
Classical Mechanics

David Gross, Johan Åberg, Markus Heinrich

Exercise sheet 8 Due: December, 7 at 12:00

1 Constraint forces: The ideal case
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In exercise 2 we will analyze constraint forces, but as a preparation we here consider the ideal
case. We consider a bead of mass m that can slide without friction on a hoop that is oriented
vertically, so that the mass m is affected by the constant gravitational acceleration g.

a) Derive the Lagrangian in terms of the angle θ, and obtain the corresponding Euler-Lagrange equation.

(2 points)

b) Suppose that the bead at a given moment of time is at angle θ and has the angular speed θ̇. In
order to keep the bead at the constant radius R, the hoop must exert a normal force ~FN = FN r̂
on the bead, where r̂ is the unit radial vector. Show that

FN = mg cos θ −mRθ̇2. (1)

Hint: This is a bit of Newtonian mechanics again. The bead is affected by the gravitational
force and the normal force. In order to stay on the hoop, the bead must experience a centripetal
acceleration. This acceleration fixes the radial component of the total force acting on the bead.

(2 points)
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2 Obtaining constraint forces
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In the previous exercise we took for granted that the bead stays at the fixed radius R of the hoop.
In other words, we assume that there are constraint forces that keep the bead precisely at the right
radius. One can realize that this is an idealization. The restoring force comes from the hoop pushing
the bead back, when the bead deviates slightly from the correct radius. Here we will analyze this
problem by replacing the perfect constraint with a potential. We will see that one can regain the
ideal constraint for very steep potentials.

Precisely as in problem 1 we consider a bead on a hoop, but we additionally allow the bead to
change its radial coordinate r. Hence, we now have two coordinates θ and r. However, we also
include a radial potential (in addition to the gravitational potential) V(r) = 1

2ε (r− R)2, where ε > 0.
Hence, this is a quadratic potential with minimum at r = R, and this potential becomes more and
more steep the smaller ε is.

The solutions θ and r to the Euler-Lagrange equations are functions of time, but also of the
parameter ε. Intuitively is seems likely that if ε is very small (and thus the potential very steep),
then r(ε, t) ≈ R, and we would regain the ideal case in exercise 1. In order to analyze this we are
going to apply a very common type of trick, namely a perturbation expansion.

a) Derive the Lagrangian of this system, and show that the Euler-Lagrange equations are

mr2θ̈ + 2mrṙθ̇ −mgr sin θ = 0,

mr̈−mrθ̇2 + mg cos θ +
1
ε
(r− R) = 0.

(2)

(3 points)

b) Next we expand r and θ in power-series around ε = 0,

θ(ε, t) =θ0(t) + εθ1(t) + ε2θ2(t) + · · · ,

r(ε, t) =r0(t) + εr1(t) + ε2r2(t) + · · · .

Insert the above expansions into the equations (2). For each equation, collect terms of equal order in ε.
We only need the orders 1

ε and 1, so you can ignore ε, ε2, ε3, etc.

Hint: You will get one equation from the 1
ε -order, and two equations from the 1-order.

(3 points)

c) Simplify the equations that you obtained in b). How does the result relate to the Euler-Lagrange
equation in problem 1 a)? The radial potential yields the force F(t) = −V ′

(
r(t)

)
. For the approxi-

mation r(t) ≈ r0(t) + εr1(t), determine the force, and compare with (1). (2 points)

Remark: Here we only consider the lowest orders of perturbation. For estimating how the bead
deviates from the ideal evolution of the perfect constraints, one can include higher orders in the
expansion (such as θ1 and r2). Unfortunately, the resulting expressions are not very pleasant.
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3 Noether’s theorem, symmetry, and change of variables

Suppose that a system has the Lagrangian

L(λ, µ, λ̇, µ̇) =
m
2
(λ2 + µ2)(λ̇2 + µ̇2)− αλ2µ2, (3)

with respect to the generalized coordinates λ and µ, and some constant α.

a) Consider the coordinate transformation from (λ, µ) to (λ′, µ′) where

λ′ = λ + sCλ, Cλ =
1
2

λ

λ2 + µ2 ,

µ′ = µ + sCµ, Cµ =
1
2
−µ

λ2 + µ2 .
(4)

Show that this is a symmetry transformation of the Lagrangian L in (3) to the first order in s.

Hint: What we need to show that if L(λ′, µ′, λ̇′, µ̇′) is expanded around s = 0, then the first
order term vanishes. In other words, L(λ′, µ′, λ̇′, µ̇′) = L(λ, µ, λ̇, µ̇) + O(s2). Another way to
phrase the same thing is to say that d

ds L(λ′, µ′, λ̇′, µ̇′)
∣∣
s=0 = 0.

If you would get lost in the expansions and not manage to solve this problem, then you can
still do problems b) and c)! (3 points)

b) Compute the conserved quantity that corresponds to the transformation in (4)! (2 points)

c) Consider the new coordinate system

x =λ2 − µ2,

y =2λµ.

Express the Lagrangian (3) in terms of the new coordinates x and y. This Lagrangian has a cyclic
coordinate. How does that cyclic coordinate relate to the conserved quantity in b)? (3 points)
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