much energy
that you would gain, or need to spend, in order to pull the barge once around the cycle C. Where does
that energy come from? (3 points)

c) Confirm the result in (b) by using Stokes theorem.

Hint: Recall that Stokes theorem says that
∮

C
~F · d~r =

∫
S(
~∇× ~F) · d~A, where the right hand

side is the surface integral over an area S enclosed by the closed loop C on the left hand side5.
Keep in mind that the orientations of the loop C and the surface S have to obey the right-hand
rule.

(3 points)

5I. e. C = ∂S
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